51
|
Park JH, Jeong DY, Peyrin-Biroulet L, Eisenhut M, Shin JI. Insight into the role of TSLP in inflammatory bowel diseases. Autoimmun Rev 2016; 16:55-63. [PMID: 27697608 DOI: 10.1016/j.autrev.2016.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Proinflammatory cytokines are thought to modulate pathogeneses of various inflammatory bowel diseases (IBDs). Thymic stromal lymphopoietin (TSLP), which has been studied in various allergic diseases such as asthma, atopic dermatitis (AD) and eosinophilic esophagitis (EoE), has been less considered to be involved in IBDs. However, mucosal dendritic cells (DCs) induced by various cytokines including TSLP were reported to cause polarization of T cell toward Th2 response, the differentiation of regulatory T-cell (Treg), and secretion of IgA by B cells. In this review, we discuss the concept that decreased TSLP has the potential to accelerate the development of Th1 response dominant diseases such as the Crohn's disease (CD) while increased TSLP has the potential to lead to a development of Th2 cell dominant diseases such the ulcerative colitis (UC). To examine TSLP's role as a potential determining factor for differentiating UC and CD, we analyzed the effects of other genes regulated by TSLP in regards to the UC and CD pathogeneses using data from online open access resources such as NetPath, GeneMania, and the String database. Our findings indicate that TSLP is a key mediator in the pathogenesis of IBDs and that further studies are needed to evaluate its role.
Collapse
Affiliation(s)
| | | | - Laurent Peyrin-Biroulet
- Inserm U954 and Department of Gastroenterology, Nancy University Hospital, Université de Lorraine, France
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
52
|
Majewski P, Majchrzak-Gorecka M, Grygier B, Skrzeczynska-Moncznik J, Osiecka O, Cichy J. Inhibitors of Serine Proteases in Regulating the Production and Function of Neutrophil Extracellular Traps. Front Immunol 2016; 7:261. [PMID: 27446090 PMCID: PMC4928128 DOI: 10.3389/fimmu.2016.00261] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs), DNA webs released into the extracellular environment by activated neutrophils, are thought to play a key role in the entrapment and eradication of microbes. However, NETs are highly cytotoxic and a likely source of autoantigens, suggesting that NET release is tightly regulated. NET formation involves the activity of neutrophil elastase (NE), which cleaves histones, leading to chromatin decondensation. We and others have recently demonstrated that inhibitors of NE, such as secretory leukocyte protease inhibitor (SLPI) and SerpinB1, restrict NET production in vitro and in vivo. SLPI was also identified as a NET component in the lesional skin of patients suffering from the autoinflammatory skin disease psoriasis. SLPI-competent NET-like structures (a mixture of SLPI with neutrophil DNA and NE) stimulated the synthesis of interferon type I (IFNI) in plasmacytoid dendritic cells (pDCs) in vitro. pDCs uniquely respond to viral or microbial DNA/RNA but also to nucleic acids of “self” origin with the production of IFNI. Although IFNIs are critical in activating the antiviral/antimicrobial functions of many cells, IFNIs also play a role in inducing autoimmunity. Thus, NETs decorated by SLPI may regulate skin immunity through enhancing IFNI production in pDCs. Here, we review key aspects of how SLPI and SerpinB1 can control NET production and immunogenic function.
Collapse
Affiliation(s)
- Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Monika Majchrzak-Gorecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Joanna Skrzeczynska-Moncznik
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Oktawia Osiecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| |
Collapse
|
53
|
Ruane D, Chorny A, Lee H, Faith J, Pandey G, Shan M, Simchoni N, Rahman A, Garg A, Weinstein EG, Oropallo M, Gaylord M, Ungaro R, Cunningham-Rundles C, Alexandropoulos K, Mucida D, Merad M, Cerutti A, Mehandru S. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. J Exp Med 2015; 213:53-73. [PMID: 26712806 PMCID: PMC4710201 DOI: 10.1084/jem.20150567] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Ruane et al. demonstrate a role for the microbiota in modulating protective immunity to intranasal vaccination via the ability of lung dendritic cells to induce B cell IgA class switching. Protective immunoglobulin A (IgA) responses to oral antigens are usually orchestrated by gut dendritic cells (DCs). Here, we show that lung CD103+ and CD24+CD11b+ DCs induced IgA class-switch recombination (CSR) by activating B cells through T cell–dependent or –independent pathways. Compared with lung DCs (LDC), lung CD64+ macrophages had decreased expression of B cell activation genes and induced significantly less IgA production. Microbial stimuli, acting through Toll-like receptors, induced transforming growth factor-β (TGF-β) production by LDCs and exerted a profound influence on LDC-mediated IgA CSR. After intranasal immunization with inactive cholera toxin (CT), LDCs stimulated retinoic acid–dependent up-regulation of α4β7 and CCR9 gut-homing receptors on local IgA-expressing B cells. Migration of these B cells to the gut resulted in IgA-mediated protection against an oral challenge with active CT. However, in germ-free mice, the levels of LDC-induced, CT–specific IgA in the gut are significantly reduced. Herein, we demonstrate an unexpected role of the microbiota in modulating the protective efficacy of intranasal vaccination through their effect on the IgA class-switching function of LDCs.
Collapse
Affiliation(s)
- Darren Ruane
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alejo Chorny
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Haekyung Lee
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jeremiah Faith
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Meimei Shan
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Noa Simchoni
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adeeb Rahman
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aakash Garg
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Erica G Weinstein
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael Oropallo
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michelle Gaylord
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan Ungaro
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065
| | - Miriam Merad
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Andrea Cerutti
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
54
|
Majchrzak-Gorecka M, Majewski P, Grygier B, Murzyn K, Cichy J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev 2015; 28:79-93. [PMID: 26718149 DOI: 10.1016/j.cytogfr.2015.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Secretory leukocyte protease inhibitor (SLPI), a ∼12kDa nonglycosylated cationic protein, is emerging as an important regulator of innate and adaptive immunity and as a component of tissue regenerative programs. First described as an inhibitor of serine proteases such as neutrophil elastase, this protein is increasingly recognized as a molecule that benefits the host via its anti-proteolytic, anti-microbial and immunomodulatory activities. Here, we discuss the diverse functions of SLPI. Moreover, we review several novel layers of SLPI-mediated control that protect the host from excessive/dysregulated inflammation typical of infectious, allergic and autoinflammatory diseases and that support healing responses through affecting cell proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Monika Majchrzak-Gorecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
55
|
Giacomin PR, Moy RH, Noti M, Osborne LC, Siracusa MC, Alenghat T, Liu B, McCorkell KA, Troy AE, Rak GD, Hu Y, May MJ, Ma HL, Fouser LA, Sonnenberg GF, Artis D. Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. J Exp Med 2015; 212:1513-28. [PMID: 26371187 PMCID: PMC4577836 DOI: 10.1084/jem.20141831] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are critical for maintaining epithelial barrier integrity at mucosal surfaces; however, the tissue-specific factors that regulate ILC responses remain poorly characterized. Using mice with intestinal epithelial cell (IEC)-specific deletions in either inhibitor of κB kinase (IKK)α or IKKβ, two critical regulators of NFκB activation, we demonstrate that IEC-intrinsic IKKα expression selectively regulates group 3 ILC (ILC3)-dependent antibacterial immunity in the intestine. Although IKKβ(ΔIEC) mice efficiently controlled Citrobacter rodentium infection, IKKα(ΔIEC) mice exhibited severe intestinal inflammation, increased bacterial dissemination to peripheral organs, and increased host mortality. Consistent with weakened innate immunity to C. rodentium, IKKα(ΔIEC) mice displayed impaired IL-22 production by RORγt(+) ILC3s, and therapeutic delivery of rIL-22 or transfer of sort-purified IL-22-competent ILCs from control mice could protect IKKα(ΔIEC) mice from C. rodentium-induced morbidity. Defective ILC3 responses in IKKα(ΔIEC) mice were associated with overproduction of thymic stromal lymphopoietin (TSLP) by IECs, which negatively regulated IL-22 production by ILC3s and impaired innate immunity to C. rodentium. IEC-intrinsic IKKα expression was similarly critical for regulation of intestinal inflammation after chemically induced intestinal damage and colitis. Collectively, these data identify a previously unrecognized role for epithelial cell-intrinsic IKKα expression and TSLP in regulating ILC3 responses required to maintain intestinal barrier immunity.
Collapse
Affiliation(s)
- Paul R Giacomin
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan H Moy
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mario Noti
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lisa C Osborne
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Mark C Siracusa
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Theresa Alenghat
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957
| | - Kelly A McCorkell
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy E Troy
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gregory D Rak
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yinling Hu
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21701
| | - Michael J May
- Perelman School of Medicine and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hak-Ling Ma
- Inflammation and Immunology-Pfizer Biotherapeutics Research and Development, Cambridge, MA 02140
| | - Lynette A Fouser
- Inflammation and Immunology-Pfizer Biotherapeutics Research and Development, Cambridge, MA 02140
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021
| |
Collapse
|
56
|
Brightbill HD, Jackman JK, Suto E, Kennedy H, Jones C, Chalasani S, Lin Z, Tam L, Roose-Girma M, Balazs M, Austin CD, Lee WP, Wu LC. Conditional Deletion of NF-κB-Inducing Kinase (NIK) in Adult Mice Disrupts Mature B Cell Survival and Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:953-64. [PMID: 26116508 DOI: 10.4049/jimmunol.1401514] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 05/30/2015] [Indexed: 01/19/2023]
Abstract
NF-κB-inducing kinase (NIK) is a primary regulator of the noncanonical NF-κB signaling pathway, which plays a vital role downstream of BAFF, CD40L, lymphotoxin, and other inflammatory mediators. Germline deletion or inactivation of NIK in mice results in the defective development of B cells and secondary lymphoid organs, but the role of NIK in adult animals has not been studied. To address this, we generated mice containing a conditional allele of NIK. Deletion of NIK in adult mice results in decreases in B cell populations in lymph nodes and spleen, similar to what is observed upon blockade of BAFF. Consistent with this, B cells from mice in which NIK is acutely deleted fail to respond to BAFF stimulation in vitro and in vivo. In addition, mice with induced NIK deletion exhibit a significant decrease in germinal center B cells and serum IgA, which is indicative of roles for NIK in additional pathways beyond BAFF signaling. Our conditional NIK-knockout mice may be broadly useful for assessing the postdevelopmental and cell-specific roles of NIK and the noncanonical NF-κB pathway in mice.
Collapse
Affiliation(s)
- Hans D Brightbill
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080;
| | - Janet K Jackman
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Eric Suto
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Heather Kennedy
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080; and
| | - Charles Jones
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080; and
| | - Sreedevi Chalasani
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080; and
| | - Zhonghua Lin
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lucinda Tam
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080
| | - Meron Roose-Girma
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080
| | - Mercedesz Balazs
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080; and
| | - Wyne P Lee
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080;
| |
Collapse
|
57
|
Hillen MR, Radstake TRDJ, Hack CE, van Roon JAG. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease: Fig. 1. Rheumatology (Oxford) 2015; 54:1771-9. [DOI: 10.1093/rheumatology/kev241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/14/2022] Open
|
58
|
Abstract
Intestinal epithelial cells are fundamental to maintain barrier integrity and to participate in food degradation and absorption, but they can also decipher signals coming from the outside world and 'educate' the immune system accordingly. In particular, they interact with dendritic cells (DCs) and other intraepithelial immune cells to drive tolerogenic responses under steady state, but they can also release immune mediators to recruit inflammatory cells and to elicit immunity to infectious agents. When these interactions are deregulated, immune disorders can develop. In this review, we discuss some important features of epithelial cells and DCs and their fruitful interactions.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
59
|
|
60
|
Fagarasan S, Macpherson AJ. The Regulation of IgA Production. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
61
|
Senger K, Hackney J, Payandeh J, Zarrin AA. Antibody Isotype Switching in Vertebrates. Results Probl Cell Differ 2015; 57:295-324. [PMID: 26537387 DOI: 10.1007/978-3-319-20819-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humoral or antibody-mediated immune response in vertebrates has evolved to respond to diverse antigenic challenges in various anatomical locations. Diversification of the immunoglobulin heavy chain (IgH) constant region via isotype switching allows for remarkable plasticity in the immune response, including versatile tissue distribution, Fc receptor binding, and complement fixation. This enables antibody molecules to exert various biological functions while maintaining antigen-binding specificity. Different immunoglobulin (Ig) classes include IgM, IgD, IgG, IgE, and IgA, which exist as surface-bound and secreted forms. High-affinity autoantibodies are associated with various autoimmune diseases such as lupus and arthritis, while defects in components of isotype switching are associated with infections. A major route of infection used by a large number of pathogens is invasion of mucosal surfaces within the respiratory, digestive, or urinary tract. Most infections of this nature are initially limited by effector mechanisms such as secretory IgA antibodies. Mucosal surfaces have been proposed as a major site for the genesis of adaptive immune responses, not just in fighting infections but also in tolerating commensals and constant dietary antigens. We will discuss the evolution of isotype switching in various species and provide an overview of the function of various isotypes with a focus on IgA, which is universally important in gut homeostasis as well as pathogen clearance. Finally, we will discuss the utility of antibodies as therapeutic modalities.
Collapse
Affiliation(s)
- Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jason Hackney
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
62
|
|
63
|
|
64
|
Chorny A, Cerutti A. Regulation and Function of Mucosal IgA and IgD. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
65
|
Abstract
Persistent infection by EBV is explained by the germinal center model (GCM) which provides a satisfying and currently the only explanation for EBVs disparate biology. Since the GCM touches on every aspect of the virus, this chapter will serve as an introduction to the subsequent chapters. EBV is B lymphotropic, and its biology closely follows that of normal mature B lymphocytes. The virus persists quiescently in resting memory B cells for the lifetime of the host in a non-pathogenic state that is also invisible to the immune response. To access this compartment, the virus infects naïve B cells in the lymphoepithelium of the tonsils and activates these cells using the growth transcription program. These cells migrate to the GC where they switch to a more limited transcription program, the default program, which helps rescue them into the memory compartment where the virus persists. For egress, the infected memory cells return to the lymphoepithelium where they occasionally differentiate into plasma cells activating viral replication. The released virus can either infect more naïve B cells or be amplified in the epithelium for shedding. This cycle of infection and the quiescent state in memory B cells allow for lifetime persistence at a very low level that is remarkably stable over time. Mathematically, this is a stable fixed point where the mechanisms regulating persistence drive the state back to equilibrium when perturbed. This is the GCM of EBV persistence. Other possible sites and mechanisms of persistence will also be discussed.
Collapse
|
66
|
|
67
|
Rescigno M. Microbial Sensing and Regulation of Mucosal Immune Responses by Intestinal Epithelial Cells. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
68
|
|
69
|
Ladjemi MZ, Lecocq M, Weynand B, Bowen H, Gould HJ, Van Snick J, Detry B, Pilette C. Increased IgA production by B-cells in COPD via lung epithelial interleukin-6 and TACI pathways. Eur Respir J 2014; 45:980-93. [PMID: 25537557 DOI: 10.1183/09031936.00063914] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite their relevance to mucosal defense, production of IgA and the function of lung B-cells remain unknown in chronic obstructive pulmonary disease (COPD). We assessed IgA synthesis in the lungs of COPD (n=28) and control (n=21) patients, and regulation of B-cells co-cultured with in vitro-reconstituted airway epithelium. In COPD lung tissue, synthesis of IgA1 was increased, which led to its accumulation in subepithelial areas. In vitro, the COPD bronchial epithelium imprinted normal human B-cells for increased production of IgA (mainly IgA1) and maturation into CD38(+) plasma cells. These effects were associated with upregulation of TACI (transmembrane activator and CAML interactor) and were observed under resting conditions, while being partly inhibited upon stimulation with cigarette smoke extract. Interleukin (IL)-6 and BAFF (B-cell activating factor)/APRIL (a proliferation-inducing ligand) were upregulated in the COPD epithelium and lung tissue, respectively; the IgA-promoting effect of the COPD bronchial epithelium was inhibited by targeting IL-6 and, to a lower extent, by blocking TACI. These data show that in COPD, the bronchial epithelium imprints B-cells with signals promoting maturation into IgA-producing plasma cells through the action of two epithelial/B-cell axes, namely the IL-6/IL-6 receptor and BAFF-APRIL/TACI pathways, while cigarette smoke partly counteracts this IgA-promoting effect.
Collapse
Affiliation(s)
- Maha Zohra Ladjemi
- Université Catholique de Louvain (UCL), Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Brussels, Belgium Cliniques universitaires St-Luc, Service de Pneumologie, Brussels, Belgium Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Marylène Lecocq
- Université Catholique de Louvain (UCL), Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Brussels, Belgium Cliniques universitaires St-Luc, Service de Pneumologie, Brussels, Belgium Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Birgit Weynand
- CHU de Mont-Godinne, Service d'anatomopathologie, Yvoir, Belgium
| | - Holly Bowen
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Hannah J Gould
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Jacques Van Snick
- UCL, C. de Duve Institute of Cellular Pathology, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Bruno Detry
- Université Catholique de Louvain (UCL), Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Brussels, Belgium Cliniques universitaires St-Luc, Service de Pneumologie, Brussels, Belgium Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Charles Pilette
- Université Catholique de Louvain (UCL), Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Brussels, Belgium Cliniques universitaires St-Luc, Service de Pneumologie, Brussels, Belgium Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
70
|
Liu W, Sun C, Luo X, Han M, Zhou L, Li J, Wang J, Li Y, Luo R, Li H. Elevated B cell-activating factor (BAFF) in children with allergic rhinitis. Int J Pediatr Otorhinolaryngol 2014; 78:2156-60. [PMID: 25447952 DOI: 10.1016/j.ijporl.2014.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the possible role of B cell-activating factor (BAFF) in children with allergic rhinitis (AR). METHODS Twenty-four AR children and 20 normal children were enrolled in this study and nasal lavage and serum were collected. The nasal and serum levels of BAFF were measured using enzyme-linked immunosorbent assay (ELISA). The relationship between serum BAFF and immunoglobulin A (IgA) was evaluated in AR children. RESULTS Our results showed that the nasal and serum levels of BAFF were significantly increased in AR children compared with controls (p<0.05). The nasal and serum levels of BAFF in AR children were significantly associated with disease severity (p<0.05). Moreover, the level of serum BAFF was negatively related to serum IgA level (p<0.05). CONCLUSION Our findings show BAFF expression was significantly increased and related to disease severity, indicating BAFF may be implicated in new treatment modalities for AR children.
Collapse
Affiliation(s)
- Wenlong Liu
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou, China
| | - Changzhi Sun
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou, China
| | - Xi Luo
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou, China; Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miaomiao Han
- Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lifeng Zhou
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Wang
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou, China
| | - Yan Li
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou, China
| | - Renzhong Luo
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou, China.
| | - Huabin Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
71
|
Into T, Takigawa T, Niida S, Shibata KI. MyD88 deficiency alters expression of antimicrobial factors in mouse salivary glands. PLoS One 2014; 9:e113333. [PMID: 25415419 PMCID: PMC4240645 DOI: 10.1371/journal.pone.0113333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
The surfaces of oral mucosa are protected from infections by antimicrobial proteins and natural immunoglobulins that are constantly secreted in saliva, serving as principal innate immune defense in the oral cavity. MyD88 is an important adaptor protein for signal transduction downstream of Toll-like receptors and TACI, receptors for regulation of innate immunity and B cell responses, respectively. Although MyD88-mediated signaling has a regulatory role in the intestinal mucosal immunity, its specific role in the oral cavity has remained elusive. In the present study, we assessed the influence of MyD88 deficiency on the oral innate defense, particularly the expression of antimicrobial proteins in salivary glands and production of salivary basal immunoglobulins, in mice. Microarray analysis of the whole tissues of submandibular glands revealed that the expression of several genes encoding salivary antimicrobial proteins, such as secretory leukocyte peptidase inhibitor (SLPI), S100A8, and lactotransferrin, was reduced due to MyD88 deficiency. Histologically, SLPI-expressing acinar cells were evidently decreased in the glands from MyD88 deficient mice compared to wild-type mice. Flow cytometric analysis revealed that B cell populations, including B-1 cells and IgA+ plasma cells, residing in submandibular glands were increased by MyD88 deficiency. The level of salivary anti-phosphorylcholine IgA was elevated in MyD88 deficient mice compared to wild-type mice. Thus, this study provides a detailed description of the effect of MyD88 deficiency on expression of several salivary antimicrobial factors in mice, illustrating the role for MyD88-mediated signaling in the innate immune defense in the oral cavity.
Collapse
Affiliation(s)
- Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Gifu, Japan
- * E-mail:
| | - Toshiya Takigawa
- Department of Oral Anatomy, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, Gifu, Japan
| | - Shumpei Niida
- Laboratory of Genomics and Proteomics, National Center for Geriatrics and Gerontology (NCGG), Aichi, Japan
| | - Ken-ichiro Shibata
- Laboratory of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| |
Collapse
|
72
|
Joo H, Li D, Dullaers M, Kim TW, Duluc D, Upchurch K, Xue Y, Zurawski S, Le Grand R, Liu YJ, Kuroda M, Zurawski G, Oh S. C-type lectin-like receptor LOX-1 promotes dendritic cell-mediated class-switched B cell responses. Immunity 2014; 41:592-604. [PMID: 25308333 DOI: 10.1016/j.immuni.2014.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 08/13/2014] [Indexed: 02/08/2023]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a pattern-recognition receptor for a variety of endogenous and exogenous ligands. However, LOX-1 function in the host immune response is not fully understood. Here, we report that LOX-1 expressed on dendritic cells (DCs) and B cells promotes humoral responses. On B cells LOX-1 signaling upregulated CCR7, promoting cellular migration toward lymphoid tissues. LOX-1 signaling on DCs licensed the cells to promote B cell differentiation into class-switched plasmablasts and led to downregulation of chemokine receptor CXCR5 and upregulation of chemokine receptor CCR10 on plasmablasts, enabling their exit from germinal centers and migration toward local mucosa and skin. Finally, we found that targeting influenza hemagglutinin 1 (HA1) subunit to LOX-1 elicited HA1-specific protective antibody responses in rhesus macaques. Thus, LOX-1 expressed on B cells and DC cells has complementary functions to promote humoral immune responses.
Collapse
Affiliation(s)
- HyeMee Joo
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Dapeng Li
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Melissa Dullaers
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Tae-Whan Kim
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Dorothee Duluc
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Katherine Upchurch
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA; Baylor University, Institute for Biomedical Studies, South 5th Street, Waco, TX 76706, USA
| | - Yaming Xue
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Sandy Zurawski
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Roger Le Grand
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, Commissariat á l'Energie Atomique, Paris 922655, France
| | - Yong-Jun Liu
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA
| | - Marcelo Kuroda
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433-8915, USA
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA; Baylor University, Institute for Biomedical Studies, South 5th Street, Waco, TX 76706, USA
| | - SangKon Oh
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75204, USA; Baylor University, Institute for Biomedical Studies, South 5th Street, Waco, TX 76706, USA.
| |
Collapse
|
73
|
Kurita N, Honda SI, Shibuya A. Increased serum IgA in Fcα/μR-deficient mice on the (129 x C57BL/6) F1 genetic background. Mol Immunol 2014; 63:367-72. [PMID: 25282043 DOI: 10.1016/j.molimm.2014.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/27/2022]
Abstract
Fcα/μR (CD351) is an Fc receptor for both IgA and IgM, which is abundantly expressed in the small intestine. However, the role of Fcα/μR in the intestinal tissue is largely unknown. Here, we found that Fcα/μR is highly expressed on follicular dendritic cells (FDCs) in Peyer's patches (PP) in the small intestine. Fcα/μR-deficient mice on the (129 x C57BL/6) F1 background showed increased serum, but not fecal, IgA level in response to gut-oriented antigens. IgA(+) B cells were increased in PP, but not in the lamina propria, of Fcα/μR-deficient mice, which was attenuated after reduction of commensal microbiota by oral treatment with antibiotics. Analyses of bone marrow chimeric mice, in which either FDCs or blood cells or both lack the expression of Fcα/μR, suggested that FDCs, but not blood cells, were responsible for the increased serum IgA concentration in Fcα/μR-deficient mice. Moreover, Fcα/μR-deficient mice showed enhanced germinal center formation against commensal microbiota in PP. Thus, serum IgA production against gut-oriented antigens is negatively regulated by Fcα/μR on FDCs in the F1 mice.
Collapse
Affiliation(s)
- Naoki Kurita
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin-Ichiro Honda
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akira Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
74
|
|
75
|
Luo R, Liu W, Wang J, Chen Y, Sun C, Zhou L, Li Y, Deng L. Role of BAFF in pediatric patients with allergic rhinitis during sublingual immunotherapy. Eur J Pediatr 2014; 173:1033-40. [PMID: 24585100 DOI: 10.1007/s00431-014-2287-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/09/2014] [Accepted: 02/16/2014] [Indexed: 01/19/2023]
Abstract
UNLABELLED Sublingual immunotherapy (SLIT) is the only therapeutic option for allergic rhinitis (AR) that modifies the immunological process to an allergen, rather than treating symptoms simply. However, its regulatory mechanisms are largely unknown. B-cell-activating factor of the TNF family (BAFF) plays very important roles in the development, differentiation, and proliferation of B cells and T cells. The aim of this study was to identify the role of BAFF during SLIT in pediatric patients with AR. Seventy-two house dust mite (HDM)-sensitized pediatric patients with AR were enrolled in this study. Thirty-six pediatric patients received HDM allergen extract for SLIT and 36 pediatric patients received placebo. Serum and nasal aspirate of different time points during treatment was collected and used for enzyme-linked immunosorbent assay (ELISA) of BAFF and related cytokines, respectively. Peripheral blood mononuclear cells were collected and stimulated by HDM allergen with or without rhBAFF after 12 months of treatment. Our results showed that the expression of BAFF protein decreased during the SLIT treatment compared with that in the placebo group after 6 months of therapy, and this trend lasted for 12 months. The decreased BAFF expression was positively related to Th2 cytokines and increased IL-10 expression. BAFF was also related to local production of IgA. In vitro experiments showed that BAFF can promote Th2 cytokines and inhibit IL-10 expression by PBMCs. CONCLUSION During SLIT, BAFF expression was decreased and related to low Th2 cytokine expression and enhanced IL-10 expression. Besides, BAFF may contribute to local production of IgA. Our results suggested that BAFF may be an important biomarker during SLIT. Authors' summary. Sublingual immunotherapy (SLIT) is the only therapeutic option for allergic rhinitis (AR) that modifies the immunological process to an allergen, rather than simply treating symptoms. However, its regulatory mechanisms are largely unknown. B-cell-activating factor of the TNF family (BAFF) plays very important roles in the development, differentiation, and proliferation of B cells and T cells. Our results showed that during SLIT, BAFF expression was decreased and related to low Th2 cytokine expression and enhanced IL-10 expression. Besides, BAFF may contribute to local production of IgA. Our results suggested that BAFF may be an important biomarker during SLIT.
Collapse
Affiliation(s)
- Renzhong Luo
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, No. 9 Jinsui Road, Guang Zhou, 510623, China,
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Bornacelly A, Mercado D, Acevedo N, Caraballo L. The strength of the antibody response to the nematode Ascaris lumbricoides inversely correlates with levels of B-Cell Activating Factor (BAFF). BMC Immunol 2014; 15:22. [PMID: 24906685 PMCID: PMC4067067 DOI: 10.1186/1471-2172-15-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Background B-Cell Activating Factor (BAFF) is a cytokine regulating antibody production. Polymorphisms in the gene encoding BAFF were associated with the antibody response to Ascaris but not to mite allergens. In the present study we evaluated the relationship between BAFF and specific antibodies against Ascaris and mites in 448 controls and 448 asthmatics. Soluble BAFF was measured by ELISA and BAFF mRNA by qPCR. Surface expression of BAFF and its receptor (BAFF-R) was analyzed by flow cytometry. Results Individuals with specific IgE levels to Ascaris >75th percentile had lower levels of soluble BAFF; those with specific IgG levels to Ascaris >75th percentile had reduced BAFF mRNA. Total IgE and specific IgE to mites were not related to BAFF levels. There were no differences in soluble BAFF or mRNA levels between asthmatics and controls. There was an inverse relationship between the cell-surface expression of BAFF-R on CD19+ B cells and BAFF levels at the transcriptional and protein level. Conclusions These findings suggest that differences in BAFF levels are related to the strength of the antibody response to Ascaris.
Collapse
Affiliation(s)
| | | | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cra 5, #7-77, 13-0015 Cartagena, Colombia.
| |
Collapse
|
77
|
Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy 2014; 44:620-30. [DOI: 10.1111/cea.12296] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I. H. Heijink
- Department of Pathology and Medical Biology; Experimental Pulmonology and Inflammation Research; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- Department of Pulmonology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. C. Nawijn
- Department of Pathology and Medical Biology; Experimental Pulmonology and Inflammation Research; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T.-L. Hackett
- Centre for Heart Lung Innovation; St Paul's Hospital; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
78
|
Hallstrand TS, Hackett TL, Altemeier WA, Matute-Bello G, Hansbro PM, Knight DA. Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clin Immunol 2014; 151:1-15. [PMID: 24503171 DOI: 10.1016/j.clim.2013.12.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/04/2013] [Indexed: 11/23/2022]
Abstract
Recent genetic, structural and functional studies have identified the airway and lung epithelium as a key orchestrator of the immune response. Further, there is now strong evidence that epithelium dysfunction is involved in the development of inflammatory disorders of the lung. Here we review the characteristic immune responses that are orchestrated by the epithelium in response to diverse triggers such as pollutants, cigarette smoke, bacterial peptides, and viruses. We focus in part on the role of epithelium-derived interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), as well as CC family chemokines as critical regulators of the immune response. We cite examples of the function of the epithelium in host defense and the role of epithelium dysfunction in the development of inflammatory diseases.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.
| | - Tillie L Hackett
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Gustavo Matute-Bello
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
79
|
Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014; 14:141-53. [PMID: 24566914 DOI: 10.1038/nri3608] [Citation(s) in RCA: 1950] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The abundance of innate and adaptive immune cells that reside together with trillions of beneficial commensal microorganisms in the mammalian gastrointestinal tract requires barrier and regulatory mechanisms that conserve host-microbial interactions and tissue homeostasis. This homeostasis depends on the diverse functions of intestinal epithelial cells (IECs), which include the physical segregation of commensal bacteria and the integration of microbial signals. Hence, IECs are crucial mediators of intestinal homeostasis that enable the establishment of an immunological environment permissive to colonization by commensal bacteria. In this Review, we provide a comprehensive overview of how IECs maintain host-commensal microbial relationships and immune cell homeostasis in the intestine.
Collapse
Affiliation(s)
- Lance W Peterson
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania
| | - David Artis
- 1] Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania. [2] Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
80
|
Kikuchi Y, Kunitoh-Asari A, Hayakawa K, Imai S, Kasuya K, Abe K, Adachi Y, Fukudome SI, Takahashi Y, Hachimura S. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PLoS One 2014; 9:e86416. [PMID: 24466081 PMCID: PMC3899257 DOI: 10.1371/journal.pone.0086416] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 12/10/2013] [Indexed: 11/18/2022] Open
Abstract
The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer’s patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer’s patch dendritic cells, with this production promoting IgA+ B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection.
Collapse
Affiliation(s)
- Yosuke Kikuchi
- Research Center for Basic Science, Research and Development, Quality Assurance Division, Nisshin Seifun Group Inc., Fujimino-city, Saitama, Japan
| | - Ayami Kunitoh-Asari
- Research Center for Basic Science, Research and Development, Quality Assurance Division, Nisshin Seifun Group Inc., Fujimino-city, Saitama, Japan
| | - Katsuyuki Hayakawa
- Research Center for Basic Science, Research and Development, Quality Assurance Division, Nisshin Seifun Group Inc., Fujimino-city, Saitama, Japan
| | - Shinjiro Imai
- Research Center for Basic Science, Research and Development, Quality Assurance Division, Nisshin Seifun Group Inc., Fujimino-city, Saitama, Japan ; Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka-city, Shizuoka, Japan
| | - Kenji Kasuya
- Yeast Function Development Unit, Oriental Yeast Co., Ltd., Itabashi-ku, Tokyo Japan
| | - Kimio Abe
- Laboratory of Yeast and Fermentation Food Division, Oriental Yeast Co., Ltd., Itabashi-ku, Tokyo, Japan
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shin-Ichi Fukudome
- Research Center for Basic Science, Research and Development, Quality Assurance Division, Nisshin Seifun Group Inc., Fujimino-city, Saitama, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
81
|
Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA. Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 2014; 11:1139-55. [DOI: 10.1586/erv.12.81] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
82
|
Jan Treda C, Fukuhara T, Suzuki T, Nakamura A, Zaini J, Kikuchi T, Ebina M, Nukiwa T. Secretory leukocyte protease inhibitor modulates urethane-induced lung carcinogenesis. Carcinogenesis 2013; 35:896-904. [PMID: 24282288 DOI: 10.1093/carcin/bgt382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI), 11.7 kDa serine protease inhibitor, is produced primarily in the respiratory tract, but it is often elevated in lung, head/neck and ovarian cancers. SLPI expression in relation to cancer progression, metastasis and invasion has been studied extensively in non-small cell lung cancer. However, the role of SLPI during the early stages of carcinogenesis remains unknown. We hypothesized that SLPI is required from the initiation and promotion to the progression of lung carcinogenesis. A skin allograft model using SLPI-knockout (SLPI-KO) mice and short hairpin RNA-treated cells was used to demonstrate that SLPI expression in tumor cells is crucial for tumor formation. Moreover, lung tumorigenesis induced by urethane, a chemical lung carcinogen, was significantly suppressed in SLPI-KO mice in association with decreased nuclear factor-kappaB (NF-κB) activity. SLPI deficiency also resulted in decreased cell numbers and decreased production of inflammatory cytokines in bronchoalveolar lavage fluids. The suppression of NF-κB activation in SLPI-KO mice was associated with lower expression of NF-κB-related survival genes and DNA repair genes. Our findings demonstrate that SLPI plays an important role from the initial stages of lung carcinogenesis to the progression of lung cancer in an NF-κB-dependent manner.
Collapse
Affiliation(s)
- Cezary Jan Treda
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan and
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Mukherjee S, Biswas R, Biswas T. Alternative TLRs are stimulated by bacterial ligand to induce TLR2-unresponsive colon cell response. Cell Signal 2013; 25:1678-88. [DOI: 10.1016/j.cellsig.2013.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/09/2013] [Accepted: 04/21/2013] [Indexed: 02/04/2023]
|
84
|
Hu W, Pasare C. Location, location, location: tissue-specific regulation of immune responses. J Leukoc Biol 2013; 94:409-21. [PMID: 23825388 DOI: 10.1189/jlb.0413207] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Discovery of DCs and PRRs has contributed immensely to our understanding of induction of innate and adaptive immune responses. Activation of PRRs leads to secretion of inflammatory cytokines that regulate priming and differentiation of antigen-specific T and B lymphocytes. Pathogens enter the body via different routes, and although the same set of PRRs is likely to be activated, it is becoming clear that the route of immune challenge determines the nature of outcome of adaptive immunity. In addition to the signaling events initiated following innate-immune receptor activation, the cells of the immune system are influenced by the microenvironments in which they reside, and this has a direct impact on the resulting immune response. Specifically, immune responses could be influenced by specialized DCs, specific factors secreted by stromal cells, and also, by commensal microbiota present in certain organs. Following microbial detection, the complex interactions among DCs, stromal cells, and tissue-specific factors influence outcome of immune responses. In this review, we summarize recent findings on the phenotypic heterogeneity of innate and adaptive immune cells and how tissue-specific factors in the systemic and mucosal immune system influence the outcome of adaptive-immune responses.
Collapse
Affiliation(s)
- Wei Hu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
85
|
Do KH, Choi HJ, Kim J, Park SH, Kim KH, Moon Y. SOCS3 Regulates BAFF in Human Enterocytes under Ribosomal Stress. THE JOURNAL OF IMMUNOLOGY 2013; 190:6501-10. [DOI: 10.4049/jimmunol.1203004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
86
|
Deal EM, Lahl K, Narváez CF, Butcher EC, Greenberg HB. Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. J Clin Invest 2013; 123:2464-74. [PMID: 23635775 DOI: 10.1172/jci60945] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/26/2013] [Indexed: 12/22/2022] Open
Abstract
B cell-dependent immunity to rotavirus, an important intestinal pathogen, plays a significant role in viral clearance and protects against reinfection. Human in vitro and murine in vivo models of rotavirus infection were used to delineate the role of primary plasmacytoid DCs (pDCs) in initiating B cell responses. Human pDCs were necessary and sufficient for B cell activation induced by rotavirus. Type I IFN recognition by B cells was essential for rotavirus-mediated B cell activation in vitro and murine pDCs and IFN-α/β-mediated B cell activation after in vivo intestinal rotavirus infection. Furthermore, rotavirus-specific serum and mucosal antibody responses were defective in mice lacking functional pDCs at the time of infection. These data demonstrate that optimal B cell activation and virus-specific antibody secretion following mucosal infection were a direct result of pDC-derived type I IFN. Importantly, viral shedding significantly increased in pDC-deficient mice, suggesting that pDC-dependent antibody production influences viral clearance. Thus, mucosal pDCs critically influence the course of rotavirus infection through rotavirus recognition and subsequent IFN production and display powerful adjuvant properties to initiate and enhance humoral immunity.
Collapse
Affiliation(s)
- Emily M Deal
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5105, USA
| | | | | | | | | |
Collapse
|
87
|
Abstract
Neutrophils use opsonizing antibodies to enhance the clearance of intruding microbes. Recent studies indicate that splenic neutrophils also induce antibody production by providing helper signals to B cells lodged in the MZ of the spleen. Here, we discuss the B cell helper function of neutrophils in the context of growing evidence indicating that neutrophils function as sophisticated regulators of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Andrea Cerutti
- 1.Av. Dr. Aiguader 88, 08003 Barcelona, Spain. ; Twitter: http://www.imim.es/programesrecerca/inflamacio/en_bcellbiology.html or http://www.icrea.cat/Web/ScientificForm.aspx?key=452
| | | | | |
Collapse
|
88
|
Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 2013; 13:206-18. [PMID: 23435332 DOI: 10.1038/nri3391] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complex barriers separate immune-privileged tissues from the circulation. Here, we propose that cell entry to immune-privileged sites through barriers composed of tight junction-interconnected endothelium is associated with destructive inflammation, whereas border structures comprised of fenestrated vasculature enveloped by tightly regulated epithelium serve as active and selective immune-skewing gates in the steady state. Based on emerging knowledge of the central nervous system and information from other immune-privileged sites, we propose that these sites are endowed either with absolute endothelial-based barriers and epithelial gates that enable selective and educative transfer of trafficking leukocytes or with selective epithelial gates only.
Collapse
Affiliation(s)
- Ravid Shechter
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
89
|
Host-microbe interactions: the difficult yet peaceful coexistence of the microbiota and the intestinal mucosa. Br J Nutr 2013; 109 Suppl 2:S12-20. [PMID: 23360876 DOI: 10.1017/s0007114512004035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immune system has evolved to live in a collaborative relationship with the microbiota, while still serving its seminal function to fight off invasive pathogenic bacteria. The mechanisms that rule the interactions between the intestinal microbiota and the intestinal immune system are the focus of intense research. Here, we describe how the innate immunity is, to a great extent, in charge of the control of the microbiota in the intestine and relies on non-specific receptors called pathogen-recognition receptors. While the microbiota has a well-defined effect on the host immune homoeostasis, it has become clear that the opposite is also true, i.e., the mucosal immune system has the capacity to shape the microbial population. The mechanisms that rule the reciprocal regulation between host immunity and commensal bacteria (including specific bacteria) are currently being elucidated and will be described here. A better knowledge of how the host and bacteria interact and how the intestinal microbiota and the immune system are co-regulated will provide the basis for a better understanding of intestinal and systemic immunopathologies and for the development of new therapeutic approaches.
Collapse
|
90
|
Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 2013; 13:118-32. [PMID: 23348416 DOI: 10.1038/nri3383] [Citation(s) in RCA: 528] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protective responses to microorganisms involve the nonspecific but rapid defence mechanisms of the innate immune system, followed by the specific but slow defence mechanisms of the adaptive immune system. Located as sentinels at the interface between the circulation and lymphoid tissue, splenic marginal zone B cells rapidly respond to blood-borne antigens by adopting 'crossover' defensive strategies that blur the conventional boundaries of innate and adaptive immunity. This Review discusses how marginal zone B cells function as innate-like lymphocytes that mount rapid antibody responses to both T cell-dependent and T cell-independent antigens. These responses require the integration of activation signals from germline-encoded and somatically recombined receptors for microorganisms with helper signals from effector cells of the innate and adaptive immune systems.
Collapse
|
91
|
Chorny A, Puga I, Cerutti A. Regulation of frontline antibody responses by innate immune signals. Immunol Res 2013; 54:4-13. [PMID: 22477522 DOI: 10.1007/s12026-012-8307-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mature B cells generate protective immunity by undergoing immunoglobulin (Ig) class switching and somatic hypermutation, two Ig gene-diversifying processes that usually require cognate interactions with T cells that express CD40 ligand. This T-cell-dependent pathway provides immunological memory but is relatively slow to occur. Thus, it must be integrated with a faster, T-cell-independent pathway for B-cell activation through CD40 ligand-like molecules that are released by innate immune cells in response to microbial products. Here, we discuss recent advances in our understanding of the interplay between the innate immune system and B cells, particularly "frontline" B cells located in the marginal zone of the spleen and in the intestine.
Collapse
Affiliation(s)
- Alejo Chorny
- Department of Medicine, The Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
92
|
Thang CL, Boye JI, Zhao X. Low doses of allergen and probiotic supplementation separately or in combination alleviate allergic reactions to cow β-lactoglobulin in mice. J Nutr 2013; 143:136-41. [PMID: 23236021 DOI: 10.3945/jn.112.169466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Probiotic supplementation and oral tolerance induction can reduce certain types of food allergy. The objectives of this study were to investigate the allergy-reducing effects of probiotics (VSL#3) and/or oral tolerance induction via low doses of an allergen supplementation in β-lactoglobulin (BLG)-sensitized mice. Three-week-old, male BALB/c mice were divided into 6 groups (n = 8/group): sham-sensitized negative control (CTL-), BLG-sensitized positive control (CTL+), oral tolerance-induced and BLG-sensitized group (OT), probiotic-supplemented OT group (OTP), probiotic-supplemented CTL- (PRO), and probiotic-supplemented and BLG-sensitized (PROC) groups. Mice were i.p. sensitized with BLG and alum and then orally challenged with BLG. Immunological responses were assessed by monitoring hypersensitivity scores and measuring levels of BLG-specific serum Igs, total serum IgE and fecal IgA, and cytokines from serum and spleen lysates. Hypersensitivity scores were significantly lower in the PROC (2.00 ± 0.53), OT (0.75 ± 0.46), and OTP mice (1.00 ± 0.53) than in the CTL+ mice (2.63 ± 0.52) as were BLG-specific serum IgE concentrations (34.3 ± 10, 0.442 ± 0.36, 3.54 ± 3.5, and 78.5 ± 8.7 μg/L for PROC, OT, OTP, and CTL+, respectively). Our results suggest that supplementation of VSL#3 suppressed the allergic reaction mainly through increased intestinal secretary IgA (sIgA) in PROC mice, and oral tolerance offered allergen-specific protective effects to BLG-induced allergy, probably through CD4+CD25+ regulatory T cell-mediated active suppression. In OTP mice, probiotics did not induce a further reduction of hypersensitivity score compared with OT mice but may provide additional protection to unforeseen nonspecific challenges through increased intestinal sIgA.
Collapse
Affiliation(s)
- Cin L Thang
- Department of Animal Science, Macdonald Campus, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | | | |
Collapse
|
93
|
Greenwell-Wild T, Moutsopoulos NM, Gliozzi M, Kapsogeorgou E, Rangel Z, Munson PJ, Moutsopoulos HM, Wahl SM. Chitinases in the salivary glands and circulation of patients with Sjögren's syndrome: macrophage harbingers of disease severity. ACTA ACUST UNITED AC 2013; 63:3103-15. [PMID: 21618203 DOI: 10.1002/art.30465] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Sjögren's syndrome (SS) is a chronic autoimmune disease of unknown etiology that targets salivary and lacrimal glands and may be accompanied by multiorgan systemic manifestations. To further the understanding of immunopathology associated with SS and identify potential therapeutic targets, we undertook the present study comparing the gene expression profiles of salivary glands with severe inflammation versus those of salivary glands with mild or no disease. METHODS Using microarray profiling of salivary gland tissue from patients with SS and control subjects, we identified target genes, which were further characterized in tissue, serum, and cultured cell populations by real-time polymerase chain reaction and protein analysis. RESULTS Among the most highly expressed SS genes were those associated with myeloid cells, including members of the mammalian chitinase family, which had not previously been shown to be associated with exocrinopathies. Both chitinase 3-like protein 1 and chitinase 1, highly conserved chitinase-like glycoproteins (one with enzymatic activity and one lacking enzymatic activity), were evident at the transcriptome level and were detected within inflamed tissue. Chitinases were expressed during monocyte-to-macrophage differentiation and their levels augmented by stimulation with cytokines, including interferon-α (IFNα). CONCLUSION Because elevated expression of these and other macrophage-derived molecules corresponded with more severe SS, the present observations suggest that macrophages have potential immunopathologic involvement in SS and that the tissue macrophage transcription profile reflects multiple genes induced by IFNα.
Collapse
Affiliation(s)
- Teresa Greenwell-Wild
- National Institute of Dental and Craniofacial Research, Oral Infection and Immunity Branch, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLoS One 2012; 7:e49868. [PMID: 23239972 PMCID: PMC3519815 DOI: 10.1371/journal.pone.0049868] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022] Open
Abstract
Colon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This hyperproliferation results in epithelial hyperplasia which increases the risk of colon cancer. In humans, a high red-meat diet increases Bacteroides spp in feces. Therefore, we simultaneously investigated the effects of dietary heme on colonic microbiota and on the host mucosa of mice. Whole genome microarrays showed that heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. Using 16S rRNA phylogenetic microarrays, we investigated whether bacteria play a role in this changed signaling. Heme increased Bacteroidetes and decreased Firmicutes in colonic contents. This shift was most likely caused by a selective susceptibility of Gram-positive bacteria to heme cytotoxic fecal water, which is not observed for Gram-negative bacteria, allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria most probably increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There was no functional change in the sensing of the bacteria by the mucosa, as changes in inflammation pathways and Toll- like receptor signaling were not detected. This unaltered host-microbe cross-talk indicates that the changes in microbiota did not play a causal role in the observed hyperproliferation and hyperplasia.
Collapse
|
95
|
Lin MC, Hui CF, Chen JY, Wu JL. The antimicrobial peptide, shrimp anti-lipopolysaccharide factor (SALF), inhibits proinflammatory cytokine expressions through the MAPK and NF-κB pathways in Trichomonas vaginalis adherent to HeLa cells. Peptides 2012; 38:197-207. [PMID: 23088922 DOI: 10.1016/j.peptides.2012.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 10/13/2012] [Accepted: 10/13/2012] [Indexed: 12/22/2022]
Abstract
Trichomonas vaginalis is a parasitic protozoan that causes sexually transmitted infections (STIs) worldwide. The infection is dangerous and easily spreads within a community. Also, some cases of drug resistance were reported. Previously, we reported that the shrimp anti-lipopolysaccharide factor (SALF), an antimicrobial peptide of 24 amino acids, modulates inflammatory responses and inhibits T. vaginalis growth. To date, there is no report on the mechanism of SALF's actions in T. vaginalis' adherence to HeLa cells. In this research using an ELISA, we found that the SALF downregulated the release of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-6, IL-8, and monocyte chemoattractant protein (MCP)-1) secreted by T. vaginalis which was adhering to HeLa cells. We also performed real-time PCR experiments to determine the roles of the SALF in the expressions of several proinflammatory genes. Through a Western blot analysis, we determined that SALF treatment inhibited T. vaginalis-treated HeLa cells through the p38 and NF-κB pathways. Furthermore, we used different inhibitors to confirm the pathway by ELISA and Western blotting. Taken together, it is apparent that the SALF suppresses T. vaginalis-induced secretion of proinflammatory cytokines by HeLa cells by acting through the p38 and NF-κB pathways.
Collapse
Affiliation(s)
- Ming-Ching Lin
- Department of Biochemical Science and Technology, National Taiwan University, 1 Roosevelt Road, Sec 4, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
96
|
Abstract
Over the past decade, a growing recognition of the importance of neutralizing antibodies in host defense combined with the success of B-cell depletion therapies in treating auto-immune disorders has led to an increased focus on better understanding the pathways underpinning B-cell antibody production. In general, B cells require cognate interaction with T helper cells in the germinal center of lymphoid follicles to generate protective antibodies. However, recent evidence shows that B cells receive additional help from invariant natural killer T cells, dendritic cells, and various granulocytes, including neutrophils, eosinophils, and basophils. These innate immune cells enhance T-cell-dependent antibody responses by delivering B-cell helper signals both in the germinal center and at postgerminal center lymphoid sites such as the bone marrow. In addition to enhancing and complementing the B-cell helper activity of canonical T cells, invariant natural killer T cells, dendritic cells, and granulocytes can deliver T cell-independent B-cell helper signals at the mucosal interface and in the marginal zone of the spleen to initiate rapid innate-like antibody responses. Here, we discuss recent advances in the role of adaptive and innate B-cell helper signals in antibody diversification and production.
Collapse
Affiliation(s)
- Andrea Cerutti
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona Biomedical Research Park, Barcelona, Spain.
| | | | | |
Collapse
|
97
|
Abstract
The intestinal mucosa contains the largest population of antibody-secreting plasma cells in the body, and in humans several grams of secretory immunoglobulin A (SIgA) are released into the intestine each day. In the gut lumen, SIgA serves as a first-line barrier that protects the epithelium from pathogens and toxins. Recently, next-generation sequencing has revolutionized our understanding of the nature of the intestinal microbiota and has also shed new light on the important roles of SIgA in the regulation of host-commensal homeostasis. Here, I discuss pathways of IgA induction in the context of SIgA specificity and function.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Strae 1, 30625 Hannover, Germany.
| |
Collapse
|
98
|
Bombardieri M, Barone F, Lucchesi D, Nayar S, van den Berg WB, Proctor G, Buckley CD, Pitzalis C. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3767-76. [PMID: 22942425 PMCID: PMC3448973 DOI: 10.4049/jimmunol.1201216] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Salivary glands in patients with Sjögren's syndrome (SS) develop ectopic lymphoid structures (ELS) characterized by B/T cell compartmentalization, the formation of high endothelial venules, follicular dendritic cell networks, functional B cell activation with expression of activation-induced cytidine deaminase, as well as local differentiation of autoreactive plasma cells. The mechanisms that trigger ELS formation, autoimmunity, and exocrine dysfunction in SS are largely unknown. In this article, we present a novel model of inducible ectopic lymphoid tissue formation, breach of humoral self-tolerance, and salivary hypofunction after delivery of a replication-deficient adenovirus-5 in submandibular glands of C57BL/6 mice through retrograde excretory duct cannulation. In this model, inflammation rapidly and consistently evolves from diffuse infiltration toward the development of SS-like periductal lymphoid aggregates within 2 wk from AdV delivery. These infiltrates progressively acquire ELS features and support functional GL7(+)/activation-induced cytidine deaminase(+) germinal centers. Formation of ELS is preceded by ectopic expression of lymphoid chemokines CXCL13, CCL19, and lymphotoxin-β, and is associated with development of anti-nuclear Abs in up to 75% of mice. Finally, reduction in salivary flow was observed over 3 wk post-AdV infection, consistent with exocrine gland dysfunction as a consequence of the inflammatory response. This novel model has the potential to unravel the cellular and molecular mechanisms that regulate ELS formation and their role in exocrine dysfunction and autoimmunity in SS.
Collapse
Affiliation(s)
- Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, University of Birmingham, Birmingham, United Kingdom
| | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, University of Birmingham, Birmingham, United Kingdom
| | - Wim B van den Berg
- Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gordon Proctor
- Oral Medicine and Pathology, King’s College, London, United Kingdom
| | | | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
99
|
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine expressed mainly by epithelial cells. Current studies provide compelling evidence that TSLP is capable of activating dendritic cells to promote T helper (Th) 2 immune responses. TSLP has also been shown to directly promote Th2 differentiation of naïve CD4(+) T cell and activate natural killer T cells, basophils and other innate immune cells at the initial stage of inflammation. In addition, TSLP affects B cell maturation and activation and can also influence regulatory T (Treg) cell differentiation and development. TSLP-induced Th2 responses are associated with the pathogenesis of allergic inflammatory diseases, including atopic dermatitis, asthma, and rhinitis. Based on recent findings in humans and mouse models, TSLP might also be involved in the pathogenesis of inflammatory bowel disease and progression of cancer. In this review, we will summarize our current understanding of the biology of TSLP and highlight the important issues for future investigations.
Collapse
Affiliation(s)
- Yanlu Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
100
|
Activation of B cells by non-canonical helper signals. EMBO Rep 2012; 13:798-810. [PMID: 22868664 DOI: 10.1038/embor.2012.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/12/2012] [Indexed: 12/21/2022] Open
Abstract
Cognate interaction between T and B lymphocytes of the adaptive immune system is essential for the production of high-affinity antibodies against microbes, and for the establishment of long-term immunological memory. Growing evidence shows that--in addition to presenting antigens to T and B cells--macrophages, dendritic cells and other cells of the innate immune system provide activating signals to B cells, as well as survival signals to antibody-secreting plasma cells. Here, we discuss how these innate immune cells contribute to the induction of highly diversified and temporally sustained antibody responses, both systemically and at mucosal sites of antigen entry.
Collapse
|