51
|
Abstract
Hemoglobinopathies include all genetic diseases of hemoglobin and are grouped into thalassemia syndromes and structural hemoglobin variants. The β-thalassemias constitute a group of severe anemias with monogenic inheritance, caused by β-globin gene mutations. This review is focused on omics studies in hemoglobinopathies and mainly β-thalassemia, and discusses genomic, epigenomic, transcriptomic, proteomic and metabolomic findings. Omics analyses have identified various disease modifiers with an impact on disease severity and efficacy of treatments. These modifiers have contributed to the understanding of globin genes regulation/hemoglobin switching and the development of novel therapies. How omics data and their integration can contribute to efficient patient stratification, therapeutic management, improvements in existing treatments and application of novel personalized therapies is discussed.
Collapse
Affiliation(s)
- Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Soranou tou Ephessiou 4, 115 27, Athens, Greece.
| |
Collapse
|
52
|
Saunthararajah Y. Targeting sickle cell disease root-cause pathophysiology with small molecules. Haematologica 2019; 104:1720-1730. [PMID: 31399526 PMCID: PMC6717594 DOI: 10.3324/haematol.2018.207530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022] Open
Abstract
The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small molecules that are practical and accessible for worldwide application. Two types of such small molecule strategies are actively being evaluated in the clinic. The first strategy intends to shift red blood cell precursor hemoglobin manufacturing away from sickle hemoglobin and towards fetal hemoglobin, which inhibits sickle hemoglobin polymerization by a number of mechanisms. The second strategy intends to chemically modify sickle hemoglobin directly in order to inhibit its polymerization. Important lessons have been learnt from the pre-clinical and clinical evaluations to date. Open questions remain, but this review summarizes the valuable experience and knowledge already gained, which can guide ongoing and future efforts for molecular mechanism-based, practical and accessible disease modification of sickle cell disease.
Collapse
Affiliation(s)
- Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
53
|
Janssens Y, Wynendaele E, Vanden Berghe W, De Spiegeleer B. Peptides as epigenetic modulators: therapeutic implications. Clin Epigenetics 2019; 11:101. [PMID: 31300053 PMCID: PMC6624906 DOI: 10.1186/s13148-019-0700-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Peptides originating from different sources (endogenous, food derived, environmental, and synthetic) are able to influence different aspects of epigenetic regulation. Endogenous short peptides, resulting from proteolytic cleavage of proteins or upon translation of non-annotated out of frame transcripts, can block DNA methylation and hereby regulate gene expression. Peptides entering the body by digestion of food-related proteins can modulate DNA methylation and/or histone acetylation while environmental peptides, synthesized by bacteria, fungi, and marine sponges, mainly inhibit histone deacetylation. In addition, synthetic peptides that reverse or inhibit different epigenetic modifications of both histones and the DNA can be developed as well. Next to these DNA and histone modifications, peptides can also influence the expression of non-coding RNAs such as lncRNAs and the maturation of miRNAs. Seen the advantages over small molecules, the development of peptide therapeutics is an interesting approach to treat diseases with a strong epigenetic basis like cancer and Alzheimer’s disease. To date, only a limited number of drugs with a proven epigenetic mechanism of action have been approved by the FDA of which two (romidepsin and nesiritide) are peptides. A large knowledge gap concerning epigenetic effects of peptides is present, and this class of molecules deserves more attention in the development as epigenetic modulators. In addition, none of the currently approved peptide drugs are under investigation for their potential effects on epigenetics, hampering drug repositioning of these peptides to other indications with an epigenetic etiology.
Collapse
Affiliation(s)
- Yorick Janssens
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Wim Vanden Berghe
- Protein Science, Proteomics and Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
54
|
Oseghale AR, Zhu X, Li B, Peterson KR, Nudelman A, Rephaeli A, Xu H, Pace BS. Conjugate prodrug AN-233 induces fetal hemoglobin expression in sickle erythroid progenitors and β-YAC transgenic mice. Blood Cells Mol Dis 2019; 79:102345. [PMID: 31351219 DOI: 10.1016/j.bcmd.2019.102345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
Pharmacologic induction of fetal hemoglobin (HbF) is an effective strategy for treating sickle cell disease (SCD) by ameliorating disease severity. Hydroxyurea is the only FDA-approved agent that induces HbF, but significant non-responders and requirement for frequent monitoring of blood counts for drug toxicity limit clinical usefulness. Therefore, we investigated a novel prodrug conjugate of butyric acid (BA) and δ-aminolevulinate (ALA) as a potential HbF inducing agent, using erythroid precursors and a preclinical β-YAC mouse model. We observed significantly increased γ-globin gene transcription and HbF expression mediated by AN-233 in K562 cells. Moreover, AN-233 stimulated mild heme biosynthesis and inhibited expression of heme-regulated eIF2α kinase involved in silencing γ-globin expression. Studies using primary erythroid precursors generated from sickle peripheral blood mononuclear cells verified the ability of AN-233 to induce HbF, increase histone H3 and H4 acetylation levels at the γ-globin promoter and reduce erythroid precursor sickling by 50%. Subsequent drug treatment of β-YAC transgenic mice confirmed HbF induction in vivo by AN-233 through an increase in the percentage of HbF positive red blood cells and HbF levels measured by flow cytometry. These data support the potential development of AN-233 for the treatment of SCD.
Collapse
Affiliation(s)
| | - Xingguo Zhu
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Ada Rephaeli
- Felsenstein Medical Research Center, Sackler Medical School, Tel Aviv University, Petach Tikva, Israel
| | - Hongyan Xu
- Department of Population Health Sciences, Augusta University, Augusta, GA, USA
| | - Betty S Pace
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pediatrics, Augusta University, Augusta, GA, USA; Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
55
|
Ali H, Iftikhar F, Shafi S, Siddiqui H, Khan IA, Choudhary MI, Musharraf SG. Thiourea derivatives induce fetal hemoglobin production in-vitro: A new class of potential therapeutic agents for β-thalassemia. Eur J Pharmacol 2019; 855:285-293. [PMID: 31100414 DOI: 10.1016/j.ejphar.2019.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
Fetal hemoglobin (HbF) induction is a cost-effective therapeutic approach for the treatment of β-hemoglobinopathies like β-thalassemia and sickle cell anemia. The present study discusses the potential of thiourea derivatives as new class of compounds that induce the fetal hemoglobin production. HbF inducing effect of thiourea derivatives was studied using experimental cell system, the human erythroleukemic K562 cell line. Erythroid induction of K562 cells was studied by the benzidine/H2O2 reaction, total hemoglobin production was estimated by plasma hemoglobin assay kit, and γ-globin gene expression by RT-qPCR, whereas fetal hemoglobin production was estimated by flow cytometry and immunofluorescence microscopy. The results indicated that newly synthesized thiourea derivative are potent inducers of erythroid differentiation of K562 cells with an increased γ-globin gene expression and fetal hemoglobin production. Moreover, these compounds showed no cytotoxic effect and inhibition on K562 cells at HbF inducing concentrations. It is important to note that hydroxyurea is a cytotoxic chemotherapeutic agent and have deleterious side effects, reflecting the need to identify new safe and effective HbF induces. These results signify thiourea derivatives as promising HbF inducers, with the potential to be studied against hematological disorders, including β-thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Hamad Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sarah Shafi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ishtiaq Ahmad Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
56
|
Chen WR, Chou CC, Wang CC. Phthalides serve as potent modulators to boost fetal hemoglobin induction therapy for β-hemoglobinopathies. Blood Adv 2019; 3:1493-1498. [PMID: 31072835 PMCID: PMC6517670 DOI: 10.1182/bloodadvances.2019031120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023] Open
Abstract
Fetal hemoglobin (HbF) induction therapy has become the most promising strategy for treating β-hemoglobinopathies, including sickle-cell diseases and β-thalassemia. However, subtle but critical structural difference exists between HbF and normal adult hemoglobin (HbA), which inevitably leads to reduced binding of the endogenous modulator 2,3-bisphosphoglycerate (2,3-BPG) to HbF and thus increased oxygen affinity and decreased oxygen transport efficiency of HbF. We combined the oxygen equilibrium experiments, resonance Raman (RR) spectroscopy, and molecular docking modeling, and we discuss 2 phthalides, z-butylidenephthalide and z-ligustilide, that can effectively lower the oxygen affinity of HbF. They adjust it to a level closer to that of HbA and make it a more satisfactory oxygen carrier for adults. From the oxygen equilibrium curve measurements, we show that the 2 phthalides are more effective than 2,3-BPG for modulating HbF. The RR spectra show that phthalides allosterically stabilize the oxygenated HbF in the low oxygen affinity conformation, and the molecular docking modeling reveals that the 2 chosen phthalides interact with HbF via the cleft around the γ1/γ2 interface with a binding strength ∼1.6 times stronger than that of 2,3-BPG. We discuss the implications of z-butylidenephthalide and z-ligustilide in boosting the efficacy of HbF induction therapy to mitigate the clinical severities of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Wei-Ren Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | - Chia-Cheng Chou
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan, Republic of China; and
| | - Chia C Wang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
57
|
Inhibition of LSD1 by small molecule inhibitors stimulates fetal hemoglobin synthesis. Blood 2019; 133:2455-2459. [PMID: 30992270 DOI: 10.1182/blood.2018892737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
58
|
Telen MJ, Malik P, Vercellotti GM. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat Rev Drug Discov 2019; 18:139-158. [PMID: 30514970 PMCID: PMC6645400 DOI: 10.1038/s41573-018-0003-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over 100 years, clinicians and scientists have been unravelling the consequences of the A to T substitution in the β-globin gene that produces haemoglobin S, which leads to the systemic manifestations of sickle cell disease (SCD), including vaso-occlusion, anaemia, haemolysis, organ injury and pain. However, despite growing understanding of the mechanisms of haemoglobin S polymerization and its effects on red blood cells, only two therapies for SCD - hydroxyurea and L-glutamine - are approved by the US Food and Drug Administration. Moreover, these treatment options do not fully address the manifestations of SCD, which arise from a complex network of interdependent pathophysiological processes. In this article, we review efforts to develop new drugs targeting these processes, including agents that reactivate fetal haemoglobin, anti-sickling agents, anti-adhesion agents, modulators of ischaemia-reperfusion and oxidative stress, agents that counteract free haemoglobin and haem, anti-inflammatory agents, anti-thrombotic agents and anti-platelet agents. We also discuss gene therapy, which holds promise of a cure, although its widespread application is currently limited by technical challenges and the expense of treatment. We thus propose that developing systems-oriented multi-agent strategies on the basis of SCD pathophysiology is needed to improve the quality of life and survival of people with SCD.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA.
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology and the Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
59
|
Gomez-Rios A, Ortega-Pacheco A, Gutierrez-Blanco E, Acosta-Viana KY, Guzman-Marin E, Guiris-Andrade MD, Hernandez-Cortazar IB, López-Alonso R, Cruz-Aldán E, Jiménez-Coello M. Toxoplasma gondii in Captive Wild Felids of Mexico: Its Frequency and Capability to Eliminate Oocysts. Vector Borne Zoonotic Dis 2019; 19:619-624. [PMID: 30615592 DOI: 10.1089/vbz.2018.2385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is little information about Toxoplasma gondii in wild felids, even when these species have been associated with cases of toxoplasmosis in humans. In this study, samples of serum and whole blood were collected from 42 felids from 10 different species, in 4 Mexican zoos. Stool samples from 36 animals were also collected, corresponding to 82% of the felids included in the study. Stool samples were used for the search of oocysts by light field microscopy and PCR. Serum samples were analyzed by indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and indirect fluorescent antibody test (IFAT). DNA samples were purified from whole blood and stool for the amplification of a fragment of the SAG1 gene of T. gondii by a nested PCR (nPCR). The seroprevalence of IgG anti-T. gondii-specific antibodies by means of the ELISA was 100% (42/42) and 52.4% (22/42) by IFAT. The titers obtained varied from 1:80 to 1:2560. DNA of T. gondii was detected in 9.5% (4/42) of the blood samples by using nPCR. No oocysts were observed in the stool samples analyzed by light field microscopy. However, the DNA of the parasite was identified in 14.3% (5/35) of the stool samples evaluated. These results indicate a high prevalence of T. gondii in the studied populations of wild felids in captivity, with evidence of parasitemia and elimination of few oocysts even in adult hosts.
Collapse
Affiliation(s)
- Antonio Gomez-Rios
- 1Laboratory of Cell Biology, CA Biomedicine of Infectious and Parasitic Diseases, C.I.R. 'Dr. Hideyo Noguchi', University Autonomous of Yucatan, Merida, Mexico.,2Department of Animal Health and Preventive Medicine, Faculty of Veterinary Medicine and Zoothecnics, Campus of Biological and Agropecuary Sciences, University Autonomous of Yucatan, Merida, Mexico
| | - Antonio Ortega-Pacheco
- 2Department of Animal Health and Preventive Medicine, Faculty of Veterinary Medicine and Zoothecnics, Campus of Biological and Agropecuary Sciences, University Autonomous of Yucatan, Merida, Mexico
| | - Eduardo Gutierrez-Blanco
- 2Department of Animal Health and Preventive Medicine, Faculty of Veterinary Medicine and Zoothecnics, Campus of Biological and Agropecuary Sciences, University Autonomous of Yucatan, Merida, Mexico
| | - Karla Y Acosta-Viana
- 1Laboratory of Cell Biology, CA Biomedicine of Infectious and Parasitic Diseases, C.I.R. 'Dr. Hideyo Noguchi', University Autonomous of Yucatan, Merida, Mexico
| | - Eugenia Guzman-Marin
- 1Laboratory of Cell Biology, CA Biomedicine of Infectious and Parasitic Diseases, C.I.R. 'Dr. Hideyo Noguchi', University Autonomous of Yucatan, Merida, Mexico
| | - Marcelino D Guiris-Andrade
- 3Academic Group "Biomedics and Health Studies of Fauna in Chiapas, Mexico", Department of Veterinary Science, Faculty Veterinary Medicine, University Autonomous of Chiapas, Tuxtla Gutiérrez, Mexico
| | - Ivonne B Hernandez-Cortazar
- 1Laboratory of Cell Biology, CA Biomedicine of Infectious and Parasitic Diseases, C.I.R. 'Dr. Hideyo Noguchi', University Autonomous of Yucatan, Merida, Mexico
| | | | | | - Matilde Jiménez-Coello
- 1Laboratory of Cell Biology, CA Biomedicine of Infectious and Parasitic Diseases, C.I.R. 'Dr. Hideyo Noguchi', University Autonomous of Yucatan, Merida, Mexico
| |
Collapse
|
60
|
Yu L, Jearawiriyapaisarn N, Lee MP, Hosoya T, Wu Q, Myers G, Lim KC, Kurita R, Nakamura Y, Vojtek AB, Rual JF, Engel JD. BAP1 regulation of the key adaptor protein NCoR1 is critical for γ-globin gene repression. Genes Dev 2018; 32:1537-1549. [PMID: 30463901 PMCID: PMC6295165 DOI: 10.1101/gad.318436.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the β-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Natee Jearawiriyapaisarn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Mary P Lee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Tomonori Hosoya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Qingqing Wu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Anne B Vojtek
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
61
|
Liu J, Li Y, Tong J, Gao J, Guo Q, Zhang L, Wang B, Zhao H, Wang H, Jiang E, Kurita R, Nakamura Y, Tanabe O, Engel JD, Bresnick EH, Zhou J, Shi L. Long non-coding RNA-dependent mechanism to regulate heme biosynthesis and erythrocyte development. Nat Commun 2018; 9:4386. [PMID: 30349036 PMCID: PMC6197277 DOI: 10.1038/s41467-018-06883-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 10/02/2018] [Indexed: 01/19/2023] Open
Abstract
In addition to serving as a prosthetic group for enzymes and a hemoglobin structural component, heme is a crucial homeostatic regulator of erythroid cell development and function. While lncRNAs modulate diverse physiological and pathological cellular processes, their involvement in heme-dependent mechanisms is largely unexplored. In this study, we elucidated a lncRNA (UCA1)-mediated mechanism that regulates heme metabolism in human erythroid cells. We discovered that UCA1 expression is dynamically regulated during human erythroid maturation, with a maximal expression in proerythroblasts. UCA1 depletion predominantly impairs heme biosynthesis and arrests erythroid differentiation at the proerythroblast stage. Mechanistic analysis revealed that UCA1 physically interacts with the RNA-binding protein PTBP1, and UCA1 functions as an RNA scaffold to recruit PTBP1 to ALAS2 mRNA, which stabilizes ALAS2 mRNA. These results define a lncRNA-mediated posttranscriptional mechanism that provides a new dimension into how the fundamental heme biosynthetic process is regulated as a determinant of erythrocyte development. LncRNAs modulate diverse physiological cellular processes, however, their involvement in heme-dependent processes are not yet clear. Here the authors reveal the role of lncRNA UCA1 in erythroid cell development.
Collapse
Affiliation(s)
- Jinhua Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qing Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lingling Zhang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Bingrui Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ryo Kurita
- Japanese Red Cross Society, Department of Research and Development, Central Blood Institute, Tokyo, 105-8521, Japan
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Cell Engineering Division, Ibaraki, 305-0074, Japan
| | - Osamu Tanabe
- Department of Integrative Genomics Tohoku Medical Megabank, Tohoku University, Sedai, 980-8573, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emery H Bresnick
- Wisconsin Institutes for Medical Research, Paul Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53562, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
62
|
Ota Y, Suzuki T. Drug Design Concepts for LSD1-Selective Inhibitors. CHEM REC 2018; 18:1782-1791. [PMID: 30277644 DOI: 10.1002/tcr.201810031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) is one of the flavin-dependent oxidases and is involved in many cellular processes by controlling the methylation of histone H3. Recently, it has been reported that LSD1 is associated with several diseases such as cancer, metabolic disorders, and psychiatric diseases. Thus, LSD1 is an attractive molecular target for the treatment of these diseases, and its inhibitors are predicted as therapeutic agents. Although a variety of LSD1 inhibitors have been reported to date, many of them show insufficient activities and selectivity toward LSD1. Meanwhile, we identified several LSD1-selective inhibitors using target-guided synthesis strategies based on our original ideas. Our LSD1 inhibitors show not only potent LSD1-selective inhibitory activities, but also unique bioactivities both in vitro and in vivo. This account highlights our drug design concepts for and identification of LSD1-selective inhibitors.
Collapse
Affiliation(s)
- Yosuke Ota
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Takayoshi Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan.,CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
63
|
Rivers A, Vaitkus K, Jagadeeswaran R, Ruiz MA, Ibanez V, Ciceri F, Cavalcanti F, Molokie RE, Saunthararajah Y, Engel JD, DeSimone J, Lavelle D. Oral administration of the LSD1 inhibitor ORY-3001 increases fetal hemoglobin in sickle cell mice and baboons. Exp Hematol 2018; 67:60-64.e2. [PMID: 30125603 DOI: 10.1016/j.exphem.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022]
Abstract
Increased levels of fetal hemoglobin (HbF) lessen the severity of symptoms and increase the life span of patients with sickle cell disease (SCD). More effective strategies to increase HbF are needed because the current standard of care, hydroxyurea, is not effective in a significant proportion of patients. Treatment of the millions of patients projected worldwide would best be accomplished with an orally administered drug therapy that increased HbF. LSD1 is a component of corepressor complexes that repress γ-globin gene expression and are a therapeutic target for HbF reactivation. We have shown that subcutaneous administration of RN-1, a pharmacological LSD1 inhibitor, increased γ-globin expression in SCD mice and baboons, which are widely acknowledged as the best animal model in which to test the activity of HbF-inducing drugs. The objective of this investigation was to test the effect of oral administration of a new LSD1 inhibitor, ORY-3001. Oral administration of ORY-3001 to SCD mice (n = 3 groups) increased γ-globin expression, Fetal Hemoglobin (HbF)-containing (F) cells, and F reticulocytes (retics). In normal baboons (n = 7 experiments) treated with ORY-3001, increased F retics, γ-globin chain synthesis, and γ-globin mRNA were observed. Experiments in anemic baboons (n = 2) showed that ORY-3001 increased F retics (PA8695, predose = 24%, postdose = 66.8%; PA8698: predose = 13%, postdose = 93.6%), γ-globin chain synthesis (PA8695: predose = 0.07 γ/γ+β, postdose = 0.20 γ/γ+β; PA8698: predose = 0.02 γ/γ+β, postdose = 0.44 γ/γ+β), and γ-globin mRNA (PA8695: predose = 0.06 γ/γ+β, postdose = 0.18 γ/γ+β; PA8698: predose = 0.03 γ/γ+β, postdose = 0.33 γ/γ+β). We conclude that oral administration of ORY-3001 increases F retics, γ-globin chain synthesis, and γ-globin mRNA in baboons and SCD mice, supporting further efforts toward the development of this drug for SCD therapy.
Collapse
Affiliation(s)
- Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Kestis Vaitkus
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Maria Armila Ruiz
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vinzon Ibanez
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Robert E Molokie
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joseph DeSimone
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald Lavelle
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
64
|
Kirkpatrick JE, Kirkwood KL, Woster PM. Inhibition of the histone demethylase KDM4B leads to activation of KDM1A, attenuates bacterial-induced pro-inflammatory cytokine release, and reduces osteoclastogenesis. Epigenetics 2018; 13:557-572. [PMID: 29927684 PMCID: PMC6260135 DOI: 10.1080/15592294.2018.1481703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal disease (PD) afflicts 46% of Americans with no effective adjunctive therapies available. While most pharmacotherapy for PD targets bacteria, the host immune response is responsible for driving tissue damage and bone loss in severe disease. Herein, we establish that the histone demethylase KDM4B is a potential drug target for the treatment of PD. Immunohistochemical staining of diseased periodontal epithelium revealed an increased abundance of KDM4B that correlates with inflammation. In murine calvarial sections exposed to Aggregatibacter actinomycetemcomitans lipopolysaccharide (Aa-LPS), immunohistochemical staining revealed a significant increase in KDM4B protein expression. The 8-hydroxyquinoline ML324 is known to inhibit the related demethylase KDM4E in vitro, but has not been evaluated against any other targets. Our studies indicate that ML324 also inhibits KDM4B (IC50: 4.9 μM), and decreases the pro-inflammatory cytokine response to an Aa-LPS challenge in vitro. Our results suggest that KDM4B inhibition-induced immunosuppression works indirectly, requiring new protein synthesis. In addition, fluorescence-stained macrophages exhibited a significant decrease in global monomethyl histone 3 lysine 4 (H3K4me) levels following an Aa-LPS challenge that was prevented by KDM4B inhibition, suggesting this effect is produced through KDM1A-mediated demethylation of H3K4. Finally, ML324 inhibition of KDM4B in osteoclast progenitors produced a significant reduction in Aa-LPS-induced osteoclastogenesis. These data link histone methylation with host immune response to bacterial pathogens in PD, and suggest a previously unreported, alternative mechanism for epigenetic control of the host inflammatory environment. As such, KDM4B represents a new therapeutic target for treating hyper-inflammatory diseases that result in bone destruction.
Collapse
Affiliation(s)
- Joy E. Kirkpatrick
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Patrick M. Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
65
|
Rivers A, Jagadeeswaran R, Lavelle D. Potential role of LSD1 inhibitors in the treatment of sickle cell disease: a review of preclinical animal model data. Am J Physiol Regul Integr Comp Physiol 2018; 315:R840-R847. [PMID: 30067082 DOI: 10.1152/ajpregu.00440.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sickle cell disease (SCD) is caused by a mutation of the β-globin gene (Ingram VM. Nature 180: 326-328, 1957), which triggers the polymerization of deoxygenated sickle hemoglobin (HbS). Approximately 100,000 SCD patients in the United States and millions worldwide (Piel FB, et al. PLoS Med 10: e1001484, 2013) suffer from chronic hemolytic anemia, painful crises, multisystem organ damage, and reduced life expectancy (Rees DC, et al. Lancet 376: 2018-2031, 2010; Serjeant GR. Cold Spring Harb Perspect Med 3: a011783, 2013). Hematopoietic stem cell transplantation can be curative, but the majority of patients do not have a suitable donor (Talano JA, Cairo MS. Eur J Haematol 94: 391-399, 2015). Advanced gene-editing technologies also offer the possibility of a cure (Goodman MA, Malik P. Ther Adv Hematol 7: 302-315, 2016; Lettre G, Bauer DE. Lancet 387: 2554-2564, 2016), but the likelihood that these strategies can be mobilized to treat the large numbers of patients residing in developing countries is remote. A pharmacological treatment to increase fetal hemoglobin (HbF) as a therapy for SCD has been a long-sought goal, because increased levels of HbF (α2γ2) inhibit the polymerization of HbS (Poillin WN, et al. Proc Natl Acad Sci USA 90: 5039-5043, 1993; Sunshine HR, et al. J Mol Biol 133: 435-467, 1979) and are associated with reduced symptoms and increased lifespan of SCD patients (Platt OS, et al. N Engl J Med 330: 1639-1644, 1994; Platt OS, et al. N Engl J Med 325: 11-16, 1991). Only two drugs, hydroxyurea and l-glutamine, are approved by the US Food and Drug Administration for treatment of SCD. Hydroxyurea is ineffective at HbF induction in ~50% of patients (Charache S, et al. N Engl J Med 332: 1317-1322, 1995). While polymerization of HbS has been traditionally considered the driving force in the hemolysis of SCD, the excessive reactive oxygen species generated from red blood cells, with further amplification by intravascular hemolysis, also are a major contributor to SCD pathology. This review highlights a new class of drugs, lysine-specific demethylase (LSD1) inhibitors, that induce HbF and reduce reactive oxygen species.
Collapse
Affiliation(s)
- Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Donald Lavelle
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| |
Collapse
|
66
|
Diepstraten ST, Hart AH. Modelling human haemoglobin switching. Blood Rev 2018; 33:11-23. [PMID: 30616747 DOI: 10.1016/j.blre.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Genetic lesions of the β-globin gene result in haemoglobinopathies such as β-thalassemia and sickle cell disease. To discover and test new molecular medicines for β-haemoglobinopathies, cell-based and animal models are now being widely utilised. However, multiple in vitro and in vivo models are required due to the complex structure and regulatory mechanisms of the human globin gene locus, subtle species-specific differences in blood cell development, and the influence of epigenetic factors. Advances in genome sequencing, gene editing, and precision medicine have enabled the first generation of molecular therapies aimed at reactivating, repairing, or replacing silenced or damaged globin genes. Here we compare and contrast current animal and cell-based models, highlighting their complementary strengths, reflecting on how they have informed the scope and direction of the field, and describing some of the novel molecular and precision medicines currently under development or in clinical trial.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
67
|
Design, Synthesis, and In Vitro Evaluation of Novel Histone H3 Peptide-Based LSD1 Inactivators Incorporating α,α-Disubstituted Amino Acids with γ-Turn-Inducing Structures. Molecules 2018; 23:molecules23051099. [PMID: 29734782 PMCID: PMC6099693 DOI: 10.3390/molecules23051099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) mainly removes methyl groups of mono- or di-methylated lysine residues at the fourth position of histone H3 to epigenetically regulate the expression of genes associated with several diseases, such as cancer. Therefore, LSD1 inactivators are expected to be used as therapeutic agents. In this study, to identify novel peptide-based LSD1 inactivators, we focused on the X-ray structure of LSD1 complexed with a H3 peptide-based suicide substrate. It has been proposed that a methylated histone substrate forms three consecutive γ-turn structures in the active pocket of LSD1. Based on this, we designed and synthesized novel histone H3 peptide-based LSD1 inactivators 2a⁻c by incorporating various α,α-disubstituted amino acids with γ-turn-inducing structures. Among synthetic peptides 2a⁻c, peptide 2b incorporating two 1-aminocyclohexanecarboxylic acids at both sides of a lysine residue bearing a trans-2-phenylcyclopropylamine (PCPA) moiety, which is a pharmacophore for LSD1 inactivation, was the most potent and selective LSD1 inactivator. These findings are useful for the further development of histone H3 peptide-based LSD1 inactivators.
Collapse
|
68
|
Philipsen S, Hardison RC. Evolution of hemoglobin loci and their regulatory elements. Blood Cells Mol Dis 2018; 70:2-12. [PMID: 28811072 PMCID: PMC5807248 DOI: 10.1016/j.bcmd.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
Abstract
Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent globins from jawless vertebrates. This preservation of synteny may reflect the presence of a powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence in noncoding DNA sequences among mammals, several epigenetic features of the globin gene regulatory regions are preserved across vertebrates. The preserved features include multiple DNase hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with activity in gene regulation, and resources for accessing and visualizing such maps are readily available to the community of researchers and students.
Collapse
Affiliation(s)
- Sjaak Philipsen
- Department of Cell Biology Ee1071b, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institute for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
69
|
Sun J, Ermann J, Niu N, Yan G, Yang Y, Shi Y, Zou W. Histone demethylase LSD1 regulates bone mass by controlling WNT7B and BMP2 signaling in osteoblasts. Bone Res 2018; 6:14. [PMID: 29707403 PMCID: PMC5916912 DOI: 10.1038/s41413-018-0015-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple regulatory mechanisms control osteoblast differentiation and function to ensure unperturbed skeletal formation and remodeling. In this study we identify histone lysine-specific demethylase 1(LSD1/KDM1A) as a key epigenetic regulator of osteoblast differentiation. Knockdown of LSD1 promoted osteoblast differentiation of human mesenchymal stem cells (hMSCs) in vitro and mice lacking LSD1 in mesenchymal cells displayed increased bone mass secondary to accelerated osteoblast differentiation. Mechanistic in vitro studies revealed that LSD1 epigenetically regulates the expression of WNT7B and BMP2. LSD1 deficiency resulted in increased BMP2 and WNT7B expression in osteoblasts and enhanced bone formation, while downregulation of WNT7B- and BMP2-related signaling using genetic mouse model or small-molecule inhibitors attenuated bone phenotype in vivo. Furthermore, the LSD1 inhibitor tranylcypromine (TCP) could increase bone mass in mice. These data identify LSD1 as a novel regulator of osteoblast activity and suggest LSD1 inhibition as a potential therapeutic target for treatment of osteoporosis.
Collapse
Affiliation(s)
- Jun Sun
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Joerg Ermann
- 2Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Ningning Niu
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Guang Yan
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yang Yang
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yujiang Shi
- 3Newborn Medicine Division, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Weiguo Zou
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
70
|
Lavelle D, Engel JD, Saunthararajah Y. Fetal Hemoglobin Induction by Epigenetic Drugs. Semin Hematol 2018; 55:60-67. [PMID: 29958562 DOI: 10.1053/j.seminhematol.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Fetal hemoglobin (HbF) inhibits the root cause of sickle pathophysiology, sickle hemoglobin polymerization. Individuals who naturally express high levels of HbF beyond infancy thus receive some protection from sickle complications. To mimic this natural genetic experiment using drugs, one guiding observation was that HbF is increased during recovery of bone marrow from extreme stress. This led to evaluation and approval of the cytotoxic (cell killing) drug hydroxyurea to treat sickle cell disease. Cytotoxic approaches are limited in potency and sustainability, however, since they require hematopoietic reserves sufficient to repeatedly mount recoveries from stress that destroys their counterparts, and such reserves are finite. HbF induction even by stress ultimately involves chromatin remodeling of the gene for HbF (HBG), therefore, a logical alternative approach is to directly inhibit epigenetic enzymes that repress HBG-implicated enzymes include DNA methyltransferase 1, histone deacetylases, lysine demethylase 1, protein arginine methyltransferase 5, euchromatic histone lysine methyltransferase 2 and chromodomain helicase DNA-binding protein 4. Clinical proof-of-principle that this alternative, noncytotoxic approach can generate substantial HbF and total hemoglobin increases has already been generated. Thus, with continued careful attention to fundamental biological and pharmacologic considerations (reviewed herein), there is potential that rational, molecular-targeted, safe and highly potent disease-modifying therapy can be realized for patients with sickle cell disease, with the accessibility and cost-effective properties needed for world-wide effect.
Collapse
Affiliation(s)
- Donald Lavelle
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | | | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
71
|
Ota Y, Miyamura S, Araki M, Itoh Y, Yasuda S, Masuda M, Taniguchi T, Sowa Y, Sakai T, Itami K, Yamaguchi J, Suzuki T. Design, synthesis and evaluation of γ-turn mimetics as LSD1-selective inhibitors. Bioorg Med Chem 2018; 26:775-785. [DOI: 10.1016/j.bmc.2017.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/25/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
|
72
|
Lohani N, Bhargava N, Munshi A, Ramalingam S. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol 2017; 233:4563-4577. [PMID: 29159826 DOI: 10.1002/jcp.26292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
β-hemoglobin disorders, such as β-thalassemia and sickle cell anemia are among the most prevalent inherited genetic disorders worldwide. These disorders are caused by mutations in the gene encoding hemoglobin-β (HBB), a vital protein found in red blood cells (RBCs) that carries oxygen from lungs to all parts of the human body. As a consequence, there has been an enduring interest in this field in formulating therapeutic strategies for the treatment of these diseases. Currently, there is no cure available for hemoglobin disorders, although, some patients have been treated with bone marrow transplantation, whose scope is limited because of the difficulty in finding a histocompatible donor and also due to transplant-associated clinical complications that can arise during the treatment. On account of these constraints, reactivation of fetal hemoglobin (HbF) synthesis holds immense promise and is a viable strategy to alleviate the symptoms of β-hemoglobin disorders. Development of new genomic tools has led to the identification of important natural genetic modifiers of hemoglobin switching which include BCL11A, KLF1, HBSIL-MYB, LRF, LSD1, LDB1, histone deacetylases 1 and 2 (HDAC1 and HDAC2). miRNAs are also promising therapeutic targets for development of more effective strategies for the induction of HbF production. Many new small molecule pharmacological inducers of HbF production are already under pre-clinical and clinical development. Furthermore, recent advancements in gene and cell therapy includes targeted genome editing and iPS cell technologies, both of which utilizes a patient's own cells, are emerging as extremely promising approaches for significantly reducing the burden of β-hemoglobin disorders.
Collapse
Affiliation(s)
- Neelam Lohani
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
73
|
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017; 9:nu9111201. [PMID: 29104258 PMCID: PMC5707673 DOI: 10.3390/nu9111201] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RVT) is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT), histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1).
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
- Institute of Chemistry, São Paulo State University (UNESP), 14800060 Araraquara, Brazil.
| | | | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| |
Collapse
|
74
|
Dai Y, Chen T, Ijaz H, Cho EH, Steinberg MH. SIRT1 activates the expression of fetal hemoglobin genes. Am J Hematol 2017; 92:1177-1186. [PMID: 28776729 DOI: 10.1002/ajh.24879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
High fetal hemoglobin (HbF, α2 γ2 ) levels ameliorate the clinical manifestations of sickle cell disease and β thalassemia. The mechanisms that repress HbF expression and silence γ-globin genes in adults are incompletely characterized and only a single HbF inducer, hydroxyurea, is approved for treatment, and only in patients with sickle cell disease. We identified SIRT1, a protein deacetylase, as a new inducer of γ-globin. SIRT1 knockdown decreased, while SIRT1 ectopic expression upregulated γ-globin gene (HBG) expression in primary human erythroid cells and in K562 cells. The small molecule SIRT1 activators SRT2104 and SRT1720 enhanced HBG expression in cord blood human erythroblasts and reactivated silenced HBG in adult human erythroblasts. Furthermore, SIRT1 binds in the β-globin gene cluster locus control region (LCR) and HBG promoters, promotes the looping of the LCR to HBG promoter, and increases the binding of RNA polymerase II and H4K16Ac in the HBG promoter. SIRT1 suppressed the expression of the HBG suppressors BCL11A, KLF1, HDAC1 and HDAC2. Lastly, SIRT1 did not change the proliferation of human erythroid progenitor cells or the expression of differentiation marker CD235a. These data suggest that SIRT1 activates HBG expression through facilitating LCR looping to the HBG promoter, inhibiting the expression of transcriptional suppressors of HBG, and indirectly increasing histone acetylation in the HBG promoter. SIRT1 is a potential therapeutic target for γ-globin gene induction, and small molecule SIRT1 activators might serve as a lead compound for the development of new HbF inducers.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Tyngwei Chen
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Heba Ijaz
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Elizabeth H. Cho
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Martin H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| |
Collapse
|
75
|
The orphan nuclear receptor TR4 regulates erythroid cell proliferation and maturation. Blood 2017; 130:2537-2547. [PMID: 29018082 DOI: 10.1182/blood-2017-05-783159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
The orphan nuclear receptors TR4 (NR2C2) and TR2 (NR2C1) are the DNA-binding subunits of the macromolecular complex, direct repeat erythroid-definitive, which has been shown to repress ε- and γ-globin transcription during adult definitive erythropoiesis. Previous studies implied that TR2 and TR4 act largely in a redundant manner during erythroid differentiation; however, during the course of routine genetic studies, we observed multiple variably penetrant phenotypes in the Tr4 mutants, suggesting that indirect effects of the mutation might be masked by multiple modifying genes. To test this hypothesis, Tr4+/- mutant mice were bred into a congenic C57BL/6 background and their phenotypes were reexamined. Surprisingly, we found that homozygous Tr4 null mutant mice expired early during embryogenesis, around embryonic day 7.0, and well before erythropoiesis commences. We further found that Tr4+/- erythroid cells failed to fully differentiate and exhibited diminished proliferative capacity. Analysis of Tr4+/- mutant erythroid cells revealed that reduced TR4 abundance resulted in decreased expression of genes required for heme biosynthesis and erythroid differentiation (Alad and Alas2), but led to significantly increased expression of the proliferation inhibitory factor, cyclin dependent kinase inhibitor (Cdkn1c) These studies support a vital role for TR4 in promoting erythroid maturation and proliferation, and demonstrate that TR4 and TR2 execute distinct, individual functions during embryogenesis and erythroid differentiation.
Collapse
|
76
|
He Y, Luo J, Chen Y, Zhou X, Yu S, Jin L, Xiao X, Jia S, Liu Q. ARHGAP18 is a novel gene under positive natural selection that influences HbF levels in β-thalassaemia. Mol Genet Genomics 2017; 293:207-216. [DOI: 10.1007/s00438-017-1377-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
77
|
Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia. Nat Commun 2017; 8:424. [PMID: 28871148 PMCID: PMC5583283 DOI: 10.1038/s41467-017-00479-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023] Open
Abstract
β-Thalassemia is one of the most common inherited anemias, with no effective cure for most patients. The pathophysiology reflects an imbalance between α- and β-globin chains with an excess of free α-globin chains causing ineffective erythropoiesis and hemolysis. When α-thalassemia is co-inherited with β-thalassemia, excess free α-globin chains are reduced significantly ameliorating the clinical severity. Here we demonstrate the use of CRISPR/Cas9 genome editing of primary human hematopoietic stem/progenitor (CD34+) cells to emulate a natural mutation, which deletes the MCS-R2 α-globin enhancer and causes α-thalassemia. When edited CD34+ cells are differentiated into erythroid cells, we observe the expected reduction in α-globin expression and a correction of the pathologic globin chain imbalance in cells from patients with β-thalassemia. Xenograft assays show that a proportion of the edited CD34+ cells are long-term repopulating hematopoietic stem cells, demonstrating the potential of this approach for translation into a therapy for β-thalassemia. β-thalassemia is characterised by the presence of an excess of α-globin chains, which contribute to erythrocyte pathology. Here the authors use CRISP/Cas9 to reduce α-globin expression in hematopoietic precursors, and show effectiveness in xenograft assays in mice.
Collapse
|
78
|
Ackloo S, Brown PJ, Müller S. Chemical probes targeting epigenetic proteins: Applications beyond oncology. Epigenetics 2017; 12:378-400. [PMID: 28080202 PMCID: PMC5453191 DOI: 10.1080/15592294.2017.1279371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022] Open
Abstract
Epigenetic chemical probes are potent, cell-active, small molecule inhibitors or antagonists of specific domains in a protein; they have been indispensable for studying bromodomains and protein methyltransferases. The Structural Genomics Consortium (SGC), comprising scientists from academic and pharmaceutical laboratories, has generated most of the current epigenetic chemical probes. Moreover, the SGC has shared about 4 thousand aliquots of these probes, which have been used primarily for phenotypic profiling or to validate targets in cell lines or primary patient samples cultured in vitro. Epigenetic chemical probes have been critical tools in oncology research and have uncovered mechanistic insights into well-established targets, as well as identify new therapeutic starting points. Indeed, the literature primarily links epigenetic proteins to oncology, but applications in inflammation, viral, metabolic and neurodegenerative diseases are now being reported. We summarize the literature of these emerging applications and provide examples where existing probes might be used.
Collapse
Affiliation(s)
- Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straβe 15, Frankfurt am Main, Germany
| |
Collapse
|
79
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
80
|
Hau M, Zenk F, Ganesan A, Iovino N, Jung M. Cellular analysis of the action of epigenetic drugs and probes. Epigenetics 2017; 12:308-322. [PMID: 28071961 DOI: 10.1080/15592294.2016.1274472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small molecule drugs and probes are important tools in drug discovery, pharmacology, and cell biology. This is of course also true for epigenetic inhibitors. Important examples for the use of established epigenetic inhibitors are the study of the mechanistic role of a certain target in a cellular setting or the modulation of a certain phenotype in an approach that aims toward therapeutic application. Alternatively, cellular testing may aim at the validation of a new epigenetic inhibitor in drug discovery approaches. Cellular and eventually animal models provide powerful tools for these different approaches but certain caveats have to be recognized and taken into account. This involves both the selectivity of the pharmacological tool as well as the specificity and the robustness of the cellular system. In this article, we present an overview of different methods that are used to profile and screen for epigenetic agents and comment on their limitations. We describe not only diverse successful case studies of screening approaches using different assay formats, but also some problematic cases, critically discussing selected applications of these systems.
Collapse
Affiliation(s)
- Mirjam Hau
- a University of Freiburg, Institute for Pharmaceutical Sciences , Freiburg , Germany
| | - Fides Zenk
- b Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| | - A Ganesan
- c School of Pharmacy, University of East Anglia , Norwich NR4 7TJ , United Kingdom.,d Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg , Freiburg , Germany
| | - Nicola Iovino
- b Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| | - Manfred Jung
- a University of Freiburg, Institute for Pharmaceutical Sciences , Freiburg , Germany.,d Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg , Freiburg , Germany
| |
Collapse
|
81
|
|
82
|
Sripichai O, Fucharoen S. Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic approaches. Expert Rev Hematol 2016; 9:1129-1137. [PMID: 27801605 DOI: 10.1080/17474086.2016.1255142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Stress erythropoiesis induces fetal hemoglobin (HbF) expression in β-thalassemias, however the level of expression is highly variable. The last decade has seen dramatic advances in our understanding of the molecular regulators of HbF production and the genetic factors associated with HbF levels, leading to the promise of new methods of the clinical induction of HbF. Areas covered: This article will review the heterogeneity and genetic modifiers of HbF and HbF induction therapy in β-thalassemia. Expert commentary: One promising curative β-thalassemia therapy is to induce HbF synthesis in β-thalassemic erythrocytes to therapeutic levels before clinical symptom occurs. Further understanding of HbF level variation and regulation is needed in order to predict the response from HbF-inducing approaches.
Collapse
Affiliation(s)
- Orapan Sripichai
- a Thalassemia Research Center, Institute of Molecular Biosciences , Mahidol University , Nakhonpathom , Thailand
| | - Suthat Fucharoen
- a Thalassemia Research Center, Institute of Molecular Biosciences , Mahidol University , Nakhonpathom , Thailand
| |
Collapse
|
83
|
Abstract
The structural and functional conservation of hemoglobin throughout mammals has made the laboratory mouse an exceptionally useful organism in which to study both the protein and the individual globin genes. Early researchers looked to the globin genes as an excellent model in which to examine gene regulation – bountifully expressed and displaying a remarkably consistent pattern of developmental activation and silencing. In parallel with the growth of research into expression of the globin genes, mutations within the β-globin gene were identified as the cause of the β-hemoglobinopathies such as sickle cell disease and β-thalassemia. These lines of enquiry stimulated the development of transgenic mouse models, first carrying individual human globin genes and then substantial human genomic fragments incorporating the multigenic human β-globin locus and regulatory elements. Finally, mice were devised carrying mutant human β-globin loci on genetic backgrounds deficient in the native mouse globins, resulting in phenotypes of sickle cell disease or β-thalassemia. These years of work have generated a group of model animals that display many features of the β-hemoglobinopathies and provided enormous insight into the mechanisms of gene regulation. Substantive differences in the expression of human and mouse globins during development have also come to light, revealing the limitations of the mouse model, but also providing opportunities to further explore the mechanisms of globin gene regulation. In addition, animal models of β-hemoglobinopathies have demonstrated the feasibility of gene therapy for these conditions, now showing success in human clinical trials. Such models remain in use to dissect the molecular events of globin gene regulation and to identify novel treatments based upon the reactivation of developmentally silenced γ-globin. Here, we describe the development of animal models to investigate globin switching and the β-hemoglobinopathies, a field that has paralleled the emergence of modern molecular biology and clinical genetics.
Collapse
Affiliation(s)
- Bradley McColl
- Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jim Vadolas
- Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
84
|
Mettananda S, Fisher CA, Sloane-Stanley JA, Taylor S, Oppermann U, Gibbons RJ, Higgs DR. Selective silencing of α-globin by the histone demethylase inhibitor IOX1: a potentially new pathway for treatment of β-thalassemia. Haematologica 2016; 102:e80-e84. [PMID: 27810991 DOI: 10.3324/haematol.2016.155655] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sachith Mettananda
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK.,Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Christopher A Fisher
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | | - Stephen Taylor
- Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, UK.,The Botnar Research Centre, NIHR BRU Oxford, University of Oxford, UK
| | - Richard J Gibbons
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Douglas R Higgs
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK .,Oxford National Institute for Health Research Biomedical Research Centre, Blood Theme, Oxford University Hospital, UK
| |
Collapse
|
85
|
Hossain MA, Shen Y, Knudson I, Thakur S, Stees JR, Qiu Y, Pace BS, Peterson KR, Bungert J. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e378. [PMID: 27754490 DOI: 10.1038/mtna.2016.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
Abstract
Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs) targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.
Collapse
Affiliation(s)
- Mir A Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Isaac Knudson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shaleen Thakur
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jared R Stees
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yi Qiu
- Department of Anatomy and Cell Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, Georgia, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
86
|
Zhang Y, Zhang J, An W, Wan Y, Ma S, Yin J, Li X, Gao J, Yuan W, Guo Y, Engel JD, Shi L, Cheng T, Zhu X. Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation. Nucleic Acids Res 2016; 45:657-671. [PMID: 28123038 PMCID: PMC5314798 DOI: 10.1093/nar/gkw901] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 01/19/2023] Open
Abstract
The first intronic mutations in the intron 1 GATA site (int-1-GATA) of 5-aminolevulinate synthase 2 (ALAS2) have been identified in X-linked sideroblastic anemia (XLSA) pedigrees, strongly suggesting it could be causal mutations of XLSA. However, the function of this int-1-GATA site during in vivo development remains largely unknown. Here, we generated mice lacking a 13 bp fragment, including this int-1-GATA site (TAGATAAAGCCCC) and found that hemizygous deletion led to an embryonic lethal phenotype due to severe anemia resulting from a lack of ALAS2 expression, indicating that this non-coding sequence is indispensable for ALAS2 expression in vivo. Further analyses revealed that this int-1-GATA site anchored the GATA site in intron 8 (int-8-GATA) and the proximal promoter, forming a long-range loop to enhance ALAS2 expression by an enhancer complex including GATA1, TAL1, LMO2, LDB1 and Pol II at least, in erythroid cells. However, compared with the int-8-GATA site, the int-1-GATA site is more essential for regulating ALAS2 expression through CRISPR/Cas9-mediated site-specific deletion. Therefore, the int-1-GATA site could serve as a valuable site for diagnosing XLSA in cases with unknown mutations.
Collapse
Affiliation(s)
- Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jingliao Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wenbin An
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Yin
- Department of Cell Biology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Xichuan Li
- Department of Immunology, Biochemistry and Molecular Biology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China .,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
87
|
Overexpression of Lysine-Specific Demethylase 1 Is Associated With Tumor Progression and Unfavorable Prognosis in Chinese Patients With Endometrioid Endometrial Adenocarcinoma. Int J Gynecol Cancer 2016; 25:1453-60. [PMID: 26166558 DOI: 10.1097/igc.0000000000000500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Lysine-specific demethylase 1 (LSD1) is a kind of flavin adenine dinucleotide-dependent amine oxidase that regulates normal cellular differentiation, gene activation, tumorigenesis, and progression. This study aims to detect the expression level of LSD1 in endometrial cancer and to explore its role in the progression and prognosis of endometrioid endometrial adenocarcinoma (EEA). METHODS Immunohistochemistry was used to examine the expression of LSD1 in 206 EEA specimens, 50 benign endometrial lesion specimens, and 45 normal endometrium specimens. χ Analysis, Kaplan-Meier method, and multivariate Cox proportional hazard analysis were applied for the statistical analysis. RESULTS Compared with normal endometrium and benign endometrial lesion (both P < 0.001), LSD1 was overexpressed in EEA. LSD1 expression was correlated with histological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, vascular/lymphatic invasion, depth of myometrial invasion, and lymph node metastasis. Results of the Kaplan-Meier analysis indicated that LSD1 expression was associated with overall survival (OS) and disease-free survival (DFS) of EEA. The negative expression LSD1 group had longer OS and DFS than did the positive expression group. The difference was significant (both P < 0.001, log-rank test). Multivariate Cox regression analysis revealed that the LSD1 expression status was an independent prognostic factor for both OS (P = 0.027) and DFS (P = 0.016) of patients with EEA. CONCLUSIONS Overexpression of LSD1 may contribute to the progression of EEA and may thus serve as a new biomarker to predict the prognosis of EEA.
Collapse
|
88
|
Maiques-Diaz A, Somervaille TCP. LSD1: biologic roles and therapeutic targeting. Epigenomics 2016; 8:1103-16. [PMID: 27479862 PMCID: PMC5066116 DOI: 10.2217/epi-2016-0009] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022] Open
Abstract
LSD1 (KDM1A; BHC110; AOF2) was the first protein reported to exhibit histone demethylase activity and has since been shown to have multiple essential roles in mammalian biology. Given its enzymatic activity and its high-level expression in many human malignancies, a significant recent focus has been the development of pharmacologic inhibitors. Here we summarize structural and biochemical knowledge of this important epigenetic regulator, with a particular emphasis on the functional and preclinical studies in oncology that have provided justification for the evaluation of tranylcypromine derivative LSD1 inhibitors in early phase clinical trials.
Collapse
Affiliation(s)
- Alba Maiques-Diaz
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Tim CP Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
89
|
Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood 2016; 128:1139-43. [PMID: 27405777 DOI: 10.1182/blood-2016-01-691089] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/18/2016] [Indexed: 12/23/2022] Open
Abstract
Overcoming the silencing of the fetal γ-globin gene has been a long-standing goal in the treatment of sickle cell disease (SCD). The major transcriptional enhancer of the β-globin locus, called the locus control region (LCR), dynamically interacts with the developmental stage-appropriate β-type globin genes via chromatin looping, a process requiring the protein Ldb1. In adult erythroid cells, the LCR can be redirected from the adult β- to the fetal γ-globin promoter by tethering Ldb1 to the human γ-globin promoter with custom-designed zinc finger (ZF) proteins (ZF-Ldb1), leading to reactivation of γ-globin gene expression. To compare this approach to pharmacologic reactivation of fetal hemoglobin (HbF), hematopoietic cells from patients with SCD were treated with a lentivirus expressing the ZF-Ldb1 or with chemical HbF inducers. The HbF increase in cells treated with ZF-Ldb1 was more than double that observed with decitabine and pomalidomide; butyrate had an intermediate effect whereas tranylcypromine and hydroxyurea showed relatively low HbF reactivation. ZF-Ldb1 showed comparatively little toxicity, and reduced sickle hemoglobin (HbS) synthesis as well as sickling of SCD erythroid cells under hypoxic conditions. The efficacy and low cytotoxicity of lentiviral-mediated ZF-Ldb1 gene transfer compared with the drug regimens support its therapeutic potential for the treatment of SCD.
Collapse
|
90
|
Abstract
Sickle-cell disease affects millions of individuals worldwide, but the global incidence is concentrated in Africa. The burden of sickle-cell disease is expected to continue to rise over the coming decades, adding to stress on the health infrastructures of many countries. Although the molecular cause of sickle-cell disease has been known for more than half a century, treatment options remain greatly limited. Allogeneic haemopoietic stem-cell transplantation is the only existing cure but is limited to specialised clinical centres and remains inaccessible for most patients. Induction of fetal haemoglobin production is a promising strategy for the treatment of sickle-cell disease. In this Series paper, we review scientific breakthroughs in epidemiology, genetics, and molecular biology that have brought reactivation of fetal haemoglobin to the forefront of sickle-cell disease research. Improved knowledge of the regulation of fetal haemoglobin production in human beings and the development of genome editing technology now support the design of innovative therapies for sickle-cell disease that are based on fetal haemoglobin.
Collapse
Affiliation(s)
- Guillaume Lettre
- Montreal Heart Institute, Montreal, QC, Canada; Université de Montréal, Montreal, QC, Canada.
| | - Daniel E Bauer
- Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
91
|
Renella R. Clinically-oriented proteomic investigation of sickle cell disease: Opportunities and challenges. Proteomics Clin Appl 2016; 10:816-30. [DOI: 10.1002/prca.201500133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/05/2016] [Accepted: 05/02/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Raffaele Renella
- Department of Pediatrics; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| |
Collapse
|
92
|
Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2. PLoS One 2016; 11:e0153767. [PMID: 27073918 PMCID: PMC4830539 DOI: 10.1371/journal.pone.0153767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/04/2016] [Indexed: 01/10/2023] Open
Abstract
Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF) is a promising approach for ameliorating sickle cell disease (SCD) and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC) 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2), elicits a dose and time dependent induction of γ-globin mRNA (HBG) and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB). Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq) of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene.
Collapse
|
93
|
Rivers A, Vaitkus K, Ibanez V, Ruiz MA, Jagadeeswaran R, Saunthararajah Y, Cui S, Engel JD, DeSimone J, Lavelle D. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis). Haematologica 2016; 101:688-97. [PMID: 26858356 DOI: 10.3324/haematol.2015.140749] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
Increased fetal hemoglobin levels lessen the severity of symptoms and increase the lifespan of patients with sickle cell disease. Hydroxyurea, the only drug currently approved for the treatment of sickle cell disease, is not effective in a large proportion of patients and therefore new pharmacological agents that increase fetal hemoglobin levels have long been sought. Recent studies identifying LSD-1 as a repressor of γ-globin expression led to experiments demonstrating that the LSD-1 inhibitor RN-1 increased γ-globin expression in the sickle cell mouse model. Because the arrangement and developmental stage-specific expression pattern of the β-like globin genes is highly conserved between man and baboon, the baboon model remains the best predictor of activity of fetal hemoglobin-inducing agents in man. In this report, we demonstrate that RN-1 increases γ-globin synthesis, fetal hemoglobin, and F cells to high levels in both anemic and non-anemic baboons with activity comparable to decitabine, the most potent fetal hemoglobin-inducing agent known. RN-1 not only restores high levels of fetal hemoglobin but causes the individual 5' Iγ- and 3' Vγ-globin chains to be synthesized in the ratio characteristic of fetal development. Increased fetal hemoglobin was associated with increased levels of acetylated Histone H3, H3K4Me2, H3K4Me3, and RNA polymerase II at the γ-globin gene, and diminished γ-globin promoter DNA methylation. RN-1 is likely to induce clinically relevant levels of fetal hemoglobin in patients with sickle cell disease, although careful titration of the dose may be required to minimize myelotoxicity.
Collapse
Affiliation(s)
- Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Kestis Vaitkus
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vinzon Ibanez
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria Armila Ruiz
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuaiying Cui
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James D Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph DeSimone
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald Lavelle
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
94
|
Conway SJ, Woster PM, Greenlee WJ, Georg G, Wang S. Epigenetics: Novel Therapeutics Targeting Epigenetics. J Med Chem 2016; 59:1247-8. [DOI: 10.1021/acs.jmedchem.6b00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
95
|
Ruiz MA, Rivers A, Ibanez V, Vaitkus K, Mahmud N, DeSimone J, Lavelle D. Hydroxymethylcytosine and demethylation of the γ-globin gene promoter during erythroid differentiation. Epigenetics 2016; 10:397-407. [PMID: 25932923 PMCID: PMC4622718 DOI: 10.1080/15592294.2015.1039220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5mC) and 5hmC at a CCGG site within the 5′ γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5mC and 5hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5hmC and negatively correlated with 5mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter.
Collapse
|
96
|
Itoh Y, Aihara K, Mellini P, Tojo T, Ota Y, Tsumoto H, Solomon VR, Zhan P, Suzuki M, Ogasawara D, Shigenaga A, Inokuma T, Nakagawa H, Miyata N, Mizukami T, Otaka A, Suzuki T. Identification of SNAIL1 Peptide-Based Irreversible Lysine-Specific Demethylase 1-Selective Inactivators. J Med Chem 2016; 59:1531-44. [DOI: 10.1021/acs.jmedchem.5b01323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Keisuke Aihara
- Institute
of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Paolo Mellini
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Toshifumi Tojo
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Yosuke Ota
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Viswas Raja Solomon
- Graduate
School of Pharmaceutical Sciences, Nagoya City University, 3-1
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Peng Zhan
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Miki Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Daisuke Ogasawara
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Akira Shigenaga
- Institute
of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Tsubasa Inokuma
- Institute
of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Hidehiko Nakagawa
- Graduate
School of Pharmaceutical Sciences, Nagoya City University, 3-1
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Miyata
- Graduate
School of Pharmaceutical Sciences, Nagoya City University, 3-1
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tamio Mizukami
- Graduate
School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Akira Otaka
- Institute
of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Takayoshi Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
- CREST, Japan Science
and Technology Agency (JST), 4-1-8
Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
97
|
Pace BS, Liu L, Li B, Makala LH. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Exp Biol Med (Maywood) 2015; 240:1050-64. [PMID: 26283707 DOI: 10.1177/1535370215596859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| | - Levi H Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
98
|
LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv2. Proc Natl Acad Sci U S A 2015; 112:13922-7. [PMID: 26512114 DOI: 10.1073/pnas.1517326112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hemangioblast is a progenitor cell with the capacity to give rise to both hematopoietic and endothelial progenitors. Currently, the regulatory mechanisms underlying hemangioblast formation are being elucidated, whereas those controllers for the selection of hematopoietic or endothelial fates still remain a mystery. To answer these questions, we screened for zebrafish mutants that have defects in the hemangioblast expression of Gata1, which is never expressed in endothelial progenitors. One of the isolated mutants, it627, showed not only down-regulation of hematopoietic genes but also up-regulation of endothelial genes. We identified the gene responsible for the it627 mutant as the zebrafish homolog of Lys-specific demethylase 1 (LSD1/KDM1A). Surprisingly, the hematopoietic defects in lsd1(it627) embryos were rescued by the gene knockdown of the Ets variant 2 gene (etv2), an essential regulator for vasculogenesis. Our results suggest that the LSD1-dependent shutdown of Etv2 gene expression may be a significant event required for hemangioblasts to initiate hematopoietic differentiation.
Collapse
|
99
|
Dai Y, Sangerman J, Luo HY, Fucharoen S, Chui DHK, Faller DV, Perrine SP. Therapeutic fetal-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms. Blood Cells Mol Dis 2015; 56:62-9. [PMID: 26603726 DOI: 10.1016/j.bcmd.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
Abstract
Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ-globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy.
Collapse
Affiliation(s)
- Yan Dai
- Hemoglobinopathy Thalassemia Research Unit and Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Jose Sangerman
- Hemoglobinopathy Thalassemia Research Unit and Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Hong Yuan Luo
- Department of Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Suthat Fucharoen
- Thalassemia Research Center, Mahidol University, Phuttamonthon, Thailand
| | - David H K Chui
- Department of Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Douglas V Faller
- Hemoglobinopathy Thalassemia Research Unit and Cancer Center, Boston University School of Medicine, Boston, MA, United States; Phoenicia BioSciences, Inc., Newton, MA, United States
| | - Susan P Perrine
- Hemoglobinopathy Thalassemia Research Unit and Cancer Center, Boston University School of Medicine, Boston, MA, United States; Phoenicia BioSciences, Inc., Newton, MA, United States; Center for Hemoglobin Research in Minorities, Departments of Pediatrics and Medicine, Howard University College of Medicine, Washington DC, United States.
| |
Collapse
|
100
|
Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation. Proc Natl Acad Sci U S A 2015; 112:12169-74. [PMID: 26371321 DOI: 10.1073/pnas.1509158112] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited disorder caused by a point mutation in the β-globin gene, leading to the production of abnormally shaped red blood cells. Sickle cells are prone to hemolysis and thereby release free heme into plasma, causing oxidative stress and inflammation that in turn result in damage to multiple organs. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a master regulator of the antioxidant cell-defense system. Here we show that constitutive Nrf2 activation by ablation of its negative regulator Keap1 (kelch-like ECH-associated protein 1) significantly improves symptoms in SCD model mice. SCD mice exhibit severe liver damage and lung inflammation associated with high expression levels of proinflammatory cytokines and adhesion molecules compared with normal mice. Importantly, these symptoms subsided after Nrf2 activation. Although hemolysis and stress erythropoiesis did not change substantially in the Nrf2-activated SCD mice, Nrf2 promoted the elimination of plasma heme released by sickle cells' hemolysis and thereby reduced oxidative stress and inflammation, demonstrating that Nrf2 activation reduces organ damage and segregates inflammation from prevention of hemolysis in SCD mice. Furthermore, administration of the Nrf2 inducer CDDO-Im (2-cyano-3, 12 dioxooleana-1, 9 diene-28-imidazolide) also relieved inflammation and organ failure in SCD mice. These results support the contention that Nrf2 induction may be an important means to protect organs from the pathophysiology of sickle cell-induced damage.
Collapse
|