51
|
Optical Coherence Tomography Angiography and Attenuation Imaging for Label-Free Observation of Functional Changes in the Intestine after Sympathectomy: A Pilot Study. PHOTONICS 2022. [DOI: 10.3390/photonics9050304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We present in this study optical coherence tomography angiography (OCTA) and OCT attenuation imaging (OCTAI) for in vivo non-destructive visualization of intramural blood and lymphatic vessels of the intestine wall. Rabbit small intestine in the norm and after thoracolumbar sympathectomy served as the object of the intraoperative study. Compared to OCTA real-time imaging, OCTAI takes several minutes and can be termed as “nearly real time”. OCTAI signal processing was modified to take into account the signal-to-noise ratio and the final thickness of the intestine wall. The results showed that, after sympathectomy, changes in functioning of intramural blood and lymphatic vessels were observed with a high statistical significance. The occurrence of trauma-induced constriction of the blood and lymphatic vessels led to an especially pronounced decrease in the length of small-caliber (<30 µm) blood vessels (p < 10−5), as well as in the volumetric density of lymphatic vessels (on average by ~50%) compared to their initial state. Remarkably, OCTA/OCTAI modalities provide the unique ability for “nearly-instant detection” of changes in functional status of the tissues, long before they become visible on histology. The proposed approach can be used in further experiments to clarify the mechanisms of changes in intestinal blood and lymph flows in response to trauma of the nervous system. Furthermore, potentially it can be used intraoperatively in patients requiring express diagnosis of the state of intramural blood and lymph circulation.
Collapse
|
52
|
Yang C, Zhu J, Zhu L, Fan F, Ma Z, Zhang F. Rapid estimations of intensity standard deviations for optical coherence tomography angiography. JOURNAL OF BIOPHOTONICS 2022; 15:e202100340. [PMID: 34951745 DOI: 10.1002/jbio.202100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Optical coherence tomography angiography (OCTA) can map microvascular networks and quantify blood flow velocities with high resolution by calculating intensity standard deviations of time-series signals. However, statistical calculations of the standard deviations need much processing time and reduce the analysis efficiency. In this study, we proposed three optimized OCTA algorithms incorporating rapid estimations of the intensity standard deviations, including the range algorithm, the mean absolute error algorithm and the maximum absolute error algorithm. The abilities of the optimized algorithms to quantify the flow velocities were validated by a flow phantom. After a rat cerebral cortex was imaged, the optimized OCTA algorithms were compared with the conventional relative standard deviation algorithm in the metrics of imaging quality and processing time. The results show that the optimized algorithms incorporating rapid estimations of the intensity standard deviations have faster processing speeds with equivalent image quality.
Collapse
Affiliation(s)
- Chaojiang Yang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Jiang Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Zongqing Ma
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Zhang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
53
|
Gong X, Jin T, Wang Y, Zhang R, Qi W, Xi L. Photoacoustic microscopy visualizes glioma-induced disruptions of cortical microvascular structure and function. J Neural Eng 2022; 19. [PMID: 35316796 DOI: 10.1088/1741-2552/ac5fcc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Glioma growth may cause pervasive disruptions of brain vascular structure and function. Revealing both structural and functional alterations at a fine spatial scale is challenging for existing imaging techniques, which could confound the understanding of the basic mechanisms of brain diseases. In this study, we apply photoacoustic microscopy with a high spatial-temporal resolution and a wide field of view (FOV) to investigate the glioma-induced alterations of cortical vascular morphology, hemodynamic response, as well as functional connectivity at resting- and stimulated- states. We find that glioma promotes the growth of microvessels and leads to the increase of vascular proportion in the cerebral cortex by deriving structural parameters. The glioma also causes the loss of response in the ipsilateral hemisphere and abnormal response in the contralateral hemisphere, and further induces brain-wide alterations of functional connectivity in resting and stimulated states. The observed results show the foundation of employing photoacoustic microscopy as a potential technique in revealing the underlying mechanisms of brain diseases.
Collapse
Affiliation(s)
- Xinrui Gong
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, 518055, CHINA
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Ruoxi Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
54
|
Harper DJ, Vakoc BJ. Relationship between axial resolution and signal-to-noise ratio in optical coherence tomography. OPTICS LETTERS 2022; 47:1517-1520. [PMID: 35290353 PMCID: PMC8958905 DOI: 10.1364/ol.449421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
In optical coherence tomography (OCT), axial resolution and signal-to-noise ratio (SNR) are typically viewed as uncoupled parameters. We show that this is true only for mirror-like surfaces and that in diffuse scattering samples such as biological tissues there is an inherent coupling between axial resolution and measurement SNR. We explain the origin of this coupling and demonstrate that it can be used to achieve increased imaging penetration depth at the expense of resolution. Finally, we argue that this coupling should be considered during OCT system design processes that seek to balance the competing needs of resolution, sensitivity, and system/source complexity.
Collapse
Affiliation(s)
- Danielle J. Harper
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
55
|
Cardinell JL, Ramjist JM, Chen C, Shi W, Nguyen NQ, Yeretsian T, Choi M, Chen D, Clark DS, Curtis A, Kim H, Faughnan ME, Yang VXD. Quantification metrics for telangiectasia using optical coherence tomography. Sci Rep 2022; 12:1805. [PMID: 35110554 PMCID: PMC8810896 DOI: 10.1038/s41598-022-05272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder that causes vascular malformations throughout the body. The most prevalent and accessible of these lesions are found throughout the skin and mucosa, and often rupture causing bleeding and anemia. A recent increase in potential HHT treatments have created a demand for quantitative metrics that can objectively measure the efficacy of new and developing treatments. We employ optical coherence tomography (OCT)—a high resolution, non-invasive imaging modality in a novel pipeline to image and quantitatively characterize dermal HHT lesion behavior over time or throughout the course of treatment. This study is aimed at detecting detailed morphological changes of dermal HHT lesions to understand the underlying dynamic processes of the disease. We present refined metrics tailored for HHT, developed from a pilot study using 3 HHT patients and 6 lesions over the course of multiple imaging dates, totalling to 26 lesion images. Preliminary results from these lesions are presented in this paper alongside representative OCT images. This study provides a new objective method to analyse and understand HHT lesions using a minimally invasive, accessible, cost-effective, and efficient imaging modality with quantitative metrics describing morphology and blood flow.
Collapse
Affiliation(s)
- Jillian L Cardinell
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.
| | - Joel M Ramjist
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
| | - Chaoliang Chen
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Weisong Shi
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Nhu Q Nguyen
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
| | - Tiffany Yeretsian
- Physical Sciences Platform, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Matthew Choi
- Physical Sciences Platform, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David Chen
- Physical Sciences Platform, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Dewi S Clark
- Toronto HHT Centre, Division of Respirology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Anne Curtis
- Division of Dermatology, University of Toronto, Toronto, ON, Canada
| | - Helen Kim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Marie E Faughnan
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Victor X D Yang
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.,Department of Surgery, Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
56
|
OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives. Diagnostics (Basel) 2022; 12:diagnostics12020335. [PMID: 35204427 PMCID: PMC8871129 DOI: 10.3390/diagnostics12020335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Optical coherence tomography (OCT) has been recently suggested as a promising method to obtain in vivo and real-time high-resolution images of tissue structure in brain tumor surgery. This review focuses on the basics of OCT imaging, types of OCT images and currently suggested OCT scanner devices and the results of their application in neurosurgery. OCT can assist in achieving intraoperative precision identification of tumor infiltration within surrounding brain parenchyma by using qualitative or quantitative OCT image analysis of scanned tissue. OCT is able to identify tumorous tissue and blood vessels detection during stereotactic biopsy procedures. The combination of OCT with traditional imaging such as MRI, ultrasound and 5-ALA fluorescence has the potential to increase the safety and accuracy of the resection. OCT can improve the extent of resection by offering the direct visualization of tumor with cellular resolution when using microscopic OCT contact probes. The theranostic implementation of OCT as a part of intelligent optical diagnosis and automated lesion localization and ablation could achieve high precision, automation and intelligence in brain tumor surgery. We present this review for the increase of knowledge and formation of critical opinion in the field of OCT implementation in brain tumor surgery.
Collapse
|
57
|
Bouma B, de Boer J, Huang D, Jang I, Yonetsu T, Leggett C, Leitgeb R, Sampson D, Suter M, Vakoc B, Villiger M, Wojtkowski M. Optical coherence tomography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:79. [PMID: 36751306 PMCID: PMC9901537 DOI: 10.1038/s43586-022-00162-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Optical coherence tomography (OCT) is a non-contact method for imaging the topological and internal microstructure of samples in three dimensions. OCT can be configured as a conventional microscope, as an ophthalmic scanner, or using endoscopes and small diameter catheters for accessing internal biological organs. In this Primer, we describe the principles underpinning the different instrument configurations that are tailored to distinct imaging applications and explain the origin of signal, based on light scattering and propagation. Although OCT has been used for imaging inanimate objects, we focus our discussion on biological and medical imaging. We examine the signal processing methods and algorithms that make OCT exquisitely sensitive to reflections as weak as just a few photons and that reveal functional information in addition to structure. Image processing, display and interpretation, which are all critical for effective biomedical imaging, are discussed in the context of specific applications. Finally, we consider image artifacts and limitations that commonly arise and reflect on future advances and opportunities.
Collapse
Affiliation(s)
- B.E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Institute for Medical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author:
| | - J.F. de Boer
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D. Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - I.K. Jang
- Harvard Medical School, Boston, MA, USA,Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - T. Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - C.L. Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - R. Leitgeb
- Institute of Medical Physics, University of Vienna, Wien, Austria
| | - D.D. Sampson
- School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - M. Suter
- Harvard Medical School, Boston, MA, USA,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - B. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Wojtkowski
- Institute of Physical Chemistry and International Center for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
58
|
Lai PY, Shih TY, Chang YH, Chou YS, Wu TH, Su YY, Chang CH, Kuo WC. In Vivo Longitudinal Tracking of Lymphangiogenesis and Angiogenesis in Cutaneous Melanoma Mouse Model Using Multifunctional Optical Coherence Tomography. JID INNOVATIONS 2021; 1:100010. [PMID: 34909714 PMCID: PMC8659800 DOI: 10.1016/j.xjidi.2021.100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
Melanoma is a high-risk skin cancer because it tends to metastasize early and ultimately leads to death. In this study, we introduced a noninvasive multifunctional optical coherence tomography (MFOCT) for the early detection of premetastatic pathogenesis in cutaneous melanoma by label-free imaging of microstructures (i.e., providing the thickness and the scattering information) and microcirculation (i.e., providing depth-resolved angiography and lymphangiography). Using MFOCT-based approaches, we presented an in vivo longitudinal observation of the tumor microenvironment in BrafV600E/V600E;Pten−/− mice with inducible melanoma monitored for 42 days. Quantitative analysis of MFOCT images identified an increased number of lymphatic and vascular vessels during tumor progression and faster lymphangiogenesis (beginning on day 21) than angiogenesis (beginning on day 28) in the melanoma microenvironment. We further observed lymphatic vessel enlargement from the first week of melanoma development, implying tumor cells interacting with the vessels and increased likelihood of metastasis. MFOCT identified cutaneous melanoma‒associated angiogenesis and lymphangiogenesis before the possible visual perception of the tumor (≥42 days) and before metastasis could be diagnosed using micropositron emission tomography (35 days). Thus, the proposed quantitative analysis using MFOCT has the potential for early detection of cutaneous melanoma progression or prediction of metastatic melanoma in a mouse model. However, retrospective and extensive experiments still need to be performed in the future to confirm the value of MFOCT in clinical application.
Collapse
Affiliation(s)
- Pei-Yu Lai
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Tai-Yu Shih
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Huan Chang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Shuan Chou
- Skin Institute, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Hua Wu
- Skin Institute, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Yu-Ya Su
- Skin Institute, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hsing Chang
- Skin Institute, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Chuan Kuo
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
59
|
Wu M, Liu S, Leartprapun N, Adie S. Investigation of multiple scattering in space and spatial-frequency domains: with application to the analysis of aberration-diverse optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7478-7499. [PMID: 35003847 PMCID: PMC8713691 DOI: 10.1364/boe.439395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/12/2023]
Abstract
Optical microscopy suffers from multiple scattering (MS), which limits the optical imaging depth into scattering media. We previously demonstrated aberration-diverse optical coherence tomography (AD-OCT) for MS suppression, based on the principle that for datasets acquired with different aberration states of the imaging beam, MS backgrounds become decorrelated while single scattering (SS) signals remain correlated, so that a simple coherent average can be used to enhance the SS signal over the MS background. Here, we propose a space/spatial-frequency domain analysis framework for the investigation of MS in OCT, and apply the framework to compare AD-OCT (using astigmatic beams) to standard Gaussian-beam OCT via experiments in scattering tissue phantoms. Utilizing this framework, we found that increasing the astigmatic magnitude produced a large drop in both MS background and SS signal, but the decay experienced by the MS background was larger than the SS signal. Accounting for the decay in both SS signal and MS background, the overall signal-to-background ratio (SBR) of AD-OCT was similar to the Gaussian control after about 10 coherent averages, when deeper line foci was positioned at the plane-of-interest and the line foci spacing was smaller than or equal to 80 µm. For an even larger line foci spacing of 160 µm, AD-OCT resulted in a lower SBR than the Gaussian-beam control. This work provides an analysis framework to gain deeper levels of understanding and insights for the future study of MS and MS suppression in both the space and spatial-frequency domains.
Collapse
Affiliation(s)
- Meiqi Wu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyang Liu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nichaluk Leartprapun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Steven Adie
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
60
|
Jones D, Wang Z, Chen IX, Zhang S, Banerji R, Lei PJ, Zhou H, Xiao V, Kwong C, van Wijnbergen JWM, Pereira ER, Vakoc BJ, Huang P, Nia HT, Padera TP. Solid stress impairs lymphocyte infiltration into lymph-node metastases. Nat Biomed Eng 2021; 5:1426-1436. [PMID: 34282290 PMCID: PMC8678215 DOI: 10.1038/s41551-021-00766-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Strong and durable anticancer immune responses are associated with the generation of activated cancer-specific T cells in the draining lymph nodes. However, cancer cells can colonize lymph nodes and drive tumour progression. Here, we show that lymphocytes fail to penetrate metastatic lesions in lymph nodes. In tissue from patients with breast, colon, and head and neck cancers, as well as in mice with spontaneously developing breast-cancer lymph-node metastases, we found that lymphocyte exclusion from nodal lesions is associated with the presence of solid stress caused by lesion growth, that solid stress induces reductions in the number of functional high endothelial venules in the nodes, and that relieving solid stress in the mice increased the presence of lymphocytes in lymph-node lesions by about 15-fold. Solid-stress-mediated impairment of lymphocyte infiltration into lymph-node metastases suggests a therapeutic route for overcoming T-cell exclusion during immunotherapy.
Collapse
Affiliation(s)
- Dennis Jones
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Zixiong Wang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ivy X Chen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hengbo Zhou
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Victoria Xiao
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Cecilia Kwong
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jan Willem M van Wijnbergen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin J Vakoc
- Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
61
|
Leartprapun N, Adie SG. Resolution-enhanced OCT and expanded framework of information capacity and resolution in coherent imaging. Sci Rep 2021; 11:20541. [PMID: 34654877 PMCID: PMC8521598 DOI: 10.1038/s41598-021-99889-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Spatial resolution in conventional optical microscopy has traditionally been treated as a fixed parameter of the optical system. Here, we present an approach to enhance transverse resolution in beam-scanned optical coherence tomography (OCT) beyond its aberration-free resolution limit, without any modification to the optical system. Based on the theorem of invariance of information capacity, resolution-enhanced (RE)-OCT navigates the exchange of information between resolution and signal-to-noise ratio (SNR) by exploiting efficient noise suppression via coherent averaging and a simple computational bandwidth expansion procedure. We demonstrate a resolution enhancement of 1.5 × relative to the aberration-free limit while maintaining comparable SNR in silicone phantom. We show that RE-OCT can significantly enhance the visualization of fine microstructural features in collagen gel and ex vivo mouse brain. Beyond RE-OCT, our analysis in the spatial-frequency domain leads to an expanded framework of information capacity and resolution in coherent imaging that contributes new implications to the theory of coherent imaging. RE-OCT can be readily implemented on most OCT systems worldwide, immediately unlocking information that is beyond their current imaging capabilities, and so has the potential for widespread impact in the numerous areas in which OCT is utilized, including the basic sciences and translational medicine.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Steven G Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
62
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
63
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
64
|
Andleeb F, Katta N, Gruslova A, Muralidharan B, Estrada A, McElroy AB, Ullah H, Brenner AJ, Milner TE. Differentiation of Brain Tumor Microvasculature From Normal Vessels Using Optical Coherence Angiography. Lasers Surg Med 2021; 53:1386-1394. [PMID: 34130353 DOI: 10.1002/lsm.23446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Despite rapid advances and discoveries in medical imaging, monitoring therapeutic efficacy for malignant gliomas and monitoring tumor vasculature remains problematic. The purpose of this study is to utilize optical coherence angiography for vasculature characterization inside and surrounding brain tumors in a murine xenograft brain tumor model. Features included in our analysis include fractional blood volume, vessel tortuosity, diameter, orientation, and directionality. STUDY DESIGN/MATERIALS AND METHODS In this study, five tumorous mice models at 4 weeks of age were imaged. Human glioblastoma cells were injected into the brain and allowed to grow for 4 weeks and then imaged using optical coherence tomography. RESULTS Results suggest that blood vessels outside the tumor contain a greater fractional blood volume as compared with vessels inside the tumor. Vessels inside the tumor are more tortuous as compared with those outside the tumor. Results indicate that vessels near the tumor margin are directed inward towards the tumor while normal vessels show a more random orientation. CONCLUSION Quantification of vascular microenvironments in brain gliomas can provide functional vascular parameters to aid various diagnostic and therapeutic studies. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Farah Andleeb
- Department of Biomedical Engineering, The University of Texas Austin, Austin, Texas, 78712, USA.,Biophotonics Research Lab, Institute of Physics, The Islamia University, Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan.,Department of Physics, Government Sadiq College Women University Bahawalpur, Bahwalpur, Punjab, 63100, Pakistan
| | - Nitesh Katta
- Department of Biomedical Engineering, The University of Texas Austin, Austin, Texas, 78712, USA
| | - Aleksandra Gruslova
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
| | - Bharadwaj Muralidharan
- Department of Biomedical Engineering, The University of Texas Austin, Austin, Texas, 78712, USA
| | - Arnold Estrada
- Department of Biomedical Engineering, The University of Texas Austin, Austin, Texas, 78712, USA
| | - Austin B McElroy
- Department of Biomedical Engineering, The University of Texas Austin, Austin, Texas, 78712, USA
| | - Hafeez Ullah
- Biophotonics Research Lab, Institute of Physics, The Islamia University, Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Andrew J Brenner
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
| | - Thomas E Milner
- Department of Biomedical Engineering, The University of Texas Austin, Austin, Texas, 78712, USA
| |
Collapse
|
65
|
Yan F, Gunay G, Valerio TI, Wang C, Wilson JA, Haddad MS, Watson M, Connell MO, Davidson N, Fung KM, Acar H, Tang Q. Characterization and quantification of necrotic tissues and morphology in multicellular ovarian cancer tumor spheroids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:3352-3371. [PMID: 34221665 PMCID: PMC8221959 DOI: 10.1364/boe.425512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 05/02/2023]
Abstract
The three-dimensional (3D) tumor spheroid model is a critical tool for high-throughput ovarian cancer research and anticancer drug development in vitro. However, the 3D structure prevents high-resolution imaging of the inner side of the spheroids. We aim to visualize and characterize 3D morphological and physiological information of the contact multicellular ovarian tumor spheroids growing over time. We intend to further evaluate the distinctive evolutions of the tumor spheroid and necrotic tissue volumes in different cell numbers and determine the most appropriate mathematical model for fitting the growth of tumor spheroids and necrotic tissues. A label-free and noninvasive swept-source optical coherence tomography (SS-OCT) imaging platform was applied to obtain two-dimensional (2D) and 3D morphologies of ovarian tumor spheroids over 18 days. Ovarian tumor spheroids of two different initial cell numbers (5,000- and 50,000- cells) were cultured and imaged (each day) over the time of growth in 18 days. Four mathematical models (Exponential-Linear, Gompertz, logistic, and Boltzmann) were employed to describe the growth kinetics of the tumor spheroids volume and necrotic tissues. Ovarian tumor spheroids have different growth curves with different initial cell numbers and their growths contain different stages with various growth rates over 18 days. The volumes of 50,000-cells spheroids and the corresponding necrotic tissues are larger than that of the 5,000-cells spheroids. The formation of necrotic tissue in 5,000-cells numbers is slower than that in the 50,000-cells ones. Moreover, the Boltzmann model exhibits the best fitting performance for the growth of tumor spheroids and necrotic tissues. Optical coherence tomography (OCT) can serve as a promising imaging modality to visualize and characterize morphological and physiological features of multicellular ovarian tumor spheroids. The Boltzmann model integrating with 3D OCT data of ovarian tumor spheroids provides great potential for high-throughput cancer research in vitro and aiding in drug development.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Gokhan Gunay
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Trisha I Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Jayla A Wilson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Majood S Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Maegan Watson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Michael O Connell
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Noah Davidson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| |
Collapse
|
66
|
Hepburn MS, Foo KY, Wijesinghe P, Munro PRT, Chin L, Kennedy BF. Speckle-dependent accuracy in phase-sensitive optical coherence tomography. OPTICS EXPRESS 2021; 29:16950-16968. [PMID: 34154247 DOI: 10.1364/oe.417954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/26/2021] [Indexed: 05/25/2023]
Abstract
Phase-sensitive optical coherence tomography (OCT) is used to measure motion in a range of techniques, such as Doppler OCT and optical coherence elastography (OCE). In phase-sensitive OCT, motion is typically estimated using a model of the OCT signal derived from a single reflector. However, this approach is not representative of turbid samples, such as tissue, which exhibit speckle. In this study, for the first time, we demonstrate, through theory and experiment that speckle significantly lowers the accuracy of phase-sensitive OCT in a manner not accounted for by the OCT signal-to-noise ratio (SNR). We describe how the inaccuracy in speckle reduces phase difference sensitivity and introduce a new metric, speckle brightness, to quantify the amount of constructive interference at a given location in an OCT image. Experimental measurements show an almost three-fold degradation in sensitivity between regions of high and low speckle brightness at a constant OCT SNR. Finally, we apply these new results in compression OCE to demonstrate a ten-fold improvement in strain sensitivity, and a five-fold improvement in contrast-to-noise by incorporating independent speckle realizations. Our results show that speckle introduces a limit to the accuracy of phase-sensitive OCT and that speckle brightness should be considered to avoid erroneous interpretation of experimental data.
Collapse
|
67
|
Liu Y, Zhou J, Li Q, Li L, Jia Y, Geng F, Zhou J, Yin T. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Adv Drug Deliv Rev 2021; 172:80-103. [PMID: 33705874 DOI: 10.1016/j.addr.2021.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Remarkable advances in nano delivery systems have provided new hope for tumor prevention, diagnosis and treatment. However, only limited clinical therapeutic effects against solid tumors were achieved. One of the main reasons is the presence of abundant physiological and pathological barriers in vivo that impair tumoral penetration and distribution of the nanodrugs. These barriers are related to the components of tumor microenvironment (TME) including abnormal tumor vasculature, rich composition of the extracellular matrix (ECM), and abundant stroma cells. Herein, we review the advanced strategies of TME remodeling to overcome these biological obstacles against nanodrug delivery. This review aims to offer a perspective guideline for the implementation of promising approaches to facilitate intratumoral permeation of nanodrugs through alleviation of biological barriers. At the same time, we analyze the advantages and disadvantages of the corresponding methods and put forward possible directions for the future researches.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Qiang Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lingchao Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yue Jia
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Feiyang Geng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
68
|
Wei W, Cogliati A, Canavesi C. Model-based optical coherence tomography angiography enables motion-insensitive vascular imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:2149-2170. [PMID: 33996221 PMCID: PMC8086452 DOI: 10.1364/boe.420091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
We present a significant step toward ultrahigh-resolution, motion-insensitive characterization of vascular dynamics. Optical coherence tomography angiography (OCTA) is an invaluable diagnostic technology for non-invasive, label-free vascular imaging in vivo. However, since it relies on detecting moving cells from consecutive scans, high-resolution OCTA is susceptible to tissue motion, which imposes challenges in resolving and quantifying small vessels. We developed a novel OCTA technique named ultrahigh-resolution factor angiography (URFA) by modeling repeated scans as generative latent variables, with a common variance representing shared features and a unique variance representing motion. By iteratively maximizing the combined log-likelihood probability of these variances, the unique variance is largely separated. Meanwhile, features in the common variance are decoupled, in which vessels with dynamic flow are extracted from tissue structure by integrating high-order factors. Combined with Gabor-domain optical coherence microscopy, URFA successfully extracted high-resolution cutaneous vasculature despite severe involuntary tissue motion and scanner oscillation, significantly improving the visualization and characterization of micro-capillaries in vivo. Compared with the conventional approach, URFA reduces motion artifacts by nearly 50% on average, evaluated on local differences.
Collapse
Affiliation(s)
- Wei Wei
- LighTopTech Corp., 150 Lucius Gordon Drive, Suite 201, West Henrietta, NY 14586, USA
| | - Andrea Cogliati
- LighTopTech Corp., 150 Lucius Gordon Drive, Suite 201, West Henrietta, NY 14586, USA
| | - Cristina Canavesi
- LighTopTech Corp., 150 Lucius Gordon Drive, Suite 201, West Henrietta, NY 14586, USA
| |
Collapse
|
69
|
Puleri DF, Balogh P, Randles A. Computational models of cancer cell transport through the microcirculation. Biomech Model Mechanobiol 2021; 20:1209-1230. [PMID: 33765196 DOI: 10.1007/s10237-021-01452-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
The transport of cancerous cells through the microcirculation during metastatic spread encompasses several interdependent steps that are not fully understood. Computational models which resolve the cellular-scale dynamics of complex microcirculatory flows offer considerable potential to yield needed insights into the spread of cancer as a result of the level of detail that can be captured. In recent years, in silico methods have been developed that can accurately and efficiently model the circulatory flows of cancer and other biological cells. These computational methods are capable of resolving detailed fluid flow fields which transport cells through tortuous physiological geometries, as well as the deformation and interactions between cells, cell-to-endothelium interactions, and tumor cell aggregates, all of which play important roles in metastatic spread. Such models can provide a powerful complement to experimental works, and a promising approach to recapitulating the endogenous setting while maintaining control over parameters such as shear rate, cell deformability, and the strength of adhesive binding to better understand tumor cell transport. In this review, we present an overview of computational models that have been developed for modeling cancer cells in the microcirculation, including insights they have provided into cell transport phenomena.
Collapse
Affiliation(s)
- Daniel F Puleri
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Peter Balogh
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
70
|
Polomska AK, Proulx ST. Imaging technology of the lymphatic system. Adv Drug Deliv Rev 2021; 170:294-311. [PMID: 32891679 DOI: 10.1016/j.addr.2020.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
The lymphatic system plays critical roles in tissue fluid homeostasis and immunity and has been implicated in the development of many different pathologies, ranging from lymphedema, the spread of cancer to chronic inflammation. In this review, we first summarize the state-of-the-art of lymphatic imaging in the clinic and the advantages and disadvantages of these existing techniques. We then detail recent progress on imaging technology, including advancements in tracer design and injection methods, that have allowed visualization of lymphatic vessels with excellent spatial and temporal resolution in preclinical models. Finally, we describe the different approaches to quantifying lymphatic function that are being developed and discuss some emerging topics for lymphatic imaging in the clinic. Continued advancements in lymphatic imaging technology will be critical for the optimization of diagnostic methods for lymphatic disorders and the evaluation of novel therapies targeting the lymphatic system.
Collapse
Affiliation(s)
- Anna K Polomska
- ETH Zürich, Institute of Pharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| | - Steven T Proulx
- University of Bern, Theodor Kocher Institute, Freiestrasse 1, 3012 Bern, Switzerland.
| |
Collapse
|
71
|
Pilot Study: Quantitative Photoacoustic Evaluation of Peripheral Vascular Dynamics Induced by Carfilzomib In Vivo. SENSORS 2021; 21:s21030836. [PMID: 33513784 PMCID: PMC7865712 DOI: 10.3390/s21030836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Carfilzomib is mainly used to treat multiple myeloma. Several side effects have been reported in patients treated with carfilzomib, especially those associated with cardiovascular events, such as hypertension, congestive heart failure, and coronary artery disease. However, the side effects, especially the manifestation of cardiovascular events through capillaries, have not been fully investigated. Here, we performed a pilot experiment to monitor peripheral vascular dynamics in a mouse ear under the effects of carfilzomib using a quantitative photoacoustic vascular evaluation method. Before and after injecting the carfilzomib, bortezomib, and PBS solutions, we acquired high-resolution three-dimensional PAM data of the peripheral vasculature of the mouse ear during each experiment for 10 h. Then, the PAM maximum amplitude projection (MAP) images and five quantitative vascular parameters, i.e., photoacoustic (PA) signal, diameter, density, length fraction, and fractal dimension, were estimated. Quantitative results showed that carfilzomib induces a strong effect on the peripheral vascular system through a significant increase in all vascular parameters up to 50%, especially during the first 30 min after injection. Meanwhile, bortezomib and PBS do not have much impact on the peripheral vascular system. This pilot study verified PAM as a comprehensive method to investigate peripheral vasculature, along with the effects of carfilzomib. Therefore, we expect that PAM may be useful to predict cardiovascular events caused by carfilzomib.
Collapse
|
72
|
Lee S, Kim S, Koo DJ, Yu J, Cho H, Lee H, Song JM, Kim SY, Min DH, Jeon NL. 3D Microfluidic Platform and Tumor Vascular Mapping for Evaluating Anti-Angiogenic RNAi-Based Nanomedicine. ACS NANO 2021; 15:338-350. [PMID: 33231435 DOI: 10.1021/acsnano.0c05110] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three-dimensional (3D) visualization of tumor vasculature is a key factor in accurate evaluation of RNA interference (RNAi)-based antiangiogenic nanomedicine, a promising approach for cancer therapeutics. However, this remains challenging because there is not a physiologically relevant in vitro model or precise analytic methodology. To address this limitation, a strategy based on 3D microfluidic angiogenesis-on-a-chip and 3D tumor vascular mapping was developed for evaluating RNAi-based antiangiogenic nanomedicine. We developed a microfluidic model to recapitulate functional 3D angiogenic sprouting when co-cultured with various cancer cell types. This model enabled efficient and rapid assessment of antiangiogenic nanomedicine in treatment of hyper-angiogenic cancer. In addition, tissue-clearing-based whole vascular mapping of tumor xenograft allowed extraction of complex 3D morphological information in diverse quantitative parameters. Using this 3D imaging-based analysis, we observed tumor sub-regional differences in the antiangiogenic effect. Our systematic strategy can help in narrowing down the promising targets of antiangiogenic nanomedicine and then enables deep analysis of complex morphological changes in tumor vasculature, providing a powerful platform for the development of safe and effective nanomedicine for cancer therapeutics.
Collapse
Affiliation(s)
- Somin Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongchan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Jun Koo
- Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | - James Yu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongjun Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyojin Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
73
|
Soliton microcomb based spectral domain optical coherence tomography. Nat Commun 2021; 12:427. [PMID: 33462200 PMCID: PMC7813855 DOI: 10.1038/s41467-020-20404-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Spectral domain optical coherence tomography (OCT) is a widely employed, minimally invasive bio-medical imaging technique, which requires a broadband light source, typically implemented by super-luminescent diodes. Recent advances in soliton based photonic integrated frequency combs (soliton microcombs) have enabled the development of low-noise, broadband chipscale frequency comb sources, whose potential for OCT imaging has not yet been unexplored. Here, we explore the use of dissipative Kerr soliton microcombs in spectral domain OCT and show that, by using photonic chipscale Si3N4 resonators in conjunction with 1300 nm pump lasers, spectral bandwidths exceeding those of commercial OCT sources are possible. We characterized the exceptional noise properties of our source (in comparison to conventional OCT sources) and demonstrate that the soliton states in microresonators exhibit a residual intensity noise floor at high offset frequencies that is ca. 3 dB lower than a traditional OCT source at identical power, and can exhibit significantly lower noise performance for powers at the milli-Watt level. Moreover, we demonstrate that classical amplitude noise of all soliton comb teeth are correlated, i.e., common mode, in contrast to superluminescent diodes or incoherent microcomb states, which opens a new avenue to improve imaging speed and performance beyond the thermal noise limit. Superluminescent diodes, that provide a broadband spectrum are typically used in spectral domain coherence tomography. Here, the authors use chipscale silicon nitride resonators to generate soliton microcombs with a lower noise flor that could substitute the diode sources.
Collapse
|
74
|
Li H, Liu K, Cao T, Yao L, Zhang Z, Deng X, Du C, Li P. High performance OCTA enabled by combining features of shape, intensity, and complex decorrelation. OPTICS LETTERS 2021; 46:368-371. [PMID: 33449031 DOI: 10.1364/ol.405751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/23/2020] [Indexed: 05/18/2023]
Abstract
Motion contrast optical coherence tomography angiography (OCTA) entails a precise identification of dynamic flow signals from the static background, but an intermediate region with voxels exhibiting a mixed distribution of dynamic and static scatterers is almost inevitable in practice, which degrades the vascular contrast and connectivity. In this work, the static-dynamic intermediate region was pre-defined according to the asymptotic relation between inverse signal-to-noise ratio (iSNR) and decorrelation, which was theoretically derived for signals with different flow rates based on a multi-variate time series (MVTS) model. Then the ambiguous voxels in the intermediate region were further differentiated using a shape mask with adaptive threshold. Finally, an improved OCTA classifier was built by combining shape, iSNR, and decorrelation features, termed as SID-OCTA, and the performance of the proposed SID-OCTA was validated experimentally through mouse retinal imaging.
Collapse
|
75
|
Moses SR, Adorno JJ, Palmer AF, Song JW. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am J Physiol Cell Physiol 2021; 320:C92-C105. [PMID: 33176110 PMCID: PMC7846973 DOI: 10.1152/ajpcell.00355.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
To understand how the microvasculature grows and remodels, researchers require reproducible systems that emulate the function of living tissue. Innovative contributions toward fulfilling this important need have been made by engineered microvessels assembled in vitro with microfabrication techniques. Microfabricated vessels, commonly referred to as "vessels-on-a-chip," are from a class of cell culture technologies that uniquely integrate microscale flow phenomena, tissue-level biomolecular transport, cell-cell interactions, and proper three-dimensional (3-D) extracellular matrix environments under well-defined culture conditions. Here, we discuss the enabling attributes of microfabricated vessels that make these models more physiological compared with established cell culture techniques and the potential of these models for advancing microvascular research. This review highlights the key features of microvascular transport and physiology, critically discusses the strengths and limitations of different microfabrication strategies for studying the microvasculature, and provides a perspective on current challenges and future opportunities for vessel-on-a-chip models.
Collapse
Affiliation(s)
- Savannah R Moses
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
76
|
Shin I, Oh WY. Visualization of two-dimensional transverse blood flow direction using optical coherence tomography angiography. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200253R. [PMID: 33331149 PMCID: PMC7739998 DOI: 10.1117/1.jbo.25.12.126003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Evaluation of vessel patency and blood flow direction is important in various medical situations, including diagnosis and monitoring of ischemic diseases, and image-guided vascular surgeries. While optical coherence tomography angiography (OCTA) is the most widely used functional extension of optical coherence tomography that visualizes three-dimensional vasculature, inability to provide information of blood flow direction is one of its limitations. AIM We demonstrate two-dimensional (2D) transverse blood flow direction imaging in en face OCTA. APPROACH A series of triangular beam scans for the fast axis was implemented in the horizontal direction for the first volume scan and in the vertical direction for the following volume scan, and the inter A-line OCTA was performed for the blood flow direction imaging while the stepwise pattern was used for each slow axis scan. The decorrelation differences between the forward and the backward inter A-line OCTA were calculated for the horizontal and the vertical fast axis scans, and the ratio of the horizontal and the vertical decorrelation differences was utilized to show the 2D transverse flow direction information. RESULTS OCTA flow direction imaging was verified using flow phantoms with various flow orientations and speeds, and we identified the flow speed range relative to the scan speed for reliable flow direction measurement. We demonstrated the visualization of 2D transverse blood flow orientations in mouse brain vascular networks in vivo. CONCLUSIONS The proposed OCTA imaging technique that provides information of 2D transverse flow direction can be utilized in various clinical applications and preclinical studies.
Collapse
Affiliation(s)
- Inho Shin
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology, KI for Health Science and Technology, Daejeon, Republic of Korea
| | - Wang-Yuhl Oh
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology, KI for Health Science and Technology, Daejeon, Republic of Korea
- Address all correspondence to Wang-Yuhl Oh,
| |
Collapse
|
77
|
Wei W, Zhang Q, Rayner SG, Qin W, Cheng Y, Wang F, Zheng Y, Wang RK. Automated vessel diameter quantification and vessel tracing for OCT angiography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000248. [PMID: 32857462 PMCID: PMC7857721 DOI: 10.1002/jbio.202000248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Optical coherence tomography angiography (OCTA) is capable of non-invasively imaging the vascular networks within circulatory tissue beds in vivo. Following improvements in OCTA image quality, it is now possible to extract vascular parameters from imaging data to potentially facilitate the diagnosis and treatment of human disease. In this paper, we present a method for automated mapping of vessel diameter down to the individual capillary level, through gradient-guided minimum radial distance (MRD). During validation using well-characterized microfluidic flow phantoms, this method demonstrated superior consistency and a nearly threefold decrease in error when compared to currently accepted techniques. In addition, the MRD technique exhibited a high tolerance to rotation of the vasculature pattern. We also incorporated a modified A* path searching algorithm to trace vessel branches and calculate the diameter of each branch from the OCTA images. After validation in vitro, we applied these algorithms to the in vivo setting through analysis of mouse cortical vasculature. Our algorithm returned results that followed Murray's law, until reaching the capillary level, agreeing well with known physiological data. From our tracing process, vessel tortuosity and branching angle could also be measured. Our techniques provide a platform for the automated evaluation of the vasculature and may aid in diagnosis of vascular diseases, especially those resulting in regional early-stage morphological changes.
Collapse
Affiliation(s)
- Wei Wei
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Samuel G. Rayner
- Department of Bioengineering, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Wan Qin
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Fupeng Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
78
|
Stefan S, Lee J. Deep learning toolbox for automated enhancement, segmentation, and graphing of cortical optical coherence tomography microangiograms. BIOMEDICAL OPTICS EXPRESS 2020; 11:7325-7342. [PMID: 33409000 PMCID: PMC7747889 DOI: 10.1364/boe.405763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
Optical coherence tomography angiography (OCTA) is becoming increasingly popular for neuroscientific study, but it remains challenging to objectively quantify angioarchitectural properties from 3D OCTA images. This is mainly due to projection artifacts or "tails" underneath vessels caused by multiple-scattering, as well as the relatively low signal-to-noise ratio compared to fluorescence-based imaging modalities. Here, we propose a set of deep learning approaches based on convolutional neural networks (CNNs) to automated enhancement, segmentation and gap-correction of OCTA images, especially of those obtained from the rodent cortex. Additionally, we present a strategy for skeletonizing the segmented OCTA and extracting the underlying vascular graph, which enables the quantitative assessment of various angioarchitectural properties, including individual vessel lengths and tortuosity. These tools, including the trained CNNs, are made publicly available as a user-friendly toolbox for researchers to input their OCTA images and subsequently receive the underlying vascular network graph with the associated angioarchitectural properties.
Collapse
Affiliation(s)
- Sabina Stefan
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Jonghwan Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
79
|
Sun M, Li C, Chen N, Zhao H, Ma L, Liu C, Shen Y, Lin R, Gong X. Full three-dimensional segmentation and quantification of tumor vessels for photoacoustic images. PHOTOACOUSTICS 2020; 20:100212. [PMID: 33101929 PMCID: PMC7569216 DOI: 10.1016/j.pacs.2020.100212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 05/05/2023]
Abstract
Quantitative analysis of tumor vessels is of great significance for tumor staging and diagnosis. Photoacoustic imaging (PAI) has been proven to be an effective way to visualize comprehensive tumor vascular networks in three-dimensional (3D) volume, while previous studies only quantified the vessels projected in one plane. In this study, tumor vessels were segmented and quantified in a full 3D framework. It had been verified in the phantom experiments that the 3D quantification results have better accuracy than 2D. Furthermore, in vivo vessel images were quantified by 2D and 3D quantification methods respectively. And the difference between these two results is significant. In this study, complete vessel segmentation and quantification method within a 3D framework was implemented, which showed obvious advantage in the analysis accuracy of 3D photoacoustic images, and potentially improve tumor study and diagnosis.
Collapse
Affiliation(s)
- Mingjian Sun
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Chao Li
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huangxuan Zhao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liyong Ma
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Shen
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Corresponding authors at: Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen, 518055, China.
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Corresponding authors at: Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen, 518055, China.
| |
Collapse
|
80
|
Intact in vivo visualization of telencephalic microvasculature in medaka using optical coherence tomography. Sci Rep 2020; 10:19831. [PMID: 33199719 PMCID: PMC7669881 DOI: 10.1038/s41598-020-76468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
To date, various human disease models in small fish-such as medaka (Oryzias lapties)-have been developed for medical and pharmacological studies. Although genetic and environmental homogeneities exist, disease progressions can show large individual differences in animal models. In this study, we established an intact in vivo angiographic approach and explored vascular networks in the telencephalon of wild-type adult medaka using the spectral-domain optical coherence tomography. Our approach, which required neither surgical operations nor labeling agents, allowed to visualize blood vessels in medaka telencephala as small as about 8 µm, that is, almost the size of the blood cells of medaka. Besides, we could show the three-dimensional microvascular distribution in the medaka telencephalon. Therefore, the intact in vivo imaging via optical coherence tomography can be used to perform follow-up studies on cerebrovascular alterations in metabolic syndrome and their associations with neurodegenerative disease models in medaka.
Collapse
|
81
|
Solimando AG, Summa SD, Vacca A, Ribatti D. Cancer-Associated Angiogenesis: The Endothelial Cell as a Checkpoint for Immunological Patrolling. Cancers (Basel) 2020; 12:cancers12113380. [PMID: 33203154 PMCID: PMC7696032 DOI: 10.3390/cancers12113380] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary A clinical decision and study design investigating the level and extent of angiogenesis modulation aimed at vascular normalization without rendering tissues hypoxic is key and represents an unmet medical need. Specifically, determining the active concentration and optimal times of the administration of antiangiogenetic drugs is crucial to inhibit the growth of any microscopic residual tumor after surgical resection and in the pre-malignant and smolder neoplastic state. This review uncovers the pre-clinical translational insights crucial to overcome the caveats faced so far while employing anti-angiogenesis. This literature revision also explores how abnormalities in the tumor endothelium harm the crosstalk with an effective immune cell response, envisioning a novel combination with other anti-cancer drugs and immunomodulatory agents. These insights hold vast potential to both repress tumorigenesis and unleash an effective immune response. Abstract Cancer-associated neo vessels’ formation acts as a gatekeeper that orchestrates the entrance and egress of patrolling immune cells within the tumor milieu. This is achieved, in part, via the directed chemokines’ expression and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. The crosstalk between adaptive immune cells and the cancer endothelium is thus essential for tumor immune surveillance and the success of immune-based therapies that harness immune cells to kill tumor cells. This review will focus on the biology of the endothelium and will explore the vascular-specific molecular mediators that control the recruitment, retention, and trafficking of immune cells that are essential for effective antitumor immunity. The literature revision will also explore how abnormalities in the tumor endothelium impair crosstalk with adaptive immune cells and how targeting these abnormalities can improve the success of immune-based therapies for different malignancies, with a particular focus on the paradigmatic example represented by multiple myeloma. We also generated and provide two original bio-informatic analyses, in order to sketch the physiopathology underlying the endothelial–neoplastic interactions in an easier manner, feeding into a vicious cycle propagating disease progression and highlighting novel pathways that might be exploited therapeutically.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| |
Collapse
|
82
|
Dolganova IN, Aleksandrova PV, Nikitin PV, Alekseeva AI, Chernomyrdin NV, Musina GR, Beshplav ST, Reshetov IV, Potapov AA, Kurlov VN, Tuchin VV, Zaytsev KI. Capability of physically reasonable OCT-based differentiation between intact brain tissues, human brain gliomas of different WHO grades, and glioma model 101.8 from rats. BIOMEDICAL OPTICS EXPRESS 2020; 11:6780-6798. [PMID: 33282523 PMCID: PMC7687948 DOI: 10.1364/boe.409692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 05/17/2023]
Abstract
Optical coherence tomography (OCT) of the ex vivo rat and human brain tissue samples is performed. The set of samples comprises intact white and gray matter, as well as human brain gliomas of the World Health Organization (WHO) Grades I-IV and glioma model 101.8 from rats. Analysis of OCT signals is aimed at comparing the physically reasonable properties of tissues, and determining the attenuation coefficient, parameter related to effective refractive index, and their standard deviations. Data analysis is based on the linear discriminant analysis and estimation of their dispersion in a four-dimensional principal component space. The results demonstrate the distinct contrast between intact tissues and low-grade gliomas and moderate contrast between intact tissues and high-grade gliomas. Particularly, the mean values of attenuation coefficient are 7.56±0.91, 3.96±0.98, and 5.71±1.49 mm-1 for human white matter, glioma Grade I, and glioblastoma, respectively. The significant variability of optical properties of high Grades and essential differences between rat and human brain tissues are observed. The dispersion of properties enlarges with increase of the glioma WHO Grade, which can be attributed to the growing heterogeneity of pathological brain tissues. The results of this study reveal the advantages and drawbacks of OCT for the intraoperative diagnosis of brain gliomas and compare its abilities separately for different grades of malignancy. The perspective of OCT to differentiate low-grade gliomas is highlighted by the low performance of the existing intraoperational methods and instruments.
Collapse
Affiliation(s)
- I. N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - P. V. Aleksandrova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - P. V. Nikitin
- Burdenko Neurosurgery Institute, Moscow 125047, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - A. I. Alekseeva
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Research Institute of Human Morphology, Moscow 117418, Russia
| | - N. V. Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - G. R. Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - S. T. Beshplav
- Burdenko Neurosurgery Institute, Moscow 125047, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - I. V. Reshetov
- Institute for Cluster Oncology, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Academy of Postgraduate Education FSCC FMBA, Moscow 125310, Russia
| | - A. A. Potapov
- Burdenko Neurosurgery Institute, Moscow 125047, Russia
| | - V. N. Kurlov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - V. V. Tuchin
- Saratov State University, Saratov 410012, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov 410028, Russia
- Tomsk State University, Tomsk 634050, Russia
| | - K. I. Zaytsev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
83
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
84
|
Zhu J, Liu J, Zhu L, Wang C, Fan F, Yang Q, Zhang F. Optical coherence tomography angiography for mapping cerebral microvasculature based on normalized differentiation analysis. JOURNAL OF BIOPHOTONICS 2020; 13:e202000245. [PMID: 32639617 DOI: 10.1002/jbio.202000245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Optical coherence tomography angiography (OCTA) is a label-free, noninvasive biomedical imaging modality for mapping microvascular networks and quantifying blood flow velocities in vivo. Simple computation and fast processing are critical for the OCTA in some applications. Herein, we report on a normalized differentiation method for mapping cerebral microvasculature with the advantages of simple analysis and high image quality, benefitting from computation of differentiation and characteristics of normalization. Normalized differentiation values are validated to have a nearly linear relationship with flow velocities in a range using a flow phantom. The measurements in a rat cerebral cortex show that the OCTA based on the normalized differentiation analysis can generate microvascular images with high quality and monitor spatiotemporal dynamics of blood flow with simple computation and fast processing before and after localized ischemia induced by arterial occlusion.
Collapse
Affiliation(s)
- Jiang Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Jianting Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
| | - Chongyang Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Qiang Yang
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Fan Zhang
- Beijing Laboratory of Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
85
|
Dolezyczek H, Rapolu M, Niedzwiedziuk P, Karnowski K, Borycki D, Dzwonek J, Wilczynski G, Malinowska M, Wojtkowski M. Longitudinal in-vivo OCM imaging of glioblastoma development in the mouse brain. BIOMEDICAL OPTICS EXPRESS 2020; 11:5003-5016. [PMID: 33014596 PMCID: PMC7510867 DOI: 10.1364/boe.400723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
We present in-vivo imaging of the mouse brain using custom made Gaussian beam optical coherence microscopy (OCM) with 800nm wavelength. We applied new instrumentation to longitudinal imaging of the glioblastoma (GBM) tumor microvasculature in the mouse brain. We have introduced new morphometric biomarkers that enable quantitative analysis of the development of GBM. We confirmed quantitatively an intensive angiogenesis in the tumor area between 3 and 14 days after GBM cells injection confirmed by considerably increased of morphometric parameters. Moreover, the OCM setup revealed heterogeneity and abnormality of newly formed vessels.
Collapse
Affiliation(s)
- Hubert Dolezyczek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warsaw, Poland
- both authors contributed equally
| | - Mounika Rapolu
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
- both authors contributed equally
| | - Paulina Niedzwiedziuk
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Karnowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Joanna Dzwonek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warsaw, Poland
| | - Grzegorz Wilczynski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warsaw, Poland
| | - Monika Malinowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warsaw, Poland
| | - Maciej Wojtkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
- Baltic Institute of Technology, Al. Zwycięstwa 96/98, 81-451 Gdynia, Poland
- Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland
| |
Collapse
|
86
|
Tan B, Sim R, Chua J, Wong DWK, Yao X, Garhöfer G, Schmidl D, Werkmeister RM, Schmetterer L. Approaches to quantify optical coherence tomography angiography metrics. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1205. [PMID: 33241054 PMCID: PMC7576021 DOI: 10.21037/atm-20-3246] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Optical coherence tomography (OCT) has revolutionized the field of ophthalmology in the last three decades. As an OCT extension, OCT angiography (OCTA) utilizes a fast OCT system to detect motion contrast in ocular tissue and provides a three-dimensional representation of the ocular vasculature in a non-invasive, dye-free manner. The first OCT machine equipped with OCTA function was approved by U.S. Food and Drug Administration in 2016 and now it is widely applied in clinics. To date, numerous methods have been developed to aid OCTA interpretation and quantification. In this review, we focused on the workflow of OCTA-based interpretation, beginning from the generation of the OCTA images using signal decorrelation, which we divided into intensity-based, phase-based and phasor-based methods. We further discussed methods used to address image artifacts that are commonly observed in clinical settings, to the algorithms for image enhancement, binarization, and OCTA metrics extraction. We believe a better grasp of these technical aspects of OCTA will enhance the understanding of the technology and its potential application in disease diagnosis and management. Moreover, future studies will also explore the use of ocular OCTA as a window to link ocular vasculature to the function of other organs such as the kidney and brain.
Collapse
Affiliation(s)
- Bingyao Tan
- Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore, Singapore
| | - Ralene Sim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Damon W. K. Wong
- Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore, Singapore
| | - Xinwen Yao
- Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore, Singapore
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Ophthalmology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
87
|
Long-term in vivo imaging reveals tumor-specific dissemination and captures host tumor interaction in zebrafish xenografts. Sci Rep 2020; 10:13254. [PMID: 32764590 PMCID: PMC7411039 DOI: 10.1038/s41598-020-69956-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding mechanisms mediating tumor metastasis is crucial for diagnostic and therapeutic targeting. Here, we take advantage of a transparent embryonic zebrafish xenograft model (eZXM) to visualize and track metastatic cells in real time using selective plane illumination microscopy (SPIM) for up to 30 h. Injected human leukemic and breast cancer cells exhibited cell-type specific patterns of intravascular distribution with leukemic cells moving faster than breast cancer cells. Tracking of tumor cells from high-resolution images revealed acute differences in intravascular speed and distance covered by cells. While the majority of injected breast cancer cells predominantly adhered to nearby vasculature, about 30% invaded the non-vascularized tissue, reminiscent of their metastatic phenotype. Survival of the injected tumor cells appeared to be partially inhibited and time-lapse imaging showed a possible role for host macrophages of the recipient embryos. Leukemic cell dissemination could be effectively blocked by pharmacological ROCK1 inhibition using Fasudil. These observations, and the ability to image several embryos simultaneously, support the use of eZXM and SPIM imaging as a functional screening platform to identify compounds that suppress cancer cell spread and invasion.
Collapse
|
88
|
Nia HT, Datta M, Seano G, Zhang S, Ho WW, Roberge S, Huang P, Munn LL, Jain RK. In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nat Protoc 2020; 15:2321-2340. [PMID: 32681151 PMCID: PMC11412114 DOI: 10.1038/s41596-020-0328-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
We recently developed an in vivo compression device that simulates the solid mechanical forces exerted by a growing tumor on the surrounding brain tissue and delineates the physical versus biological effects of a tumor. This device, to our knowledge the first of its kind, can recapitulate the compressive forces on the cerebellar cortex from primary (e.g., glioblastoma) and metastatic (e.g., breast cancer) tumors, as well as on the cerebellum from tumors such as medulloblastoma and ependymoma. We adapted standard transparent cranial windows normally used for intravital imaging studies in mice to include a turnable screw for controlled compression (acute or chronic) and decompression of the cerebral cortex. The device enables longitudinal imaging of the compressed brain tissue over several weeks or months as the screw is progressively extended against the brain tissue to recapitulate tumor growth-induced solid stress. The cranial window can be simply installed on the mouse skull according to previously established methods, and the screw mechanism can be readily manufactured in-house. The total time for construction and implantation of the in vivo compressive cranial window is <1 h (per mouse). This technique can also be used to study a variety of other diseases or disorders that present with abnormal solid masses in the brain, including cysts and benign growths.
Collapse
Affiliation(s)
- Hadi T Nia
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giorgio Seano
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Tumor Microenvironment Laboratory, Institut Curie Research Center, Paris-Saclay University, PSL Research University, Inserm U1021, CNRS UMR3347, Orsay, France
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
89
|
Gao R, Xu H, Liu L, Zhang Y, Yin T, Zhou H, Sun M, Chen N, Ren Y, Chen T, Pan Y, Zheng M, Ohulchanskyy TY, Zheng R, Cai L, Song L, Qu J, Liu C. Photoacoustic visualization of the fluence rate dependence of photodynamic therapy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4203-4223. [PMID: 32923037 PMCID: PMC7449708 DOI: 10.1364/boe.395562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 05/18/2023]
Abstract
This study investigates the fluence rate effect, an essential modulating mechanism of photodynamic therapy (PDT), by using photoacoustic imaging method. To the best of our knowledge, this is the first time that the fluence rate dependence is investigated at a microscopic scale, as opposed to previous studies that are based on tumor growth/necrosis or animal surviving rate. This micro-scale examination enables subtle biological responses, including the vascular damage and the self-healing response, to be studied. Our results reveal the correlations between fluence rate and PDT efficacy/self-healing magnitude, indicating that vascular injuries induced by high fluence rates are more likely to recover and by low fluence rates (≤126 mW/cm2) are more likely to be permanent. There exists a turning point of fluence rate (314 mW/cm2), above which PDT practically produces no permanent therapeutic effect and damaged vessels can fully recover. These findings have practical significance in clinical setting. For cancer-related diseases, the 'effective fluence rate' is useful to provoke permanent destruction of tumor vasculature. Likewise, the 'non effective range' can be applied when PDT is used in applications such as opening the blood brain barrier to avoid permanent brain damage.
Collapse
Affiliation(s)
- Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- These authors contributed equally to this work
| | - Hao Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- These authors contributed equally to this work
| | - Liangjian Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- These authors contributed equally to this work
| | - Ying Zhang
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huichao Zhou
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Mingjian Sun
- Harbin Institute of Technology, Department of Control Science and Engineering, Weihai 264209, Shandong, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tao Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yinhao Pan
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tymish Y Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rongqin Zheng
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
90
|
Chen D, Yuan W, Park HC, Li X. In vivo assessment of vascular-targeted photodynamic therapy effects on tumor microvasculature using ultrahigh-resolution functional optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:4316-4325. [PMID: 32923045 PMCID: PMC7449727 DOI: 10.1364/boe.397602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 05/23/2023]
Abstract
Vascular-targeted photodynamic therapy (VTP) is an emerging treatment for tumors. The change of tumor vasculatures, including a newly-formed microvascular, in response to VTP, is a key assessment parameter for optimizing the treatment effect. However, an accurate assessment of vasculature, particularly the microvasculature's changes in vivo, remains challenging due to the limited resolution afforded by existing imaging modalities. In this study, we demonstrated the in vivo imaging of VTP effects on an A431 tumor-bearing window chamber model of a mouse with an 800-nm ultrahigh-resolution functional optical coherence tomography (UHR-FOCT). We further quantitatively demonstrated the effects of VTP on the size and density of tumor microvasculature before, during, and after the treatment. Our results suggest the promising potential of UHR-FOCT for assessing the tumor treatment with VTP in vivo and in real time to achieve an optimal outcome.
Collapse
Affiliation(s)
- Defu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- These authors contributed equally to this work
| | - Wu Yuan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally to this work
- Current address: Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hyeon-Cheol Park
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
91
|
Oprić D, Stankovich AD, Nenadović A, Kovačević S, Obradović DD, de Luka S, Nešović-Ostojić J, Milašin J, Ilić AŽ, Trbovich AM. Fractal analysis tools for early assessment of liver inflammation induced by chronic consumption of linseed, palm and sunflower oils. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
92
|
Gesperger J, Lichtenegger A, Roetzer T, Salas M, Eugui P, Harper DJ, Merkle CW, Augustin M, Kiesel B, Mercea PA, Widhalm G, Baumann B, Woehrer A. Improved Diagnostic Imaging of Brain Tumors by Multimodal Microscopy and Deep Learning. Cancers (Basel) 2020; 12:E1806. [PMID: 32640583 PMCID: PMC7408054 DOI: 10.3390/cancers12071806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022] Open
Abstract
Fluorescence-guided surgery is a state-of-the-art approach for intraoperative imaging during neurosurgical removal of tumor tissue. While the visualization of high-grade gliomas is reliable, lower grade glioma often lack visible fluorescence signals. Here, we present a hybrid prototype combining visible light optical coherence microscopy (OCM) and high-resolution fluorescence imaging for assessment of brain tumor samples acquired by 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery. OCM provides high-resolution information of the inherent tissue scattering and absorption properties of tissue. We here explore quantitative attenuation coefficients derived from volumetric OCM intensity data and quantitative high-resolution 5-ALA fluorescence as potential biomarkers for tissue malignancy including otherwise difficult-to-assess low-grade glioma. We validate our findings against the gold standard histology and use attenuation and fluorescence intensity measures to differentiate between tumor core, infiltrative zone and adjacent brain tissue. Using large field-of-view scans acquired by a near-infrared swept-source optical coherence tomography setup, we provide initial assessments of tumor heterogeneity. Finally, we use cross-sectional OCM images to train a convolutional neural network that discriminates tumor from non-tumor tissue with an accuracy of 97%. Collectively, the present hybrid approach offers potential to translate into an in vivo imaging setup for substantially improved intraoperative guidance of brain tumor surgeries.
Collapse
Affiliation(s)
- Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (J.G.); (A.L.); (M.S.); (P.E.); (D.J.H.); (C.W.M.); (M.A.)
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.W.)
| | - Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (J.G.); (A.L.); (M.S.); (P.E.); (D.J.H.); (C.W.M.); (M.A.)
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.W.)
| | - Matthias Salas
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (J.G.); (A.L.); (M.S.); (P.E.); (D.J.H.); (C.W.M.); (M.A.)
| | - Pablo Eugui
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (J.G.); (A.L.); (M.S.); (P.E.); (D.J.H.); (C.W.M.); (M.A.)
| | - Danielle J. Harper
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (J.G.); (A.L.); (M.S.); (P.E.); (D.J.H.); (C.W.M.); (M.A.)
| | - Conrad W. Merkle
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (J.G.); (A.L.); (M.S.); (P.E.); (D.J.H.); (C.W.M.); (M.A.)
| | - Marco Augustin
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (J.G.); (A.L.); (M.S.); (P.E.); (D.J.H.); (C.W.M.); (M.A.)
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (B.K.); (P.A.M.)
| | - Petra A. Mercea
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (B.K.); (P.A.M.)
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (B.K.); (P.A.M.)
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (J.G.); (A.L.); (M.S.); (P.E.); (D.J.H.); (C.W.M.); (M.A.)
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.W.)
| |
Collapse
|
93
|
Lichtenegger A, Gesperger J, Niederleithner M, Ginner L, Woehrer A, Drexler W, Baumann B, Leitgeb RA, Salas M. Ex-vivo Alzheimer's disease brain tissue investigation: a multiscale approach using 1060-nm swept source optical coherence tomography for a direct correlation to histology. NEUROPHOTONICS 2020; 7:035004. [PMID: 32855993 PMCID: PMC7441220 DOI: 10.1117/1.nph.7.3.035004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Significance: Amyloid-beta ( A - β ) plaques are pathological protein deposits formed in the brain of Alzheimer's disease (AD) patients upon disease progression. Further research is needed to elucidate the complex underlying mechanisms involved in their formation using label-free, tissue preserving, and volumetric techniques. Aim: The aim is to achieve a one-to-one correlation of optical coherence tomography (OCT) data to histological micrographs of brain tissue using 1060-nm swept source OCT. Approach: A - β plaques were investigated in ex-vivo AD brain tissue using OCT with the capability of switching between two magnifications. For the exact correlation to histology, a 3D-printed tool was designed to generate samples with parallel flat surfaces. Large field-of-view (FoV) and sequentially high-resolution volumes at different locations were acquired. The large FoV served to align the OCT to histology images; the high-resolution images were used to visualize fine details. Results: The instrument and the presented method enabled an accurate correlation of histological micrographs with OCT data. A - β plaques were identified as hyperscattering features in both FoV OCT modalities. The plaques identified in volumetric OCT data were in good agreement with immunohistochemically derived micrographs. Conclusion: OCT combined with the 3D-printed tool is a promising approach for label-free, nondestructive, volumetric, and fast tissue analysis.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Division of Neuropathology and Neurochemistry, Department of Neurology, Vienna, Austria
| | - Michael Niederleithner
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Laurin Ginner
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Adelheid Woehrer
- Medical University of Vienna, Division of Neuropathology and Neurochemistry, Department of Neurology, Vienna, Austria
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Rainer A. Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Vienna, Austria
| | - Matthias Salas
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Division of Neuropathology and Neurochemistry, Department of Neurology, Vienna, Austria
| |
Collapse
|
94
|
Nam H, Funamoto K, Jeon JS. Cancer cell migration and cancer drug screening in oxygen tension gradient chip. BIOMICROFLUIDICS 2020; 14:044107. [PMID: 32742536 PMCID: PMC7375834 DOI: 10.1063/5.0011216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/28/2020] [Indexed: 05/07/2023]
Abstract
Cancer metastasis, which is prevalent in malignant tumors, is present in a variety of cases depending on the primary tumor and metastatic site. The cancer metastasis is affected by various factors that surround and constitute a tumor microenvironment. One of the several factors, oxygen tension, can affect cancer cells and induce changes in many ways, including motility, directionality, and viability. In particular, the oxygen tension gradient is formed within a tumor cluster and oxygen is lower toward the center of the cluster from the perivascular area. The simple and efficient designing of the tumor microenvironment using microfluidic devices enables the simplified and robust platform of the complex in vivo microenvironment while observing a clear cause-and-effect between the properties of cancer cells under oxygen tension. Here, a microfluidic device with five channels including a gel channel, media channels, and gas channels is designed. MDA-MB-231cells are seeded in the microfluidic device with hydrogel to simulate their three-dimensional movement in the body. The motility and directionality of the cancer cells under the normoxic and oxygen tension gradient conditions are compared. Also, the viability of the cancer cells is analyzed for each condition when anticancer drugs are applied. Unlike the normoxic condition, under the oxygen tension gradient, cancer cells showed directionality toward higher oxygen tension and decreased viability against the certain anticancer drug. The simplified design of the tumor microenvironment through microfluidic devices enables comprehension of the response of cancer cells to varying oxygen tensions and cancer drugs in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | | | | |
Collapse
|
95
|
Kim TS, Joo J, Shin I, Shin P, Kang WJ, Vakoc BJ, Oh WY. 9.4 MHz A-line rate optical coherence tomography at 1300 nm using a wavelength-swept laser based on stretched-pulse active mode-locking. Sci Rep 2020; 10:9328. [PMID: 32518256 PMCID: PMC7283258 DOI: 10.1038/s41598-020-66322-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
In optical coherence tomography (OCT), high-speed systems based at 1300 nm are among the most broadly used. Here, we present 9.4 MHz A-line rate OCT system at 1300 nm. A wavelength-swept laser based on stretched-pulse active mode locking (SPML) provides a continuous and linear-in-wavenumber sweep from 1240 nm to 1340 nm, and the OCT system using this light source provides a sensitivity of 98 dB and a single-sided 6-dB roll-off depth of 2.5 mm. We present new capabilities of the 9.4 MHz SPML-OCT system in three microscopy applications. First, we demonstrate high quality OCTA imaging at a rate of 1.3 volumes/s. Second, by utilizing its inherent phase stable characteristics, we present wide dynamic range en face Doppler OCT imaging with multiple time intervals ranging from 0.25 ms to 2.0 ms at a rate of 0.53 volumes/s. Third, we demonstrate video-rate 4D microscopic imaging of a beating Xenopus embryo heart at a rate of 30 volumes/s. This high-speed and high-performance OCT system centered at 1300 nm suggests that it can be one of the most promising high-speed OCT platforms enabling a wide range of new scientific research, industrial, and clinical applications at speeds of 10 MHz.
Collapse
Affiliation(s)
- Tae Shik Kim
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - JongYoon Joo
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Inho Shin
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Paul Shin
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Woo Jae Kang
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea. .,KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
96
|
Shabairou N, Lengenfelder B, Hohmann M, Klämpfl F, Schmidt M, Zalevsky Z. All-optical, an ultra-thin endoscopic photoacoustic sensor using multi-mode fiber. Sci Rep 2020; 10:9142. [PMID: 32499607 PMCID: PMC7272416 DOI: 10.1038/s41598-020-66076-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Photoacoustic endoscopy (PAE) is a method of in-vivo imaging that uses tissue absorption properties. In PAE, the main tools used to detect the acoustic signal are mechanical ultrasound transducers, which require direct contact and which are difficult to miniaturize. All-optic photoacoustic sensors can challenge this issue as they can provide contact-free sensing. Here, we demonstrate sensing of photo-acoustic signals through a multimode fiber (MMF) which can provide an ultra-thin endoscopic photoacoustic sensor. Furthermore, we show the advantage of using the optical-flow method for speckle sensing and extract the photoacoustic signal despite the mode-mixing along the MMF. Moreover, it is demonstrated for the first time that the speckle reconstruction method can be used without the need for imaging of the speckles as this enables the use of multimode fibers for the speckle method.
Collapse
Affiliation(s)
- Nadav Shabairou
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Benjamin Lengenfelder
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| | - Martin Hohmann
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| | - Florian Klämpfl
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| | - Michael Schmidt
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 52900, Israel.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| |
Collapse
|
97
|
Lai PY, Chang CH, Su HR, Kuo WC. Lymphatic vessel segmentation in optical coherence tomography by adding U-Net-based CNN for artifact minimization. BIOMEDICAL OPTICS EXPRESS 2020; 11:2679-2693. [PMID: 32499952 PMCID: PMC7249833 DOI: 10.1364/boe.389373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
The lymphatic system branches throughout the body to transport bodily fluid and plays a key immune-response role. Optical coherence tomography (OCT) is an emerging technique for the noninvasive and label-free imaging of lymphatic capillaries utilizing low scattering features of the lymph fluid. Here, the proposed lymphatic segmentation method combines U-Net-based CNN, a Hessian vesselness filter, and a modified intensity-thresholding to search the nearby pixels based on the binarized Hessian mask. Compared to previous approaches, the method can extract shapes more precisely, and the segmented result contains minimal artifacts, achieves the dice coefficient of 0.83, precision of 0.859, and recall of 0.803.
Collapse
Affiliation(s)
- Pei-Yu Lai
- Department of Biophotonics, National Yang-Ming University, 155, Sec-2, Li-Nong Street, Taipei 112, Taiwan
| | - Chung-Hsing Chang
- Skin Institute, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hong-Ren Su
- Super Genius AItek Co., Ltd, New Taipei City, Taiwan
| | - Wen-Chuan Kuo
- Department of Biophotonics, National Yang-Ming University, 155, Sec-2, Li-Nong Street, Taipei 112, Taiwan
| |
Collapse
|
98
|
Gong P, Almasian M, van Soest G, de Bruin DM, van Leeuwen TG, Sampson DD, Faber DJ. Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-34. [PMID: 32246615 PMCID: PMC7118361 DOI: 10.1117/1.jbo.25.4.040901] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Optical coherence tomography (OCT) provides cross-sectional and volumetric images of backscattering from biological tissue that reveal the tissue morphology. The strength of the scattering, characterized by an attenuation coefficient, represents an alternative and complementary tissue optical property, which can be characterized by parametric imaging of the OCT attenuation coefficient. Over the last 15 years, a multitude of studies have been reported seeking to advance methods to determine the OCT attenuation coefficient and developing them toward clinical applications. AIM Our review provides an overview of the main models and methods, their assumptions and applicability, together with a survey of preclinical and clinical demonstrations and their translation potential. RESULTS The use of the attenuation coefficient, particularly when presented in the form of parametric en face images, is shown to be applicable in various medical fields. Most studies show the promise of the OCT attenuation coefficient in differentiating between tissues of clinical interest but vary widely in approach. CONCLUSIONS As a future step, a consensus on the model and method used for the determination of the attenuation coefficient is an important precursor to large-scale studies. With our review, we hope to provide a basis for discussion toward establishing this consensus.
Collapse
Affiliation(s)
- Peijun Gong
- The University of Western Australia, Department of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, Perth, Western Australia, Australia
- Address all correspondence to Peijun Gong, E-mail:
| | - Mitra Almasian
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Gijs van Soest
- Erasmus MC, University Medical Center Rotterdam, Department of Cardiology, Rotterdam, The Netherlands
| | - Daniel M. de Bruin
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - David D. Sampson
- The University of Western Australia, Department of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, Perth, Western Australia, Australia
- University of Surrey, Surrey Biophotonics, Guildford, Surrey, United Kingdom
| | - Dirk J. Faber
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
99
|
Wan L, Neumann CA, LeDuc PR. Tumor-on-a-chip for integrating a 3D tumor microenvironment: chemical and mechanical factors. LAB ON A CHIP 2020; 20:873-888. [PMID: 32025687 PMCID: PMC7067141 DOI: 10.1039/c9lc00550a] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tumor progression, including metastasis, is significantly influenced by factors in the tumor microenvironment (TME) such as mechanical force, shear stress, chemotaxis, and hypoxia. At present, most cancer studies investigate tumor metastasis by conventional cell culture methods and animal models, which are limited in data interpretation. Although patient tissue analysis, such as human patient-derived xenografts (PDX), can provide important clinical relevant information, they may not be feasible for functional studies as they are costly and time-consuming. Thus, in vitro three-dimensional (3D) models are rapidly being developed that mimic TME and allow functional investigations of metastatic mechanisms and drug responses. One of those new 3D models is tumor-on-a-chip technology that provides a powerful in vitro platform for cancer research, with the ability to mimic the complex physiological architecture and precise spatiotemporal control. Tumor-on-a-chip technology can provide integrated features including 3D scaffolding, multicellular culture, and a vasculature system to simulate dynamic flow in vivo. Here, we review a select set of recent achievements in tumor-on-a-chip approaches and present potential directions for tumor-on-a-chip systems in the future for areas including mechanical and chemical mimetic systems. We also discuss challenges and perspectives in both biological factors and engineering methods for tumor-on-a-chip progress. These approaches will allow in the future for the tumor-on-a-chip systems to test therapeutic approaches for individuals through using their cancerous cells gathered through approaches like biopsies, which then will contribute toward personalized medicine treatments for improving their outcomes.
Collapse
Affiliation(s)
- L Wan
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213 US.
| | - C A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213 US.
| | - P R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213 US.
| |
Collapse
|
100
|
You J, Pan C, Park K, Li A, Du C. In vivo detection of tumor boundary using ultrahigh-resolution optical coherence angiography and fluorescence imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201960091. [PMID: 31778294 PMCID: PMC7446292 DOI: 10.1002/jbio.201960091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/22/2019] [Accepted: 11/17/2019] [Indexed: 06/01/2023]
Abstract
Accurate detection of early tumor margin is of great preclinical and clinical implications for predicting the survival rate of subjects and assessing the response of tumor microenvironment to chemotherapy or radiation therapy. Here, we report a multimodality optical imaging study on in vivo detection of tumor boundary by analyzing neoangiogenesis of tumor microenvironment (microangiography), microcirculatory blood flow (optical Doppler tomography) and tumor proliferation (green fluorescent protein [GFP] fluorescence). Microangiography demonstrates superior sensitivity (77.7 ± 6.4%) and specificity (98.2 ± 1.7%) over other imaging technologies (eg, optical coherence tomography) for tumor margin detection. Additionally, we report longitudinal in vivo imaging of tumor progression and show that the abrupt tumor cell proliferation did not occur until local capillary density and cerebral blood flow reached their peak approximately 2 weeks after tumor implantation. The unique capability of longitudinal multimodality imaging of tumor angiogenesis may provide new insights in tumor biology and in vivo assessment of the treatment effects on anti-angiogenesis therapy for brain cancer.
Collapse
Affiliation(s)
- Jiang You
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Chelsea Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Ang Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|