51
|
Yu L, Liu Z, He W, Chen H, Lai Z, Duan Y, Cao X, Tao J, Xu C, Zhang Q, Zhao Z, Zhang J. Hydroxysafflor Yellow A Confers Neuroprotection from Focal Cerebral Ischemia by Modulating the Crosstalk Between JAK2/STAT3 and SOCS3 Signaling Pathways. Cell Mol Neurobiol 2020; 40:1271-1281. [PMID: 32060857 PMCID: PMC11448784 DOI: 10.1007/s10571-020-00812-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/23/2020] [Indexed: 01/24/2023]
Abstract
Natural bioactive compounds have increasingly proved to be promising in evidence- or target-directed treatment or modification of a spectrum of diseases including cerebral ischemic stroke. Hydroxysafflor yellow A (HSYA), a major active component of the safflower plant, has drawn more interests in recent year for its multiple pharmacological actions in the treatment of cerebrovascular and cardiovascular diseases. Although the Janus kinase signaling, such as JAK2/STAT3 pathway, has been implicated in the modulation of the disease, the inhibition or activation of the pathway that contributed to the neuronal prevention from ischemic damages remains controversial. In this study, a series of experiments were performed to examine the dose- and therapeutic time window-related pharmacological efficacies of HSYA with emphasis on the HSYA-modulated interaction of JAK2/STAT3 and SOCS3 signaling in the MCAO rats. We found that HSYA treatment significantly rescued the neurological and functional deficits in a dose-dependent manner in the MCAO rats within 3 h after ischemia. HSYA treatment with a dosage of 8 mg/kg or higher markedly downregulated the expression of the JAK2-mediated signaling that was activated in response to ischemic insult, while it also promoted the expression of SOCS3 coordinately. In the subsequent experiments with the use of the JAK2 inhibitor WP1066, we found that the treatment of WP1066 alone or combination of WP1066/HSYA all exhibited inhibitory effects on JAK2-mediated signaling, while there was no influence on the SOCS3 activity of corresponding efficacious data in the MCAO rats, suggesting that excessive activation of JAK2/STAT3 might be necessary for HSYA to provoke SOCS3-negative feedback signaling. Taking together, our study demonstrates that HSYA might modulate the crosstalk between JAK2/STAT3 and SOCS3 signaling pathways that eventually contributed to its therapeutic roles against cerebral ischemic stroke.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zhili Liu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Wendi He
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jie Tao
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| |
Collapse
|
52
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in Rheumatoid arthritis. Biomed Pharmacother 2020; 130:110617. [DOI: 10.1016/j.biopha.2020.110617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
|
53
|
Huang S, Liu K, Cheng A, Wang M, Cui M, Huang J, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Mao S, Gao Q, Yu Y, Tian B, Liu Y, Zhang L, Yin Z, Jing B, Chen X, Jia R. SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Front Immunol 2020; 11:558341. [PMID: 33072096 PMCID: PMC7544739 DOI: 10.3389/fimmu.2020.558341] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The host immune system has multiple innate immune receptors that can identify, distinguish and react to viral infections. In innate immune response, the host recognizes pathogen-associated molecular patterns (PAMP) in nucleic acids or viral proteins through pathogen recognition receptors (PRRs), especially toll-like receptors (TLRs) and induces immune cells or infected cells to produce type I Interferons (IFN-I) and pro-inflammatory cytokines, thus when the virus invades the host, innate immunity is the earliest immune mechanism. Besides, cytokine-mediated cell communication is necessary for the proper regulation of immune responses. Therefore, the appropriate activation of innate immunity is necessary for the normal life activities of cells. The suppressor of the cytokine signaling proteins (SOCS) family is one of the main regulators of the innate immune response induced by microbial pathogens. They mainly participate in the negative feedback regulation of cytokine signal transduction through Janus kinase signal transducer and transcriptional activator (JAK/STAT) and other signal pathways. Taken together, this paper reviews the SOCS proteins structures and the function of each domain, as well as the latest knowledge of the role of SOCS proteins in innate immune caused by viral infections and the mechanisms by which SOCS proteins assist viruses to escape host innate immunity. Finally, we discuss potential values of these proteins in future targeted therapies.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
54
|
Xia Y, Lei C, Yang D, Luo H. Identification of key modules and hub genes associated with lung function in idiopathic pulmonary fibrosis. PeerJ 2020; 8:e9848. [PMID: 33194355 PMCID: PMC7485506 DOI: 10.7717/peerj.9848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, characterized by a decline in lung function. To date, the pathophysiologic mechanisms associated with lung dysfunction remain unclear, and no effective therapy has been identified to improve lung function. Methods In the present study, we used weighted gene co-expression network analysis (WGCNA) to identify key modules and hub genes associated with lung function in IPF. Three datasets, containing clinical information, were downloaded from Gene Expression Omnibus. WGCNA was performed on the GSE32537 dataset. Differentially expressed gene s (DEGs) between IPF patients and healthy controls were also identified to filter hub genes. The relationship between hub genes and lung function was then validated using the GSE47460 and GSE24206 datasets. Results The red module, containing 267 genes, was positively correlated with the St. George’s Respiratory Questionnaire score (r = 0.37, p < 0.001) and negatively correlated with the percent predicted forced vital capacity (FVC% predicted) (r = − 0.46, p < 0.001) and the percent predicted diffusion capacity of the lung for carbon monoxide (Dlco% predicted) (r = − 0.42, p < 0.001). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that the genes in the red module were primarily involved in inflammation and immune pathways. Based on Module Membership and Gene Significance, 32 candidate hub genes were selected in the red module to construct a protein-protein interaction network . Based on the identified DEGs and the degree of connectivity in the network, we identified three hub genes, including interleukin 6 (IL6), suppressor of cytokine signaling-3 (SOCS3), and serpin family E member 1 (SERPINE1). In the GSE47460 dataset, Spearman correlation coefficients between Dlco% predicted and expression levels of IL6, SERPINE1, SOCS3 were –0.32, –0.41, and –0.46, respectively. Spearman correlation coefficients between FVC% predicted and expression levels of IL6, SERPINE1, SOCS3 were –0.29, –0.33, and –0.27, respectively. In the GSE24206 dataset, all three hub genes were upregulated in patients with advanced IPF. Conclusion We identified three hub genes that negatively correlated with the lung function of IPF patients. Our results provide insights into the pathogenesis underlying the progressive disruption of lung function, and the identified hub genes may serve as biomarkers and potential therapeutictargets for the treatment of IPF patients.
Collapse
Affiliation(s)
- Yuechong Xia
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, China
| | - Cheng Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, China
| | - Danhui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, China
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, China
| |
Collapse
|
55
|
Su M, Zhang R, Liu N, Zhang J. Modulation of inflammatory response by cortisol in the kidney of spotted scat (Scatophagus argus) in vitro under different osmotic stresses. FISH & SHELLFISH IMMUNOLOGY 2020; 104:46-54. [PMID: 32474084 DOI: 10.1016/j.fsi.2020.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Salinity changes on renal osmoregulation have often been investigated while the immune response of the kidney under osmotic stress is poorly understood in teleosts. Acute stress is generally associated with enhancement of circulating cortisol. The effects of osmotic stress on renal immune response and its regulation by cortisol deserve more attention. In the present study, the effects of exogenous cortisol treatment on the lipopolysaccharide (LPS)-induced immune response were analyzed in renal masses of Scatophagus argus under different osmotic stresses in vitro. mRNA expression of pro-inflammatory cytokines (TNF-α, IL1-β and IL-6) and immune-regulatory related genes (GR and SOCS1) was measured over a short course (15 h). Comprehensive analysis reveals that transcript abundances of pro-inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 induced by LPS, alone or in the combination of cortisol, are tightly associated with osmoregulation under acute osmotic stress. Our results showed that osmotic challenge could significantly enhance mRNA expression levels of pro-inflammatory cytokines in renal masses in vitro. Based on our analysis, it can be inferred that cortisol suppresses the magnitude of renal inflammatory response and attenuates LPS-induced immune response through GR signaling in the face of challenging environmental conditions.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
56
|
Zhang L, Qu YN, Zhang HY, Wu ZY, Li ZL, Guo WB, Wang QB, Fang NZ, Jiang XX. SOCS1 Regulates the Immunomodulatory Roles of MSCs on B Cells. Int J Stem Cells 2020; 13:237-245. [PMID: 32323514 PMCID: PMC7378896 DOI: 10.15283/ijsc20001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Objectives The effective use of MSCs for the treatment of some B cell-mediated immune diseases is quite limited. The main reason is that the immunomodulatory effects of mesenchymal stem cells (MSCs) on B cells are unclear, and their underlying mechanisms have not been fully explored. Methods and Results By co-culturing B cells with MSCs without (MSC/CTLsh) or with suppressor of cytokine signaling 1 (SOCS1) knockdown (MSC/SOCS1sh), we found that MSCs inhibited B cell proliferation, activation and terminal differentiation. Remarkably, the highest inhibition of B cell proliferation was observed in MSC/SOCS1sh co-culture. Besides, MSC/SOCS1sh reversed the inhibitory effect of MSCs in the last stage of B cell differentiation. However, MSC/SOCS1sh had no effect on inhibiting B cell activation by MSCs. We also showed that IgA+ B cell production was significantly higher in MSC/SOCS1sh than in MSC/CTLsh, although no difference was observed when both MSCs co-cultures were compared to isolated B cells. In addition, MSCs increased PGE2 production after TNF-α/IFN-γ stimulation, with the highest increase observed in MSC/SOCS1sh co-culture. Conclusions Our results highlighted the role of SOCS1 as an important new mediator in the regulation of B cell function by MSCs. Therefore, these data may help to develop new treatments for B cell-mediated immune diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Animal Physiology Laboratory, School of Agroforestry Engineering and Planning, Tongren University, Tongren, China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Department of Anatomy, School of Basic Medical Sciences, Xiangnan University, Chenzhou, China
| | - Yan-Nv Qu
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China
| | - He-Yang Zhang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Zhen-Yang Wu
- Animal Physiology Laboratory, School of Agroforestry Engineering and Planning, Tongren University, Tongren, China
| | - Zhong-Li Li
- Animal Physiology Laboratory, School of Agroforestry Engineering and Planning, Tongren University, Tongren, China
| | - Wan-Bei Guo
- Department of Anatomy, School of Basic Medical Sciences, Xiangnan University, Chenzhou, China
| | - Qi-Ben Wang
- Department of Anatomy, School of Basic Medical Sciences, Xiangnan University, Chenzhou, China
| | - Nan-Zhu Fang
- Laboratory of Animal Genetic Breeding and Reproduction, Yanbian University, Yanji, China
| | - Xiao-Xia Jiang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
57
|
Yang YM, Dong XH, Ma WC, Guan LH, Wang YH, Huang XH, Chen JF, Zhao X. Proliferation, Differentiation and Immunoregulatory Capacities of Brown and White Adipose-Derived Stem Cells from Young and Aged Mice. Int J Stem Cells 2020; 13:246-256. [PMID: 32323515 PMCID: PMC7378905 DOI: 10.15283/ijsc20019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives Adipose tissue is a source of mesenchymal stem cells, which have the potential to differentiate into various types of cells. Adipose-derived stem cells (ADSCs) are now recognized as an accessible, abundant, and reliable stem cells suitable for tissue engineering and regenerative medicine applications. However, few literatures gave a comprehensive report on the capacities of ADSCs harvested from different sites. Especially, the capacities of ADSCs from aged mice remained unclear. In this study, we investigated several main capacities of brown adipose derived stem cells (B-ADSCs) and white adipose derived stem cells (W-ADSCs) from both young and aged mice. Methods and Results When isolated from young mice, B-ADSCs showed a stronger proliferation rate and higher osteogenic, adipogenic and myocardial differentiation ability than W-ADSCs. Carboxy fluorescein diacetate succinimidyl ester (CFSE) labeling test suggested no significant difference in immunosuppression capacity between B-ADSCs and W-ADSCs. Similarly, no difference between these two were found in several immune related molecules, such as programmed death-ligand 1 (PD-L1), intercellular cell adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), interleukin 10 (IL10), and suppressor of cytokine signaling 1 (socs1). When isolated from aged mice, B-ADSCs also showed a stronger proliferation rate and higher osteogenic, adipogenic and myocardial differentiation ability than W-ADSCs; however, it demonstrated an attenuated immunosuppression capacity compared to W-ADSCs. Conclusions In summary, our data showed that ADSCs' characteristics were tissue source dependent and changed with age. It provided evidence for choosing the right tissue-specific ADSCs for clinical application and fundamental research.
Collapse
Affiliation(s)
- Yan-Mei Yang
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Dong
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Wei-Chao Ma
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Li-Hui Guan
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Hebei North University, Zhangjiakou, China
| | - Yu-Han Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Hui Huang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Jun-Feng Chen
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xin Zhao
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
58
|
Suriguga S, Luangmonkong T, Mutsaers HAM, Groothuis GMM, Olinga P. Host microbiota dictates the proinflammatory impact of LPS in the murine liver. Toxicol In Vitro 2020; 67:104920. [PMID: 32590029 DOI: 10.1016/j.tiv.2020.104920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Gut microbiota can impact liver disease development via the gut-liver axis. Liver inflammation is a shared pathological event in various liver diseases and gut microbiota might influence this pathological process. In this study, we studied the influence of gut microbiota on the inflammatory response of the liver to lipopolysaccharide (LPS). The inflammatory response to LPS (1-10 μg/ml) of livers of specific-pathogen-free (SPF) or germ-free (GF) mice was evaluated ex vivo, using precision-cut liver slices (PCLS). LPS induced a more pronounced inflammatory response in GF PCLS than in SPF PCLS. Baseline TNF-α gene expression was significantly higher in GF slices as compared to SPF slices. LPS treatment induced TNF-α, IL-1β, IL-6 and iNOS expression in both SPF and GF PCLS, but the increase was more intense in GF slices. The anti-inflammatory markers SOCS3 and IRAK-M gene expression was significantly higher in GF PCLS than SPF PCLS at 24h with 1 µg/ml LPS treatment, and IL-10 was not differently expressed in GF PCLS than SPF PCLS. In addition, TLR-4 mRNA, but not protein, at basal level was higher in GF slices than in SPF slices. Taken together, this study shows that, in mice, the host microbiota attenuates the pro-inflammatory impact of LPS in the liver, indicating a positive role of the gut microbiota on the immune homeostasis of the liver.
Collapse
Affiliation(s)
- Su Suriguga
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands; Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Theerut Luangmonkong
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Henricus A M Mutsaers
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
59
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
60
|
Mercel A, Tsihlis ND, Maile R, Kibbe MR. Emerging therapies for smoke inhalation injury: a review. J Transl Med 2020; 18:141. [PMID: 32228626 PMCID: PMC7104527 DOI: 10.1186/s12967-020-02300-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Smoke inhalation injury increases overall burn mortality by up to 20 times. Current therapy remains supportive with a failure to identify an optimal or targeted treatment protocol for smoke inhalation injury. The goal of this review is to describe emerging therapies that are being developed to treat the pulmonary pathology induced by smoke inhalation injury with or without concurrent burn injury. Main body A comprehensive literature search was performed using PubMed (1995–present) for therapies not approved by the U.S. Food and Drug Administration (FDA) for smoke inhalation injury with or without concurrent burn injury. Therapies were divided based on therapeutic strategy. Models included inhalation alone with or without concurrent burn injury. Specific animal model, mechanism of action of medication, route of administration, therapeutic benefit, safety, mortality benefit, and efficacy were reviewed. Multiple potential therapies for smoke inhalation injury with or without burn injury are currently under investigation. These include stem cell therapy, anticoagulation therapy, selectin inhibition, inflammatory pathway modulation, superoxide and peroxynitrite decomposition, selective nitric oxide synthase inhibition, hydrogen sulfide, HMG-CoA reductase inhibition, proton pump inhibition, and targeted nanotherapies. While each of these approaches shows a potential therapeutic benefit to treating inhalation injury in animal models, further research including mortality benefit is needed to ensure safety and efficacy in humans. Conclusions Multiple novel therapies currently under active investigation to treat smoke inhalation injury show promising results. Much research remains to be conducted before these emerging therapies can be translated to the clinical arena.
Collapse
Affiliation(s)
- Alexandra Mercel
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Rob Maile
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
61
|
Phosphorylated STAT3 expression linked to SOCS3 methylation is associated with proliferative ability of gastric mucosa in patients with early gastric cancer. Oncol Lett 2020; 19:3542-3550. [PMID: 32269628 PMCID: PMC7115067 DOI: 10.3892/ol.2020.11462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancers (GCs) may develop in the gastric mucosa after elimination of Helicobacter pylori (H. pylori) using eradication therapy. Cytokine signaling is a key mechanism underlying GC development and progression, and STAT3 signaling may serve a central role in gastritis-associated tumorigenesis. In the present study, suppressor of cytokine signaling 3 (SOCS3) methylation was examined, as an activator of phosphorylated (p-)STAT3 expression in the non-neoplastic gastric mucosa (non-NGM) of patients with early GC. The methylation status of the SOCS3 gene promoter was analyzed using methylation-specific PCR in the non-NGM of patients with or without early GC. Expression levels of p-STAT3 and Ki67 were investigated immunohistochemically in non-NGM with early GC before and after H. pylori eradication. In non-NGM, SOCS3 promoter methylation was detected in 17/51 patients (33.3%) with early GC. In those patients, the non-NGM labeling indices of both Ki67 and p-STAT3 were significantly higher compared with that in patients with early GC without SOCS3 methylation. A significant correlation between Ki67 and p-STAT3 expression levels was demonstrated in the non-NGM of patients with early GC. In patients with early GC without SOCS3 methylation, the labeling indices of both Ki67 and p-STAT3 in non-NGM were significantly reduced after H. pylori eradication, whereas no such change was observed in patients with early GC with SOCS3 methylation. SOCS3 methylation is associated with continuous p-STAT3 overexpression and enhanced epithelial cell proliferation in non-NGM of patients with early GC.
Collapse
|
62
|
Sesti-Costa R, Cervantes-Barragan L, Swiecki MK, Fachi JL, Cella M, Gilfillan S, Silva JS, Colonna M. Leukemia Inhibitory Factor Inhibits Plasmacytoid Dendritic Cell Function and Development. THE JOURNAL OF IMMUNOLOGY 2020; 204:2257-2268. [PMID: 32169845 DOI: 10.4049/jimmunol.1900604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) produce abundant type I IFNs (IFN-I) in response to viral nucleic acids. Generation of pDCs from bone marrow dendritic cell (DC) progenitors and their maintenance is driven by the transcription factor E2-2 and inhibited by its repressor Id2. In this study, we find that mouse pDCs selectively express the receptor for LIF that signals through STAT3. Stimulation of pDCs with LIF inhibited IFN-I, TNF, and IL-6 responses to CpG and induced expression of the STAT3 targets SOCS3 and Bcl3, which inhibit IFN-I and NF-κB signaling. Moreover, although STAT3 has been also reported to induce E2-2, LIF paradoxically induced its repressor Id2. A late-stage bone marrow DC progenitor expressed low amounts of LIFR and developed into pDCs less efficiently after being exposed to LIF, consistent with the induction of Id2. Conversely, pDC development and serum IFN-I responses to lymphocytic choriomeningitis virus infection were augmented in newly generated mice lacking LIFR in either CD11c+ or hematopoietic cells. Thus, an LIF-driven STAT3 pathway induces SOCS3, Bcl3, and Id2, which render pDCs and late DC progenitors refractory to physiological stimuli controlling pDC functions and development. This pathway can be potentially exploited to prevent inappropriate secretion of IFN-I in autoimmune diseases or promote IFN-I secretion during viral infections.
Collapse
Affiliation(s)
- Renata Sesti-Costa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil 14049-900
| | - Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Melissa K Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - José Luís Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil 14049-900
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
63
|
Eslamloo K, Kumar S, Caballero-Solares A, Gnanagobal H, Santander J, Rise ML. Profiling the transcriptome response of Atlantic salmon head kidney to formalin-killed Renibacterium salmoninarum. FISH & SHELLFISH IMMUNOLOGY 2020; 98:937-949. [PMID: 31770640 DOI: 10.1016/j.fsi.2019.11.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular bacterial pathogen that causes Bacterial Kidney Disease (BKD) in Atlantic salmon (Salmo salar). The host transcriptomic response to this immune-suppressive pathogen remains poorly understood. To identify R. salmoninarum-responsive genes, Atlantic salmon were intraperitoneally injected with a low (5 × 105 cells/kg, Low-Rs) or high (5 × 107 cells/kg; High-Rs) dose of formalin-killed R. salmoninarum bacterin or phosphate-buffered saline (PBS control); head kidney samples were collected before and 24 h after injection. Using 44K microarray analysis, we identified 107 and 345 differentially expressed probes in response to R. salmoninarum bacterin (i.e. High-Rs vs. PBS control) by Significance Analysis of Microarrays (SAM) and Rank Products (RP), respectively. Twenty-two microarray-identified genes were subjected to qPCR assays, and 17 genes were confirmed as being significantly responsive to the bacterin. There was an up-regulation in expression of genes playing putative roles as immune receptors and antimicrobial effectors. Genes with putative roles as pathogen recognition (e.g. clec12b and tlr5) or immunoregulatory (e.g. tnfrsf6b and tnfrsf11b) receptors were up-regulated in response to R.salmoninarum bacterin. Also, chemokines and a chemokine receptor showed opposite regulation [up-regulation of effectors (i.e. ccl13 and ccl) and down-regulation of cxcr1] in response to the bacterin. The present study identified and validated novel biomarker genes (e.g. ctsl1, lipe, cldn4, ccny) that can be used to assess Atlantic salmon response to R. salmoninarum, and will be valuable in the development of tools to combat BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Hajarooba Gnanagobal
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
64
|
Huang YM, Hong XZ, Shen J, Geng LJ, Pan YH, Ling W, Zhao HL. Amyloids in Site-Specific Autoimmune Reactions and Inflammatory Responses. Front Immunol 2020; 10:2980. [PMID: 31993048 PMCID: PMC6964640 DOI: 10.3389/fimmu.2019.02980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Amyloid deposition is a histological hallmark of common human disorders including Alzheimer's disease (AD) and type 2 diabetes. Although some reports highlight that amyloid fibrils might activate the innate immunity system via pattern recognition receptors, here, we provide multiple lines of evidence for the protection by site-specific amyloid protein analogs and fibrils against autoimmune attacks: (1) strategies targeting clearance of the AD-related brain amyloid plaque induce high risk of deadly autoimmune destructions in subjects with cognitive dysfunction; (2) administration of amyloidogenic peptides with either full length or core hexapeptide structure consistently ameliorates signs of experimental autoimmune encephalomyelitis; (3) experimental autoimmune encephalomyelitis is exacerbated following genetic deletion of amyloid precursor proteins; (4) absence of islet amyloid coexists with T-cell-mediated insulitis in autoimmune diabetes and autoimmune polyendocrine syndrome; (5) use of islet amyloid polypeptide agonists rather than antagonists improves diabetes care; and (6) common suppressive signaling pathways by regulatory T cells are activated in both local and systemic amyloidosis. These findings indicate dual modulation activity mediated by amyloid protein monomers, oligomers, and fibrils to maintain immune homeostasis. The protection from autoimmune destruction by amyloid proteins offers a novel therapeutic approach to regenerative medicine for common degenerative diseases.
Collapse
Affiliation(s)
- Yan-Mei Huang
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Xue-Zhi Hong
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jian Shen
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Pathology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Li-Jun Geng
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Yan-Hong Pan
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Wei Ling
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Endocrinology, Xiangya Medical School, Central South University, Changsha, China
| | - Hai-Lu Zhao
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.,Institute of Basic Medical Sciences, Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
65
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 PMCID: PMC11448812 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
66
|
Lalor R, O'Neill S. Bovine κ-casein induces a hypo-responsive DC population which exhibit a reduced capacity to elicit T-cell responses. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
67
|
Sioud M. Unleashing the Therapeutic Potential of Dendritic and T Cell Therapies Using RNA Interference. Methods Mol Biol 2020; 2115:259-280. [PMID: 32006406 DOI: 10.1007/978-1-0716-0290-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Therapeutic dendritic cell (DC) cancer vaccines work to boost the body's immune system to fight a cancer. Although this type of immunotherapy often leads to the activation of tumor-specfic T cells, clinical responses are fairly low, arguing for the need to improve the design of DC-based vaccines. Recent studies revealed a promising strategy of combining DC vaccines with small interfering RNAs (siRNAs) targeting immunosuppressive signals such as checkpoint receptors. Similarly, incorporating checkpoint siRNA blockers in adoptive T-cell therapy to amplify cytotoxic T lymphocyte responses is now being tested in the clinic. The development of the next generation of cancer immunotherapies using siRNA technology will hopefuly benefit patients with various cancer types including those who did not respond to current therapies. This review highlights the latest advances in RNA interference technology to improve the therapeutic efficacy of DC cancer vaccines and T cell therapy.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, Oslo, Norway.
| |
Collapse
|
68
|
López-Mateo I, Alonso-Merino E, Suarez-Cabrera C, Park JW, Cheng SY, Alemany S, Paramio JM, Aranda A. Thyroid Hormone Receptor β Inhibits Self-Renewal Capacity of Breast Cancer Stem Cells. Thyroid 2020; 30:116-132. [PMID: 31760908 PMCID: PMC6998057 DOI: 10.1089/thy.2019.0175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: A subpopulation of cancer stem cells (CSCs) with capacity for self-renewal is believed to drive initiation, progression, and relapse of breast tumors. Methods: Since the thyroid hormone receptor β (TRβ) appears to suppress breast tumor growth and metastasis, we have analyzed the possibility that TRβ could affect the CSC population using MCF-7 cells grown under adherent conditions or as mammospheres, as well as inoculation into immunodeficient mice. Results: Treatment of TRβ-expressing MCF-7 cells (MCF7-TRβ cells) with the thyroid hormone triiodothyronine (T3) decreased significantly CD44+/CD24- and ALDH+ cell subpopulations, the efficiency of mammosphere formation, the self-renewal capacity of CSCs in limiting dilution assays, the expression of the pluripotency factors in the mammospheres, and tumor initiating capacity in immunodeficient mice, indicating that the hormone reduces the CSC population present within the bulk MCF7-TRβ cultures. T3 also decreased migration and invasion, a hallmark of CSCs. Transcriptome analysis showed downregulation of the estrogen receptor alpha (ERα) and ER-responsive genes by T3. Furthermore, among the T3-repressed genes, there was an enrichment in genes containing binding sites for transcription factors that are key determinants of luminal-type breast cancers and are required for ER binding to chromatin. Conclusion: We demonstrate a novel role of TRβ in the biology of CSCs that may be related to its action as a tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Irene López-Mateo
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | - Elvira Alonso-Merino
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | | | - Jeong Won Park
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Susana Alemany
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, Hosp Univ. “12 de Octubre,” Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Aranda
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Address correspondence to: Ana Aranda, PhD, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols”, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
69
|
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disease, involving the rapid proliferation and abnormal differentiation of keratinocytes and activation of T cells. It is generally accepted that the central pathogenesis of psoriasis is a T cell-dominant immune disorder affected by multiple factors including genetic susceptibility, environmental factors, innate and adaptive immune responses, etc. However, the exact etiology is largely unknown. In recent years, epigenetic involvements, such as the DNA methylation, chromatin modifications, and noncoding RNA regulation are reported to be critical for the pathogenesis of psoriasis. However, the interplay between these factors has only recently been started to be unraveled. Notably, inhibitors of enzymes that work in epigenetic modifications, such as DNA methyltransferases and histone deacetylases, are beginning to appear in the clinical setting to restore normal epigenetic patterns (Generali et al. in J Autoimmun 83:51-61, 2017), providing novel therapeutic potential as novel treatment targets for psoriasis. Indeed, medications previously used to treat autoimmune diseases have later been discovered to exert their action via epigenetic mechanisms. Herein, we review the findings on epigenetics associated with psoriasis, and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
70
|
Rojas-Morales E, Santos-López G, Hernández-Cabañas S, Arcega-Revilla R, Rosas-Murrieta N, Jasso-Miranda C, El-Kassis EG, Reyes-Leyva J, Sedeño-Monge V. Differential Transcription of SOCS5 and SOCS7 in Multiple Sclerosis Patients Treated with Interferon Beta or Glatiramer Acetate. Int J Mol Sci 2019; 21:ijms21010218. [PMID: 31905601 PMCID: PMC6982240 DOI: 10.3390/ijms21010218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022] Open
Abstract
The participation of proinflammatory cytokines in the progression of Multiple Sclerosis (MS) has been well documented. Cytokines activate the JAK-STAT pathway, in which the suppressors of cytokine signaling (SOCS) exert a negative feedback. This paper analyzes the levels of SOCS5 and SOCS7 transcripts, quantified by RT-qPCR, in MS patients, and the concentrations of proinflammatory cytokines, IFN-γ, IL17, and IL6, determined by ELISA. Samples of peripheral blood were obtained from MS patients in the relapsing–remitting phase, treated with IFN-β or glatiramer acetate (GA), and from healthy individuals. SOCS7 mRNA was significantly higher in patients treated with GA (1.36 ± 0.23) than in those treated with IFN-β (0.65 ± 0.1). Regarding gender, the level of SOCS5 and SOCS7 transcripts were similar between MS and healthy females; in MS males, the level of SOCS7 transcripts were significantly lower (0.59 ± 0.03) than in healthy males (1.008 ± 0.05). Plasmatic levels of IFN-γ were significantly higher in MS patients (60 pg/mL, range 0–160) than in healthy subjects (0 range, 0–106). The same pattern was observed in MS patients treated with IFN-β (68 pg/mL, range 0–160) compared to patients treated with GA (51 pg/mL, range 0–114), and in MS females (64 pg/mL, range 0–161) compared to healthy females (0, range 0–99). We hypothesize that the increase in SOCS7 transcription in patients treated with GA could partially explain the action mechanism of this drug, while the increase in the concentration of IFN-γ in MS patients could help elucidate the immunopathology of the disease.
Collapse
Affiliation(s)
- Emmanuel Rojas-Morales
- Decanato de Ciencias de la Salud, Facultad de Medicina, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico;
- Decanato de Ciencias Biológicas, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico;
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74360, Mexico (J.R.-L.); (C.J.-M.)
| | | | - Raúl Arcega-Revilla
- Instituto Mexicano del Seguro Social, Puebla 72560, Mexico; (S.H.-C.); (R.A.-R.)
| | - Nora Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Carolina Jasso-Miranda
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74360, Mexico (J.R.-L.); (C.J.-M.)
| | - Elie Girgis El-Kassis
- Decanato de Ciencias Biológicas, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico;
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74360, Mexico (J.R.-L.); (C.J.-M.)
| | - Virginia Sedeño-Monge
- Decanato de Ciencias de la Salud, Facultad de Medicina, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico;
- Correspondence: or
| |
Collapse
|
71
|
Luo X, Chen XX, Qiao S, Li R, Xie S, Zhou X, Deng R, Zhou EM, Zhang G. Porcine Reproductive and Respiratory Syndrome Virus Enhances Self-Replication via AP-1-Dependent Induction of SOCS1. THE JOURNAL OF IMMUNOLOGY 2019; 204:394-407. [PMID: 31826939 DOI: 10.4049/jimmunol.1900731] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses in the swine industry since its emergence in the late 1980s. PRRSV exploits various strategies to evade immune responses and establish chronic persistent infections. Suppressor of cytokine signaling (SOCS) 1, a member of the SOCS family, is a crucial intracellular negative regulator of innate immunity. In this study, it was shown that SOCS1 can be co-opted by PRRSV to evade host immune responses, facilitating viral replication. It was observed that PRRSV induced SOCS1 production in porcine alveolar macrophages, monkey-derived Marc-145 cells, and porcine-derived CRL2843-CD163 cells. SOCS1 inhibited the expression of IFN-β and IFN-stimulated genes, thereby markedly enhancing PRRSV replication. It was observed that the PRRSV N protein has the ability to upregulate SOCS1 production and that nuclear localization signal-2 (NLS-2) is essential for SOCS1 induction. Moreover, SOCS1 upregulation was dependent on p38/AP-1 and JNK/AP-1 signaling pathways rather than classical type I IFN signaling pathways. In summary, to our knowledge, the findings of this study uncovered the molecular mechanism that underlay SOCS1 induction during PRRSV infection, providing new insights into viral immune evasion and persistent infection.
Collapse
Affiliation(s)
- Xuegang Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Sha Xie
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Xinyu Zhou
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China; .,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| |
Collapse
|
72
|
Adoptive Transfer of Interleukin-21-stimulated Human CD8+ T Memory Stem Cells Efficiently Inhibits Tumor Growth. J Immunother 2019; 41:274-283. [PMID: 29864078 PMCID: PMC6012057 DOI: 10.1097/cji.0000000000000229] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Memory stem T (TSCM) cells, a new subset of memory T cells with self-renewal and multipotent capacities, are considered as a promising candidates for adoptive cellular therapy. However, the low proportion of human TSCM cells in total CD8+ T cells limits their utility. Here, we aimed to induce human CD8+ TSCM cells by stimulating naive precursors with interleukin-21 (IL-21). We found that IL-21 promoted the generation of TSCM cells, described as CD45RA+CD45RO−CD62L+CCR7+CD122+CD95+ cells, with a higher efficiency than that observed with other common γ-chain cytokines. Upon adoptive transfer into an A375 melanoma mouse model, these lymphocytes mediated much stronger antitumor responses. Further mechanistic analysis revealed that IL-21 activated the Janus kinase signal transducer and activator of transcription 3 pathway by upregulating signal transducer and activator of transcription 3 phosphorylation and consequently promoting the expression of T-bet and suppressor of cytokine signaling 1, but decreasing the expression of eomesodermin and GATA binding protein 3. Our findings provide novel insights into the generation of human CD8+ TSCM cells and reveal a novel potential clinical application of IL-21.
Collapse
|
73
|
Yang Q, Huang M, Cai X, Jia L, Wang S. Investigation on activation in RAW264.7 macrophage cells and protection in cyclophosphamide-treated mice of Pseudostellaria heterophylla protein hydrolysate. Food Chem Toxicol 2019; 134:110816. [PMID: 31518602 DOI: 10.1016/j.fct.2019.110816] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023]
Abstract
Our previous study has demonstrated that Pseudostellaria heterophylla protein hydrolysate (PPH) has immunomodulatory activity on murine spleen lymphocytes. The aim of this study was to investigate the excitation of PPH in RAW264.7 macrophage cells and the protective effect in cyclophosphamide (CTX)-treated mice. The results showed PPH of 50 μg/mL could stimulate macrophages resulting in significant promotions of nitric oxide (NO) production, endocytosis and reactive oxygen species formation. Meanwhile, enzyme-linked immunosorbent assay (ELISA) revealed that the levels of tumor necrosis factor-α and interleukin-10 were significantly upregulated by PPH. Furthermore, 50 mg/kg per day PPH restored the T lymphocyte proliferation and natural killer cell activity, and increased NO production and pinocytosis of peritoneal macrophages in CTX-treated mice. These findings indicate PPH plays a crucial role in RAW264.7 macrophage cells activation and in the protection against immunosuppression in CTX-treated mice and could be used as a potential immunostimulant agent.
Collapse
Affiliation(s)
- Qian Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Muchen Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
74
|
Hawiger J, Zienkiewicz J. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scand J Immunol 2019; 90:e12812. [PMID: 31378956 PMCID: PMC6883124 DOI: 10.1111/sji.12812] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Inflammation is the mechanism of diseases caused by microbial, autoimmune, allergic, metabolic and physical insults that produce distinct types of inflammatory responses. This aetiologic view of inflammation informs its classification based on a cause‐dependent mechanism as well as a cause‐directed therapy and prevention. The genomic era ushered in a new understanding of inflammation by highlighting the cell's nucleus as the centre of the inflammatory response. Exogenous or endogenous inflammatory insults evoke genomic responses in immune and non‐immune cells. These genomic responses depend on transcription factors, which switch on and off a myriad of inflammatory genes through their regulatory networks. We discuss the transcriptional paradigm of inflammation based on denying transcription factors’ access to the nucleus. We present two approaches that control proinflammatory signalling to the nucleus. The first approach constitutes a novel intracellular protein therapy with bioengineered physiologic suppressors of cytokine signalling. The second approach entails control of proinflammatory transcriptional cascades by targeting nuclear transport with a cell‐penetrating peptide that inhibits the expression of 23 out of the 26 mediators of inflammation along with the nine genes required for metabolic responses. We compare these emerging anti‐inflammatory countermeasures to current therapies. The transcriptional paradigm of inflammation offers nucleocentric strategies for microbial, autoimmune, metabolic, physical and other types of inflammation afflicting millions of people worldwide.
Collapse
Affiliation(s)
- Jacek Hawiger
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jozef Zienkiewicz
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| |
Collapse
|
75
|
Duncan SA, Dixit S, Sahu R, Martin D, Baganizi DR, Nyairo E, Villinger F, Singh SR, Dennis VA. Prolonged Release and Functionality of Interleukin-10 Encapsulated within PLA-PEG Nanoparticles. NANOMATERIALS 2019; 9:nano9081074. [PMID: 31357440 PMCID: PMC6723354 DOI: 10.3390/nano9081074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
Abstract
Inflammation, as induced by the presence of cytokines and chemokines, is an integral part of chlamydial infections. The anti-inflammatory cytokine, interleukin (IL)-10, has been reported to efficiently suppress the secretion of inflammatory cytokines triggered by Chlamydia in mouse macrophages. Though IL-10 is employed in clinical applications, its therapeutic usage is limited due to its short half-life. Here, we document the successful encapsulation of IL-10 within the biodegradable polymeric nanoparticles of PLA-PEG (Poly (lactic acid)-Poly (ethylene glycol), to prolong its half-life. Our results show the encapsulated-IL-10 size (~238 nm), zeta potential (−14.2 mV), polydispersity index (0.256), encapsulation efficiency (~77%), and a prolonged slow release pattern up to 60 days. Temperature stability of encapsulated-IL-10 was favorable, demonstrating a heat capacity of up to 89 °C as shown by differential scanning calorimetry analysis. Encapsulated-IL-10 modulated the release of IL-6 and IL-12p40 in stimulated macrophages in a time- and concentration-dependent fashion, and differentially induced SOCS1 and SOCS3 as induced by chlamydial stimulants in macrophages. Our finding offers the tremendous potential for encapsulated-IL-10 not only for chlamydial inflammatory diseases but also biomedical therapeutic applications.
Collapse
Affiliation(s)
- Skyla A Duncan
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Saurabh Dixit
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - David Martin
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Dieudonné R Baganizi
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Elijah Nyairo
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA 70560, USA
| | - Shree R Singh
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Vida A Dennis
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA.
| |
Collapse
|
76
|
Zhu GQ, Jeon SH, Lee KW, Tian WJ, Cho HJ, Ha US, Hong SH, Lee JY, Moon MK, Moon SH, Kim SW, Bae WJ. Electric Stimulation Hyperthermia Relieves Inflammation via the Suppressor of Cytokine Signaling 3-Toll Like Receptor 4 Pathway in a Prostatitis Rat Model. World J Mens Health 2019; 38:359-369. [PMID: 31385476 PMCID: PMC7308236 DOI: 10.5534/wjmh.190078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Chronic prostatitis (CP), including chronic pelvic pain syndrome (CPPS), is the most commonly encountered manifestation of prostatitis. The aim of this study was to evaluate the effect of electric stimulation hyperthermia treatment (ESHT) on CP/CPPS and to explore the underlying mechanism. Materials and Methods RWPE-2 cells with lipopolysaccharide-induced inflammation and a prostatitis rat model induced by 17β-estradiol and dihydrotestosterone underwent sham, electric stimulation, or ESHT treatment. Four weeks later, cells, supernatants, and rat prostates were collected for analysis using immunohistochemistry, Western blots, and enzyme-linked immunosorbent assays. Results We found that ESHT improved prostatitis in vivo and attenuated inflammation in vitro. ESHT significantly induced suppressor of cytokine signaling 3 (SOCS3) expression and subsequently promoted HSP70. It attenuated inflammation through decreased expression of toll-like receptor 4 (TLR4), nuclear factor kappa B, and subsequent inflammatory cytokines. ESHT also inhibited apoptosis and released growth factor in tissue affected by prostatitis. Conclusions ESHT improved CP/CPPS and reversed pathologic changes of prostatitis by inhibiting the SOCS3-TLR4 pathway.
Collapse
Affiliation(s)
- Guan Qun Zhu
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Seung Hwan Jeon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Kyu Won Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Wen Jie Tian
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - U Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea.
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
77
|
Wang F, Sun NN, Li LL, Zhu WW, Xiu J, Shen Y, Xu Q. Hepatic progenitor cell activation is induced by the depletion of the gut microbiome in mice. Microbiologyopen 2019; 8:e873. [PMID: 31094067 PMCID: PMC6813488 DOI: 10.1002/mbo3.873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
The homeostasis of the gut microbiome is crucial for human health and for liver function. However, it has not been established whether the gut microbiome influence hepatic progenitor cells (HPCs). HPCs are capable of self‐renewal and differentiate into hepatocytes and cholangiocytes; however, HPCs are normally quiescent and are rare in adults. After sustained liver damage, a ductular reaction occurs, and the number of HPCs is substantially increased. Here, we administered five broad‐spectrum antibiotics for 14 days to deplete the gut microbiomes of male C57BL/6 mice, and we measured the plasma aminotransferases and other biochemical indices. The expression levels of two HPC markers, SRY‐related high mobility group‐box gene 9 (Sox9) and cytokeratin (CK), were also measured. The plasma aminotransferase activities were not affected, but the triglyceride, lactate dehydrogenase, low‐density lipoprotein, and high‐density lipoprotein concentrations were significantly altered; this suggests that liver function is affected by the composition of the gut microbiome. The mRNA expression of Sox9 was significantly higher in the treated mice than it was in the control mice (p < 0.0001), and a substantial expression of Sox9 and CK was observed around the bile ducts. The mRNA expression levels of proinflammatory factors (interleukin [IL]‐1β, IL‐6, tumor necrosis factor [TNF]‐α, and TNF‐like weak inducer of apoptosis [Tweak]) were also significantly higher in the antibiotic‐treated mice than the levels in the control mice. These data imply that the depletion of the gut microbiome leads to liver damage, negatively impacts the hepatic metabolism and function, and activates HPCs. However, the underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan-Nan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lan-Lan Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wan-Wan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
78
|
Sjogren's Syndrome and TAM Receptors: A Possible Contribution to Disease Onset. J Immunol Res 2019; 2019:4813795. [PMID: 31214622 PMCID: PMC6535826 DOI: 10.1155/2019/4813795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Sjogren's syndrome (SS) is a chronic, progressive autoimmune disease featuring both organ-specific and systemic manifestations, the most frequent being dry mouth and dry eyes resulting from lymphocytic infiltration into the salivary and lacrimal glands. Like the related autoimmune disease systemic lupus erythematosus (SLE), SS patients and mouse models display accumulation of apoptotic cells and a Type I interferon (IFN) signature. Receptor tyrosine kinases (RTKs) of the Tyro3, Axl, and Mer (TAM) family are present on the surface of macrophages and dendritic cells and participate in phagocytosis of apoptotic cells (efferocytosis) and inhibition of Type I IFN signaling. This review examines the relationship between TAM receptor dysfunction and SS and explores the potential contributions of TAM defects on macrophages to SS development.
Collapse
|
79
|
SOCS-1 Suppresses Inflammation Through Inhibition of NALP3 Inflammasome Formation in Smoke Inhalation-Induced Acute Lung Injury. Inflammation 2019; 41:1557-1567. [PMID: 29907905 PMCID: PMC7102050 DOI: 10.1007/s10753-018-0802-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Smoke inhalation leads to acute lung injury (ALI), a devastating clinical problem associated with high mortality rates. Suppressor of cytokine signaling-1 (SOCS-1) is a negative regulator of proinflammatory cytokine signaling. We have found that adenoviral gene transfer of SOCS-1 ameliorates smoke inhalation-induced lung injury in C57BL/6 mice. We also found that the release of adenosine triphosphate (ATP) was increased post smoke exposure, while oxidized ATP, an inhibitor of purinergic P2X7 receptor, suppressed smoke-induced NALP3 inflammasome assembly, caspase-1 activation, and K+ efflux. Similar to oxidized ATP, high protein level of SOCS-1 dampened the formation of NALP3 inflammasome and the activation of caspase-1 and IL-1β induced by smoke exposure in mouse alveolar macrophages. In conclusion, SOCS-1 relieves smoke inhalation-induced pulmonary inflammation and injury by inhibiting NALP3 inflammasome formation.
Collapse
|
80
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|
81
|
Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, Cohen EEW, Chen SY, Sharabi AB. A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy. Front Immunol 2019; 10:491. [PMID: 30936880 PMCID: PMC6431643 DOI: 10.3389/fimmu.2019.00491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Continued discoveries of negative regulators of inflammatory signaling provide detailed molecular insights into peripheral tolerance and anti-tumor immunity. Accumulating evidence indicates that peripheral tolerance is maintained at multiple levels of immune responses by negative regulators of proinflammatory signaling, soluble anti-inflammatory factors, inhibitory surface receptors & ligands, and regulatory cell subsets. This review provides a global overview of these regulatory machineries that work in concert to maintain peripheral tolerance at cellular and host levels, focusing on the direct and indirect regulation of T cells. The recent success of checkpoint blockade immunotherapy (CBI) has initiated a dramatic shift in the paradigm of cancer treatment. Unprecedented responses to CBI have highlighted the central role of T cells in both anti-tumor immunity and peripheral tolerance and underscored the importance of T cell exhaustion in cancer. We discuss the therapeutic implications of modulating the negative regulators of T cell function for tumor immunotherapy with an emphasis on inhibitory surface receptors & ligands—central players in T cell exhaustion and targets of checkpoint blockade immunotherapies. We then introduce a Threshold Model for Immune Activation—the concept that these regulatory mechanisms contribute to defining a set threshold of immunogenic (proinflammatory) signaling required to elicit an anti-tumor or autoimmune response. We demonstrate the value of the Threshold Model in understanding clinical responses and immune related adverse events in the context of peripheral tolerance, tumor immunity, and the era of Checkpoint Blockade Immunotherapy.
Collapse
Affiliation(s)
- Kripa Guram
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sangwoo S Kim
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Victoria Wu
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - P Dominick Sanders
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sandip Patel
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Stephen P Schoenberger
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Ezra E W Cohen
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
82
|
Feng M, Xie T, Li Y, Zhang N, Lu Q, Zhou Y, Shi M, Sun J, Zhang X. A balanced game: chicken macrophage response to ALV-J infection. Vet Res 2019; 50:20. [PMID: 30841905 PMCID: PMC6404279 DOI: 10.1186/s13567-019-0638-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression in infected chickens. Macrophages play a central role in host defense against invading pathogens. In this study, we discovered an interesting phenomenon: ALV-J replication is weakened from 3 hours post-infection (hpi) to 36 hpi, which was verified using Western blotting and RT-PCR. To further investigate the interaction between ALV-J and macrophages, transcriptome analysis was performed to analyze the host genes’ function in chicken primary monocyte-derived macrophages (MDM). Compared to the uninfected control, 624 up-regulated differentially expressed genes (DEG) and 341 down-regulated DEG at 3 hpi, and 174 up-regulated DEG and 87 down-regulated DEG at 36 hpi were identified in chicken MDM, respectively. ALV-J infection induced strong innate immune responses in chicken MDM at 3 hpi, instead of 36 hpi, according to the analysis results of Gene Ontology and KEGG pathway. Importantly, the host factors, such as up-regulated MIP-3α, IL-1β, iNOS, K60, IRG1, CH25H, NFKBIZ, lysozyme and OASL were involved in the host defense response during the course of ALV-J infection. On the contrary, up-regulated EX-FABP, IL4I1, COX-2, NFKBIA, TNFAIP3 and the Jak STAT pathway inhibitors including CISH, SOCS1 and SOCS3 are beneficial to ALV-J survival in chicken macrophages. We speculated that ALV-J tropism for macrophages helps to establish a latent infection in chicken MDM from 6 to 36 hpi. The present study provides a comprehensive view of the interactions between macrophages and ALV-J. It suggests the mechanisms of defense of chicken macrophages against ALV-J invasion and how ALV-J escape the host innate immune responses.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Yuanfang Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Nan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiuyuan Lu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaohong Zhou
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China.
| |
Collapse
|
83
|
Effect of cornel iridoid glycoside on microglia activation through suppression of the JAK/STAT signalling pathway. J Neuroimmunol 2019; 330:96-107. [PMID: 30852182 DOI: 10.1016/j.jneuroim.2019.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/07/2023]
Abstract
The effect of cornel iridoid glycoside (CIG), main component extracted from Cornus officinalis, on microglia activation has not been elucidated so far. We induced a mouse model of multiple sclerosis (MS), namely, the experimental autoimmune encephalomyelitis (EAE) model by immunization subcutaneously with the MOG35-55 peptide, which causes neuroinflammation and microglia activation. Our data demonstrated that CIG delayed the onset of the EAE, ameliorated the severity of the symptoms and inhibited the activation of microglia in different brain regions. In addition, we also found that CIG has therapeutic potential by modulating microglia polarization by reducing the expression and release of proinflammatory cytokines, chemokines and inhibiting phosphorylation in the JAK/STAT cell signalling pathway. Based on our findings, CIG might be a promising candidate for the prevention of neurological disorders such as multiple sclerosis (MS).
Collapse
|
84
|
STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion. Cell Death Differ 2019; 26:2314-2328. [PMID: 30816302 DOI: 10.1038/s41418-019-0302-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
Stimulator of interferon genes (STING), a major adaptor protein in antiviral innate immune signaling, is considered as one of the most important regulators of antiviral and antitumor immunity. Although STING agonists are now intensively studied in clinical trials as a new class of adjuvants to boost cancer immunotherapy, the tumor-intrinsic role of the STING pathway in shaping the tumor microenvironment remains controversial. Here, we discovered that STING plays a vital role in regulation of myeloid-derived suppressor cell (MDSC) differentiation and antitumor immunity in Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). Mechanistic analyses reveal that STING represses NPC-derived MDSC induction by enhancing SOCS1 expression in both tumor cells and MDSCs. SOCS1 physically interacts with STAT3 through its SH2 domain to prevent STAT3 phosphorylation and dimerization, resulting in reduced MDSC induction via inhibition of GM-CSF and IL-6 production. Notably, reduced tumoral STING expression was found to be significantly associated with a poor prognosis for NPC patients. Our findings reveal a novel mechanism linking STING to tumor microenvironmental cytokine production and MDSC induction.
Collapse
|
85
|
Ogino H, Okuno T, Murano K, Arakawa T, Ueno H. Naturally oxidized olive oil exacerbates contact hypersensitivity by promoting differentiation into effector T cells and increasing antigen-specific IFN-γ production. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1547687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Hirofumi Ogino
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Tomofumi Okuno
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Koichi Murano
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Tennoji-ku, Japan
| | - Tomohiro Arakawa
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Hitoshi Ueno
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| |
Collapse
|
86
|
Abstract
Iron, an essential nutrient, is required for many biological processes but is also toxic in excess. The lack of a mechanism to excrete excess iron makes it crucial for the body to regulate the amount of iron absorbed from the diet. This regulation is mediated by the hepatic hormone hepcidin. Hepcidin also controls iron release from macrophages that recycle iron and from hepatocytes that store iron. Hepcidin binds to the only known iron export protein, ferroportin, inducing its internalization and degradation and thus limiting the amount of iron released into the plasma. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, hypoxia and erythropoiesis, and, to a lesser extent, testosterone. Dysregulation of hepcidin production contributes to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and non-transfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic inflammatory diseases and inherited iron-refractory iron-deficiency anemia. The present review summarizes our current understanding of the molecular mechanisms and signaling pathways contributing to hepcidin regulation by these factors and highlights the issues that still need clarification.
Collapse
Affiliation(s)
- Marie-Paule Roth
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Delphine Meynard
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Hélène Coppin
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
87
|
Liu YH, Yeh IJ, Lai MD, Liu KT, Kuo PL, Yen MC. Cancer Immunotherapy: Silencing Intracellular Negative Immune Regulators of Dendritic Cells. Cancers (Basel) 2019; 11:cancers11010108. [PMID: 30658461 PMCID: PMC6357062 DOI: 10.3390/cancers11010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 01/26/2023] Open
Abstract
Dendritic cells (DCs) are capable of activating adaptive immune responses, or inducing immune suppression or tolerance. In the tumor microenvironment, the function of DCs is polarized into immune suppression that attenuates the effect of T cells, promoting differentiation of regulatory T cells and supporting tumor progression. Therefore, blocking negative immune regulators in DCs is considered a strategy of cancer immunotherapy. Antibodies can target molecules on the cell surface, but not intracellular molecules of DCs. The delivery of short-hairpin RNAs (shRNA) and small-interfering RNAs (siRNA) should be a strategy to silence specific intracellular targets in DCs. This review provides an overview of the known negative immune regulators of DCs. Moreover, a combination of shRNA/siRNA and DC vaccines, DNA vaccines in animal models, and clinical trials are also discussed.
Collapse
Affiliation(s)
- Yao-Hua Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Kuan-Ting Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
88
|
The Functions and Mechanism of a New Oligopeptide BP9 from Avian Bursa on Antibody Responses, Immature B Cell, and Autophagy. J Immunol Res 2019; 2019:1574383. [PMID: 30723747 PMCID: PMC6339771 DOI: 10.1155/2019/1574383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
The bursa of Fabricius is an acknowledged central humoral immune organ unique to birds, which is vital to B cell differentiation and antibody production. However, the function and mechanism of the biological active peptide isolated from bursa on B cell development and autophagy were less reported. In this study, we isolated a new oligopeptide with nine amino acids Leu-Met-Thr-Phe-Arg-Asn-Glu-Gly-Thr from avian bursa following RP-HPLC, MODIL-TOP-MS, and MS/MS, which was named after BP9. The results of immunization experiments showed that mice injected with 0.01 and 0.05 mg/mL BP9 plus JEV vaccine generated the significant increased antibody levels, compared to those injected with JEV vaccine only. The microarray analysis on the molecular basis of BP9-treated immature B cell showed that vast genes were involved in various immune-related biological processes in BP9-treated WEHI-231 cells, among which the regulation of cytokine production and T cell activation were both major immune-related processes in WEHI-231 cells with BP9 treatment following network analysis. Also, the differentially regulated genes were found to be involved in four significantly enriched pathways in BP9-treated WEHI-231 cells. Finally, we proved that BP9 induced the autophagy formation, regulated the gene and protein expressions related to autophagy in immature B cell, and stimulated AMPK-ULK1 phosphorylation expression. These results suggested that BP9 might be a strong bursal-derived active peptide on antibody response, B cell differentiation, and autophagy in immature B cells, which provided the linking among humoral immunity, B cell differentiation, and autophagy and offered the important reference for the effective immunotherapeutic strategies and immune improvement.
Collapse
|
89
|
Takeshima H, Horie M, Mikami Y, Makita K, Miyashita N, Matsuzaki H, Noguchi S, Urushiyama H, Hiraishi Y, Mitani A, Borok Z, Nagase T, Yamauchi Y. CISH is a negative regulator of IL-13-induced CCL26 production in lung fibroblasts. Allergol Int 2019; 68:101-109. [PMID: 30197185 DOI: 10.1016/j.alit.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bronchial asthma is a chronic airway disease characterized by eosinophilic airway inflammation. Lung fibroblasts activated by IL-13 serve as important sources of chemokines, such as eotaxins, contributing to persistent eosinophilic inflammation. Src-homology 2-containing protein (CISH), belonging to the suppressor of cytokine signaling (SOCS) family, acts as a negative regulator of cytokine induction. The aim of this study was to elucidate the role of CISH in the production of eosinophil chemotactic chemokines in human lung fibroblasts. METHODS Normal human lung fibroblasts were stimulated by IL-13, and global gene expression profile was assessed by cDNA microarray. Expression changes and downstream of IL-13 signaling were evaluated by quantitative RT-PCR, ELISA or western blotting. Loss- and gain-of-function analyses of CISH were performed by small interfering RNA and vector overexpression, respectively. RESULTS Ingenuity pathway analysis revealed that IL-13 induced chemokine signaling, including the eotaxin family, while significantly suppressing IFN-α/β signaling. Among eight SOCS family members, CISH was most strongly induced by IL-13 via phosphorylation of signal transducer and activator of transcription 6 (STAT6). Loss- and gain-of-function studies demonstrated that CISH negatively regulated the expression of CCL26. CONCLUSIONS These findings suggest that CISH plays a key role in the eosinophilic inflammation associated with bronchial asthma by regulating IL-13-induced CCL26 production. Augmentation of CISH function could be a novel approach for treating eosinophilic inflammation in severe asthma.
Collapse
|
90
|
Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation-Driven Liver and Colorectal Cancers. Cancers (Basel) 2018; 11:cancers11010024. [PMID: 30591653 PMCID: PMC6356226 DOI: 10.3390/cancers11010024] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity promotes the development of numerous cancers, such as liver and colorectal cancers, which is at least partly due to obesity-induced, chronic, low-grade inflammation. In particular, the recruitment and activation of immune cell subsets in the white adipose tissue systemically increase proinflammatory cytokines, such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). These proinflammatory cytokines not only impair insulin action in metabolic tissues, but also favor cancer development. Here, we review the current state of knowledge on how obesity affects inflammatory TNFα and IL-6 signaling in hepatocellular carcinoma and colorectal cancers.
Collapse
|
91
|
Milani AT, Khadem-Ansari MH, Rasmi Y. Effects of thyroid-stimulating hormone on adhesion molecules and pro-inflammatory cytokines secretion in human umbilical vein endothelial cells. Res Pharm Sci 2018; 13:546-556. [PMID: 30607152 PMCID: PMC6288987 DOI: 10.4103/1735-5362.245966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis is a multifactorial disorder, which affects the arterial wall. It has been reported that, hypothyroidism and thyroid hormone deficiency are related to cardiovascular disorders. Also, endothelial dysfunction plays an essential role in the development of atherosclerosis. We aimed to evaluate the effects of thyroid-stimulating hormone (TSH) on pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), angiogenic vascular endothelial growth factor (VEGF) and leukocyte adhesion, intercellular adhesion molecule 1 (ICAM-1) and E-selectin in human umbilical vein endothelial cells (HUVECs). In this study, HUVEC cells were treated with 1 and 2 μM of TSH in different treatment times. The gene and protein expression of ICAM-1, VEGF, and E-selectin were performed by real-time polymerase chain reaction and western blotting, respectively. Likewise, TNF-α and IL-6 protein levels were determined by the ELISA method. VEGF, ICAM-1, and E-selectin as endothelial dysfunction markers and also, TNF-α and IL-6 as pro-inflammatory cytokines were detectable in HUVEC. Besides, the results of this study revealed that TSH treatment down-regulates TNF-α and IL-6. Evaluating the gene and protein expression data revealed the upregulation of ICAM-1, E-selectin, and VEGF in TSH treated cases in different periods of exposure. Considering the multiple actions of TSH, it could be concluded that TSH plays a controversial role in atherogenesis by anti-inflammatory effects and on the other side, angiogenesis and leukocyte adhesion induction which is related to vascular cell proliferation.
Collapse
Affiliation(s)
- Attabak Toofani Milani
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | | | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
92
|
Josamycin suppresses Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-1β in murine macrophages. Biomed Pharmacother 2018; 105:498-505. [DOI: 10.1016/j.biopha.2018.05.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
|
93
|
Control of progression towards liver fibrosis and hepatocellular carcinoma by SOCS3 polymorphisms in chronic HCV-infected patients. INFECTION GENETICS AND EVOLUTION 2018; 66:1-8. [PMID: 30172885 DOI: 10.1016/j.meegid.2018.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Chronic Hepatitis C is one of the most important risk factors of liver cirrhosis and hepatocellular carcinoma. Before reaching these ultimate steps, insulin resistance triggered by hepatitis C virus infection is known to participate in the progression of liver disease. The present study aims to investigate the influence of two functional polymorphisms on SOCS3 mRNA expression and on the outcomes of CHC progression in a North African context. PATIENTS & METHODS In this case-control study, 601 Moroccan subjects composed of 200 healthy controls, 101 resolvers and 300 patients with persistent HCV infection including 95 mild chronic hepatitis, 131 Advanced Liver Diseases and 74 HCC were enrolled. They were genotyped for the 4874 A/G (rs4969170) and A + 930- > G (rs4969168) SOCS3 variants using TaqMan SNPs assays. SOCS3 mRNA expression was assessed using Real Time PCR technique. RESULTS Logistic regression analysis showed that variation at rs4969168 was associated with spontaneous clearance of HCV (P < 0.05). In addition, minor allele frequencies were significantly higher in AdLD patients when compared to the mCHC group both for rs4969168 (P = 7.0 E-04) and rs4969170 (P = 4.0 E-05). A significant association between haplotype and liver disease progression was also found. Moreover, SOCS3 mRNA was significantly more expressed in peripheral leukocytes from patients with HCC than in those from mCHC. Finally, rs4969170 was significantly associated with LDL-lipoprotein (P = 0.04), total cholesterol (P = 5.0 E-04), and higher fasting glucose levels (P = 0.005) in patients with persistent HCV infection. CONCLUSIONS Our results underline the importance of the functional SOCS3 polymorphisms in the modulation of CHC progression and suggest their contribution to HCC development by affecting its mRNA expression and perturbing key metabolic parameters.
Collapse
|
94
|
Suppressor of Cytokine Signaling 1 (SOCS1) and SOCS3 Are Stimulated within the Eye during Experimental Murine Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression. J Virol 2018; 92:JVI.00526-18. [PMID: 29976680 DOI: 10.1128/jvi.00526-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
AIDS-related human cytomegalovirus retinitis remains the leading cause of blindness among untreated HIV/AIDS patients worldwide. To study mechanisms of this disease, we used a clinically relevant animal model of murine cytomegalovirus (MCMV) retinitis with retrovirus-induced murine AIDS (MAIDS) that mimics the progression of AIDS in humans. We found in this model that MCMV infection significantly stimulates ocular suppressor of cytokine signaling 1 (SOCS1) and SOCS3, host proteins which hinder immune-related signaling by cytokines, including antiviral type I and type II interferons. The present study demonstrates that in the absence of retinal disease, systemic MCMV infection of mice without MAIDS, but not in mice with MAIDS, leads to mild stimulation of splenic SOCS1 mRNA. In sharp contrast, when MCMV is directly inoculated into the eyes of retinitis-susceptible MAIDS mice, high levels of intraocular SOCS1 and SOCS3 mRNA and protein are produced which are associated with significant intraocular upregulation of gamma interferon (IFN-γ) and interleukin-6 (IL-6) mRNA expression. We also show that infiltrating macrophages, granulocytes, and resident retinal cells are sources of intraocular SOCS1 and SOCS3 protein production during development of MAIDS-related MCMV retinitis, and SOCS1 and SOCS3 mRNA transcripts are detected in retinal areas histologically characteristic of MCMV retinitis. Furthermore, SOCS1 and SOCS3 are found in both MCMV-infected cells and uninfected cells, suggesting that these SOCS proteins are stimulated via a bystander mechanism during MCMV retinitis. Taken together, our findings suggest a role for MCMV-related stimulation of SOCS1 and SOCS3 in the progression of retinal disease during ocular, but not systemic, MCMV infection.IMPORTANCE Cytomegalovirus infection frequently causes blindness in untreated HIV/AIDS patients. This virus manipulates host cells to dysregulate immune functions and drive disease. Here, we use an animal model of this disease to demonstrate that cytomegalovirus infection within eyes during retinitis causes massive upregulation of immunosuppressive host proteins called SOCS. As viral overexpression of SOCS proteins exacerbates infection with other viruses, they may also enhance cytomegalovirus infection. Alternatively, the immunosuppressive effect of SOCS proteins may be protective against immunopathology during cytomegalovirus retinitis, and in such a case SOCS mimetics or overexpression treatment strategies might be used to combat this disease. The results of this work therefore provide crucial basic knowledge that contributes to our understanding of the mechanisms of AIDS-related cytomegalovirus retinitis and, together with future studies, may contribute to the development of novel therapeutic targets that could improve the treatment or management of this sight-threatening disease.
Collapse
|
95
|
Liu YW, Liong MT, Tsai YC. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J Microbiol 2018; 56:601-613. [DOI: 10.1007/s12275-018-8079-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
|
96
|
La Manna S, Lee E, Ouzounova M, Di Natale C, Novellino E, Merlino A, Korkaya H, Marasco D. Mimetics of suppressor of cytokine signaling 3: Novel potential therapeutics in triple breast cancer. Int J Cancer 2018; 143:2177-2186. [DOI: 10.1002/ijc.31594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sara La Manna
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Eunmi Lee
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta; Georgia
| | - Maria Ouzounova
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta; Georgia
| | - Concetta Di Natale
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Ettore Novellino
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Antonello Merlino
- Department of Chemical Sciences; University of Naples “Federico II”; Naples Italy
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta; Georgia
| | - Daniela Marasco
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| |
Collapse
|
97
|
Yang Y, Zhao X, Li J, Jiang H, Shan X, Wang Y, Ma W, Hao J, Yu G. A β-glucan from Durvillaea Antarctica has immunomodulatory effects on RAW264.7 macrophages via toll-like receptor 4. Carbohydr Polym 2018; 191:255-265. [PMID: 29661317 DOI: 10.1016/j.carbpol.2018.03.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/15/2022]
Abstract
We studied the mechanisms underlying the immunostimulatory effects of aβ-1,3/1,6-glucan (BG136) from Durvillaea Antarctica. Our data showed that BG136 promoted the activation of MAPKs and NF-κB signaling pathways and cytokines production. BG136 did not increase MCP-1 or NO production or phosphorylation of NF-κB and MAPK in TLR4 siRNA knockdown cells, indicating that BG136 activates macrophages through TLR4. Flow cytometry analysis and confocal experiment showed that BG136 bound to TLR4 expressed on RAW264.7 macrophage cells surface. The affinity of BG136 for TLR4 was determined using Surface Plasmon Resonance (SPR) (KD: 4.51 × 10-6M). Altogether, our results showed that BG136 activates RAW264.7 cells by binding to TLR4 and then triggering TLR4-mediated signaling pathways to promote cytokines secretion.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaoliang Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xindi Shan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ya Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenbang Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
98
|
Kılıç A, Santolini M, Nakano T, Schiller M, Teranishi M, Gellert P, Ponomareva Y, Braun T, Uchida S, Weiss ST, Sharma A, Renz H. A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation. JCI Insight 2018; 3:97503. [PMID: 29875322 DOI: 10.1172/jci.insight.97503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including microRNAs (miRs), are pivotal in maintaining immune homeostasis. Since an altered expression of various miRs has been associated with T cell-driven diseases, including asthma, we hypothesized that miRs control mechanisms ensuring Th2 stability and maintenance in the lung. We isolated murine CD4+ Th2 cells from allergic inflamed lungs and profiled gene and miR expression. Instead of focusing on the magnitude of miR differential expression, here we addressed the secondary consequences for the set of molecular interactions in the cell, the interactome. We developed the Impact of Differential Expression Across Layers, a network-based algorithm to prioritize disease-relevant miRs based on the central role of their targets in the molecular interactome. This method identified 5 Th2-related miRs (mir27b, mir206, mir106b, mir203, and mir23b) whose antagonization led to a sharp reduction of the Th2 phenotype. Overall, a systems biology tool was developed and validated, highlighting the role of miRs in Th2-driven immune response. This result offers potentially novel approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Ayşe Kılıç
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Marc Santolini
- Center for Complex Network Research, Department of Physics, Northeastern University, Boston, Massachusetts, USA.,Brigham and Women's Hospital, Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Taiji Nakano
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Matthias Schiller
- Clinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Mizue Teranishi
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pascal Gellert
- Breast Cancer Now Research Centre at The Institute of Cancer Research, London, United Kingdom
| | - Yuliya Ponomareva
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe- University Frankfurt, Frankfurt Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Amitabh Sharma
- Brigham and Women's Hospital, Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
99
|
Cornel AM, van Til NP, Boelens JJ, Nierkens S. Strategies to Genetically Modulate Dendritic Cells to Potentiate Anti-Tumor Responses in Hematologic Malignancies. Front Immunol 2018; 9:982. [PMID: 29867960 PMCID: PMC5968097 DOI: 10.3389/fimmu.2018.00982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC) vaccination has been investigated as a potential strategy to target hematologic malignancies, while generating sustained immunological responses to control potential future relapse. Nonetheless, few clinical trials have shown robust long-term efficacy. It has been suggested that a combination of surmountable shortcomings, such as selection of utilized DC subsets, DC loading and maturation strategies, as well as tumor-induced immunosuppression may be targeted to maximize anti-tumor responses of DC vaccines. Generation of DC from CD34+ hematopoietic stem and progenitor cells (HSPCs) may provide potential in patients undergoing allogeneic HSPC transplantations for hematologic malignancies. CD34+ HSPC from the graft can be genetically modified to optimize antigen presentation and to provide sufficient T cell stimulatory signals. We here describe beneficial (gene)-modifications that can be implemented in various processes in T cell activation by DC, among which major histocompatibility complex (MHC) class I and MHC class II presentation, DC maturation and migration, cross-presentation, co-stimulation, and immunosuppression to improve anti-tumor responses.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niek P van Til
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Jan Boelens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, Netherlands.,Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
100
|
Alti D, Sambamurthy C, Kalangi SK. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol 2018; 8:147. [PMID: 29868503 PMCID: PMC5954041 DOI: 10.3389/fcimb.2018.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Deficiency of leptin (ob/ob) and/or desensitization of leptin signaling (db/db) and elevated expression of suppressor of cytokine signaling-3 (SOCS3) reported in obesity are also reported in a variety of pathologies including hypertriglyceridemia, insulin resistance, and malnutrition as the risk factors in host defense system. Viral infections cause the elevated SOCS3 expression, which inhibits leptin signaling. It results in immunosuppression by T-regulatory cells (Tregs). The host immunity becomes incompetent to manage pathogens' attack and invasion, which results in the accelerated infections and diminished vaccine-specific antibody response. Leptin was successfully used as mucosal vaccine adjuvant against Rhodococcus equi. Leptin induced the antibody response to Helicobacter pylori vaccination in mice. An integral leptin signaling in mucosal gut epithelial cells offered resistance against Clostridium difficile and Entameoba histolytica infections. We present in this review, the intervention of leptin in lethal diseases caused by microbial infections and propose the possible scope and challenges of leptin as an adjuvant tool in the development of effective vaccines.
Collapse
Affiliation(s)
- Dayakar Alti
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Suresh K Kalangi
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|