51
|
Giri BR, Mahato RI, Cheng G. Roles of microRNAs in T cell immunity: Implications for strategy development against infectious diseases. Med Res Rev 2018; 39:706-732. [PMID: 30272819 DOI: 10.1002/med.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
T cell immunity plays a vital role in pathogen infections. MicroRNA (miRNAs) are small, single-stranded noncoding RNAs that regulate T cell immunity by targeting key transcriptional factors, signaling proteins, and cytokines associated with T cell activation, differentiation, and function. The dysregulation of miRNA expression in T cells may lead to specific immune responses and can provide new therapeutic opportunities against various infectious diseases. Here, we summarize recent studies that focus on the roles of miRNAs in T cell immunity and highlight miRNA functions in prevalent infectious diseases. Additionally, we also provide insights into the functions of extracellular vesicle miRNAs and attempt to delineate the mechanism of miRNA sorting into extracellular vesicles and their immunomodulatory functions. Moreover, methodologies and strategies for miRNA delivery against infectious diseases are summarized. Finally, potential strategies for miRNA-based therapies are proposed.
Collapse
Affiliation(s)
- Bikash R Giri
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guofeng Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
52
|
Romania P, Cifaldi L, Pignoloni B, Starc N, D'Alicandro V, Melaiu O, Li Pira G, Giorda E, Carrozzo R, Bergvall M, Bergström T, Alfredsson L, Olsson T, Kockum I, Seppälä I, Lehtimäki T, Hurme MA, Hengel H, Santoni A, Cerboni C, Locatelli F, D'Amato M, Fruci D. Identification of a Genetic Variation in ERAP1 Aminopeptidase that Prevents Human Cytomegalovirus miR-UL112-5p-Mediated Immunoevasion. Cell Rep 2018; 20:846-853. [PMID: 28746870 DOI: 10.1016/j.celrep.2017.06.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/06/2017] [Accepted: 06/28/2017] [Indexed: 11/29/2022] Open
Abstract
Herein, we demonstrate that HCMV miR-UL112-5p targets ERAP1, thereby inhibiting the processing and presentation of the HCMV pp65495-503 peptide to specific CTLs. In addition, we show that the rs17481334 G variant, naturally occurring in the ERAP1 3' UTR, preserves ERAP1 from miR-UL112-5p-mediated degradation. Specifically, HCMV miR-UL112-5p binds the 3' UTR of ERAP1 A variant, but not the 3' UTR of ERAP1 G variant, and, accordingly, ERAP1 expression is reduced both at RNA and protein levels only in human fibroblasts homozygous for the A variant. Consistently, HCMV-infected GG fibroblasts were more efficient in trimming viral antigens and being lysed by HCMV-peptide-specific CTLs. Notably, a significantly decreased HCMV seropositivity was detected among GG individuals suffering from multiple sclerosis, a disease model in which HCMV is negatively associated with adult-onset disorder. Overall, our results identify a resistance mechanism to HCMV miR-UL112-5p-based immune evasion strategy with potential implications for individual susceptibility to infection and other diseases.
Collapse
Affiliation(s)
- Paolo Romania
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Loredana Cifaldi
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Benedetta Pignoloni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Nadia Starc
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valerio D'Alicandro
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Ombretta Melaiu
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giuseppina Li Pira
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Ezio Giorda
- Unit of Flow Cytometry, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Monika Bergvall
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, 41345 Göteborg, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, 171 77 Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere School of Medicine, 33014 Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere School of Medicine, 33014 Tampere, Finland
| | - Mikko A Hurme
- Department of Microbiology and Immunology, FimLab Laboratories and Faculty of Medicine and Life Sciences, University of Tampere School of Medicine, 33014 Tampere, Finland
| | - Hartmut Hengel
- Institute of Virology, Medical Center, and Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Franco Locatelli
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; University of Pavia, 27100 Pavia, Italy
| | - Mauro D'Amato
- Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden; BioDonostia Health Research Institute San Sebastian and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
53
|
Mpakali A, Maben Z, Stern LJ, Stratikos E. Molecular pathways for antigenic peptide generation by ER aminopeptidase 1. Mol Immunol 2018; 113:50-57. [PMID: 29678301 DOI: 10.1016/j.molimm.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
Endoplasmic Reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that can generate or destroy potential peptide ligands for MHC class I molecules. ERAP1 activity influences the cell-surface immunopeptidome and epitope immunodominance patterns but in complex and poorly understood manners. Two main distinct pathways have been proposed to account for ERAP1's effects on the nature and quantity of MHCI-bound peptides: i) ERAP1 trims peptides in solution, generating the correct length for binding to MHCI or overtrimming peptides so that they are too short to bind, and ii) ERAP1 trims peptides while they are partially bound onto MHCI in manner that leaves the peptide amino terminus accessible. For both pathways, once an appropriate length peptide is generated it could bind conventionally to MHCI, competing with further trimming by ERAP1. The two pathways, although not necessarily mutually exclusive, provide distinct vantage points for understanding of the rules behind the generation of the immunopeptidome. Resolution of the mechanistic details of ERAP1-mediated antigenic peptide generation can have important consequences for pharmacological efforts to regulate the immunopeptidome for therapeutic applications, and for understanding association of ERAP1 alleles with susceptibility to autoimmune disease and cancer. We review current evidence in support of these two pathways and discuss their relative importance and potential complementarity.
Collapse
Affiliation(s)
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| | | |
Collapse
|
54
|
Holder KA, Comeau EM, Grant MD. Origins of natural killer cell memory: special creation or adaptive evolution. Immunology 2018; 154:38-49. [PMID: 29355919 DOI: 10.1111/imm.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/13/2022] Open
Abstract
The few initial formative studies describing non-specific and apparently spontaneous activity of natural killer (NK) cells have since multiplied into thousands of scientific reports defining their unique capacities and means of regulation. Characterization of the array of receptors that govern NK cell education and activation revealed an unexpected relationship with the major histocompatibility molecules that NK cells originally became well known for ignoring. Proceeding true to form, NK cells continue to up-end archetypal understanding of their ever-expanding capabilities. Discovery that the NK cell repertoire is extremely diverse and can be reshaped by particular viruses into unique subsets of adaptive NK cells challenges, or at least broadens, the definition of immunological memory. This review provides an overview of studies identifying adaptive NK cells, addressing the origins of NK cell memory and introducing the heretical concept of NK cells with extensive antigenic specificity. Whether these newly apparent properties reflect adaptive utilization of known NK cell attributes and receptors or a specially creative allocation from an undefined receptor array remains to be fully determined.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Emilie M Comeau
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
55
|
Jiang S, Huang Y, Qi Y, He R, Liu Z, Ma Y, Guo X, Shao Y, Sun Z, Ruan Q. Human cytomegalovirus miR-US5-1 inhibits viral replication by targeting Geminin mRNA. Virol Sin 2017; 32:431-439. [PMID: 29116593 DOI: 10.1007/s12250-017-4064-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/26/2017] [Indexed: 11/25/2022] Open
Abstract
Viruses commonly create favorable cellular conditions for their survival through multiple mechanisms. MicroRNAs (miRNAs), which function as post-transcriptional regulators, are utilized by human cytomegalovirus (HCMV) in its infection and pathogenesis. In the present study, the DNA replication inhibitor Geminin (GMNN) was identified to be a direct target of hcmv-miR-US5-1. Overexpression of hcmv-miR-US5-1 could block the accumulation of GMNN during HCMV infection, and the decrease of GMNN expression caused by hcmv-miR-US5-1 or GMNN specific siRNA reduced HCMV DNA copies in U373 cells. Meanwhile, ectopic expression of hcmv-miR-US5-1 and consequent lower expression of GMNN influenced host cell cycle and proliferation. These results imply that hcmv-miR-US5-1 may affect viral replication and host cellular environment by regulating expression kinetics of GMNN during HCMV infection.
Collapse
Affiliation(s)
- Shujuan Jiang
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
- Clinical Genetics, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
| | - Yujing Huang
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
| | - Ying Qi
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
| | - Rong He
- Clinical Genetics, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China.
| | - Zhongyang Liu
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
| | - Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
| | - Xin Guo
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
| | - Yaozhong Shao
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
| | - Zhengrong Sun
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China
| | - Qiang Ruan
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
56
|
Liu S, Cao D, Shen Y, Li Y, Li Y, Shi L, Yu J, Li C, Zhang X, Sun M, Yao Y. The ERAP gene is associated with HCV chronic infection in a Chinese Han population. Hum Immunol 2017; 78:731-738. [PMID: 29037997 DOI: 10.1016/j.humimm.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 02/01/2023]
Abstract
Endoplasmic reticulum aminopeptidases (ERAPs), ERAP1 and ERAP2, are critical components in the antigen-presentation system and are specialized to produce optimal-sized peptides for HLA I binding. ERAP gene polymorphisms have been correlated with HLA-associated diseases. To investigate the association between ERAP gene polymorphisms and HCV chronic infection, a TaqMan assay was used to genotype 4 SNPs (rs27044, rs30187, rs26618 and rs26653) in ERAP1 and 2 SNPs (rs2248374 and rs2549782) in ERAP2 genes in 376 Chinese Han HCV chronic infections and 324 healthy Chinese Han controls. The allelic distribution of rs26618 in the ERAP1 gene and rs2248374 in ERAP2 gene were both significantly different in case and control groups. The C-allele of rs26618 had an increased HCV chronicity risk compared with the T-allele (P=.025, OR=1.318, 95%CI: 1.035-1.677), and the same effect was found in A-allele of rs2248374 compared with G-allele (P=0.046, OR=1.244, 95%CI: 1.004-1.540). There were notable differences in the genotype distribution in analysis using the dominant genetic model in rs26618 (CC+CT vs. TT; P=0.007, OR=1.473, 95%CI: 1.091-1.989) and recessive genetic model in rs2248374 (AA vs. AG+GG; P=0.003, OR=1.548, 95%CI: 1.026-2.335). In addition, rs26618 and rs2248374-genotype combination played noteable effects on the clinical parameters. These results indicated that the ERAP gene may play a critical role in HCV chronicity in this Chinese Han population.
Collapse
Affiliation(s)
- Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Danfeng Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Yunsong Shen
- The First People's Hospital in Yunnan Province & The Affiliated Hospital of Kunming Science and Technology University, Kunming 650032, China
| | - Yalin Li
- The First People's Hospital in Yunnan Province & The Affiliated Hospital of Kunming Science and Technology University, Kunming 650032, China
| | - Ying Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Jiankun Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China.
| |
Collapse
|
57
|
Falcão ASC, da Costa Vasconcelos PF, Lobato da Silva DDF, Viana Pinheiro JDJ, Falcão LFM, Quaresma JAS. Mechanisms of human cytomegalovirus infection with a focus on epidermal growth factor receptor interactions. Rev Med Virol 2017; 27. [PMID: 29024283 DOI: 10.1002/rmv.1955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread opportunistic herpesvirus that causes severe diseases in immunocompromised individuals. It has a high prevalence worldwide that is linked with socioeconomic factors. Similar to other herpesviruses, HCMV has the ability to establish lifelong persistence and latent infection following primary exposure. HCMV infects a broad range of cell types. This broad tropism suggests that it may use multiple receptors for host cell entry. The identification of receptors used by HCMV is essential for understanding viral pathogenesis, because these receptors mediate the early events necessary for infection. Many cell surface components have been identified as virus receptors, such as epidermal growth factor receptor (EGFR), which is characterized by tyrosine kinase activity and plays a crucial role in the control of key cellular transduction pathways. EGFR is essential for HCMV binding, signaling, and host cell entry. This review focuses on HCMV infection via EGFR on different cell types and its implications for the cellular environment, viral persistence, and infection.
Collapse
Affiliation(s)
| | | | | | - João de Jesus Viana Pinheiro
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Pará, Belém, Pará, Brazil.,Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Juarez Antonio Simões Quaresma
- Division of Infectious Diseases, Evandro Chagas Institute, Ananindeua, Pará, Brazil.,Center for Biological Sciences and Health, Pará State University, Belém, Pará, Brazil.,Division of Infectious Diseases, Tropical Medicine Center, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
58
|
Drury RE, O'Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017; 8:1182. [PMID: 28993774 PMCID: PMC5622146 DOI: 10.3389/fimmu.2017.01182] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
59
|
Eichmüller SB, Osen W, Mandelboim O, Seliger B. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. J Natl Cancer Inst 2017; 109:3105955. [PMID: 28383653 DOI: 10.1093/jnci/djx034] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Current therapies against cancer utilize the patient's immune system for tumor eradication. However, tumor cells can evade immune surveillance of CD8+ T and/or natural killer (NK) cells by various strategies. These include the aberrant expression of human leukocyte antigen (HLA) class I antigens, co-inhibitory or costimulatory molecules, and components of the interferon (IFN) signal transduction pathway. In addition, alterations of the tumor microenvironment could interfere with efficient antitumor immune responses by downregulating or inhibiting the frequency and/or functional activity of immune effector cells and professional antigen-presenting cells. Recently, microRNAs (miRNAs) have been identified as major players in the post-transcriptional regulation of gene expression, thereby controlling many physiological and also pathophysiological processes including neoplastic transformation. Indeed, the cellular miRNA expression pattern is frequently altered in many tumors of distinct origin, demonstrating the tumor suppressive or oncogenic potential of miRNAs. Furthermore, there is increasing evidence that miRNAs could also influence antitumor immune responses by affecting the expression of immune modulatory molecules in tumor and immune cells. Apart from their important role in tumor immune escape and altered tumor-host interaction, immune modulatory miRNAs often exert neoplastic properties, thus representing promising targets for future combined immunotherapy approaches. This review focuses on the characterization of miRNAs involved in the regulation of immune surveillance or immune escape of tumors and their potential use as diagnostic and prognostic biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfram Osen
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Ofer Mandelboim
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Barbara Seliger
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
60
|
Blanco FC, Soria MA, Klepp LI, Bigi F. ERAP1 and PDE8A Are Downregulated in Cattle Protected against Bovine Tuberculosis. J Mol Microbiol Biotechnol 2017; 27:237-245. [PMID: 28903115 DOI: 10.1159/000479183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Bovine tuberculosis (bTB) is a zoonotic disease caused by Mycobacterium bovis that is responsible for significant economic losses worldwide. In spite of its relevance, the limited knowledge about the host immune responses that provide effective protection against the disease has long hampered the development of an effective vaccine. The identification of host proteins with an expression that correlates with protection against bTB would contribute to the understanding of the cattle defence mechanisms against M. bovis infection. In this study, we found that ERAP1 and PDE8A were downregulated in vaccinated cattle that were protected from experimental M. bovis challenge. Remarkably, both genes encode proteins that have been negatively associated with immune protection against bTB.
Collapse
|
61
|
MicroRNAs of Epstein-Barr Virus Control Innate and Adaptive Antiviral Immunity. J Virol 2017; 91:JVI.01667-16. [PMID: 28592533 DOI: 10.1128/jvi.01667-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV) has established lifelong infection in more than 90% of humanity. While infection is usually controlled by the immune system, the human host fails to completely eliminate the pathogen. Several herpesviral proteins are known to act as immunoevasins, preventing or reducing recognition of EBV-infected cells. Only recently were microRNAs of EBV identified to reduce immune recognition further. This Gem summarizes what we know about immunomodulatory microRNAs of herpesviruses.
Collapse
|
62
|
Kim H, Iizasa H, Kanehiro Y, Fekadu S, Yoshiyama H. Herpesviral microRNAs in Cellular Metabolism and Immune Responses. Front Microbiol 2017; 8:1318. [PMID: 28769892 PMCID: PMC5513955 DOI: 10.3389/fmicb.2017.01318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The microRNAs (miRNAs) function as a key regulator in many biological processes through post-transcriptional suppression of messenger RNAs. Recent advancements have revealed that miRNAs are involved in many biological functions of cells. Not only host cells, but also some viruses encode miRNAs in their genomes. Viral miRNAs regulate cell proliferation, differentiation, apoptosis, and the cell cycle to establish infection and produce viral progeny. Particularly, miRNAs encoded by herpes virus families play integral roles in persistent viral infection either by regulation of metabolic processes or the immune response of host cells. The life-long persistent infection of gamma herpes virus subfamilies, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, induces host cells to malignant transformation. The unbalanced metabolic processes and evasion from host immune surveillance by viral miRNAs are induced either by direct targeting of key proteins or indirect regulation of multiple signaling pathways. We provide an overview of the pathogenic roles of viral miRNAs in cellular metabolism and immune responses during herpesvirus infection.
Collapse
Affiliation(s)
- Hyoji Kim
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Yuichi Kanehiro
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Sintayehu Fekadu
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| |
Collapse
|
63
|
Abstract
Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.
Collapse
|
64
|
Ding M, Wang X, Wang C, Liu X, Zen K, Wang W, Zhang CY, Zhang C. Distinct expression profile of HCMV encoded miRNAs in plasma from oral lichen planus patients. J Transl Med 2017; 15:133. [PMID: 28592251 PMCID: PMC5463403 DOI: 10.1186/s12967-017-1222-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background Oral lichen planus (OLP) is a T cell-mediated autoimmune disease. The aetiology and molecular mechanisms of OLP remain unclear. Human cytomegalovirus (HCMV) infection is a causal factor in the development of various diseases, but the clinical relevance of HCMV in OLP has not been thoroughly investigated. Methods In the present study, we firstly examined twenty-three HCMV-encoded microRNA (miRNA) expression profiles in plasma from training set that including 21 OLP patients and 18 healthy controls using RT-qPCR technology. Dysregulated miRNAs were subsequently confirmed in another larger cohort refereed as validation set consisting of 40 OLP patients and 33 healthy controls. HCMV DNA in peripheral blood leukocytes (PBLs) was also measured in an additional cohort of 13 OLP patients and 12 control subjects. Furthermore, bioinformatics analyses, luciferase reporter assay and western blotting were also performed to predict and verify the direct potential targets of HCMV-encoded miRNAs. Results The RT-qPCR results showed that the plasma levels of five HCMV-encoded miRNAs including hcmv-miR-UL112-3p, hcmv-miR-UL22a-5p, hcmv-miR-UL148d, hcmv-miR-UL36-5p and hcmv-miR-UL59 were significantly increased in OLP patients in both training and validation sets. HCMV DNA in PBLs was also significantly higher in OLP patients than in control subjects. Additionally, by using a combination of luciferase reporter assay and western blotting, we demonstrated that cytomegalovirus UL16-binding protein 1, a molecule that mediates the killing of virus-infected cells by natural killer cells, is a direct target of hcmv-miR-UL59. Conclusions Our results demonstrate a distinct expression pattern of HCMV-encoded miRNAs in OLP patients, which may provide insight into the relationship between HCMV infection and OLP, and warrants additional study in the diagnosis and aetiology of OLP. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1222-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Ding
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210002, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomat-ological Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210002, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Xiaoshuang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomat-ological Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210002, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
65
|
Deng J, Xiao J, Ma P, Gao B, Gong F, Lv L, Zhang Y, Xu J. Manipulation of Viral MicroRNAs as a Potential Antiviral Strategy for the Treatment of Cytomegalovirus Infection. Viruses 2017; 9:v9050118. [PMID: 28534856 PMCID: PMC5454430 DOI: 10.3390/v9050118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) infection leads to notable morbidity and mortality in immunosuppressed patients. Current antiviral drugs are effective but seriously limited in their long-term use due to their relatively high toxicity. In the present study, we characterized the expression of murine CMV microRNAs (MCMV miRNAs) both in vitro and in vivo. Although 29 miRNAs were detectable during in vitro infection, only 11 miRNAs (classified as Group 1) were detectable during in vivo infection, and as many as 18 viral miRNAs (classified as Group 2) were less detectable (<50% of animals) in both the liver and lungs. In addition, viral miRNA profiles in the blood revealed unstable and reduced expression. We next explored the in vitro effects of viral miRNAs on MCMV replication. The inhibition of Group 1 viral miRNAs had little effect on virus production, but transfected cells overexpressing miR-m01-3-5p, miR-M23-1-5p, miR-M55-1, and miR-m107-1-5p in Group 2 showed statistically lower viral loads than those transfected with control miRNA (29%, 29%, 39%, and 43%, respectively, versus control). Finally, we performed hydrodynamic injection of viral miRNA agomirs and observed lower levels of MCMV recurrence in the livers of animals overexpressing the miR-m01-3-5p or mcmv-miR-M23-1-5p agomirs compared with those of animals transfected with control agomir, confirming the antiviral effects of viral miRNA manipulation in vivo. Therefore, the manipulation of viral miRNA expression shows great therapeutic potential and represents a novel antiviral strategy for the miRNA-based treatment of cytomegalovirus infection.
Collapse
Affiliation(s)
- Jiang Deng
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Jun Xiao
- Department of Blood Transfusion, Air Force General Hospital, Beijing 100142, China.
| | - Ping Ma
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Bo Gao
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Feng Gong
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Liping Lv
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Yanyu Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| | - Jinbo Xu
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, China.
- Beijing Institute of Transfusion Medicine, 27 (9) Taiping Road, Beijing 100850, China.
| |
Collapse
|
66
|
Bruscella P, Bottini S, Baudesson C, Pawlotsky JM, Feray C, Trabucchi M. Viruses and miRNAs: More Friends than Foes. Front Microbiol 2017; 8:824. [PMID: 28555130 PMCID: PMC5430039 DOI: 10.3389/fmicb.2017.00824] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host–pathogen interaction.
Collapse
Affiliation(s)
- Patrice Bruscella
- INSERM U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis", Université Paris-EstCréteil, France
| | | | - Camille Baudesson
- INSERM U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis", Université Paris-EstCréteil, France
| | - Jean-Michel Pawlotsky
- INSERM U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis", Université Paris-EstCréteil, France
| | - Cyrille Feray
- INSERM U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis", Université Paris-EstCréteil, France
| | | |
Collapse
|
67
|
McMichael AJ, Picker LJ. Unusual antigen presentation offers new insight into HIV vaccine design. Curr Opin Immunol 2017; 46:75-81. [PMID: 28505602 DOI: 10.1016/j.coi.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022]
Abstract
Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Deparment of Medicine, Oxford University, Old Road Campus, Oxford OX37FZ, UK.
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, United States
| |
Collapse
|
68
|
Herpesvirus microRNAs for use in gene therapy immune-evasion strategies. Gene Ther 2017; 24:385-391. [PMID: 28485720 DOI: 10.1038/gt.2017.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
Abstract
Transplantation of allogeneic cells as well as of genetically corrected autologous cells are potent approaches to restore cellular functions in patients suffering from genetic diseases. The recipient's immune responses against non-self-antigens may compromise the survival of the grafted cells. Recipients of the graft may therefore require lifelong treatment with immunosuppressive drugs. An alternative approach to reduce graft rejection could involve the use of immune-evasion molecules. Expression of such molecules in cells of the graft may subvert recognition by the host's immune system. Viruses in particular are masters of exploitation and modulation of their hosts immune response. The Herpesviridae family provides a proof of concept for this as these viruses are capable to establish latency and a lifelong persistence in the infected hosts. While several viral proteins involved in immune evasion have been characterized, the Herpesviridae also encode a multitude of viral microRNA (miRNAs). Several of these miRNAs have been demonstrated to reduce the sensitivity of the infected cells to the destructive action of the host's immune cells. In this review, the miRNAs of some common herpesviruses that are associated with immune modulation will be discussed with a focus on their potential use in strategies aiming at generating non-immunogenic cells for transplantation.
Collapse
|
69
|
Fruci D, Rota R, Gallo A. The Role of HCMV and HIV-1 MicroRNAs: Processing, and Mechanisms of Action during Viral Infection. Front Microbiol 2017; 8:689. [PMID: 28484438 PMCID: PMC5399795 DOI: 10.3389/fmicb.2017.00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/04/2017] [Indexed: 11/23/2022] Open
Abstract
Viruses infect host cells releasing their genome (DNA or RNA) containing all information needed to replicate themselves. The viral genome takes control of the cells and helps the virus to evade the host immune system. Some viruses alter the functions of infected cells without killing them. In some cases infected cells lose control over normal cell proliferation and becomes cancerous. Viruses, such as HCMV and HIV-1, may leave their viral genome in the host cells for a certain period (latency) and begin to replicate when the cells are stressed causing diseases. HCMV and HIV-1 have developed multiple strategies to avoid recognition and elimination by the host’s immune system. These strategies rely on viral products that mimic specific components of the host cells to prevent immune recognition of virally infected cells. In addition to viral proteins, viruses encode short non-coding RNAs (vmiRNAs) that regulate both viral and host cellular transcripts to favor viral infection and actively curtail the host’s antiviral immune response. In this review, we will give an overview of the general functions of microRNAs generated by HCMV and HIV-1, their processing and interaction with the host’s immune system.
Collapse
Affiliation(s)
- Doriana Fruci
- Immuno-Oncology Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Rossella Rota
- Angiogenesis Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| |
Collapse
|
70
|
Hooykaas MJG, van Gent M, Soppe JA, Kruse E, Boer IGJ, van Leenen D, Groot Koerkamp MJA, Holstege FCP, Ressing ME, Wiertz EJHJ, Lebbink RJ. EBV MicroRNA BART16 Suppresses Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2017; 198:4062-4073. [PMID: 28416598 DOI: 10.4049/jimmunol.1501605] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Type I IFNs play critical roles in orchestrating the antiviral defense by inducing direct antiviral activities and shaping the adaptive immune response. Viruses have evolved numerous strategies to specifically interfere with IFN production or its downstream mediators, thereby allowing successful infection of the host to occur. The prototypic human gammaherpesvirus EBV, which is associated with infectious mononucleosis and malignant tumors, harbors many immune-evasion proteins that manipulate the adaptive and innate immune systems. In addition to proteins, the virus encodes >40 mature microRNAs for which the functions remain largely unknown. In this article, we identify EBV-encoded miR-BART16 as a novel viral immune-evasion factor that interferes with the type I IFN signaling pathway. miR-BART16 directly targets CREB-binding protein, a key transcriptional coactivator in IFN signaling, thereby inducing CREB-binding protein downregulation in EBV-transformed B cells and gastric carcinoma cells. miR-BART16 abrogates the production of IFN-stimulated genes in response to IFN-α stimulation and it inhibits the antiproliferative effect of IFN-α on latently infected BL cells. By obstructing the type I IFN-induced antiviral response, miR-BART16 provides a means to facilitate the establishment of latent EBV infection and enhance viral replication.
Collapse
Affiliation(s)
- Marjolein J G Hooykaas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jasper A Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Elisabeth Kruse
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ingrid G J Boer
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Dik van Leenen
- Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and
| | | | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, 3584 EA Utrecht, the Netherlands
| | - Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
71
|
Human cytomegalovirus-encoded miR-US4-1 promotes cell apoptosis and benefits discharge of infectious virus particles by targeting QARS. J Biosci 2017; 41:183-92. [PMID: 27240979 DOI: 10.1007/s12038-016-9605-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human cytomegalovirus (HCMV) can cause congenital diseases and opportunistic infections in immunocompromised individuals. Its functional proteins and microRNAs (miRNAs) facilitate efficient viral propagation by altering host cell behaviour. Identification of functional target genes of miRNAs is an important step in studies on HCMV pathogenesis. In this study, Glutaminyl-tRNA Synthetase (QARS), which could regulate signal transduction pathways for cellular apoptosis, was identified as a direct target of hcmv-miR-US4-1. Apoptosis assay revealed that as silence of QARS by ectopic expression of hcmv-miR-US4-1 and specific small interference RNA of QARS can promote cell apoptosis in HCMV-infected HELF cells. Moreover, viral growth curve assays showed that hcmv-miR-US4-1 benefits the discharge of infectious virus particles. However, silence of hcmv-miR-US4-1 by its specific inhibitor overturned these effects. These results imply that hcmv-miR-US4-1 might have the same effects during HCMV nature infection. In general, hcmv-miR-US4-1 may involve in promoting cell apoptosis and benefiting discharge of infectious virus particles via down-regulation of QARS in HCMV-infected HELF cells.
Collapse
|
72
|
Sorel O, Dewals BG. MicroRNAs in large herpesvirus DNA genomes: recent advances. Biomol Concepts 2017; 7:229-39. [PMID: 27544723 DOI: 10.1515/bmc-2016-0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.
Collapse
|
73
|
Zhong S, Naqvi A, Bair E, Nares S, Khan AA. Viral MicroRNAs Identified in Human Dental Pulp. J Endod 2016; 43:84-89. [PMID: 27939730 DOI: 10.1016/j.joen.2016.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION MicroRNAs (miRs) are a family of noncoding RNAs that regulate gene expression. They are ubiquitous among multicellular eukaryotes and are also encoded by some viruses. Upon infection, viral miRs (vmiRs) can potentially target gene expression in the host and alter the immune response. Although prior studies have reported viral infections in human pulp, the role of vmiRs in pulpal disease is yet to be explored. The purpose of this study was to examine the expression of vmiRs in normal and diseased pulps and to identify potential target genes. METHODS Total RNA was extracted and quantified from normal and inflamed human pulps (N = 28). Expression profiles of vmiRs were then interrogated using miRNA microarrays (V3) and the miRNA Complete Labeling and Hyb Kit (Agilent Technologies, Santa Clara, CA). To identify vmiRs that were differentially expressed, we applied a permutation test. RESULTS Of the 12 vmiRs detected in the pulp, 4 vmiRs (including those from herpesvirus and human cytomegalovirus) were differentially expressed in inflamed pulp compared with normal pulp (P < .05). Using bioinformatics, we identified potential target genes for the differentially expressed vmiRs. They included key mediators involved in the detection of microbial ligands, chemotaxis, proteolysis, cytokines, and signal transduction molecules. CONCLUSIONS These data suggest that miRs may play a role in interspecies regulation of pulpal health and disease. Further research is needed to elucidate the mechanisms by which vmiRs can potentially modulate the host response in pulpal disease.
Collapse
Affiliation(s)
- Sheng Zhong
- Endodontic Associates, Minneapolis, Minnesota; Department of Endodontics, University of North Carolina, Chapel Hill, North Carolina
| | - Afsar Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Eric Bair
- Department of Endodontics, University of North Carolina, Chapel Hill, North Carolina
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Asma A Khan
- Department of Endodontics, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
74
|
Tahamtan A, Inchley CS, Marzban M, Tavakoli‐Yaraki M, Teymoori‐Rad M, Nakstad B, Salimi V. The role of microRNAs in respiratory viral infection: friend or foe? Rev Med Virol 2016; 26:389-407. [PMID: 27373545 PMCID: PMC7169129 DOI: 10.1002/rmv.1894] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs in host-pathogen interactions. Aberrant miRNA expression seems to play a central role in the pathology of several respiratory viruses, promoting development and progression of infection. miRNAs may thus serve as therapeutic and prognostic factors for respiratory viral infectious disease caused by a variety of agents. We present a comprehensive review of recent findings related to the role of miRNAs in different respiratory viral infections and discuss possible therapeutic opportunities aiming to attenuate the burden of viral infections. Our review supports the emerging concept that cellular and viral-encoded miRNAs might be broadly implicated in human respiratory viral infections, with either positive or negative effects on virus life cycle. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Christopher S. Inchley
- Department of Pediatric and Adolescent MedicineAkershus University HospitalLørenskogNorway
| | - Mona Marzban
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Majid Teymoori‐Rad
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Britt Nakstad
- Department of Pediatric and Adolescent MedicineAkershus University HospitalLørenskogNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Vahid Salimi
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
75
|
Textor A, Schmidt K, Kloetzel PM, Weißbrich B, Perez C, Charo J, Anders K, Sidney J, Sette A, Schumacher TNM, Keller C, Busch DH, Seifert U, Blankenstein T. Preventing tumor escape by targeting a post-proteasomal trimming independent epitope. J Exp Med 2016; 213:2333-2348. [PMID: 27697836 PMCID: PMC5068242 DOI: 10.1084/jem.20160636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/31/2016] [Indexed: 02/05/2023] Open
Abstract
Blankenstein and colleagues describe a novel strategy to avoid tumor escape from adoptive T cell therapy. Adoptive T cell therapy (ATT) can achieve regression of large tumors in mice and humans; however, tumors frequently recur. High target peptide-major histocompatibility complex-I (pMHC) affinity and T cell receptor (TCR)-pMHC affinity are thought to be critical to preventing relapse. Here, we show that targeting two epitopes of the same antigen in the same cancer cells via monospecific T cells, which have similar pMHC and pMHC-TCR affinity, results in eradication of large, established tumors when targeting the apparently subdominant but not the dominant epitope. Only the escape but not the rejection epitope required postproteasomal trimming, which was regulated by IFN-γ, allowing IFN-γ–unresponsive cancer variants to evade. The data describe a novel immune escape mechanism and better define suitable target epitopes for ATT.
Collapse
Affiliation(s)
- Ana Textor
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Karin Schmidt
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.,Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany
| | - Peter-M Kloetzel
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany.,Berlin Institute of Health, 10117 Berlin, Germany
| | - Bianca Weißbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University, 81675 Munich, Germany
| | - Cynthia Perez
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Kathleen Anders
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Ton N M Schumacher
- The Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Christin Keller
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University, 81675 Munich, Germany
| | - Ulrike Seifert
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany.,Institute for Molecular and Clinical Immunology, Otto-von-Guericke-Universität, 39120 Magdeburg, Germany.,Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany .,Berlin Institute of Health, 10117 Berlin, Germany.,Institute of Immunology, Charité, Campus Buch, 13125 Berlin, Germany
| |
Collapse
|
76
|
Xu Y, Qing Q, Liu X, Chen S, Chen Z, Niu X, Tan Y, He W, Liu X, Li Y, Chen R, Chen L. Bruton's agammaglobulinemia in an adult male due to a novel mutation: a case report. J Thorac Dis 2016; 8:E1207-E1212. [PMID: 27867589 DOI: 10.21037/jtd.2016.10.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
X-linked agammaglobulinemia (XLA) is caused by mutation in the gene coding for Bruton's tyrosine kinase (BTK), which impairs peripheral B cell maturation and hypogammaglobulinemia. In this report, we present a case of XLA in a 22-year-old adult male. Genetic testing revealed a novel mutation located at the conserved region (c.383T>C). The patient had a history of recurrent respiratory tract infection which eventually progressed to chronic type II respiratory failure. Several pathogenic bacteria were isolated on culture of respiratory secretions obtained on bronchoscopy. The patient improved on treatment with antibiotics.
Collapse
Affiliation(s)
- Yuanda Xu
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Qi Qing
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Xuesong Liu
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Sibei Chen
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Ziyi Chen
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xuefeng Niu
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Yaxia Tan
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Weiqun He
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoqing Liu
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Yimin Li
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Rongchang Chen
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Ling Chen
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China; ; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
77
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
78
|
Proff J, Walterskirchen C, Brey C, Geyeregger R, Full F, Ensser A, Lehner M, Holter W. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner. Front Microbiol 2016; 7:844. [PMID: 27375569 PMCID: PMC4899442 DOI: 10.3389/fmicb.2016.00844] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023] Open
Abstract
In order to explore the potential of HLA-independent T cell therapy for human cytomegalovirus (HCMV) infections, we developed a chimeric antigen receptor (CAR) directed against the HCMV encoded glycoprotein B (gB), which is expressed at high levels on the surface of infected cells. T cells engineered with this anti-gB CAR recognized HCMV-infected cells and released cytokines and cytotoxic granules. Unexpectedly, and in contrast to analogous approaches for HIV, Hepatitis B or Hepatitis C virus, we found that HCMV-infected cells were resistant to killing by the CAR-modified T cells. In order to elucidate whether this phenomenon was restricted to the use of CARs, we extended our experiments to T cell receptor (TCR)-mediated recognition of infected cells. To this end we infected fibroblasts with HCMV-strains deficient in viral inhibitors of antigenic peptide presentation and targeted these HLA-class I expressing peptide-loaded infected cells with peptide-specific cytotoxic T cells (CTLs). Despite strong degranulation and cytokine production by the T cells, we again found significant inhibition of lysis of HCMV-infected cells. Impairment of cell lysis became detectable 1 day after HCMV infection and gradually increased during the following 3 days. We thus postulate that viral anti-apoptotic factors, known to inhibit suicide of infected host cells, have evolved additional functions to directly abrogate T cell cytotoxicity. In line with this hypothesis, CAR-T cell cytotoxicity was strongly inhibited in non-infected fibroblasts by expression of the HCMV-protein UL37x1, and even more so by additional expression of UL36. Our data extend the current knowledge on Betaherpesviral evasion from T cell immunity and show for the first time that, beyond impaired antigen presentation, infected cells are efficiently protected by direct blockade of cytotoxic effector functions through viral proteins.
Collapse
Affiliation(s)
- Julia Proff
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Children's University Hospital, Universitätsklinikum ErlangenErlangen, Germany
| | | | - Charlotte Brey
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Rene Geyeregger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Florian Full
- Institute for Clinical and Molecular Virology, Universitätsklinikum ErlangenErlangen, Germany; Department of Microbiology, The University of ChicagoChicago, IL, USA
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen Erlangen, Germany
| | - Manfred Lehner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Wolfgang Holter
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Department of Pediatrics, St. Anna Kinderspital, Medical University of ViennaVienna, Austria
| |
Collapse
|
79
|
Moogk D, Zhong S, Yu Z, Liadi I, Rittase W, Fang V, Dougherty J, Perez-Garcia A, Osman I, Zhu C, Varadarajan N, Restifo NP, Frey AB, Krogsgaard M. Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2016; 197:644-54. [PMID: 27271569 DOI: 10.4049/jimmunol.1600178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022]
Abstract
CD8(+) T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications.
Collapse
Affiliation(s)
- Duane Moogk
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Shi Zhong
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ivan Liadi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX 77004
| | - William Rittase
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Victoria Fang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; New York University Medical Scientist Training Program, New York, NY 10016
| | - Janna Dougherty
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Arianne Perez-Garcia
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Iman Osman
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Ronald Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016
| | - Cheng Zhu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, TX 77004
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016; and
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Department of Pathology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
80
|
Piedade D, Azevedo-Pereira JM. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses 2016; 8:v8060156. [PMID: 27271654 PMCID: PMC4926176 DOI: 10.3390/v8060156] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
81
|
Wang JH, Zhang L, Ma YW, Xiao J, Zhang Y, Liu M, Tang H. microRNA-34a-Upregulated Retinoic Acid-Inducible Gene-I Promotes Apoptosis and Delays Cell Cycle Transition in Cervical Cancer Cells. DNA Cell Biol 2016; 35:267-79. [PMID: 26910120 DOI: 10.1089/dna.2015.3130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The function of retinoic acid-inducible gene-I (RIG-I) in viral replication is well documented, but its function in carcinogenesis and malignancies as well as relationship with microRNAs (miRNAs) remain poorly understood. miR-34a is an antioncogene in multiple tumors. In our study, RIG-I and miR-34a suppressed cell growth, proliferation, migration, and invasion in cervical cancer cells in vitro. miR-34a was validated as a new regulator of RIG-I by binding to its 3' untranslated region and upregulating its expression level. Furthermore, we revealed that RIG-I and miR-34a enhanced apoptosis, delayed the G1/S/G2 transition of the cell cycle, and inhibited the epithelial-mesenchymal transition process to modulate malignancies in cervical cancer cells. Phenotypic rescue experiments indicated that RIG-I mediates the effects of miR-34a in HeLa and C33A cells. These findings provide new insights into the mechanisms that underlie carcinogenesis and may provide new biomarkers for the diagnosis and therapy of cervical cancer.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Le Zhang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Yu-Wei Ma
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Jing Xiao
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Yi Zhang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University , Tianjin, China
| |
Collapse
|
82
|
Flór TB, Blom B. Pathogens Use and Abuse MicroRNAs to Deceive the Immune System. Int J Mol Sci 2016; 17:538. [PMID: 27070595 PMCID: PMC4848994 DOI: 10.3390/ijms17040538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence has demonstrated that microRNAs (miRs) play a role in the survival and amplification of viruses, bacteria and other pathogens. There are various ways in which pathogens can benefit from miR-directed alterations in protein translation and signal transduction. Members of the herpesviridae family have previously been shown to encode multiple miRs, while the production of miRs by viruses like HIV-1 remained controversial. Recently, novel techniques have facilitated the elucidation of true miR targets by establishing miR-argonaute association and the subsequent interactions with their cognate cellular mRNAs. This, in combination with miR reporter assays, has generated physiologically relevant evidence that miRs from the herpesviridae family have the potential to downregulate multiple cellular targets, which are involved in immune activation, cytokine signaling and apoptosis. In addition, viruses and bacteria have also been linked to the induction of host cellular miRs, which have the capacity to mitigate immune activation, cytokine signaling and apoptosis. Interfering with miR expression may be clinically relevant. In the case of hepatitis C infection, the cellular miR-122 is already targeted therapeutically. This not only exemplifies how important miRs can be for the survival of specific viruses, but it also delineates the potential to use miRs as drug targets. In this paper we will review the latest reports on viruses and bacteria that abuse miR regulation for their benefit, which may be of interest in the development of miR-directed therapies.
Collapse
Affiliation(s)
- Thomas B Flór
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
83
|
Schuren AB, Costa AI, Wiertz EJ. Recent advances in viral evasion of the MHC Class I processing pathway. Curr Opin Immunol 2016; 40:43-50. [PMID: 27065088 DOI: 10.1016/j.coi.2016.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
T-cell mediated adaptive immunity against viruses relies on recognition of virus-derived peptides by CD4(+) and CD8(+) T cells. Detection of pathogen-derived peptide-MHC-I complexes triggers CD8(+) T cells to eliminate the infected cells. Viruses have evolved several mechanisms to avoid recognition, many of which target the MHC-I antigen-processing pathway. While many immune evasion strategies have been described in the context of herpesvirus infections, it is becoming clear that this 'disguise' ability is more widespread. Here, we address recent findings in viral evasion of the MHC-I antigen presentation pathway and the impact on CD8(+) T cell responses.
Collapse
Affiliation(s)
- Anouk Bc Schuren
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana I Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
84
|
Virus-specific T-cell banks for 'off the shelf' adoptive therapy of refractory infections. Bone Marrow Transplant 2016; 51:1163-72. [PMID: 27042851 DOI: 10.1038/bmt.2016.17] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Adoptive immunotherapy with transplant donor-derived virus-specific T cells has emerged as a potentially curative approach for the treatment of drug-refractory EBV+lymphomas as well as CMV and adenovirus infections complicating allogeneic hematopoietic cell transplants. Adoptive transfer of HLA partially matched virus-specific T cells from healthy third party donors has also shown promise in the treatment of these conditions, with disease response rates of 50-76% and strikingly low incidences of toxicity or GVHD recorded in initial trials. In this review, we examine the reported experience with transplant donor and third party donor-derived virus-specific T cells, identifying characteristics of the viral pathogen, the T cells administered and the diseased host that contribute to treatment response or failure. We also describe the characteristics of virus-specific T-cell lines in our center's bank and the frequency with which in vitro culture promotes expansion of immunodominant T cells specific for epitopes that are presented by a limited array of prevalent HLA alleles, which facilitates their broad applicability for treatment.
Collapse
|
85
|
Kim S, Seo D, Kim D, Hong Y, Chang H, Baek D, Kim VN, Lee S, Ahn K. Temporal Landscape of MicroRNA-Mediated Host-Virus Crosstalk during Productive Human Cytomegalovirus Infection. Cell Host Microbe 2016; 17:838-51. [PMID: 26067606 DOI: 10.1016/j.chom.2015.05.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/16/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Temporal profiles of miRNA activity during productive virus infection can provide fundamental insights into host-virus interactions. Most reported miRNA targetome analyses in the context of virus infection have been performed in latently infected cells and lack reliable models for quantifying the suppression efficacy at specific miRNA target sites. Here, we identified highly competent temporal miRNA targetomes during lytic HCMV infection by using AGO-CLIP-seq together with a bioinformatic method that quantifies miRNA functionality at a specific target site, called ACE-scoring. The repression efficiency at target sites correlates with the magnitude of the ACE-score, and temporal HCMV-encoded miRNA targetomes identified by ACE-scoring were significantly enriched in functional categories involved in pathways central for HCMV biology. Furthermore, comparative analysis between human and viral miRNA targetomes supports the existence of intimate cooperation and co-targeting between them. Our holistic survey provides a valuable resource for understanding host-virus interactions during lytic HCMV infection.
Collapse
Affiliation(s)
- Sungchul Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Daekwan Seo
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Dongwoo Kim
- School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Yujin Hong
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea; Bioinformatics Institute, Seoul National University, Seoul 151-747, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea
| | - Sungwook Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 151-742, Korea; School for Biological Sciences, Seoul National University (SNU), Seoul 151-742, Korea.
| |
Collapse
|
86
|
Pan Y, Wang N, Zhou Z, Liang H, Pan C, Zhu D, Liu F, Zhang CY, Zhang Y, Zen K. Circulating human cytomegalovirus-encoded HCMV-miR-US4-1 as an indicator for predicting the efficacy of IFNα treatment in chronic hepatitis B patients. Sci Rep 2016; 6:23007. [PMID: 26961899 PMCID: PMC4785337 DOI: 10.1038/srep23007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/26/2016] [Indexed: 01/05/2023] Open
Abstract
The efficacy of interferon α (IFNα) therapy for chronic hepatitis B (CHB) patients is about 40% and often associates with adverse side-effects, thus identification of an easy accessible biomarker that can predict the outcome of IFNα treatment for individual CHB patients would be greatly helpful. Recent reports by us and others show that microRNAs encoded by human cytomegalovirus (HCMV) were readily detected in human serum and can interfere with lymphocyte responses required by IFNα therapeutic effect. We thus postulate that differential expression profile of serum HCMV miRNAs in CHB patients may serve as indicator to predict the efficacy of IFNα treatment for CHB patients. Blood was drawn from 56 individual CHB patients prior to IFNα treatment. By quantifying 13 HCMV miRNAs in serum samples, we found that the levels of HCMV-miR-US4-1 and HCMV-miR-UL-148D were significantly higher in IFNα-responsive group than in IFNα-non-responsive group. In a prospective study of 96 new CHB patients, serum level of HCMV-miR-US4-1 alone classified those who were and were not responsive to IFN-α treatment with correct rate of 84.00% and 71.74%, respectively. In conclusion, our results demonstrate that serum HCMV-miR-US4-1 can serve as a novel biomarker for predicting the outcome of IFNα treatment in CHB patients.
Collapse
Affiliation(s)
- Yi Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Nan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Zhenxian Zhou
- Clinical Laboratory, Nanjing Second Hospital, Nanjing 210003, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chaoyun Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Dihan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fenyong Liu
- Department of Virology, University of California School of Public Health, Berkeley, CA 94720, USA
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yujing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
87
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
88
|
Proteolytic enzymes involved in MHC class I antigen processing: A guerrilla army that partners with the proteasome. Mol Immunol 2015; 68:72-6. [DOI: 10.1016/j.molimm.2015.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
89
|
Ng KR, Li JYZ, Gleadle JM. Human cytomegalovirus encoded microRNAs: hitting targets. Expert Rev Anti Infect Ther 2015; 13:1469-79. [PMID: 26509290 DOI: 10.1586/14787210.2015.1106939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (HCMV) infection is of particular concern in immunodeficient individuals notably transplant recipients, leading to increased morbidity and mortality. HCMV is predicted to encode multiple microRNAs (miRNAs) and several have been characterized in vitro. Furthermore, these miRNAs have been shown to target human and viral mRNAs. Pathways involved in human cellular targets have key roles in vesicle trafficking, immune evasion and cell cycle control. This demonstration of viral miRNA targets provides novel insights into viral pathogenesis. This review details the evidence for the existence of HCMV-encoded miRNA and their targets. HCMV miRNA in blood and other tissues is a potential diagnostic tool and blocking the effects of specific HCMV-encoded miRNA with sequence specific antagomirs is a potential new therapy.
Collapse
Affiliation(s)
- Kiat Rui Ng
- a School of Medicine , Flinders University , Adelaide , Australia
| | - Jordan Y Z Li
- a School of Medicine , Flinders University , Adelaide , Australia.,b Department of Renal Medicine , Flinders Medical Centre , Adelaide , Australia.,c Department of General Medicine , Flinders Medical Centre , Adelaide , Australia
| | - Jonathan M Gleadle
- a School of Medicine , Flinders University , Adelaide , Australia.,b Department of Renal Medicine , Flinders Medical Centre , Adelaide , Australia
| |
Collapse
|
90
|
Emma R, Edward J. The Role of Endoplasmic Reticulum Aminopeptidase 1 Biology in Immune Evasion by Tumours. ACTA ACUST UNITED AC 2015. [DOI: 10.17352/jvi.000007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
91
|
Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J Biol Chem 2015; 290:26021-32. [PMID: 26381406 DOI: 10.1074/jbc.m115.685909] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias.
Collapse
Affiliation(s)
- Anastasia Mpakali
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Petros Giastas
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Nikolas Mathioudakis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Irene M Mavridis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Emmanuel Saridakis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Efstratios Stratikos
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| |
Collapse
|
92
|
Koehne G, Hasan A, Doubrovina E, Prockop S, Tyler E, Wasilewski G, O'Reilly RJ. Immunotherapy with Donor T Cells Sensitized with Overlapping Pentadecapeptides for Treatment of Persistent Cytomegalovirus Infection or Viremia. Biol Blood Marrow Transplant 2015; 21:1663-78. [PMID: 26028505 PMCID: PMC4537838 DOI: 10.1016/j.bbmt.2015.05.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022]
Abstract
We conducted a phase I trial of allogeneic T cells sensitized in vitro against a pool of pentadecapeptides (15-mer peptides) spanning the sequence of CMVpp65 for adoptive therapy of 17 allogeneic hematopoietic cell transplant recipients with cytomegalovirus (CMV) viremia or clinical infection persisting despite prolonged treatment with antiviral drugs. All but 3 of the patients had received T cell-depleted transplants without graft-versus-host disease (GVHD) prophylaxis with immunosuppressive drugs after transplantation. The CMVpp65-specific T cells (CMVpp65CTLs) generated were oligoclonal and specific for only 1 to 3 epitopes, presented by a limited set of HLA class I or II alleles. T cell infusions were well tolerated without toxicity or GVHD. Of 17 patients treated with transplant donor (n = 16) or third-party (n = 1) CMVpp65CTLs, 15 cleared viremia, including 3 of 5 with overt disease. In responding patients, the CMVpp65CTLs infused consistently proliferated and could be detected by T cell receptor Vβ usage in CMVpp65/HLA tetramer + populations for period of 120 days to up to 2 years after infusion. Thus, CMVpp65CTLs generated in response to synthetic 15-mer peptides of CMVpp65 are safe and can clear persistent CMV infections in the post-transplantation period.
Collapse
Affiliation(s)
- Guenther Koehne
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York.
| | - Aisha Hasan
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ekaterina Doubrovina
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Susan Prockop
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Eleanor Tyler
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Gloria Wasilewski
- Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard J O'Reilly
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York; Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
93
|
Lisboa LF, Egli A, O'Shea D, Åsberg A, Hartmann A, Rollag H, Pang XL, Tyrrell DL, Kumar D, Humar A. Hcmv-miR-UL22A-5p: A Biomarker in Transplantation With Broad Impact on Host Gene Expression and Potential Immunological Implications. Am J Transplant 2015; 15:1893-902. [PMID: 25833298 DOI: 10.1111/ajt.13222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/28/2014] [Accepted: 01/14/2015] [Indexed: 01/25/2023]
Abstract
Cytomegalovirus (CMV) encodes multiple microRNAs. While these have been partially characterized in vitro, their relevance to clinical CMV infection has not been evaluated. We analyzed samples from a cohort of solid organ transplant patients with CMV disease (n = 245) for viral microRNA expression. Several CMV microRNAs were readily detectable in patients with CMV disease in variable relative abundance. Expression level generally correlated with DNA viral load and the absence of viral microRNA was associated with faster viral clearance. Detection of hcmv-miR-UL22A-5p at baseline independently predicted the recurrence of CMV viremia upon discontinuation of antiviral therapy (OR 3.024, 95% CI: 1.35-6.8; p = 0.007). A combination of direct mRNA targeting by the microRNA and indirect modulation of gene expression involving isoforms of the transcriptional regulator C-MYC may be responsible for the broad effects seen in the association of gene transcripts with the RNA-induced silencing complex and in global protein expression upon hcmv-miR-UL22A-5p transfection. This novel study of in vivo viral microRNA expression profiles provides unique insight into the complexity of clinical CMV infection following transplantation. We provide evidence that viral microRNAs may have complex effects on gene expression and be associated with specific virologic and clinical outcomes, and thus could be further evaluated as biomarkers.
Collapse
Affiliation(s)
- L F Lisboa
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - A Egli
- Infection Biology Lab, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - D O'Shea
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - A Åsberg
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplant Medicine, Section for Nephrology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - A Hartmann
- Department of Transplant Medicine, Section for Nephrology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - H Rollag
- Department of Microbiology, Oslo University Hospital Rikshospitalet , Oslo, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - X L Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - D L Tyrrell
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - D Kumar
- Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - A Humar
- Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
94
|
Kenna TJ, Robinson PC, Haroon N. Endoplasmic reticulum aminopeptidases in the pathogenesis of ankylosing spondylitis. Rheumatology (Oxford) 2015; 54:1549-56. [PMID: 26070942 DOI: 10.1093/rheumatology/kev218] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 01/05/2023] Open
Abstract
There has been significant progress in our understanding of the pathogenesis of AS. The advent of genome-wide association studies has increased the known loci associated with AS to more than 40. The endoplasmic reticulum resident aminopeptidases (ERAP) 1 and 2 were identified in this manner and are of particular interest. There appears to be a genetic as well as a functional interaction of ERAP1 and 2 with HLA-B27 based on the known functions of these molecules. Recent studies on the structure, immunological effects and the peptide-trimming properties of ERAP 1 and 2 have helped to provide insight into their pathogenic potential in AS. In this review, we explore the role of ERAP 1 and 2 in the pathogenesis of AS.
Collapse
Affiliation(s)
- Tony J Kenna
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Brisbane
| | - Philip C Robinson
- Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Nigil Haroon
- Division of Rheumatology, University of Toronto and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
95
|
Jiang S, Qi Y, He R, Huang Y, Liu Z, Ma Y, Guo X, Shao Y, Sun Z, Ruan Q. Human cytomegalovirus microRNA miR-US25-1-5p inhibits viral replication by targeting multiple cellular genes during infection. Gene 2015; 570:108-14. [PMID: 26055091 DOI: 10.1016/j.gene.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) play important roles in regulating various cellular processes in plants, animals, and viruses. This mechanism is also utilized by human cytomegalovirus (HCMV) in the process of infection and pathogenesis. The HCMV-encoded miRNA, hcmv-miR-US25-1-5p, was highly expressed during lytic and latent infections, and was found to inhibit viral replication. Identification of functional target genes of this microRNA is important in that it will enable a better understanding of the function of hcmv-miR-US25-1-5p during HCMV infection. In the present study, 35 putative cellular transcript targets of hcmv-miR-US25-1-5p were identified. Down-regulation of the targets YWHAE, UBB, NPM1, and HSP90AA1 by hcmv-miR-US25-1-5p was validated by luciferase reporter assay and Western blot analysis. In addition, we showed that hcmv-miR-US25-1-5p could inhibit viral replication by interacting with these targets, the existence of which may impact virus replication directly or indirectly.
Collapse
Affiliation(s)
- Shujuan Jiang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China; Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, China
| | - Ying Qi
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Rong He
- Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, China.
| | - Yujing Huang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Zhongyang Liu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Yanping Ma
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Xin Guo
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Yaozhong Shao
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Zhengrong Sun
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Qiang Ruan
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China.
| |
Collapse
|
96
|
Fruci D, Romania P, D'Alicandro V, Locatelli F. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases. ACTA ACUST UNITED AC 2015; 84:177-86. [PMID: 25066018 DOI: 10.1111/tan.12410] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases.
Collapse
Affiliation(s)
- D Fruci
- Paediatric Haematology/Oncology Department, IRCCS, Ospedale Pediatrico Bambino Gesù, 00165, Rome, Italy
| | | | | | | |
Collapse
|
97
|
Abstract
Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles--including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation--have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Yang Eric Guo
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Tenaya K Vallery
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Mingyi Xie
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
98
|
PRRSV receptors and their roles in virus infection. Arch Microbiol 2015; 197:503-12. [PMID: 25666932 DOI: 10.1007/s00203-015-1088-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/31/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted cell tropism and prefers to invade well-differentiated cells of the monocyte/macrophage lineage, such as pulmonary alveolar macrophages and African green monkey kidney cell line MA-104 and its derivatives, such as Marc-145, Vero and CL-2621. PRRSV infection of the host cells actually is a receptor-mediated endocytosis and replication process. The presence and absence of the cellular receptors decide whether the cell lines are permissive or non-permissive to PRRSV infection. Several PRRSV non-permissive cell lines, such as BHK-21, PK-15 and CHO-K1, have been shown to become sensitive to the virus infection upon expression of the recombinant receptor proteins. Up to now, heparin sulfate, sialoadhesin, CD163, CD151 and vimentin have been identified as the important PRRSV receptors via their involvement in virus attachment, internalization or uncoating. Each receptor is characterized by the distribution in different cells, the function in virus different infection stages and the interaction model with the viral proteins or genes. Joint forces of the receptors recently attract attentions due to the specific function. PRRSV receptors have become the targets for designing the new anti-viral reagents or the recombinant cell lines used for isolating the viruses or developing more effective vaccines due to their more conserved sequences compared with the genetic variation of the virus. In this paper, the role of PRRSV receptors and the molecular mechanism of the interaction between the virus and the receptors are reviewed.
Collapse
|
99
|
Abstract
During an immune response, CD8(+)T cells can differentiate into multiple types of effector and memory cells that are important components of immune surveillance. However, their dysregulation has been implicated in infection with viruses or intracellular bacteria and tumorigenesis. miRNAs have been identified as crucial regulators of gene expression, and they perform this function by repressing specific target genes at the post-transcriptional level. Most miRNAs expressed in a given cell type serve the function to impede broadly cell-type-inappropriate gene expression and potently deepen a pre-existing differentiation program. It is increasingly recognized that miRNAs directly modulate the concentration of many regulatory proteins that are required for the development of immune cells in the thymus and their responses in the periphery. This review outlines our current understanding of the function of miRNAs in CD8(+)T cell biology as it impacts expression of protein-coding genes in the context of proper development, infection, as well as oncogenesis. In addition, we conclude with a perspective on future challenges and the clinical relevance of miRNA biology.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
100
|
Reeves E, Colebatch-Bourn A, Elliott T, Edwards CJ, James E. Functionally distinct ERAP1 allotype combinations distinguish individuals with Ankylosing Spondylitis. Proc Natl Acad Sci U S A 2014; 111:17594-9. [PMID: 25422414 PMCID: PMC4267330 DOI: 10.1073/pnas.1408882111] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For more than 40 y, expression of HLA-B27 has been strongly associated with the chronic inflammatory disease Ankylosing Spondylitis (AS); however, the mechanisms underlying this association are still unknown. Single nucleotide polymorphisms within the aminopeptidase endoplasmic reticulum aminopeptidase 1 (ERAP1), which is essential for trimming peptides before they are presented to T cells by major histocompatibility complex (MHC) class I molecules, have been linked with disease. We show that ERAP1 is a highly polymorphic molecule comprising allotypes of single nucleotide polymorphisms. The prevalence of specific ERAP1 allotypes is different between AS cases and controls. Both chromosomal copies of ERAP1 are codominantly expressed, and analysis of allotype pairs provided clear stratification of individuals with AS versus controls. Functional analyses demonstrated that ERAP1 allotype pairs seen in AS cases were poor at generating optimal peptide ligands for binding to murine H-2K(b) and -D(b) and the AS-associated HLA-B*2705. We therefore provide strong evidence that polymorphic ERAP1 alters protein function predisposing an individual to AS via its influence on the antigen processing pathway.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Faculty of Medicine and
| | - Alexandra Colebatch-Bourn
- National Institute for Health Research Wellcome Trust Clinical Research Facility, University Hospital Southampton National Health Service Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Tim Elliott
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Christopher J Edwards
- National Institute for Health Research Wellcome Trust Clinical Research Facility, University Hospital Southampton National Health Service Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Edward James
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|