51
|
Xu C, Yu L, Hou J, Jackson RJ, Wang H, Huang C, Liu T, Wang Q, Zou X, Morris RG, Spires-Jones TL, Yang Z, Yin Z, Xu Y, Chen G. Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development. Front Cell Neurosci 2017; 11:330. [PMID: 29104535 PMCID: PMC5655024 DOI: 10.3389/fncel.2017.00330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO) mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development.
Collapse
Affiliation(s)
- Congyu Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Linjie Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jinxing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Rosemary J Jackson
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - He Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Tingting Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Qihui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xiaochuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Richard G Morris
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.,Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Instituto de Neurociencias, Alicante, Spain
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Zhenyu Yin
- Department of Geriatrics, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| |
Collapse
|
52
|
Wang J, Liu Y, Chen T. Identification of key genes and pathways in Parkinson's disease through integrated analysis. Mol Med Rep 2017; 16:3769-3776. [PMID: 28765971 PMCID: PMC5646954 DOI: 10.3892/mmr.2017.7112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, degene-rative neurological disease, typically characterized by tremors and muscle rigidity. The present study aimed to identify differe-ntially expressed genes (DEGs) between patients with PD and healthy patients, and clarify their association with additional biological processes that may regulate factors that lead to PD. An integrated analysis of publicly available Gene Expression Omnibus datasets of PD was performed. DEGs were identified between PD and normal blood samples. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses, as well as protein‑protein interaction (PPI) networks were used to predict the functions of identified DEGs. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to validate the predicted expression levels of identified DEGs in whole blood samples obtained from patients with PD and normal healthy controls. A total of 292DEGs were identified between the PD and normal blood samples. Of these, 156 genes were significantly upregulated and 136 genes were significantly downregulated in PD samples following integrated analysis of four PD expression datasets. The 10 most upregulated and downregulated genes were used to construct a PPI network, where ubiquitin C‑terminal hydrolase L1 (UCHL1), 3‑phosphoinositide dependent protein kinase 1 (PDPK1) and protein kinase cAMP‑activated catalytic subunit β (PRKACB) demonstrated the highest connectivity in the network. DEGs were significantly enriched in amoebiasis, vascular smooth muscle contraction, and the Wnt and calcium signaling pathways. The expression levels of significant DEGs, UCHL1, PDPK1 and PRKACB were validated using RT‑qPCR analysis. The findings revealed that UCHL1 and PDPK1 were upregulated and PRKACB was downregulated in patients with PD when compared with normal healthy controls. In conclusion, the results indicate that the significant DEGs, including UCHL1, PDPK1 and PRKACB may be associated with the development of PD. In addition, these factors may be involved in various signaling pathways, including amoebiasis, vascular smooth muscle contraction and the Wnt and calcium signaling pathways.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252004, P.R. China
| | - Yining Liu
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252004, P.R. China
| | - Tuanzhi Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252004, P.R. China
| |
Collapse
|
53
|
Lachén-Montes M, González-Morales A, Zelaya MV, Pérez-Valderrama E, Ausín K, Ferrer I, Fernández-Irigoyen J, Santamaría E. Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer's disease progression. Sci Rep 2017; 7:9115. [PMID: 28831118 PMCID: PMC5567385 DOI: 10.1038/s41598-017-09481-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Olfactory dysfunction is among the earliest features of Alzheimer’s disease (AD). Although neuropathological abnormalities have been detected in the olfactory bulb (OB), little is known about its dynamic biology. Here, OB- proteome analysis showed a stage-dependent synaptic proteostasis impairment during AD evolution. In addition to progressive modulation of tau and amyloid precursor protein (APP) interactomes, network-driven proteomics revealed an early disruption of upstream and downstream p38 MAPK pathway and a subsequent impairment of Phosphoinositide-dependent protein kinase 1 (PDK1)/Protein kinase C (PKC) signaling axis in the OB from AD subjects. Moreover, a mitochondrial imbalance was evidenced by a depletion of Prohibitin-2 (Phb2) levels and a specific decrease in the phosphorylated isoforms of Phb1 in intermediate and advanced AD stages. Interestingly, olfactory Phb subunits were also deregulated across different types of dementia. Phb2 showed a specific up-regulation in mixed dementia, while Phb1 isoforms were down-regulated in frontotemporal lobar degeneration (FTLD). However, no differences were observed in the olfactory expression of Phb subunits in progressive supranuclear palsy (PSP). To sum up, our data reflect, in part, the missing links in the biochemical understanding of olfactory dysfunction in AD, unveiling Phb complex as a differential driver of neurodegeneration at olfactory level.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Andrea González-Morales
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - María Victoria Zelaya
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Pathological Anatomy Department, Navarra Hospital Complex, Pamplona, Spain
| | - Estela Pérez-Valderrama
- Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Karina Ausín
- Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain. .,IDISNA, Navarra Institute for Health Research, Pamplona, Spain. .,Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.
| |
Collapse
|
54
|
Ezpeleta J, Boudet-Devaud F, Pietri M, Baudry A, Baudouin V, Alleaume-Butaux A, Dagoneau N, Kellermann O, Launay JM, Schneider B. Protective role of cellular prion protein against TNFα-mediated inflammation through TACE α-secretase. Sci Rep 2017; 7:7671. [PMID: 28794434 PMCID: PMC5550509 DOI: 10.1038/s41598-017-08110-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Although cellular prion protein PrPC is well known for its implication in Transmissible Spongiform Encephalopathies, its functions remain elusive. Combining in vitro and in vivo approaches, we here show that PrPC displays the intrinsic capacity to protect neuronal cells from a pro-inflammatory TNFα noxious insult. Mechanistically, PrPC coupling to the NADPH oxidase-TACE α-secretase signaling pathway promotes TACE-mediated cleavage of transmembrane TNFα receptors (TNFRs) and the release of soluble TNFR, which limits the sensitivity of recipient cells to TNFα. We further show that PrPC expression is necessary for TACE α-secretase to stay at the plasma membrane in an active state for TNFR shedding. Such PrPC control of TACE localization depends on PrPC modulation of β1 integrin signaling and downstream activation of ROCK-I and PDK1 kinases. Loss of PrPC provokes TACE internalization, which in turn cancels TACE-mediated cleavage of TNFR and renders PrPC-depleted neuronal cells as well as PrPC knockout mice highly vulnerable to pro-inflammatory TNFα insult. Our work provides the prime evidence that in an inflammatory context PrPC adjusts the response of neuronal cells targeted by TNFα through TACE α-secretase. Our data also support the view that abnormal TACE trafficking and activity in prion diseases originate from a-loss-of-PrPC cytoprotective function.
Collapse
Affiliation(s)
- Juliette Ezpeleta
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - François Boudet-Devaud
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Mathéa Pietri
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Anne Baudry
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Vincent Baudouin
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Aurélie Alleaume-Butaux
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Nathalie Dagoneau
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Odile Kellermann
- INSERM, UMR-S 1124, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France
| | - Jean-Marie Launay
- AP-HP, INSERM UMR-S 942, Hôpital Lariboisière, F-75010, Paris, France.,Pharma Research Department, Hoffmann-La-Roche Ltd, CH4070, Basel, Switzerland
| | - Benoit Schneider
- INSERM, UMR-S 1124, F-75006, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, F-75006, Paris, France.
| |
Collapse
|
55
|
Hirsch TZ, Martin-Lannerée S, Mouillet-Richard S. Functions of the Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:1-34. [PMID: 28838656 DOI: 10.1016/bs.pmbts.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although initially disregarded compared to prion pathogenesis, the functions exerted by the cellular prion protein PrPC have gained much interest over the past two decades. Research aiming at unraveling PrPC functions started to intensify when it became appreciated that it would give clues as to how it is subverted in the context of prion infection and, more recently, in the context of Alzheimer's disease. It must now be admitted that PrPC is implicated in an incredible variety of biological processes, including neuronal homeostasis, stem cell fate, protection against stress, or cell adhesion. It appears that these diverse roles can all be fulfilled through the involvement of PrPC in cell signaling events. Our aim here is to provide an overview of our current understanding of PrPC functions from the animal to the molecular scale and to highlight some of the remaining gaps that should be addressed in future research.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Séverine Martin-Lannerée
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Sophie Mouillet-Richard
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France.
| |
Collapse
|
56
|
Linsenmeier L, Altmeppen HC, Wetzel S, Mohammadi B, Saftig P, Glatzel M. Diverse functions of the prion protein - Does proteolytic processing hold the key? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2128-2137. [PMID: 28693923 DOI: 10.1016/j.bbamcr.2017.06.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Proteolytic processing of the cellular and disease-associated form of the prion protein leads to generation of bioactive soluble prion protein fragments and modifies the structure and function of its cell-bound form. The nature of proteases responsible for shedding, α-, β-, and γ-cleavage of the prion protein are only partially identified and their regulation is largely unknown. Here, we provide an overview of the increasingly multifaceted picture of prion protein proteolysis and shed light on physiological and pathological roles associated with these cleavages. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
57
|
Dou H, Feher A, Davila AC, Romero MJ, Patel VS, Kamath VM, Gooz MB, Rudic RD, Lucas R, Fulton DJ, Weintraub NL, Bagi Z. Role of Adipose Tissue Endothelial ADAM17 in Age-Related Coronary Microvascular Dysfunction. Arterioscler Thromb Vasc Biol 2017; 37:1180-1193. [PMID: 28473444 DOI: 10.1161/atvbaha.117.309430] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/12/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE A disintegrin and metalloproteinase ADAM17 (tumor necrosis factor-α [TNF]-converting enzyme) regulates soluble TNF levels. We tested the hypothesis that aging-induced activation in adipose tissue (AT)-expressed ADAM17 contributes to the development of remote coronary microvascular dysfunction in obesity. APPROACH AND RESULTS Coronary arterioles (CAs, ≈90 µm) from right atrial appendages and mediastinal AT were examined in patients (aged: 69±11 years, BMI: 30.2±5.6 kg/m2) who underwent open heart surgery. CA and AT were also studied in 6-month and 24-month lean and obese mice fed a normal or high-fat diet. We found that obesity elicited impaired endothelium-dependent CA dilations only in older patients and in aged high-fat diet mice. Transplantation of AT from aged obese, but not from young or aged, mice increased serum cytokine levels, including TNF, and impaired CA dilation in the young recipient mice. In patients and mice, obesity was accompanied by age-related activation of ADAM17, which was attributed to vascular endothelium-expressed ADAM17. Excess, ADAM17-shed TNF from AT arteries in older obese patients was sufficient to impair CA dilation in a bioassay in which the AT artery was serially connected to a CA. Moreover, we found that the increased activity of endothelial ADAM17 is mediated by a diminished inhibitory interaction with caveolin-1, owing to age-related decline in caveolin-1 expression in obese patients and mice or to genetic deletion of caveolin-1. CONCLUSIONS The present study indicates that aging and obesity cooperatively reduce caveolin-1 expression and increase vascular endothelial ADAM17 activity and soluble TNF release in AT, which may contribute to the development of remote coronary microvascular dysfunction in older obese patients.
Collapse
Affiliation(s)
- Huijuan Dou
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Attila Feher
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Alec C Davila
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Maritza J Romero
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Vijay S Patel
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Vinayak M Kamath
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Monika Beck Gooz
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - R Daniel Rudic
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Rudolf Lucas
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - David J Fulton
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Neal L Weintraub
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Zsolt Bagi
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.).
| |
Collapse
|
58
|
Ragagnin A, Ezpeleta J, Guillemain A, Boudet-Devaud F, Haeberlé AM, Demais V, Vidal C, Demuth S, Béringue V, Kellermann O, Schneider B, Grant NJ, Bailly Y. Cerebellar compartmentation of prion pathogenesis. Brain Pathol 2017; 28:240-263. [PMID: 28268246 DOI: 10.1111/bpa.12503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
In prion diseases, the brain lesion profile is influenced by the prion "strain" properties, the invasion route to the brain, and still unknown host cell-specific parameters. To gain insight into those endogenous factors, we analyzed the histopathological alterations induced by distinct prion strains in the mouse cerebellum. We show that 22L and ME7 scrapie prion proteins (PrP22L , PrPME7 ), but not bovine spongiform encephalopathy PrP6PB1 , accumulate in a reproducible parasagittal banding pattern in the cerebellar cortex of infected mice. Such banding pattern of PrP22L aggregation did not depend on the neuroinvasion route, but coincided with the parasagittal compartmentation of the cerebellum mostly defined by the expression of zebrins, such as aldolase C and the excitatory amino acid transporter 4, in Purkinje cells. We provide evidence that Purkinje cells display a differential, subtype-specific vulnerability to 22L prions with zebrin-expressing Purkinje cells being more resistant to prion toxicity, while in stripes where PrP22L accumulated most zebrin-deficient Purkinje cells are lost and spongiosis accentuated. In addition, in PrP22L stripes, enhanced reactive astrocyte processes associated with microglia activation support interdependent events between the topographic pattern of Purkinje cell death, reactive gliosis and PrP22L accumulation. Finally, we find that in preclinically-ill mice prion infection promotes at the membrane of astrocytes enveloping Purkinje cell excitatory synapses, upregulation of tumor necrosis factor-α receptor type 1 (TNFR1), a key mediator of the neuroinflammation process. These overall data show that Purkinje cell sensitivity to prion insult is locally restricted by the parasagittal compartmentation of the cerebellum, and that perisynaptic astrocytes may contribute to prion pathogenesis through prion-induced TNFR1 upregulation.
Collapse
Affiliation(s)
- Audrey Ragagnin
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Juliette Ezpeleta
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Aurélie Guillemain
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - François Boudet-Devaud
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Anne-Marie Haeberlé
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie In Vitro, CNRS UPS-3156, Université de Strasbourg, Strasbourg, France
| | | | - Stanislas Demuth
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | | | - Odile Kellermann
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Benoit Schneider
- INSERM UMR-S1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Paris, France
| | - Nancy J Grant
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Yannick Bailly
- Cytologie et Cytopathologie Neuronales, Institut des Neurosciences Cellulaires & Intégratives, CNRS UPR 3212, Strasbourg, France
| |
Collapse
|
59
|
Giles K, Olson SH, Prusiner SB. Developing Therapeutics for PrP Prion Diseases. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a023747. [PMID: 28096242 DOI: 10.1101/cshperspect.a023747] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The prototypical PrP prion diseases are invariably fatal, and the search for agents to treat them spans more than 30 years, with limited success. However, in the last few years, the application of high-throughput screening, medicinal chemistry, and pharmacokinetic optimization has led to important advances. The PrP prion inoculation paradigm provides a robust assay for testing therapeutic efficacy, and a dozen compounds have been reported that lead to meaningful extension in survival of prion-infected mice. Here, we review the history and recent progress in the field, focusing on studies validated in animal models. Based on screens in cells infected with mouse-passaged PrP prions, orally available compounds were generated that double or even triple the survival of mice infected with the same prion strain. Unfortunately, no compounds have yet shown efficacy against human prions. Nevertheless, the speed of the recent advances brings hope that an effective therapeutic can be developed. A successful treatment for any neurodegenerative disease would be a major achievement, and the growing understanding that the more common neurodegenerative diseases, including Alzheimer's and Parkinson's, progress by an analogous prion mechanism serves to highlight the importance of antiprion therapeutics.
Collapse
Affiliation(s)
- Kurt Giles
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143.,Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Steven H Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143.,Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143.,Department of Neurology, University of California, San Francisco, San Francisco, California 94143.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
60
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
61
|
Abstract
Originally thought to be nondruggable, kinases represent attractive drug targets for pharmaceutical companies and academia. To date, there are over 40 kinase inhibitors approved by the US FDA, with 32 of these being small molecules, in addition to the three mammalian target of rapamycin inhibitor macrolides (sirolimus, temsirolimus and everolimus). Despite the rapid development of kinase inhibitors for cancer, presently none of these agents are approved for CNS indications. This mini perspective highlights selected kinase targets for CNS disorders, of which brain-permeable small-molecule inhibitors are reported, with demonstrated preclinical proof-of-concept efficacy. This is followed by a brief discussion on the key challenges of blood–brain barrier penetration and selectivity profiles in developing kinase inhibitors for CNS disorders.
Collapse
|
62
|
Abstract
Although an effective therapy for prion disease has not yet been established, many advances have been made toward understanding its pathogenesis, which has facilitated research into therapeutics for the disease. Several compounds, including flupirtine, quinacrine, pentosan polysulfate, and doxycycline, have recently been used on a trial basis for patients with prion disease. Concomitantly, several lead antiprion compounds, including compound B (compB), IND series, and anle138b, have been discovered. However, clinical trials are still far from yielding significantly beneficial results, and the findings of lead compound studies in animals have highlighted new challenges. These efforts have highlighted areas that need improvement or further exploration to achieve more effective therapies. In this work, we review recent advances in prion-related therapeutic research and discuss basic scientific issues to be resolved for meaningful medical intervention of prion disease.
Collapse
|
63
|
Cissé M, Duplan E, Checler F. The transcription factor XBP1 in memory and cognition: Implications in Alzheimer disease. Mol Med 2017; 22:905-917. [PMID: 28079229 DOI: 10.2119/molmed.2016.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic region leucine zipper transcription factor isolated two decades ago in a search for regulators of major histocompatibility complex class II gene expression. XBP1 is a very complex protein regulating many physiological functions, including immune system, inflammatory responses, and lipid metabolism. Evidence over the past few years suggests that XBP1 also plays important roles in pathological settings since its activity as transcription factor has profound effects on the prognosis and progression of diseases such as cancer, neurodegeneration, and diabetes. Here we provide an overview on recent advances in our understanding of this multifaceted molecule, particularly in regulating synaptic plasticity and memory function, and the implications in neurodegenerative diseases with emphasis on Alzheimer disease.
Collapse
Affiliation(s)
- Moustapha Cissé
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
64
|
Bertoldi K, Cechinel LR, Schallenberger B, Meireles L, Basso C, Lovatel GA, Bernardi L, Lamers ML, Siqueira IR. Aging process alters hippocampal and cortical secretase activities of Wistar rats. Behav Brain Res 2017; 317:374-381. [DOI: 10.1016/j.bbr.2016.09.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022]
|
65
|
La transconformation protéique, nouveau paradigme en neurologie. Rev Neurol (Paris) 2015; 171:825-31. [DOI: 10.1016/j.neurol.2015.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 01/06/2023]
|
66
|
PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta Rev Cancer 2015; 1856:178-88. [DOI: 10.1016/j.bbcan.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/22/2023]
|
67
|
p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer's disease. Mol Psychiatry 2015; 20:1301-10. [PMID: 25917367 PMCID: PMC4759103 DOI: 10.1038/mp.2015.49] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/26/2015] [Accepted: 03/24/2015] [Indexed: 01/17/2023]
Abstract
In Alzheimer's disease (AD), neurodegenerative signals such as amyloid-beta (Aβ) and the precursors of neurotrophins, outbalance neurotrophic signals, causing synaptic dysfunction and neurodegeneration. The neurotrophin receptor p75 (p75NTR) is a receptor of Aβ and mediates Aβ-induced neurodegenerative signals. The shedding of its ectodomain from the cell surface is physiologically regulated; however, the function of the diffusible p75NTR ectodomain (p75ECD) after shedding remains largely not known. Here, we show that p75ECD levels in cerebrospinal fluid and in the brains of Alzheimer's patients and amyloid-beta precursor protein (APP)/PS1 transgenic mice were significantly reduced, due to inhibition of the sheddase-tumor necrosis factor-alpha-converting enzyme by Aβ. Restoration of p75ECD to the normal level by brain delivery of the gene encoding human p75ECD before or after Aβ deposition in the brain of APP/PS1 mice reversed the behavioral deficits and AD-type pathologies, such as Aβ deposit, apoptotic events, neuroinflammation, Tau phosphorylation and loss of dendritic spine, neuronal structures and synaptic proteins. Furthermore, p75ECD can also reduce amyloidogenesis by suppressing β-secretase expression and activities. Our data demonstrate that p75ECD is a physiologically neuroprotective molecule against Aβ toxicity and would be a novel therapeutic target and biomarker for AD.
Collapse
|
68
|
Differential levels of p75NTR ectodomain in CSF and blood in patients with Alzheimer's disease: a novel diagnostic marker. Transl Psychiatry 2015; 5:e650. [PMID: 26440538 PMCID: PMC4930124 DOI: 10.1038/tp.2015.146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia in the elderly. The ectodomain of p75 neurotrophin receptor (p75NTR-ECD) has been suggested to play important roles in regulating beta-amyloid (Aβ) deposition and in protecting neurons from the toxicity of soluble Aβ. However, whether and how the serum and cerebrospinal fluid (CSF) levels of p75NTR-ECD change in patients with AD are not well documented. In the present study, we determined the concentrations of serum p75NTR-ECD in an AD group, a Parkinson disease group and a stroke group, as well as in a group of elderly controls without neurological disorders (EC). We also determined the levels of CSF p75NTR-ECD in a subset of the AD and EC groups. Our data showed that a distinct p75NTR-ECD profile characterized by a decreased CSF level and an increased serum level was present concomitantly with AD patients but not with other diseases. p75NTR-ECD levels in both the serum and CSF were strongly correlated with Mini-Mental State Examination (MMSE) scores and showed sound differential diagnostic value for AD. Moreover, when combining CSF Aβ42, CSF Aβ42/40, CSF ptau181 or CSF ptau181/Aβ42 with CSF p75NTR-ECD, the area under the receiver operating characteristic curve (AUC) and diagnostic accuracies improved. These findings indicate that p75NTR-ECD can serve as a specific biomarker for AD and the determination of serum and CSF p75NTR-ECD levels is likely to be helpful in monitoring AD progression.
Collapse
|
69
|
Herrmann US, Schütz AK, Shirani H, Huang D, Saban D, Nuvolone M, Li B, Ballmer B, Åslund AKO, Mason JJ, Rushing E, Budka H, Nyström S, Hammarström P, Böckmann A, Caflisch A, Meier BH, Nilsson KPR, Hornemann S, Aguzzi A. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci Transl Med 2015; 7:299ra123. [DOI: 10.1126/scitranslmed.aab1923] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
70
|
Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neuritogenesis Defects and Prion Accumulation. PLoS Pathog 2015; 11:e1005073. [PMID: 26241960 PMCID: PMC4524729 DOI: 10.1371/journal.ppat.1005073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/07/2015] [Indexed: 01/05/2023] Open
Abstract
In prion diseases, synapse dysfunction, axon retraction and loss of neuronal polarity precede neuronal death. The mechanisms driving such polarization defects, however, remain unclear. Here, we examined the contribution of RhoA-associated coiled-coil containing kinases (ROCK), key players in neuritogenesis, to prion diseases. We found that overactivation of ROCK signaling occurred in neuronal stem cells infected by pathogenic prions (PrPSc) and impaired the sprouting of neurites. In reconstructed networks of mature neurons, PrPSc-induced ROCK overactivation provoked synapse disconnection and dendrite/axon degeneration. This overactivation of ROCK also disturbed overall neurotransmitter-associated functions. Importantly, we demonstrated that beyond its impact on neuronal polarity ROCK overactivity favored the production of PrPSc through a ROCK-dependent control of 3-phosphoinositide-dependent kinase 1 (PDK1) activity. In non-infectious conditions, ROCK and PDK1 associated within a complex and ROCK phosphorylated PDK1, conferring basal activity to PDK1. In prion-infected neurons, exacerbated ROCK activity increased the pool of PDK1 molecules physically interacting with and phosphorylated by ROCK. ROCK-induced PDK1 overstimulation then canceled the neuroprotective α-cleavage of normal cellular prion protein PrPC by TACE α-secretase, which physiologically precludes PrPSc production. In prion-infected cells, inhibition of ROCK rescued neurite sprouting, preserved neuronal architecture, restored neuronal functions and reduced the amount of PrPSc. In mice challenged with prions, inhibition of ROCK also lowered brain PrPSc accumulation, reduced motor impairment and extended survival. We conclude that ROCK overactivation exerts a double detrimental effect in prion diseases by altering neuronal polarity and triggering PrPSc accumulation. Eventually ROCK emerges as therapeutic target to combat prion diseases. Transmissible Spongiform Encephalopathies (TSEs), commonly named prion diseases, are caused by deposition in the brain of pathogenic prions PrPSc that trigger massive neuronal death. Because of our poor understanding of the mechanisms sustaining prion-induced neurodegeneration, there is to date no effective medicine to combat TSEs. The current study demonstrates that ROCK kinases are overactivated in prion-infected cells and contribute to prion pathogenesis at two levels. First, PrPSc-induced ROCK overactivation affects neuronal polarity with synapse disconnection, axon/dendrite degradation, and disturbs neuronal functions. Second, ROCK overactivity amplifies the production of pathogenic prions. The pharmacological inhibition of ROCK protects diseased neurons from PrPSc toxicity by preserving neuronal architecture and functions and lowering PrPSc level. Inhibition of ROCK in prion-infected mice reduces brain PrPSc levels, improves motor activity and extends lifespan. This study opens up new avenues to design ROCK-based therapeutic strategies to fight TSEs.
Collapse
|
71
|
Lourenco MV, Ferreira ST, De Felice FG. Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes. Prog Neurobiol 2015; 129:37-57. [PMID: 25857551 DOI: 10.1016/j.pneurobio.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
Mounting evidence from clinical, epidemiological, neuropathology and preclinical studies indicates that mechanisms similar to those leading to peripheral metabolic deregulation in metabolic disorders, such as diabetes and obesity, take place in the brains of Alzheimer's disease (AD) patients. These include pro-inflammatory mechanisms, brain metabolic stress and neuronal insulin resistance. From a molecular and cellular perspective, recent progress has been made in unveiling novel pathways that act in an orchestrated way to cause neuronal damage and cognitive decline in AD. These pathways converge to the activation of neuronal stress-related protein kinases and excessive phosphorylation of eukaryotic translation initiation factor 2α (eIF2α-P), which plays a key role in control of protein translation, culminating in synapse dysfunction and memory loss. eIF2α-P signaling thus links multiple neuronal stress pathways to impaired neuronal function and neurodegeneration. Here, we present a critical analysis of recently discovered molecular mechanisms underlying impaired brain insulin signaling and metabolic stress, with emphasis on the role of stress kinase/eIF2α-P signaling as a hub that promotes brain and behavioral impairments in AD. Because very similar mechanisms appear to operate in peripheral metabolic deregulation in T2D and in brain defects in AD, we discuss the concept that targeting defective brain insulin signaling and neuronal stress mechanisms with anti-diabetes agents may be an attractive approach to fight memory decline in AD. We conclude by raising core questions that remain to be addressed toward the development of much needed therapeutic approaches for AD.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
72
|
Sturm EM, Parzmair GP, Radnai B, Frei RB, Sturm GJ, Hammer A, Schuligoi R, Lippe IT, Heinemann A. Phosphoinositide-dependent protein kinase 1 (PDK1) mediates potent inhibitory effects on eosinophils. Eur J Immunol 2015; 45:1548-59. [DOI: 10.1002/eji.201445196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/11/2014] [Accepted: 01/27/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Eva M. Sturm
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - Gerald P. Parzmair
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - Balázs Radnai
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - Robert B. Frei
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - Gunter J. Sturm
- Department of Dermatology and Venereology; Division of Environmental Dermatology and Venereology; Medical University of Graz; Graz Austria
| | - Astrid Hammer
- Institute of Cell Biology; Histology and Embryology; Medical University of Graz; Graz Austria
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - Irmgard Th. Lippe
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| |
Collapse
|
73
|
Herrmann US, Sonati T, Falsig J, Reimann RR, Dametto P, O’Connor T, Li B, Lau A, Hornemann S, Sorce S, Wagner U, Sanoudou D, Aguzzi A. Prion infections and anti-PrP antibodies trigger converging neurotoxic pathways. PLoS Pathog 2015; 11:e1004662. [PMID: 25710374 PMCID: PMC4339193 DOI: 10.1371/journal.ppat.1004662] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
Prions induce lethal neurodegeneration and consist of PrPSc, an aggregated conformer of the cellular prion protein PrPC. Antibody-derived ligands to the globular domain of PrPC (collectively termed GDL) are also neurotoxic. Here we show that GDL and prion infections activate the same pathways. Firstly, both GDL and prion infection of cerebellar organotypic cultured slices (COCS) induced the production of reactive oxygen species (ROS). Accordingly, ROS scavenging, which counteracts GDL toxicity in vitro and in vivo, prolonged the lifespan of prion-infected mice and protected prion-infected COCS from neurodegeneration. Instead, neither glutamate receptor antagonists nor inhibitors of endoplasmic reticulum calcium channels abolished neurotoxicity in either model. Secondly, antibodies against the flexible tail (FT) of PrPC reduced neurotoxicity in both GDL-exposed and prion-infected COCS, suggesting that the FT executes toxicity in both paradigms. Thirdly, the PERK pathway of the unfolded protein response was activated in both models. Finally, 80% of transcriptionally downregulated genes overlapped between prion-infected and GDL-treated COCS. We conclude that GDL mimic the interaction of PrPSc with PrPC, thereby triggering the downstream events characteristic of prion infection. Prion diseases are a group of infectious, invariably fatal neurodegenerative diseases. Progress in developing therapeutics is slow, partly because animal models of prion diseases require stringent biosafety and are very slow. We recently found that treatment of cerebellar slices with antibodies targeting the globular domain (GD ligands) of the prion protein (PrP) is neurotoxic. Here we compared this model to prion infection, and describe striking similarities. Both models involved the production of reactive oxygen species, and antioxidants could reverse the toxicity in cerebellar slices and even prolong the survival time of prion-infected mice. Antibodies targeting the flexible tail of PrP that prevent toxicity of GD ligands reduced the toxicity induced by prions. Endoplasmic reticulum stress, which is involved in prion toxicity, is also found in GD-ligand induced neurotoxicity. Finally, changes of gene expression were similar in both models. We conclude that prion infection and GD ligands use converging neurotoxic pathways. Because GD ligands induce toxicity within days rather than months and do not pose biosafety hazards, they may represent a powerful tool for furthering our understanding of prion pathogenesis and also for the discovery of antiprion drugs.
Collapse
Affiliation(s)
- Uli S. Herrmann
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Tiziana Sonati
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Jeppe Falsig
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Regina R. Reimann
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Paolo Dametto
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Tracy O’Connor
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Bei Li
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Agnes Lau
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Uli Wagner
- Institute of Surgical Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Despina Sanoudou
- Department of Pharmacology, Medical School, University of Athens, Athens, Greece
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
74
|
Béland M, Roucou X. Taking advantage of physiological proteolytic processing of the prion protein for a therapeutic perspective in prion and Alzheimer diseases. Prion 2015; 8:106-10. [PMID: 24335160 DOI: 10.4161/pri.27438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrP(C)) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrP(C) undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrP(C) molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrP(C)-derived molecules as therapeutic agents in prion and Alzheimer diseases.
Collapse
|
75
|
Bochem AE, van der Valk FM, Tolani S, Stroes ES, Westerterp M, Tall AR. Increased Systemic and Plaque Inflammation in ABCA1 Mutation Carriers With Attenuation by Statins. Arterioscler Thromb Vasc Biol 2015; 35:1663-9. [PMID: 26109739 DOI: 10.1161/atvbaha.114.304959] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/27/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We previously demonstrated that subjects with functional ATP-binding cassette (ABC) A1 mutations have increased atherosclerosis, which has been attributed to the role of ABCA1 in reverse cholesterol transport. More recently, a proinflammatory effect of Abca1 deficiency was shown in mice, potentially contributing to atherogenesis. In this study, we investigated whether ABCA1 deficiency was associated with proinflammatory changes in humans. APPROACH AND RESULTS Thirty-one heterozygous, 5 homozygous ABCA1 mutation carriers, and 21 matched controls were studied. (18)Fluorodeoxyglucose positron emission tomography with computed tomographic scanning was performed in a subset of carriers and controls to assess arterial wall inflammation (target:background ratio). Heterozygous ABCA1 mutation carriers had a 20% higher target:background ratio than in controls (target:background ratio; P=0.008). In carriers using statins (n=7), target:background ratio was 21% reduced than in nonstatin users (n=7; P=0.03). We then measured plasma cytokine levels. Tumor necrosis factor α, monocyte chemoattractant protein-1, and interleukin-6 levels were increased in heterozygous and homozygous ABCA1 mutation carriers. We isolated monocytes from carriers and controls and measured inflammatory gene expression. Only TNFα mRNA was increased in monocytes from heterozygous ABCA1 mutation carriers. Additional studies in THP-1 macrophages showed that both ABCA1 deficiency and lipoprotein-deficient plasma from ABCA1 mutation carriers increased inflammatory gene expression. CONCLUSIONS Our data suggest a proinflammatory state in ABCA1 mutation carriers as reflected by an increased positron emission tomography-MRI signal in nonstatin using subjects, and increased circulating cytokines. The increased inflammation in ABCA1 mutation carriers seems to be attenuated by statins.
Collapse
Affiliation(s)
- Andrea E Bochem
- From the Department of Vascular Medicine (A.E.B., F.M.v.d.V, E.S.S.) and Department of Medical Biochemistry (M.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (A.E.B., S.T., M.W., A.R.T.).
| | - Fleur M van der Valk
- From the Department of Vascular Medicine (A.E.B., F.M.v.d.V, E.S.S.) and Department of Medical Biochemistry (M.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (A.E.B., S.T., M.W., A.R.T.)
| | - Sonia Tolani
- From the Department of Vascular Medicine (A.E.B., F.M.v.d.V, E.S.S.) and Department of Medical Biochemistry (M.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (A.E.B., S.T., M.W., A.R.T.)
| | - Erik S Stroes
- From the Department of Vascular Medicine (A.E.B., F.M.v.d.V, E.S.S.) and Department of Medical Biochemistry (M.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (A.E.B., S.T., M.W., A.R.T.)
| | - Marit Westerterp
- From the Department of Vascular Medicine (A.E.B., F.M.v.d.V, E.S.S.) and Department of Medical Biochemistry (M.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (A.E.B., S.T., M.W., A.R.T.)
| | - Alan R Tall
- From the Department of Vascular Medicine (A.E.B., F.M.v.d.V, E.S.S.) and Department of Medical Biochemistry (M.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (A.E.B., S.T., M.W., A.R.T.)
| |
Collapse
|
76
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
77
|
Sorce S, Nuvolone M, Keller A, Falsig J, Varol A, Schwarz P, Bieri M, Budka H, Aguzzi A. The role of the NADPH oxidase NOX2 in prion pathogenesis. PLoS Pathog 2014; 10:e1004531. [PMID: 25502554 PMCID: PMC4263757 DOI: 10.1371/journal.ppat.1004531] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/20/2014] [Indexed: 11/26/2022] Open
Abstract
Prion infections cause neurodegeneration, which often goes along with oxidative stress. However, the cellular source of reactive oxygen species (ROS) and their pathogenetic significance are unclear. Here we analyzed the contribution of NOX2, a prominent NADPH oxidase, to prion diseases. We found that NOX2 is markedly upregulated in microglia within affected brain regions of patients with Creutzfeldt-Jakob disease (CJD). Similarly, NOX2 expression was upregulated in prion-inoculated mouse brains and in murine cerebellar organotypic cultured slices (COCS). We then removed microglia from COCS using a ganciclovir-dependent lineage ablation strategy. NOX2 became undetectable in ganciclovir-treated COCS, confirming its microglial origin. Upon challenge with prions, NOX2-deficient mice showed delayed onset of motor deficits and a modest, but significant prolongation of survival. Dihydroethidium assays demonstrated a conspicuous ROS burst at the terminal stage of disease in wild-type mice, but not in NOX2-ablated mice. Interestingly, the improved motor performance in NOX2 deficient mice was already measurable at earlier stages of the disease, between 13 and 16 weeks post-inoculation. We conclude that NOX2 is a major source of ROS in prion diseases and can affect prion pathogenesis. The deposition of misfolded, aggregated prion protein in the brain causes transmissible spongiform encephalopathies (TSE), a group of disorders including Creutzfeldt–Jakob disease and mad cow disease. TSE are characterized by neurodegeneration and progressive, lethal neurological dysfunction. Signs of oxidative damage are found in TSE, implying excessive production of reactive oxygen species (ROS), yet their source is unclear. Here, we analyzed the role of the NADPH oxidase enzyme, NOX2, in prion pathogenesis. NOX2 is a membrane-bound electrochemical pump that generates ROS. We found that NOX2 is upregulated in the brains of patients with Creutzfeldt-Jakob disease and of prion-infected mice. Interestingly, NOX2 ablation led to abrogation of ROS production in mice inoculated with prions, and was associated with a milder clinical course of the disease and increased life expectancy. We conclude that NOX2 is a relevant contributor to the excessive production of ROS. This study spawns the possibility that inhibiting NOX2 activation might help attenuate prion disease progression – a legitimate and important goal even if there is little reason to expect anti-NOX2 therapies to be curative.
Collapse
Affiliation(s)
- Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Annika Keller
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Jeppe Falsig
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Ahmet Varol
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Monika Bieri
- Institute of Surgical Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Herbert Budka
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
78
|
Bilousova T, Taylor K, Emirzian A, Gylys R, Frautschy SA, Cole GM, Teng E. Parallel age-associated changes in brain and plasma neuronal pentraxin receptor levels in a transgenic APP/PS1 rat model of Alzheimer's disease. Neurobiol Dis 2014; 74:32-40. [PMID: 25449907 DOI: 10.1016/j.nbd.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022] Open
Abstract
Neuronal pentraxin receptor (NPR) is a synaptic protein implicated in AMPA receptor trafficking at excitatory synapses. Since glutamate neurotransmission is disrupted in Alzheimer's disease (AD), NPR levels measured from plasma represent a potential biomarker for synaptic dysfunction associated with AD. We sought to determine the relationship between AD pathology and brain and plasma NPR levels by examining age-associated NPR levels in these compartments in a transgenic APP/PS1 rat model of AD. NPR levels in cortical homogenate were similar in wild-type (Wt) and APP/PS1 rats at 3 months of age (prior to Aβ plaque deposition), but significantly increased in APP/PS1 rats by 9 and 18-20 months of age (after the onset of plaque deposition). These age-dependent differences were driven by proportional increases in NPR in membrane-associated cortical fractions. Genotype-related differences in NPR expression were also seen in the hippocampus, which exhibits significant Aβ pathology, but not in the cerebellum, which does not. Plasma analyses revealed increased levels of a 26 kDa NPR fragment in APP/PS1 rats relative to Wt rats by 18-20 months of age, which correlated with the levels of full-length NPR in cortex. Our findings indicate that cerebral accumulation of NPR and Aβ occurs with similar temporal and regional patterns in the APP/PS1 model, and suggest that a 26 kDa plasma NPR fragment may represent a peripheral biomarker of this process.
Collapse
Affiliation(s)
- Tina Bilousova
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Karen Taylor
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Ana Emirzian
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States
| | - Raymond Gylys
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States
| | - Sally A Frautschy
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Gregory M Cole
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Edmond Teng
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States.
| |
Collapse
|
79
|
Roucou X. Regulation of PrP(C) signaling and processing by dimerization. Front Cell Dev Biol 2014; 2:57. [PMID: 25364762 PMCID: PMC4207009 DOI: 10.3389/fcell.2014.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein present at the cell surface. PrPC N-terminal moiety is intrinsically disordered and is able to interact with a variety of ligands. Physiological ligands have neurotrophic activity, whilst others, including protein toxic oligomers, have neurotoxic functions. These two opposite activities involve different interacting partners and result from different PrPC-activated signaling pathways. Remarkably, PrPC may be inactivated either by physiological endoproteolysis and release of the N-terminal domain, or by ectodomain shedding. Ligand-induced PrPC dimerization or enforced dimerization of PrPC indicate that PrPC dimerization represents an important molecular switch for both intracellular signaling and inactivation by the release of PrPC N-terminal domain or shedding. In this review, we summarize evidence that cell surface receptor activity of PrPC is finely regulated by dimerization.
Collapse
Affiliation(s)
- Xavier Roucou
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke Sherbrooke, QC, Canada
| |
Collapse
|
80
|
Shott RH, Majer A, Frost KL, Booth SA, Schang LM. Activation of pro-survival CaMK4β/CREB and pro-death MST1 signaling at early and late times during a mouse model of prion disease. Virol J 2014; 11:160. [PMID: 25183307 PMCID: PMC4168054 DOI: 10.1186/1743-422x-11-160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background The signaling pathways most critical to prion disease pathogenesis are as yet incompletely characterized. We have developed a kinomics approach to identify signaling pathways that are dysregulated during prion pathogenesis. The approach is sensitive and specific enough to detect signaling pathways dysregulated in a simple in vitro model of prion pathogenesis. Here, we used this approach to identify signaling pathways dysregulated during prion pathogenesis in vivo. Methods Mice intraperitoneally infected with scrapie (strain RML) were euthanized at 70, 90, 110, 130 days post-infection (dpi) or at terminal stages of disease (155–190 dpi). The levels of 139 protein kinases in brainstem-cerebellum homogenates were analyzed by multiplex Western blots, followed by hierarchical clustering and analyses of activation states. Results Hierarchical and functional clustering identified CaMK4β and MST1 signaling pathways as potentially dysregulated. Targeted analyses revealed that CaMK4β and its downstream substrate CREB, which promotes neuronal survival, were activated at 70 and 90 dpi in cortical, subcortical and brainstem-cerebellum homogenates from scrapie-infected mice. The activation levels of CaMK4β/CREB signaling returned to those in mock-infected mice at 110 dpi, whereas MST1, which promotes neuronal death, became activated at 130 dpi. Conclusion Pro-survival CaMK4β/CREB signaling is activated in mouse scrapie at earlier times and later inhibited, whereas pro-death MST1 signaling is activated at these later times. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-160) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Luis M Schang
- Department of Biochemistry and Centre for Prions and Protein Folding Diseases (CPPFD), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
81
|
Hirsch TZ, Hernandez-Rapp J, Martin-Lannerée S, Launay JM, Mouillet-Richard S. PrP(C) signalling in neurons: from basics to clinical challenges. Biochimie 2014; 104:2-11. [PMID: 24952348 DOI: 10.1016/j.biochi.2014.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 01/05/2023]
Abstract
The cellular prion protein PrP(C) was identified over twenty-five years ago as the normal counterpart of the scrapie prion protein PrP(Sc), itself the main if not the sole component of the infectious agent at the root of Transmissible Spongiform Encephalopathies (TSEs). PrP(C) is a ubiquitous cell surface protein, abundantly expressed in neurons, which constitute the targets of PrP(Sc)-mediated toxicity. Converging evidence have highlighted that neuronal, GPI-anchored PrP(C) is absolutely required for prion-induced neuropathogenesis, which warrants investigating into the normal function exerted by PrP(C) in a neuronal context. It is now well-established that PrP(C) can serve as a cell signalling molecule, able to mobilize transduction cascades in response to interactions with partners. This function endows PrP(C) with the capacity to participate in multiple neuronal processes, ranging from survival to synaptic plasticity. A diverse array of data have allowed to shed light on how this function is corrupted by PrP(Sc). Recently, amyloid Aβ oligomers, whose accumulation is associated with Alzheimer's disease (AD), were shown to similarly instigate toxic events by deviating PrP(C)-mediated signalling. Here, we provide an overview of the various signal transduction cascades ascribed to PrP(C) in neurons, summarize how their subversion by PrP(Sc) or Aβ oligomers contributes to TSE or AD neuropathogenesis and discuss the ensuing clinical implications.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Julia Hernandez-Rapp
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France; Université Paris Sud 11, ED419 Biosigne, 91400 Orsay, France
| | - Séverine Martin-Lannerée
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France; Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Sophie Mouillet-Richard
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France.
| |
Collapse
|
82
|
Kellermann O. Lineage stem cell lines: test tubes to build pathophysiological scenarios and discover therapeutic targets. Res Microbiol 2014; 165:380-2. [PMID: 24853966 DOI: 10.1016/j.resmic.2014.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Odile Kellermann
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
83
|
Liu YH, Wang YR, Xiang Y, Zhou HD, Giunta B, Mañucat-Tan NB, Tan J, Zhou XF, Wang YJ. Clearance of Amyloid-Beta in Alzheimer’s Disease: Shifting the Action Site from Center to Periphery. Mol Neurobiol 2014; 51:1-7. [DOI: 10.1007/s12035-014-8694-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/24/2014] [Indexed: 12/28/2022]
|
84
|
Pietri M, Alleaume-Butaux A, Launay JM, Kellermann O, Schneider B. [From prion diseases to Alzheimer's disease: a common therapeutic target, PDK1]. Med Sci (Paris) 2014; 30:139-41. [PMID: 24572109 DOI: 10.1051/medsci/20143002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mathéa Pietri
- Université Paris Descartes, Inserm UMR-S 747, Sorbonne Paris Cité, 45, rue des Saints-Pères, 75006 Paris, France
| | - Aurélie Alleaume-Butaux
- Université Paris Descartes, Inserm UMR-S 747, Sorbonne Paris Cité, 45, rue des Saints-Pères, 75006 Paris, France
| | - Jean-Marie Launay
- AP-HP, service de biochimie, Inserm UMR-S 942, 45, rue des Saints-Pères, 75006 Paris, France - Pharma research department, Hoffmann La Roche, Bâle, Suisse
| | - Odile Kellermann
- Université Paris Descartes, Inserm UMR-S 747, Sorbonne Paris Cité, 45, rue des Saints-Pères, 75006 Paris, France
| | - Benoit Schneider
- Université Paris Descartes, Inserm UMR-S 747, Sorbonne Paris Cité, 45, rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
85
|
Hernandez-Rapp J, Martin-Lannerée S, Hirsch TZ, Launay JM, Mouillet-Richard S. Hijacking PrP(c)-dependent signal transduction: when prions impair Aβ clearance. Front Aging Neurosci 2014; 6:25. [PMID: 24592237 PMCID: PMC3938157 DOI: 10.3389/fnagi.2014.00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Indexed: 01/29/2023] Open
Abstract
The cellular prion protein PrPc is the normal counterpart of the scrapie prion protein PrP Sc, the main component of the infectious agent of transmissible spongiform encephalopathies. The recent discovery that PrP c can serve as a receptor for the amyloid beta (Aβ) peptide and relay its neurotoxicity is sparking renewed interest on this protein and its involvement in signal transduction processes. Disease-associated PrP Sc shares with Aβ the ability to hijack PrP c-dependent signaling cascades, and thereby instigate pathogenic events. Among these is an impairment of Aβ clearance, uncovered in prion-infected neuronal cells. These findings add another facet to the intricate interplay between PrP c and Aβ. Here, we summarize the connection between PrP-mediated signaling and Aβ clearance and discuss its pathological implications.
Collapse
Affiliation(s)
- Julia Hernandez-Rapp
- INSERM UMR-S1124 Paris, France ; Sorbonne Paris Cité, UMR-S1124, Université Paris Descartes Paris, France ; Université Paris Sud 11, ED419 Biosigne Orsay, France
| | - Séverine Martin-Lannerée
- INSERM UMR-S1124 Paris, France ; Sorbonne Paris Cité, UMR-S1124, Université Paris Descartes Paris, France
| | - Théo Z Hirsch
- INSERM UMR-S1124 Paris, France ; Sorbonne Paris Cité, UMR-S1124, Université Paris Descartes Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 H ôpital Lariboisière Paris, France ; Pharma Research Department, F. Hoffmann-La-Roche Ltd. Basel, Switzerland
| | - Sophie Mouillet-Richard
- INSERM UMR-S1124 Paris, France ; Sorbonne Paris Cité, UMR-S1124, Université Paris Descartes Paris, France
| |
Collapse
|
86
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
87
|
PDK1—a common therapeutic target for AD and prion disease? Nat Rev Neurol 2013; 9:543. [DOI: 10.1038/nrneurol.2013.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
88
|
|
89
|
|