51
|
Castro JPGD, Aguiar TRDS, Tristão GC, Alves GG, Pinheiro MPF, Quinelato V, Casado PL, Romanos GE. Peri-implant health after supportive mucositis therapy is associated with increased levels of FGF-2. Braz Dent J 2021; 32:55-66. [PMID: 34877978 DOI: 10.1590/0103-6440202104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to analyze Fibroblast Growth Factor-2 (FGF-2) levels in the peri-implant crevicular fluid throughout supportive mucositis therapy. Twenty-six participants with Branemark protocol prosthesis were divided into two groups: the control group, characterized by healthy peri-implants, and the mucositis group, presenting a diagnosis of peri-implant mucositis. All participants underwent clinical examination, radiographic analysis, prosthesis removal, and non-invasive peri-implant therapy (mechanical debridement associated with chlorhexidine 0.12%) during a period of 36 days divided into three intervals. Peri-implant crevicular fluid samples were collected at each interval in order to analyze FGF-2 levels by immuno-enzymatic assay. The control and mucositis groups showed difference in keratinized mucosa. The smaller the range of keratinized mucosa the higher susceptibility of peri-implant mucositis. Throughout the treatment intervals, participants were diagnosed in different groups indicating whether or not the non-invasive therapy was able to treat peri-implant mucositis. There was a significant difference of FGF-2 levels between groups, with the higher FGF-2 levels in the control group (p=0.01). After supportive therapy, the mucositis group showed significantly increased FGF-2 levels (p<0.01) compared to initial levels. After 36 days of supportive therapy, there was a reduction of peri-implant mucositis from 70% to 23%. Clinical and laboratory outcomes showed a clear correlation since FGF-2 levels increased after 36 days. It was concluded that the therapy protocol was effective and promoted a regenerative reaction and FGF-2 can be considered a future target for peri-implant mucositis understanding.
Collapse
Affiliation(s)
| | - Telma Regina da Silva Aguiar
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - Gilson Coutinho Tristão
- Department of Clinical dentistry, Fluminense Federal University - School of Dentistry- Niterói- RJ- Brazil
| | - Gutemberg Gomes Alves
- Cellular and Molecular Biology Department, Fluminense Federal University - School of Biology - Niterói- RJ- Brazil
| | | | - Valquiria Quinelato
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - Priscila Ladeira Casado
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - George E Romanos
- Stony Brook University - School of Dental Medicine - United States
| |
Collapse
|
52
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
53
|
Jin H, Quesada C, Aliabouzar M, Kripfgans OD, Franceschi RT, Liu J, Putnam AJ, Fabiilli ML. Release of basic fibroblast growth factor from acoustically-responsive scaffolds promotes therapeutic angiogenesis in the hind limb ischemia model. J Control Release 2021; 338:773-783. [PMID: 34530052 PMCID: PMC8526405 DOI: 10.1016/j.jconrel.2021.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023]
Abstract
Pro-angiogenic growth factors have been studied as potential therapeutics for cardiovascular diseases like critical limb ischemia (CLI). However, the translation of these factors has remained a challenge, in part, due to problems associated with safe and effective delivery. Here, we describe a hydrogel-based delivery system for growth factors where release is modulated by focused ultrasound (FUS), specifically a mechanism termed acoustic droplet vaporization. With these fibrin-based, acoustically-responsive scaffolds (ARSs), release of a growth factor is non-invasively and spatiotemporally-controlled in an on-demand manner using non-thermal FUS. In vitro studies demonstrated sustained release of basic fibroblast growth factor (bFGF) from the ARSs using repeated applications of FUS. In in vivo studies, ARSs containing bFGF were implanted in mice following induction of hind limb ischemia, a preclinical model of CLI. During the 4-week study, mice in the ARS + FUS group longitudinally exhibited significantly more perfusion and less visible necrosis compared to other experimental groups. Additionally, significantly greater angiogenesis and less fibrosis were observed for the ARS + FUS group. Overall, these results highlight a promising, FUS-based method of delivering a pro-angiogenic growth factor for stimulating angiogenesis and reperfusion in a cardiovascular disease model. More broadly, these results could be used to personalize the delivery of therapeutics in different regenerative applications by actively controlling the release of a growth factor.
Collapse
Affiliation(s)
- Hai Jin
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Dental School, University of Michigan, Ann Arbor, MI, USA
| | - Jianhua Liu
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
54
|
Methods for Assessing the Effects of Xylosides on Angiogenesis. Methods Mol Biol 2021. [PMID: 34626409 DOI: 10.1007/978-1-0716-1398-6_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Xylosides are small synthetic molecules consisting of a xylose molecule attached to an aglycone group and serve as primers in the assembly of core protein free glycosaminoglycans using cellular machinery. Synthetic xylosides hold great promise in many biomedical applications and as therapeutics. Recent advances in the study of xylosides have opened up the possibility of developing xylosides as therapeutics to achieve a desirable biological outcome through their selective priming and inhibitory activities toward glycosaminoglycan biosynthesis. The approach described, herein, will serve as a general strategy to comprehensively screen xylosides and evaluate their ability to promote or inhibit angiogenesis, a critical biological process that is dysregulated in over 70 human diseases.
Collapse
|
55
|
Jiang Z, Chen C, Yang S, He H, Zhu X, Liang M. Contribution to the peripheral vasculopathy and endothelial cell dysfunction by CXCL4 in Systemic Sclerosis. J Dermatol Sci 2021; 104:63-73. [PMID: 34556381 DOI: 10.1016/j.jdermsci.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/11/2021] [Accepted: 07/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND CXCL4, a chemokine with anti-angiogenic property, is involved in systemic sclerosis (SSc) related pulmonary arterial hypertension (PAH). OBJECTIVE To investigated the contribution of CXCL4 to SSc development by focusing on the correlation of circulatory CXCL4 levels with their peripheral vasculopathy, and the effect of CXCL4 on endothelial cell dysfunction and the potential signaling. METHODS We measured the plasma CXCL4 levels in 58 patients with SSc, 10 patients with the very early diagnosis of SSc (VEDOSS), and 80 healthy controls (HCs). Then, CXCL4 concentrations were correlated with clinical features, especially the peripheral vasculopathy. These observations were further validated in an additional cohort. Moreover, we studied the anti-angiogenic effects of CXCL4 and the underlying downstream signaling in human umbilical vein endothelial cells (HUVECs) in vitro. RESULTS Circulating CXCL4 levels were 103.62 % higher in patients with SSc and 201.51 % higher in patients with VEDOSS than matched HCs, which were confirmed in two independent cohorts. CXCL4 levels were associated with digital ulcers (DU) and nailfold videocapillaroscopy (NVC) abnormalities in SSc. The proliferation, migration, and tube formation of HUVECs were inhibited by CXCL4 or SSc derived plasma, which reversed by CXCL4 neutralizing antibody, but failed by CXCR3 inhibitor. CXCL4 downregulated the transcription factor Friend leukaemia integration factor-1 (Fli-1) via c-Abl signaling. Furthermore, CXCL4 blocked the transforming growth factor (TGF) -β or platelet-derived growth factor (PDGF) induced cell proliferation of HUVECs. CONCLUSIONS CXCL4 may contribute to peripheral vasculopathy in SSc by downregulating Fli-1 via c-Abl signaling in endothelial cells and interfering angiogenesis.
Collapse
Affiliation(s)
- Zhixing Jiang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Chen Chen
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Sen Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Hang He
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Fudan University, Shanghai, China.
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| | - Minrui Liang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
56
|
Guo S, Bai Y, Li Y, Chen T. A Large Central Bronchopleural Fistula Closed by Bronchoscopic Administration of Recombinant Bovine Basic Fibroblast Growth Factor: A Case Report. Respiration 2021; 100:1000-1004. [PMID: 34515226 DOI: 10.1159/000514717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
A large central bronchopleural fistula (BPF) surrounded by mediastinal tissue was successfully closed by local administration of recombinant bovine basic fibroblast growth factor (rbFGF) using the bronchoscope. No complications were observed during and after this bronchoscopic treatment. This is the first report of the bronchoscopic treatment of a large central BPF by the local spray of rbFGF. The bronchoscopic treatment with rbFGF is a potentially cost-effective method for central BPF surrounded by mediastinal tissue.
Collapse
Affiliation(s)
- Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
57
|
Mercier C, Brazeau T, Lamoureux J, Boisvert E, Robillard S, Breton V, Paré M, Guay A, Lizotte F, Despatis MA, Geraldes P. Diabetes Impaired Ischemia-Induced PDGF (Platelet-Derived Growth Factor) Signaling Actions and Vessel Formation Through the Activation of Scr Homology 2-Containing Phosphatase-1. Arterioscler Thromb Vasc Biol 2021; 41:2469-2482. [PMID: 34320834 DOI: 10.1161/atvbaha.121.316638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective Critical limb ischemia is a major complication of diabetes characterized by insufficient collateral vessel development and proper growth factor signaling unresponsiveness. Although mainly deactivated by hypoxia, phosphatases are important players in the deregulation of proangiogenetic pathways. Previously, SHP-1 (Scr homology 2-containing phosphatase-1) was found to be associated with the downregulation of growth factor actions in the diabetic muscle. Thus, we aimed to gain further understanding of the impact of SHP-1 on smooth muscle cell (SMC) function under hypoxic and diabetic conditions. Approach and Results Despite being inactivated under hypoxic conditions, high glucose level exposure sustained SHP-1 phosphatase activity in SMC and increased its interaction with PDGFR (platelet-derived growth factor receptor)-β, thus reducing PDGF proangiogenic actions. Overexpression of an inactive form of SHP-1 fully restored PDGF-induced proliferation, migration, and signaling pathways in SMC exposed to high glucose and hypoxia. Nondiabetic and diabetic mice with deletion of SHP-1 specifically in SMC were generated. Ligation of the femoral artery was performed, and blood flow was measured for 4 weeks. Blood flow reperfusion, vascular density and maturation, and limb survival were all improved while vascular apoptosis was attenuated in diabetic SMC-specific SHP-1 null mice as compared to diabetic mice. Conclusions Diabetes and high glucose level exposure maintained SHP-1 activity preventing hypoxia-induced PDGF actions in SMC. Specific deletion of SHP-1 in SMC partially restored blood flow reperfusion in the diabetic ischemic limb. Therefore, local modulation of SHP-1 activity in SMC could represent a potential therapeutic avenue to improve the proangiogenic properties of SMC under ischemia and diabetes.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Animals
- Blood Glucose/metabolism
- Case-Control Studies
- Cattle
- Cell Hypoxia
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/physiopathology
- Enzyme Activation
- Hindlimb/blood supply
- Humans
- Ischemia/enzymology
- Ischemia/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Physiologic/drug effects
- Platelet-Derived Growth Factor/pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Clément Mercier
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | - Tristan Brazeau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | - Jérémy Lamoureux
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | - Elizabeth Boisvert
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | - Stéphanie Robillard
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | - Valérie Breton
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | - Martin Paré
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | - Andréanne Guay
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | - Farah Lizotte
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
| | | | - Pedro Geraldes
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (C.M., T.B., J.L., E.B., S.R., V.B., M.P., A.G., F.L., P.G.), Université de Sherbrooke, Québec, Canada
- Division of Endocrinology, Department of Medicine (P.G.), Université de Sherbrooke, Québec, Canada
| |
Collapse
|
58
|
Korpela H, Järveläinen N, Siimes S, Lampela J, Airaksinen J, Valli K, Turunen M, Pajula J, Nurro J, Ylä-Herttuala S. Gene therapy for ischaemic heart disease and heart failure. J Intern Med 2021; 290:567-582. [PMID: 34033164 DOI: 10.1111/joim.13308] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
Gene therapy has been expected to become a novel treatment method since the structure of DNA was discovered in 1953. The morbidity from cardiovascular diseases remains remarkable despite the improvement of percutaneous interventions and pharmacological treatment, underlining the need for novel therapeutics. Gene therapy-mediated therapeutic angiogenesis could help those who have not gained sufficient symptom relief with traditional treatment methods. Especially patients with severe coronary artery disease and heart failure could benefit from gene therapy. Some clinical trials have reported improved myocardial perfusion and symptom relief in CAD patients, but few trials have come up with disappointing negative results. Translating preclinical success into clinical applications has encountered difficulties in successful transduction, study design, endpoint selection, and patient selection and recruitment. However, promising new methods for transducing the cells, such as retrograde delivery and cardiac-specific AAV vectors, hold great promise for myocardial gene therapy. This review introduces gene therapy for ischaemic heart disease and heart failure and discusses the current status and future developments in this field.
Collapse
Affiliation(s)
- H Korpela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N Järveläinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Siimes
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Lampela
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Airaksinen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - K Valli
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Turunen
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Pajula
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J Nurro
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- From the, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
59
|
Lu C, Wang C, Xiao H, Chen M, Yang Z, Liang Z, Wang H, Liu Y, Yang Y, Wang Q. Ethyl pyruvate: A newly discovered compound against ischemia-reperfusion injury in multiple organs. Pharmacol Res 2021; 171:105757. [PMID: 34302979 DOI: 10.1016/j.phrs.2021.105757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a process whereby an initial ischemia injury and subsequent recovery of blood flow, which leads to the propagation of an innate immune response and the changes of structural and functional of multiple organs. Therefore, IRI is considered to be a great challenge in clinical treatment such as organ transplantation or coronary angioplasty. In recent years, ethyl pyruvate (EP), a derivative of pyruvate, has received great attention because of its stability and low toxicity. Previous studies have proved that EP has various pharmacological activities, including anti-inflammation, anti-oxidative stress, anti-apoptosis, and anti-fibrosis. Compelling evidence has indicated EP plays a beneficial role in a variety of acute injury models, such as brain IRI, myocardial IRI, renal IRI, and hepatic IRI. Moreover, EP can not only effectively inhibit multiple IRI-induced pathological processes, but also improve the structural and functional lesion of tissues and organs. In this study, we review the recent progress in the research on EP and discuss their implications for a better understanding of multiple organ IRI, and the prospects of targeting the EP for therapeutic intervention.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Haoxiang Xiao
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Mengfan Chen
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhi Yang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, China
| | - Haiying Wang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China
| | - Yonglin Liu
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China
| | - Yang Yang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Qiang Wang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China.
| |
Collapse
|
60
|
Nakamura Y. Multiple Therapeutic Applications of RBM-007, an Anti-FGF2 Aptamer. Cells 2021; 10:cells10071617. [PMID: 34203430 PMCID: PMC8305614 DOI: 10.3390/cells10071617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a pivotal role in angiogenesis, but is not the only player with an angiogenic function. Fibroblast growth factor-2 (FGF2), which was discovered before VEGF, is also an angiogenic growth factor. It has been shown that FGF2 plays positive pathophysiological roles in tissue remodeling, bone health, and regeneration, such as the repair of neuronal damage, skin wound healing, joint protection, and the control of hypertension. Targeting FGF2 as a therapeutic tool in disease treatment through clinically useful inhibitors has not been developed until recently. An isolated inhibitory RNA aptamer against FGF2, named RBM-007, has followed an extensive preclinical study, with two clinical trials in phase 2 and phase 1, respectively, underway to assess the therapeutic impact in age-related macular degeneration (wet AMD) and achondroplasia (ACH), respectively. Moreover, showing broad therapeutic potential, preclinical evidence supports the use of RBM-007 in the treatment of lung cancer and cancer pain.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Division of RNA Medical Science, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan;
- RIBOMIC Inc., Tokyo 108-0071, Japan
| |
Collapse
|
61
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
62
|
Groblewska M, Mroczko B. Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22116126. [PMID: 34200145 PMCID: PMC8201226 DOI: 10.3390/ijms22116126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, a complex, multistep process of forming new blood vessels, plays crucial role in normal development, embryogenesis, and wound healing. Malignant tumors characterized by increased proliferation also require new vasculature to provide an adequate supply of oxygen and nutrients for developing tumor. Gliomas are among the most frequent primary tumors of the central nervous system (CNS), characterized by increased new vessel formation. The processes of neoangiogenesis, necessary for glioma development, are mediated by numerous growth factors, cytokines, chemokines and other proteins. In contrast to other solid tumors, some biological conditions, such as the blood–brain barrier and the unique interplay between immune microenvironment and tumor, represent significant challenges in glioma therapy. Therefore, the objective of the study was to present the role of various proangiogenic factors in glioma angiogenesis as well as the differences between normal and tumoral angiogenesis. Another goal was to present novel therapeutic options in oncology approaches. We performed a thorough search via the PubMed database. In this paper we describe various proangiogenic factors in glioma vasculature development. The presented paper also reviews various antiangiogenic factors necessary in maintaining equilibrium between pro- and antiangiogenic processes. Furthermore, we present some novel possibilities of antiangiogenic therapy in this type of tumors.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
- Correspondence: ; Tel.: +48-858318785
| |
Collapse
|
63
|
Wu L, Zhang Q, Li Y, Song W, Chen A, Liu J, Xuan X. Collagen sponge prolongs taurine release for improved wound healing through inflammation inhibition and proliferation stimulation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1010. [PMID: 34277810 PMCID: PMC8267268 DOI: 10.21037/atm-21-2739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Background Attenuating oxidative stress response is an effective strategy for the treatment of wounds. Taurine is a widely abundant amino acid in mammal species, capable of inhibiting oxygen-free radicals during the inflammation phase. Methods A novel taurine carried biocompatible composite collagen-derived sponge, Tau@Col, was fabricated for the treatment of a full-thickness removal mouse wounds model. In vitro experiments included taurine release from Tau@Col and cell viability when co-cultured with Tau@Col. With the prolonged release of taurine upon the wound site, Tau@Col was engineered to perform well in the wound site through inflammation inhibition and proliferation stimulation as demonstrated by a series of histological staining. Results In vitro taurine release profile and good cell biocompatibility of Tau@Col were demonstrated. In vivo studies showed that Tau@Col indeed sped up the process of wound regeneration through enhanced granulation formation, collagen deposition as well as re-epithelialization. Further investigations through immunofluorescence staining revealed that the improved wound healing ability of Tau@Col was mediated by the enhanced cell proliferation via the upregulation of endogenous vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF-β) expression as well as decreased inflammatory response through stimulated M2 polarization of macrophages. Conclusions This engineered Tau@Col delivery system has great potential as a wound dressing in future applications.
Collapse
Affiliation(s)
- Liang Wu
- Anqing Municipal Hospital, Anqing, China.,Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianwen Zhang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Li
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenxiang Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Anqi Chen
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Liu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
64
|
Nazeer MA, Karaoglu IC, Ozer O, Albayrak C, Kizilel S. Neovascularization of engineered tissues for clinical translation: Where we are, where we should be? APL Bioeng 2021; 5:021503. [PMID: 33834155 PMCID: PMC8024034 DOI: 10.1063/5.0044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the key challenges in engineering three-dimensional tissue constructs is the development of a mature microvascular network capable of supplying sufficient oxygen and nutrients to the tissue. Recent angiogenic therapeutic strategies have focused on vascularization of the constructed tissue, and its integration in vitro; these strategies typically combine regenerative cells, growth factors (GFs) with custom-designed biomaterials. However, the field needs to progress in the clinical translation of tissue engineering strategies. The article first presents a detailed description of the steps in neovascularization and the roles of extracellular matrix elements such as GFs in angiogenesis. It then delves into decellularization, cell, and GF-based strategies employed thus far for therapeutic angiogenesis, with a particularly detailed examination of different methods by which GFs are delivered in biomaterial scaffolds. Finally, interdisciplinary approaches involving advancement in biomaterials science and current state of technological development in fabrication techniques are critically evaluated, and a list of remaining challenges is presented that need to be solved for successful translation to the clinics.
Collapse
Affiliation(s)
| | | | - Onur Ozer
- Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Cem Albayrak
- Authors to whom correspondence should be addressed: and
| | - Seda Kizilel
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
65
|
Maeta N, Tamura K, Ezuka F, Takemitsu H. Comparative analysis of canine mesenchymal stem cells and bone marrow-derived mononuclear cells. Vet World 2021; 14:1028-1037. [PMID: 34083956 PMCID: PMC8167527 DOI: 10.14202/vetworld.2021.1028-1037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background and aim: Mesenchymal stem cells (MSCs), which have multi-lineage differentiation potentials, are a promising source for regenerative medicine. However, the focus of study of MSCs is shifting from the characterization of the differentiation potential to their secretion potential for cell transplantation. Tissue regeneration and the attenuation of immune responses are thought to be affected by the secretion of multiple growth factors and cytokines by MSCs. However, the secretion potential of MSCs profiling remains incompletely characterized. In this study, we focused on the secretion ability related and protein mRNA expression of dog adipose tissue-derived MSCs (AT-MSC), bone marrow (BM)-derived MSCs, and BM-derived mononuclear cells (BM-MNC). Materials and Methods: Real-time polymerase chain reaction analyses revealed mRNA expression of nine growth factors and seven interleukins in these types of cells and three growth factors protein expression were determined using Enzyme-linked immunosorbent assay. Results: For the BM-MNC growth factors, the mRNA expression of transforming growth factor-β (TGF-β) was the highest. For the BM-derived MSC (BM-MSC) and AT-MSC growth factors, the mRNA expression of vascular endothelial growth factor (VEGF) was highest. BM-MSCs and AT-MSCs showed similar expression profiles. In contrast, BM-MNCs showed unique expression profiles for hepatocyte growth factor and epidermal growth factor. The three types of cells showed a similar expression of TGF-β. Conclusion: We conclude that expression of cytokine proteins and mRNAs suggests involvement in tissue repair and protection.
Collapse
Affiliation(s)
- Noritaka Maeta
- Aikouishida Animal Hospital, Isehara, 1195-4 Takamori, Isehara, Kanagawa, 259-1114, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Katsutoshi Tamura
- Aikouishida Animal Hospital, Isehara, 1195-4 Takamori, Isehara, Kanagawa, 259-1114, Japan
| | - Fuuna Ezuka
- Science and Humanities Master's Programme, Graduate School of Science and the Humanities, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan
| | - Hiroshi Takemitsu
- Science and Humanities Master's Programme, Graduate School of Science and the Humanities, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan.,Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan
| |
Collapse
|
66
|
Hu J, Chen X, Li P, Lu X, Yan J, Tan H, Zhang C. Exosomes derived from human amniotic fluid mesenchymal stem cells alleviate cardiac fibrosis via enhancing angiogenesis in vivo and in vitro. Cardiovasc Diagn Ther 2021; 11:348-361. [PMID: 33968614 DOI: 10.21037/cdt-20-1032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Cardiac fibrosis is a pathological process characterized by excess extracellular matrix (ECM) deposition and plays a critical role in nearly all types of heart disease. The mechanism of cardiac fibrosis is still unclear and no effective medication treatment of cardiac fibrosis. Research showed that mesenchymal stem cell (MSC) derived exosomes may play a critical role in cardiac fibrosis. The effect of human amniotic fluid MSC (hAFMSC)-derived exosomes (hAFMSCExos) on cardiac fibrosis has remained unclear. Methods The hAFMSCExos were extracted using a sequential centrifugation approach. The effects of hAFMSCExos on angiogenesis were analyzed both in human umbilical vein endothelial cells (HUVECs) after oxygen and glucose deprivation (OGD) in vitro, and in isoproterenol (ISO) induced-cardiac fibrosis in vivo. Results The hAFMSCExos remarkably up-regulate the motility and migration of HUVECs after OGD compared with phosphate-buffered saline (PBS). Meanwhile, total tube length, total branching points and total loops were significantly raised in HUVECs after OGD treated with hAFMSCExos. The hAFMSCExos alleviated the cardiac fibrosis degree tested by hematoxylin-eosin (H&E) and Masson staining. The protein levels of Collagen I and α-smooth muscle actin (α-SMA) were lower in exosomes group rats than PBS group. Immunofluorescence suggested that hAFMSCExos can promote the expression of CD31 in the rats. Meanwhile, the number of regenerated microvessels was significantly enhanced in rats administrated with exosomes by quantitative analysis of microvessel density. Furthermore, the micro-CT scanning evidenced that hAFMSCExos promote angiogenesis after cardiac fibrosis. The levels of hypoxia-inducible factor 1 α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in the left ventricle accepted HUVECs were higher than PBS treatment at 7 days post-treatment by Western blot analysis. Conclusions The hAFMSCExos have proangiogenic effects on endothelial cells and enhanced angiogenesis in cardiac fibrosis. The hAFMSCExos may be a promising potential treatment strategy for cardiac fibrosis.
Collapse
Affiliation(s)
- Jiajia Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuliang Chen
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Xiaoxu Lu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianqin Yan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Huiling Tan
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
67
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
68
|
Regulatory tumor-infiltrating lymphocytes prevail in endometrial tumors with low vascular survival ability. Immunobiology 2021; 226:152078. [PMID: 33725493 DOI: 10.1016/j.imbio.2021.152078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Angiogenic activity and vascular survival ability are two distinct vasculature related tumor features that can be assessed in tumor tissues. We examined their correlation with anti-tumor immunity in a series of endometrial carcinomas. MATERIAL AND METHODS Thirty-three, stage I, endometrial carcinomas of endometrioid histology were analyzed with immunohistochemistry for the expression of CD31 pan-endothelial cell marker and CD25 and FOXP3 markers of regulatory T-cells. Angiogenic activity (AA) was assessed as the microvessel density in the invading tumor front (MVDt1). The vascular survival ability VSA was assessed by comparing the MVDt1 to the MVD in inner tumor areas (MVDt2 and MVDt3). The tumor-infiltrating lymphocyte TIL-density and the CD25+ and FOXP3+ TILD-density were assessed in the invading front and internal tumor areas. RESULTS The AA and VSA varied 4-fold and 10-fold among tumors, respectively. Highly angiogenic tumors were more frequently related with high histological grade (p = 0.01) and low VSA (p < 0.05). Although TIL-density was not associated with MVDt1, a statistically significant inverse association was noted with MVDt3 and VSA (p = 0.0005 and p = 0.002, respectively). Similarly, we observed a statistically significant association between the density of regulatory CD25+ and FOXP3+ TILs with low MVDt3 and low VSA (p = 0.03 and p = 0.04, respectively). CONCLUSIONS Low vascular survival ability relates to high accumulation of regulatory T-cells in inner tumor areas of endometrial carcinomas. The current data hypothesizes meaningful interactions between vascular survival, microenvironmental conditions, and immunosuppression in endometrial cancer.
Collapse
|
69
|
Wang W, Wang B, Sun S, Cao S, Zhai X, Zhang C, Zhang Q, Yuan Q, Sun Y, Xue M, Ma J, Xu F, Wei S, Chen Y. Inhibition of adenosine kinase attenuates myocardial ischaemia/reperfusion injury. J Cell Mol Med 2021; 25:2931-2943. [PMID: 33523568 PMCID: PMC7957171 DOI: 10.1111/jcmm.16328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Increased adenosine helps limit infarct size in ischaemia/reperfusion‐injured hearts. In cardiomyocytes, 90% of adenosine is catalysed by adenosine kinase (ADK) and ADK inhibition leads to higher concentrations of both intracellular adenosine and extracellular adenosine. However, the role of ADK inhibition in myocardial ischaemia/reperfusion (I/R) injury remains less obvious. We explored the role of ADK inhibition in myocardial I/R injury using mouse left anterior ligation model. To inhibit ADK, the inhibitor ABT‐702 was intraperitoneally injected or AAV9 (adeno‐associated virus)—ADK—shRNA was introduced via tail vein injection. H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to elucidate the underlying mechanisms. ADK was transiently increased after myocardial I/R injury. Pharmacological or genetic ADK inhibition reduced infarct size, improved cardiac function and prevented cell apoptosis and necroptosis in I/R‐injured mouse hearts. In vitro, ADK inhibition also prevented cell apoptosis and cell necroptosis in H/R‐treated H9c2 cells. Cleaved caspase‐9, cleaved caspase‐8, cleaved caspase‐3, MLKL and the phosphorylation of MLKL and CaMKII were decreased by ADK inhibition in reperfusion‐injured cardiomyocytes. X‐linked inhibitor of apoptosis protein (XIAP), which is phosphorylated and stabilized via the adenosine receptors A2B and A1/Akt pathways, should play a central role in the effects of ADK inhibition on cell apoptosis and necroptosis. These data suggest that ADK plays an important role in myocardial I/R injury by regulating cell apoptosis and necroptosis.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengyang Xue
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Ma
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
70
|
Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs. J Control Release 2021; 331:376-389. [PMID: 33508351 DOI: 10.1016/j.jconrel.2021.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/09/2023]
Abstract
Stem cell transplantation has been extensively explored to promote ischemic limb vascularization and skeletal muscle regeneration. Yet the therapeutic efficacy is low due to limited cell survival under low oxygen environment of the ischemic limbs. Therefore, continuously oxygenating the transplanted cells has potential to increase their survival. During tissue regeneration, the number of blood vessels are gradually increased, leading to the elevation of tissue oxygen content. Accordingly, less exogenous oxygen is needed for the transplanted cells. Excessive oxygen may induce reactive oxygen species (ROS) formation, causing cell apoptosis. Thus, it is attractive to develop oxygen-release biomaterials that are responsive to the environmental oxygen level. Herein, we developed oxygen-release microspheres whose oxygen release was controlled by oxygen-responsive shell. The shell hydrophilicity and degradation rate decreased as the environmental oxygen level increased, leading to slower oxygen release. The microspheres were capable of directly releasing molecular oxygen, which are safer than those oxygen-release biomaterials that release hydrogen peroxide and rely on its decomposition to form oxygen. The released oxygen significantly enhanced mesenchymal stem cell (MSC) survival without inducing ROS production under hypoxic condition. Co-delivery of MSCs and microspheres to the mouse ischemic limbs ameliorated MSC survival, proliferation and paracrine effects under ischemic conditions. It also significantly accelerated angiogenesis, blood flow restoration, and skeletal muscle regeneration without provoking tissue inflammation. The above results demonstrate that the developed microspheres have potential to augment cell survival in ischemic tissues, and promote ischemic tissue regeneration in a safer and more efficient manner.
Collapse
Affiliation(s)
- Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Gao
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
71
|
Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues. Mol Biol Rep 2021; 48:941-950. [PMID: 33393005 DOI: 10.1007/s11033-020-06108-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
Tissue engineering is a rapidly developing field with many potential clinical applications in tissue and organ regeneration. The development of a mature and stable vasculature within these engineered tissues (ET) remains a significant obstacle. Currently, several growth factors (GFs) have been identified to play key roles within in vivo angiogenesis, including vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), FGF and angiopoietins. In this article we attempt to build on in vivo principles to review the single, dual and multiple GF release systems and their effects on promoting angiogenesis. We conclude that multiple GF release systems offer superior results compared to single and dual systems with more stable, mature and larger vessels produced. However, with more complex release systems this raises other problems such as increased cost and significant GF-GF interactions. Upstream regulators and pericyte-coated scaffolds could provide viable alternative to circumnavigate these issues.
Collapse
|
72
|
Abstract
This chapter provides an overview of the growth factors active in bone regeneration and healing. Both normal and impaired bone healing are discussed, with a focus on the spatiotemporal activity of the various growth factors known to be involved in the healing response. The review highlights the activities of most important growth factors impacting bone regeneration, with a particular emphasis on those being pursued for clinical translation or which have already been marketed as components of bone regenerative materials. Current approaches the use of bone grafts in clinical settings of bone repair (including bone grafts) are summarized, and carrier systems (scaffolds) for bone tissue engineering via localized growth factor delivery are reviewed. The chapter concludes with a consideration of how bone repair might be improved in the future.
Collapse
|
73
|
Effect of PDGF-B Gene-Activated Acellular Matrix and Mesenchymal Stem Cell Transplantation on Full Thickness Skin Burn Wound in Rat Model. Tissue Eng Regen Med 2020; 18:235-251. [PMID: 33145744 DOI: 10.1007/s13770-020-00302-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Full thickness burn wounds are lack of angiogenesis, cell migration, epithelialisation and finally scar tissue formation. Tissue engineered composite graft can provide sustained release of growth factor and promote the wound healing by cell migration, early angiogenesis and proliferation of extracellular matrix and wound remodeling. The objective of this study was to evaluate the gene embedded (pDNA-platelet-derived growth factor, PDGF-B) porcine acellular urinary bladder matrix with transfected mesenchymal stem cells (rBMSC) on healing of full thickness burn wound in rat model. METHODS Full thickness burn wound of 2 × 2 cm size was created in dorsum of rat model under general anesthesia. Burn wounds were treated with silver sulfadiazine; porcine acellular urinary bladder matrix (PAUBM); PAUBM transfected with pDNA-PDGF-B; PAUBM seeded with rBMSC; PAUBM seeded with rBMSC transfected with pDNA-PDGF-B in groups A, B, C, D and E respectively. The wound healing was assessed based on clinical, macroscopically, immunologically, histopathological and RT-qPCR parameters. RESULTS Wound was significantly healed in group E and group D with early extracellular matrix deposition, enhanced granulation tissue formation and early angiogenesis compared to all other groups. The immunologic response against porcine acellular matrix showed that PDGF-B gene activated matrix along with stem cell group showed less antibody titer against acellular matrix than other groups in all intervals. PDGF gene activated matrix releasing the PDGF-B and promote the healing of full thickness burn wound with neovascularization and neo tissue formation. PDGF gene also enhances secretion of other growth factors results in PDGF mediated regenerative activities. This was confirmed in RT-qPCR at various time intervals. CONCLUSION Gene activated matrix encoded for PDGF-B protein transfected stem cells have been clinically proven for early acceleration of angiogenesis and tissue regeneration in burn wounds in rat models. Evaluation of PDGF-B gene-activated acellular matrix and mesenchymal stem cell in full thickness skin burn wound in rat.
Collapse
|
74
|
Ucar B, Yusufogullari S, Humpel C. Collagen hydrogels loaded with fibroblast growth factor-2 as a bridge to repair brain vessels in organotypic brain slices. Exp Brain Res 2020; 238:2521-2529. [PMID: 32862235 PMCID: PMC7541361 DOI: 10.1007/s00221-020-05907-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
Vessel damage is a general pathological process in many neurodegenerative disorders, as well as spinal cord injury, stroke, or trauma. Biomaterials can present novel tools to repair and regenerate damaged vessels. The aim of the present study is to test collagen hydrogels loaded with different angiogenic factors to study vessel repair in organotypic brain slice cultures. In the experimental set up I, we made a cut on the organotypic brain slice and tested re-growth of laminin + vessels. In the experimental set up II, we cultured two half brain slices with a gap with a collagen hydrogel placed in between to study endothelial cell migration. In the experimental set up I, we showed that the number of vessels crossing the cut was tendencially increased with the addition of fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor, or platelet-derived growth factor-BB compared to the control group. In the experimental set up II, we demonstrated that a collagen hydrogel loaded with FGF-2 resulted in a significantly increased number of migrated laminin + cells in the gap between the slices compared to the control hydrogel. Co-administration of several growth factors did not further potentiate the effects. Taken together, we show that organotypic brain slices are good models to study brain vessels and FGF-2 is a potent angiogenic factor for endothelial cell proliferation and migration. Our results provide evidence that the collagen hydrogels can be used as an extracellular matrix for the vascular endothelial cells.
Collapse
Affiliation(s)
- Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sedef Yusufogullari
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Biomedical Institute, Gebze Technical University, Istanbul, Turkey
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
75
|
Sözmen M, Devrim AK, Sudağıdan M, Kabak YB, Yıldırım F. Expression of angiogenic growth factors in canine squamous cell cancers. Biotech Histochem 2020; 96:450-459. [PMID: 33006294 DOI: 10.1080/10520295.2020.1818826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin and subcutaneous tissue tumors are the most common neoplasms in dogs. The most common sites of origin in dogs include digits, skin and the oral cavity including cheek and retromandibular area. We investigated canine squamous cell carcinoma (SCC) samples from 15 dogs and classified them histopathologically according to the degree of differentiation. bFGF, VEGF-C, TGF-β, PDGF-A, PDGF-C and PDGFR-α expressions were assessed using immunohistochemistry to determine the roles of growth factors during SCC. We found that TGF-β1 immunolabeling was elevated significantly compared to healthy controls in SCC originating from nailbeds, while expression of other growth factors did not change significantly. Our findings might explain the role of TGF-β1 in the infiltrative and malignant behavior of SCC originating from nailbeds.
Collapse
Affiliation(s)
- M Sözmen
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - A K Devrim
- Department of Biochemistry, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - M Sudağıdan
- KIT-ARGEM R & D Center, Konya Food and Agriculture University, Konya, Turkey
| | - Y B Kabak
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - F Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
76
|
Yamaguchi K, Kaji Y, Nakamura O, Tobiume S, Nomura Y, Oka K, Yamamoto T. Bone Union Enhancement by bFGF-Containing HAp/Col in Prefabricated Vascularized Allo-Bone Grafts. J Reconstr Microsurg 2020; 37:346-352. [PMID: 32957154 DOI: 10.1055/s-0040-1716854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND We have developed a prefabricated vascularized allo-bone graft (PVAG) by implanting the saphenous vascular bundles of recipient rats into transplanted donor bones in a flow-through manner. We previously demonstrated that the angiogenetic and bone formative abilities of the PVAG are stimulated by the addition of a basic fibroblast growth factor (bFGF)-containing hydroxyapatite/collagen (HAp/Col). This study aimed to demonstrate that the bone union ability of the PVAG is similarly stimulated by the bFGF-containing HAp/Col composite. METHODS Sprague-Dawley donor rats (n = 32) and Wistar recipient rats (n = 32) were used in this study. The PVAG was fixed to the femur of the recipient rat using K-wire (dimeter: 0.7 mm) pinning, followed by suturing with a 4-0 nylon suture. Recipients were divided into four groups: with or without vascular bundles, and with or without bFGF-containing HAp/Col. Rats were sacrificed 6 weeks after transplantation, and bone union, bone resorption, and angiogenesis were radiologically and histologically evaluated. RESULTS Radiological analysis revealed a significant increase in callus formation and union rate, while histological analysis showed a significant increase in bone formation and angiogenesis in the group treated with both vascular bundles and bFGF. Bone resorption did not significantly increase in any of the evaluated groups. CONCLUSION Osteogenic cells, osteoconductive scaffolds, growth factors, and mechanical environment are known to be important factors in the process of fracture healing. The PVAG developed herein contains osteogenic cells, osteoconductive scaffolds, and growth factors. In addition, the PVAG is rigidly fixed to the fracture site, providing a stable mechanical environment. Together, these four factors contributed to a good bone union. Furthermore, this method did not promote bone resorption. Thus, the addition of a vascular bundle and bFGF-containing HAp/Col makes it possible to create an ideal vascularized allo-bone graft for the reconstruction of massive bone defects.
Collapse
Affiliation(s)
- Konosuke Yamaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Yoshio Kaji
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Osamu Nakamura
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Sachiko Tobiume
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Yumi Nomura
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Kunihiko Oka
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Tetsuji Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|
77
|
Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, Yang Z, Shen Z. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther 2020; 11:373. [PMID: 32859268 PMCID: PMC7455909 DOI: 10.1186/s13287-020-01881-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/26/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Myocardial infarction (MI) is a severe disease that often associated with dysfunction of angiogenesis. Cell-based therapies for MI using mesenchymal stem cell (MSC)-derived exosomes have been well studied due to their strong proangiogenic effect. Genetic modification is one of the most common methods to enhance exosome therapy. This study investigated the proangiogenic and cardioprotective effect of exosomes derived from hypoxia-inducible factor 1-alpha (HIF-1α)-modified MSCs. Methods Lentivirus containing HIF-1α overexpressing vector was packaged and used to infect MSCs. Exosomes were isolated from MSC-conditioned medium by ultracentrifugation. Human umbilical vein endothelial cells (HUVECs) were treated under hypoxia condition for 48 h co-cultured with PBS, control exosomes, or HIF-1α-overexpressed exosomes, respectively. Then the preconditioned HUVECs were subjected to tube formation assay, Transwell assay, and EdU assay to evaluate the protective effect of exosomes. Meanwhile, mRNA and secretion levels of proangiogenic factors were measured by RT-qPCR and ELISA assays. In vivo assays were conducted using the rat myocardial infarction model. PBS, control exosomes, or HIF-1α-overexpressed exosomes were injected through tail vein after MI surgery. Heart function was assessed by echocardiography at days 3, 14, and 28. At day 7, mRNA and protein expression levels of proangiogenic factors in the peri-infarction area and circulation were evaluated, respectively. At day 28, hearts were collected and subjected to H&E staining, Masson’s trichrome staining, and immunofluorescent staining. Results HIF-1α-overexpressed exosomes rescued the impaired angiogenic ability, migratory function, and proliferation of hypoxia-injured HUVECs. Simultaneously, HIF-1α-overexpressed exosomes preserved heart function by promoting neovessel formation and inhibiting fibrosis in the rat MI model. In addition, both in vitro and in vivo proangiogenic factors mRNA and protein expression levels were elevated after HIF-1α-overexpressed exosome application. Conclusion HIF-1α-overexpressed exosomes could rescue the impaired angiogenic ability, migration, and proliferation of hypoxia-pretreated HUVECs in vitro and mediate cardioprotection by upregulating proangiogenic factors and enhancing neovessel formation.
Collapse
Affiliation(s)
- Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Xuan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China.
| |
Collapse
|
78
|
Nugrahaningrum DA, Marcelina O, Liu C, Wu S, Kasim V. Dapagliflozin Promotes Neovascularization by Improving Paracrine Function of Skeletal Muscle Cells in Diabetic Hindlimb Ischemia Mice Through PHD2/HIF-1α Axis. Front Pharmacol 2020; 11:1104. [PMID: 32848736 PMCID: PMC7424065 DOI: 10.3389/fphar.2020.01104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is associated with a high risk of hindlimb ischemia (HLI) progression and an inevitably poor prognosis, including worse limb salvage and mortality. Skeletal muscle cells can secrete angiogenic factors, which could promote neovascularization and blood perfusion recovery. Thus, paracrine function of skeletal muscle cells, which is aberrant in diabetic conditions, is crucial for therapeutic angiogenesis in diabetic HLI. Dapagliflozin is a well-known anti-hyperglycemia and anti-obesity drug; however, its role in therapeutic angiogenesis is unknown. Herein, we found that dapagliflozin could act as an angiogenesis stimulator in diabetic HLI. We showed that dapagliflozin enhances the viability, proliferation, and migration potentials of skeletal muscle cells and promotes the secretion of multiple angiogenic factors from skeletal muscle cells, most plausibly through PHD2/HIF-1α axis. Furthermore, we demonstrated that conditioned medium from dapagliflozin-treated skeletal muscle cells enhances the proliferation and migration potentials of vascular endothelial and smooth muscle cells, which are two fundamental cells of functional mature vessels. Finally, an in vivo study demonstrated that intramuscular administration of dapagliflozin effectively enhances the formation of mature blood vessels and, subsequently, blood perfusion recovery in diabetic HLI mice. Hence, our results suggest a novel function of dapagliflozin as a potential therapeutic angiogenesis agent for diabetic HLI.
Collapse
Affiliation(s)
- Dyah Ari Nugrahaningrum
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Olivia Marcelina
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Caiping Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
79
|
Therapeutic paradigm of dual targeting VEGF and PDGF for effectively treating FGF-2 off-target tumors. Nat Commun 2020; 11:3704. [PMID: 32709869 PMCID: PMC7382445 DOI: 10.1038/s41467-020-17525-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
FGF-2 displays multifarious functions in regulation of angiogenesis and vascular remodeling. However, effective drugs for treating FGF-2+ tumors are unavailable. Here we show that FGF-2 modulates tumor vessels by recruiting NG2+ pricytes onto tumor microvessels through a PDGFRβ-dependent mechanism. FGF-2+ tumors are intrinsically resistant to clinically available drugs targeting VEGF and PDGF. Surprisingly, dual targeting the VEGF and PDGF signaling produces a superior antitumor effect in FGF-2+ breast cancer and fibrosarcoma models. Mechanistically, inhibition of PDGFRβ ablates FGF-2-recruited perivascular coverage, exposing anti-VEGF agents to inhibit vascular sprouting. These findings show that the off-target FGF-2 is a resistant biomarker for anti-VEGF and anti-PDGF monotherapy, but a highly beneficial marker for combination therapy. Our data shed light on mechanistic interactions between various angiogenic and remodeling factors in tumor neovascularization. Optimization of antiangiogenic drugs with different principles could produce therapeutic benefits for treating their resistant off-target cancers. Anti-VEGF therapy has many limitations that might be resolved by using combination treatment approaches. Here, the authors demonstrate that the dual-targeting of VEGF and PDGF is required for targeting resistant FGF2+ tumors which depend on the recruitment of pericytes on tumor microvessels.
Collapse
|
80
|
Falco MM, Peña-Chilet M, Loucera C, Hidalgo MR, Dopazo J. Mechanistic models of signaling pathways deconvolute the glioblastoma single-cell functional landscape. NAR Cancer 2020; 2:zcaa011. [PMID: 34316686 PMCID: PMC8210212 DOI: 10.1093/narcan/zcaa011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Single-cell RNA sequencing is revealing an unexpectedly large degree of heterogeneity in gene expression levels across cell populations. However, little is known on the functional consequences of this heterogeneity and the contribution of individual cell fate decisions to the collective behavior of the tissues these cells are part of. Here, we use mechanistic modeling of signaling circuits, which reveals a complex functional landscape at single-cell level. Different clusters of neoplastic glioblastoma cells have been defined according to their differences in signaling circuit activity profiles triggering specific cancer hallmarks, which suggest different functional strategies with distinct degrees of aggressiveness. Moreover, mechanistic modeling of effects of targeted drug inhibitions at single-cell level revealed, how in some cells, the substitution of VEGFA, the target of bevacizumab, by other expressed proteins, like PDGFD, KITLG and FGF2, keeps the VEGF pathway active, insensitive to the VEGFA inhibition by the drug. Here, we describe for the first time mechanisms that individual cells use to avoid the effect of a targeted therapy, providing an explanation for the innate resistance to the treatment displayed by some cells. Our results suggest that mechanistic modeling could become an important asset for the definition of personalized therapeutic interventions.
Collapse
Affiliation(s)
- Matías M Falco
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Marta R Hidalgo
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
81
|
Coronary vessel formation in development and disease: mechanisms and insights for therapy. Nat Rev Cardiol 2020; 17:790-806. [PMID: 32587347 DOI: 10.1038/s41569-020-0400-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
The formation of new blood vessels after myocardial infarction (MI) is essential for the survival of existing and regenerated cardiac tissue. However, the extent of endogenous revascularization after MI is insufficient, and MI can often result in ventricular remodelling, progression to heart failure and premature death. The neutral results of numerous clinical trials that have evaluated the efficacy of angiogenic therapy to revascularize the infarcted heart reflect our poor understanding of the processes required to form a functional coronary vasculature. In this Review, we describe the latest advances in our understanding of the processes involved in coronary vessel formation, with mechanistic insights taken from developmental studies. Coronary vessels originate from multiple cellular sources during development and form through a number of distinct and carefully orchestrated processes. The ectopic reactivation of developmental programmes has been proposed as a new paradigm for regenerative medicine, therefore, a complete understanding of these processes is crucial. Furthermore, knowledge of how these processes differ between the embryonic and adult heart, and how they might be more closely recapitulated after injury are critical for our understanding of regenerative biology, and might facilitate the identification of tractable molecular targets to therapeutically promote neovascularization and regeneration of the infarcted heart.
Collapse
|
82
|
Zhang L, Qiu H, Wang D, Miao H, Zhu Y, Guo Q, Guo Y, Wang Z. Enhanced vascularization and biocompatibility of rat pancreatic decellularized scaffolds loaded with platelet-rich plasma. J Biomater Appl 2020; 35:313-330. [PMID: 32567485 DOI: 10.1177/0885328220933890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of pancreatic tissue engineering is to create a long-lived substitute organ to treat diabetes. However, the lack of neovascularization and the occurrence of immune response limit the efficacy of tissue-engineered pancreas after in vivo transplantation. Platelet-rich plasma (PRP) is an autologous platelet concentrate containing a large number of growth factors and immunoregulatory factors. The aim of this study was to evaluate rat pancreatic decellularized scaffold (PDS) loaded with PRP for vascularization, host inflammatory response and macrophage polarization in an animal model. The study results indicated that compared to PDS, PRP-loading PDS exhibited the enhanced mechanical properties and released growth factors in a slow and sustained manner to supplement the loss of growth factors during decellularization. In vitro, human umbilical vein endothelial cells (HUVECs) were seeded in PDS and PRP-loading PDS, and cultured in the circular perfusion system. When compared with PDS, PRP-loading PDS significantly promoted the colonization, proliferation and pro-angiogenic genes expression of cells on scaffolds. In vivo, PDS loaded with PRP then re-endothelialized with HUVECs were implanted subcutaneously in rats, which enhanced the angiogenesis of scaffolds, inhibited the host inflammatory response, and induced the polarization dominated by pro-regenerative M2 macrophages that also facilitated tissue vascular regeneration. Thus, the re-endothelialized PRP-loading PDS may represent a promising bioengineered pancreas with sustained vascularization and excellent biocompatibility.
Collapse
Affiliation(s)
- Liang Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R China
- Department of General Surgery, Tengzhou Central People’s Hospital, Tengzhou, P.R. China
| | - Hongquan Qiu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R China
- Research center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R China
| | - Dongzhi Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R China
- Research center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R China
| | - Haiyan Miao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R China
- Department of General Surgery, The Sixth People’s Hospital, Nantong, P.R China
| | - Yi Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R China
- Research center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R China
| | - Qingsong Guo
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R China
| | - Yibing Guo
- Research center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R China
| |
Collapse
|
83
|
Han SW, Vergani CA, Reis PEO. Is gene therapy for limb ischemia a reality? J Vasc Bras 2020; 19:e20190059. [PMID: 34178054 PMCID: PMC8202161 DOI: 10.1590/1677-5449.190059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/15/2019] [Indexed: 11/21/2022] Open
Abstract
The concept of angiogenic therapy emerged in the early 1990s. The method employs genes that encode growth factors to promote formation of new vessels and remodeling of collateral vessels. Since the procedure involved in this therapy usually only consists of local injections of vectors, the process is minimally invasive, quick, and simple to perform. However, since the first clinical evidence of the effects of gene therapy with vascular endothelial growth factor (VEGF) was observed in patients with peripheral artery disease, to date only two angiogenic therapy drugs have been approved, one in Russia and another in Japan, which seem a very small number, in view of the large volume of investment made in pre-clinical and clinical studies. After all, can we conclude that angiogenic therapy is a reality?
Collapse
Affiliation(s)
- Sang Won Han
- Universidade Federal de São Paulo – UNIFESP,
Departamento de Biofísica, Escola Paulista de Medicina, São Paulo, SP,
Brasil.
- Universidade Federal de São Paulo – UNIFESP,
Centro Interdisciplinar de Terapia Gênica – CINTERGEN, São Paulo, SP,
Brasil.
| | - Carlos Alberto Vergani
- Universidade Federal de São Paulo – UNIFESP,
Centro Interdisciplinar de Terapia Gênica – CINTERGEN, São Paulo, SP,
Brasil.
| | - Paulo Eduardo Ocke Reis
- Universidade Federal Fluminense – UFF,
Departamento de Cirurgia Geral e Especializada, Rio de Janeiro, RJ,
Brasil.
| |
Collapse
|
84
|
Su W, Liu G, Liu X, Zhou Y, Sun Q, Zhen G, Wang X, Hu Y, Gao P, Demehri S, Cao X, Wan M. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 2020; 5:135446. [PMID: 32208385 PMCID: PMC7205438 DOI: 10.1172/jci.insight.135446] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Increased subchondral bone angiogenesis with blood vessels breaching the tidemark into the avascular cartilage is a diagnostic feature of human osteoarthritis. However, the mechanisms that initiate subchondral bone angiogenesis remain unclear. We show that abnormally increased platelet-derived growth factor-BB (PDGF-BB) secretion by mononuclear preosteoclasts induces subchondral bone angiogenesis, contributing to osteoarthritis development. In mice after destabilization of the medial meniscus (DMM), aberrant joint subchondral bone angiogenesis developed during an early stage of osteoarthritis, before articular cartilage damage occurred. Mononuclear preosteoclasts in subchondral bone secrete excessive amounts of PDGF-BB, which activates platelet-derived growth factor receptor-β (PDGFR-β) signaling in pericytes for neo-vessel formation. Selective knockout of PDGF-BB in preosteoclasts attenuates subchondral bone angiogenesis and abrogates joint degeneration and subchondral innervation induced by DMM. Transgenic mice that express PDGF-BB in preosteoclasts recapitulate pathological subchondral bone angiogenesis and develop joint degeneration and subchondral innervation spontaneously. Our study provides the first evidence to our knowledge that PDGF-BB derived from preosteoclasts is a key driver of pathological subchondral bone angiogenesis during osteoarthritis development and offers a new avenue for developing early treatments for this disease.
Collapse
Affiliation(s)
- Weiping Su
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedic Surgery, The Xiangya Hospital of Central South University, Changsha, China
| | - Guanqiao Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangying Zhou
- Department of Oncology, The Xiangya Hospital of Central South University, Changsha, China
| | - Qi Sun
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gehua Zhen
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yihe Hu
- Department of Orthopaedic Surgery, The Xiangya Hospital of Central South University, Changsha, China
| | | | - Shadpour Demehri
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
85
|
Contribution of the Potassium Channels K V1.3 and K Ca3.1 to Smooth Muscle Cell Proliferation in Growing Collateral Arteries. Cells 2020; 9:cells9040913. [PMID: 32276492 PMCID: PMC7226779 DOI: 10.3390/cells9040913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Collateral artery growth (arteriogenesis) involves the proliferation of vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Whereas the proliferation of ECs is directly related to shear stress, the driving force for arteriogenesis, little is known about the mechanisms of SMC proliferation. Here we investigated the functional relevance of the potassium channels KV1.3 and KCa3.1 for SMC proliferation in arteriogenesis. Employing a murine hindlimb model of arteriogenesis, we found that blocking KV1.3 with PAP-1 or KCa3.1. with TRAM-34, both interfered with reperfusion recovery after femoral artery ligation as shown by Laser-Doppler Imaging. However, only treatment with PAP-1 resulted in a reduced SMC proliferation. qRT-PCR results revealed an impaired downregulation of α smooth muscle-actin (αSM-actin) and a repressed expression of fibroblast growth factor receptor 1 (Fgfr1) and platelet derived growth factor receptor b (Pdgfrb) in growing collaterals in vivo and in primary murine arterial SMCs in vitro under KV1.3. blockade, but not when KCa3.1 was blocked. Moreover, treatment with PAP-1 impaired the mRNA expression of the cell cycle regulator early growth response-1 (Egr1) in vivo and in vitro. Together, these data indicate that KV1.3 but not KCa3.1 contributes to SMC proliferation in arteriogenesis.
Collapse
|
86
|
Singh N, Singh R, Sharma RK, Kumar A, Sharma SP, Agarwal A, Gupta V, Singh R, Katoch D. Mycobacterium Tuberculosis Modulates Fibroblast Growth Factor and Vascular Endothelial Growth Factor in Ocular Tuberculosis. Ocul Immunol Inflamm 2020; 29:1445-1451. [PMID: 32160084 DOI: 10.1080/09273948.2020.1734212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To evaluate the role of angiogenic growth factors in the pathogenesis of intraocular tuberculosis.Methods: Retinal Pigment Epithelium (RPE) cells were infected with varying dilution of Mycobacterium tuberculosis (MTB), ranging from several thousand to a few MTB bacilli to replicate paucibacillary conditions. Angiogenesis growth factors were evaluated using multiplex fluorescent bead based flow cytometry in the culture supernatant of RPE cells infected with MTB, vitreous fluids and tear samples of uveitis patients visiting retina clinic.Results: Vascular endothelial growth factor (VEGF) levels were elevated and fibroblast growth factors (FGFs) were down regulated in RPE-infected MTB cells. Similar pattern of VEGF and FGF was observed in the vitreous of IOTB patients. However, no changes were observed in tear samples.Conclusions: MTB exploits the angiogenesis growth factors for pathogenesis by decreasing FGF with concomitant surge of VEGF in MTB infected RPE as well in the vitreous of IOTB patients.
Collapse
Affiliation(s)
- Nirbhai Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravinder Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravi Kumar Sharma
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Kumar
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surya Prakash Sharma
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aniruddha Agarwal
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishali Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deeksha Katoch
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
87
|
Ahir BK, Engelhard HH, Lakka SS. Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Mol Neurobiol 2020; 57:2461-2478. [PMID: 32152825 PMCID: PMC7170819 DOI: 10.1007/s12035-020-01892-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is the growth of new capillaries from the preexisting blood vessels. Glioblastoma (GBM) tumors are highly vascularized tumors, and glioma growth depends on the formation of new blood vessels. Angiogenesis is a complex process involving proliferation, migration, and differentiation of vascular endothelial cells (ECs) under the stimulation of specific signals. It is controlled by the balance between its promoting and inhibiting factors. Various angiogenic factors and genes have been identified that stimulate glioma angiogenesis. Therefore, attention has been directed to anti-angiogenesis therapy in which glioma proliferation is inhibited by inhibiting the formation of new tumor vessels using angiogenesis inhibitory factors and drugs. Here, in this review, we highlight and summarize the various molecular mediators that regulate GBM angiogenesis with focus on recent clinical research on the potential of exploiting angiogenic pathways as a strategy in the treatment of GBM patients.
Collapse
Affiliation(s)
- Bhavesh K Ahir
- Section of Hematology and Oncology, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA
| | - Sajani S Lakka
- Section of Hematology and Oncology, University of Illinois College of Medicine at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
88
|
Ma R, Yang Q, Cao S, Liu S, Cao H, Xu H, Wu J, Feng J. Serum Platelet-Derived Growth Factor Is Significantly Lower in Patients with Lung Cancer and Continued to Decrease After Platinum-Based Chemotherapy. Onco Targets Ther 2020; 13:1883-1892. [PMID: 32184623 PMCID: PMC7061435 DOI: 10.2147/ott.s239252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Objective This study aimed to investigate the diagnosis and prediction of serum platelet-derived growth factor (PDGF) level in patients with lung cancer (LC). Methods Serum concentrations of PDGF-AA and PDGF-AB/BB were determined via Luminex assay in 210 patients with non-small cell lung cancer (NSCLC), 33 patients with small cell lung cancer (SCLC), and 168 healthy controls. Results The serum levels of PDGF-AA and PDGF-AB/BB were lower in patients with NSCLC (P < 0.05) and SCLC (P < 0.05), compared to healthy controls. The concentration of PDGF-AA or PDGF-AB/BB continued to markedly decrease in NSCLC after therapy with platinum-based chemotherapy (P < 0.05). The median survival times were 29 and 38 months in patients with NSCLC who received PDGF-AA < 30 ng/mL and PDGF-AA ≥ 30 ng/mL (P = 0.0078), and 26 and 38 months in patients with NSCLC who received PDGF-AB/BB < 42 ng/mL and PDGF-AB/BB ≥ 42 ng/mL (P = 0.0001), respectively. At the individual protein level, PDGF-AA and PDGF-AB/BB had better diagnostic values for NSCLC (AUC = 0.905, AUC = 0.922, respectively). Conclusion Serum PDGF may be a potential biomarker for diagnosis of patients with NSCLC and SCLC. However, the prognostic value of serum PDGF in patients with NSCLC harboring mutations and different therapies requires additional investigation.
Collapse
Affiliation(s)
- Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Qing Yang
- Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, People's Republic of China
| | - Shengya Cao
- Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, People's Republic of China
| | - Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Haixia Cao
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Heng Xu
- Laboratory of Pharmaceutical Chemistry, Jiangsu Province Institute of Materia Medica, Nanjing Tech University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Jifeng Feng
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| |
Collapse
|
89
|
Proangiogenic and Proarteriogenic Therapies in Coronary Microvasculature Dysfunction. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
90
|
Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials 2020; 228:119557. [DOI: 10.1016/j.biomaterials.2019.119557] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|
91
|
Caseiro AR, Santos Pedrosa S, Ivanova G, Vieira Branquinho M, Almeida A, Faria F, Amorim I, Pereira T, Maurício AC. Mesenchymal Stem/ Stromal Cells metabolomic and bioactive factors profiles: A comparative analysis on the umbilical cord and dental pulp derived Stem/ Stromal Cells secretome. PLoS One 2019; 14:e0221378. [PMID: 31774816 PMCID: PMC6881058 DOI: 10.1371/journal.pone.0221378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal Stem/ Stromal Cells assume a supporting role to the intrinsic mechanisms of tissue regeneration, a feature mostly assigned to the contents of their secretome. A comparative study on the metabolomic and bioactive molecules/factors content of the secretome of Mesenchymal Stem/ Stromal Cells derived from two expanding sources: the umbilical cord stroma and the dental pulp is presented and discussed. The metabolic profile (Nuclear Magnetic Resonance Spectroscopy) evidenced some differences in the metabolite dynamics through the conditioning period, particularly on the glucose metabolism. Despite, overall similar profiles are suggested. More prominent differences are highlighted for the bioactive factors (Multiplexing Laser Bear Analysis), in which Follistatin, Growth Regulates Protein, Hepatocyte Growth Factor, Interleukin-8 and Monocyte Chemotactic Protein-1 dominate in Umbilical Cord Mesenchymal Stem/ Stromal Cells secretion, while in Dental Pulp Stem/ Stromal Cells the Vascular Endothelial Growth Factor-A and Follistatin are more evident. The distinct secretory cocktail did not result in significantly different effects on endothelial cell populations dynamics including proliferation, migration, tube formation capacity and in vivo angiogenesis, or in chemotaxis for both Mesenchymal Stem/ Stromal Cells populations.
Collapse
Affiliation(s)
- Ana Rita Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
- Escola Universitária Vasco da Gama (EUVG), Lordemão, Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
| | - Galya Ivanova
- REQUIMTE- LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Mariana Vieira Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
| | - André Almeida
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
- Indústria Transformadora de Subprodutos—I.T.S, SA, Grupo ETSA, Rua Padre Adriano, Olivais do Machio, Santo Antão do Tojal, Loures, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- i3S - Instituto de Investigação e Inovação da Universidade do Porto, Rua Alfredo Allen, Porto, Portugal
| | - Tiago Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
- * E-mail: ,
| |
Collapse
|
92
|
Mao Y, Liu XQ, Song Y, Zhai CG, Xu XL, Zhang L, Zhang Y. Fibroblast growth factor-2/platelet-derived growth factor enhances atherosclerotic plaque stability. J Cell Mol Med 2019; 24:1128-1140. [PMID: 31755222 PMCID: PMC6933359 DOI: 10.1111/jcmm.14850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Increased immature neovessels contribute to plaque growth and instability. Here, we investigated a method to establish functional and stable neovessel networks to increase plaque stability. Rabbits underwent aortic balloon injury and were divided into six groups: sham, vector and lentiviral transfection with vascular endothelial growth factor‐A (VEGF)‐A, fibroblast growth factor (FGF)‐2, platelet‐derived growth factor (PDGF)‐BB and FGF‐2 + PDGF‐BB. Lentivirus was percutaneously injected into the media‐adventitia of the abdominal aorta by intravascular ultrasound guidance, and plaque‐rupture rate, plaque‐vulnerability index and plaque neovessel density at the injection site were evaluated. Confocal microscopy, Prussian Blue assay, Evans Blue, immunofluorescence and transmission electron microscopy were used to assess neovessel function and pericyte coverage. To evaluate the effect of FGF‐2/PDGF‐BB on pericyte migration, we used the mesenchymal progenitor cell line 10T1/2 as an in vitro model. VEGF‐A‐ and FGF‐2‐overexpression increased the number of immature neovessels, which caused intraplaque haemorrhage and inflammatory cell infiltration, eventually resulting in the plaque vulnerability; however, FGF‐2/PDGF‐BB induced mature and functional neovessels, through increased neovessel pericyte coverage. Additionally, in vitro analysis of 10T1/2 cells revealed that FGF‐2/PDGF‐BB induced epsin‐2 expression and enhanced the VEGF receptor‐2 degradation, which negatively regulated pericyte function consistent with the in vivo data. These results showed that the combination of FGF‐2 and PDGF‐BB promoted the function and maturation of plaque neovessels, thereby representing a novel potential treatment strategy for vulnerable plaques.
Collapse
Affiliation(s)
- Yang Mao
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Qiong Liu
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Song
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Gang Zhai
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xing Li Xu
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Zhang
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
93
|
Fibroblast growth factor-2 promotes the function of tendon-derived stem cells in Achilles tendon restoration in an Achilles tendon injury rat model. Biochem Biophys Res Commun 2019; 521:91-97. [PMID: 31629466 DOI: 10.1016/j.bbrc.2019.10.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
The prognosis of Achilles tendon rupture is often unsatisfactory. Proliferative fibrous tissues and disordered collagen bundles make it difficult to guarantee normal biomechanical properties. The present study aimed to investigate the role of fibroblast growth factor-2 (FGF-2) in promoting the ability of human tendon-derived stem cells (hTDSCs) to treat Achilles tendon injury. hTDSCs were isolated from fetal Achilles tendon tissue and verified using fluorescence activated cell sorting analysis and multi-directional differentiation. The cells were then transfected with a lentivirus carrying the FGF2 gene. In vitro, FGF2 overexpression increased the expression of Collagen Type III Alpha 1 Chain (collagen-III) and scleraxis BHLH transcription factor (SCXA) significantly. Additionally, FGF-2-hTDSCs were transplanted into a rat Achilles tendon defect model. The in vivo results showed that the Achilles tendon tissue in the FGF-2 group secreted more extracellular matrix and produced collagen fibers that showed a more orderly arrangement. The expression of collagen-I and III in the FGF-2 group was significantly increased at 4 weeks postoperatively compared with the control group. Moreover, biomechanical tests showed that the failure load of FGF-2 group was higher at 4 and 8 weeks postoperatively than that of the controls. FGF-2 group had the highest stiffness in the early postoperative period, but showed no significant difference in the middle and late postoperative periods compared with that of the controls. In conclusion, FGF2 gene-modified hTDSCs promoted healing of Achilles tendon injury more effectively than hTDSCs alone.
Collapse
|
94
|
Chokoza C, Gustafsson CA, Goetsch KP, Zilla P, Thierfelder N, Pisano F, Mura M, Gnecchi M, Bezuidenhout D, Davies NH. Tuning Tissue Ingrowth into Proangiogenic Hydrogels via Dual Modality Degradation. ACS Biomater Sci Eng 2019; 5:5430-5438. [PMID: 33464063 DOI: 10.1021/acsbiomaterials.9b01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The potential to control the rate of replacement of a biodegradable implant by a tissue would be advantageous. Here, we demonstrate that tissue invasion can be tuned through the novel approach of overlaying an enzymatically degradable hydrogel with an increasingly hydrolytically degradable environment. Poly(ethylene glycol) (PEG) hydrogels were formed from varying proportions of PEG-vinyl sulfone and PEG-acrylate (PEG-AC) monomers via a Michael-type addition reaction with a dithiol-containing matrix-metalloproteinase-susceptible peptide cross-linker. Swelling studies showed that PEG hydrogels with similar initial stiffnesses degraded more rapidly as the PEG-AC content increased. The replacement of subcutaneously implanted PEG hydrogels was also found to be proportional to their PEG-AC content. In addition, it would in many instances be desirable that these materials have the ability to stimulate their neovascularization. These hydrogels contained covalently bound heparin, and it was shown that a formulation of the hydrogel that allowed tissue replacement to occur over 1 month could trap and release growth factors and increase neovascularization by 50% over that time.
Collapse
Affiliation(s)
| | | | | | | | - Nikolaus Thierfelder
- Department of Cardiac Surgery, Ludwig-Maximilians University Munich, Leopoldstraße 13, 80802 Munich, Germany
| | - Federica Pisano
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Manuela Mura
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | | | | |
Collapse
|
95
|
Ravindran D, Cartland SP, Bursill CA, Kavurma MM. Broad-spectrum chemokine inhibition blocks inflammation-induced angiogenesis, but preserves ischemia-driven angiogenesis. FASEB J 2019; 33:13423-13434. [PMID: 31574232 DOI: 10.1096/fj.201900232rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
M3 is a broad-spectrum chemokine-binding protein that inactivates inflammatory chemokines, including CCL2, CCL5, and CX3CL1. The aim of this study was to compare whether M3 could inhibit angiogenesis driven by inflammation or ischemia. Here, apolipoprotein E-/- mice were injected with adenoviral M3 (AdM3) or control adenoviral green fluorescent protein (AdGFP) 3 d prior to stimulating angiogenesis using 2 established models that distinctly represent inflammatory or ischemia-driven angiogenesis, namely the periarterial femoral cuff and hind limb ischemia. AdM3 reduced intimal thickening, adventitial capillary density, and macrophage accumulation in femoral arteries 21 d after periarterial femoral cuff placement compared with AdGFP-treated mice (P < 0.05). AdM3 also reduced mRNA expression of proangiogenic VEGF, inflammatory markers IL-6 and IL-1β, and vascular smooth muscle cell (VSMC)-activated synthetic markers Krüppel-like family of transcription factor 4 (KLF4) and platelet-derived growth factor receptor β (PDGFRβ) in the inflammatory cuff model. In contrast, capillary density, VSMC content, blood flow perfusion, and VEGF gene expression were unaltered between groups in skeletal muscle following hind limb ischemia. In vitro, AdM3 significantly reduced human microvascular endothelial cell 1 proliferation, migration, and tubule formation by ∼17, 71.3, and 8.7% (P < 0.05) in macrophage-conditioned medium associating with reduced VEGF and hypoxia-inducible factor 1α mRNA but not in hypoxia (1% O2). Compared with AdGFP, AdM3 also inhibited VSMC proliferation and migration and reduced mRNA expression of KLF4 and PDGFRβ under inflammatory conditions. In contrast, AdM3 had no effect on VSMC processes in response to hypoxia in vitro. Our findings show that broad-spectrum inhibition of inflammatory chemokines by M3 inhibits inflammatory-driven but not ischemia-driven angiogenesis, presenting a novel strategy for the treatment of diseases associated with inflammatory-driven angiogenesis.-Ravindran, D., Cartland, S. P., Bursill, C. A., Kavurma, M. M. Broad-spectrum chemokine inhibition blocks inflammation-induced angiogenesis, but preserves ischemia-driven angiogenesis.
Collapse
Affiliation(s)
- Dhanya Ravindran
- The Heart Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Siân P Cartland
- The Heart Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Christina A Bursill
- Heart Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mary M Kavurma
- The Heart Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
96
|
Xu X, Zhang F, Lu Y, Yu S, Sun W, Sun S, Cheng J, Ma J, Zhang M, Zhang C, Zhang Y, Zhang K. Silencing of NONO inhibits abdominal aortic aneurysm in apolipoprotein E-knockout mice via collagen deposition and inflammatory inhibition. J Cell Mol Med 2019; 23:7449-7461. [PMID: 31512366 PMCID: PMC6815845 DOI: 10.1111/jcmm.14613] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
The role of Non‐POU‐domain‐containing octamer‐binding protein (NONO) in the formation and development of angiotensin II (Ang II)‐induced abdominal aortic aneurysm (AAA) in apolipoprotein E‐knockout (ApoE−/−) mice is still unknown. In Part I, the protein level of NONO was suggestively greater in the AAA tissues compare to that in the normal abdominal aortas. In Part II, 20 ApoE−/− male mice were used to examine the transfection efficiency of lentivirus by detecting GFP fluorescence. In Part III, mice were arbitrarily separated into two groups: one was the control group without Ang II infusion, and another was the Ang II group. Mice treated with Ang II were further randomly divided into three groups to receive the same volume of physiological saline (NT group), sh‐negative control lentivirus (sh‐NC group) and si‐NONO lentivirus (sh‐NONO group). NONO silencing suggestively reduced the occurrence of AAA and abdominal aortic diameter. Compare to the NT group, NONO silencing markedly augmented the content of collagen and vascular smooth muscle cells but reduced macrophage infiltration in AAA. In addition, knockdown of NONO also increased the expression of prolyl‐4‐hydroxylase α1, whereas also decreased the levels of collagen degradation and pro‐inflammatory cytokines in AAA. We detected the interface of NONO and NF‐κB p65, and found that NONO silencing inhibited both the nuclear translocation and the phosphorylation levels of NF‐κB p65. Silencing of NONO prevented Ang II‐influenced AAA in ApoE−/− mice through increasing collagen deposition and inhibiting inflammation. The mechanism may be that silencing of NONO decreases the nuclear translocation and phosphorylation of NF‐κB.
Collapse
Affiliation(s)
- Xingli Xu
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yue Lu
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Sufang Yu
- Department of Neurology, The Fourth People's Hospital, Liaocheng, China
| | - Wenqian Sun
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Shangwen Sun
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Cheng
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Ma
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Kai Zhang
- Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
97
|
Matsuda Y, Nonaka Y, Futakawa S, Imai H, Akita K, Nishihata T, Fujiwara M, Ali Y, Bhisitkul RB, Nakamura Y. Anti-Angiogenic and Anti-Scarring Dual Action of an Anti-Fibroblast Growth Factor 2 Aptamer in Animal Models of Retinal Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:819-828. [PMID: 31454678 PMCID: PMC6716068 DOI: 10.1016/j.omtn.2019.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/03/2022]
Abstract
Currently approved therapies for age-related macular degeneration (AMD) are inhibitors against vascular endothelial growth factor (VEGF), which is a major contributor to the pathogenesis of neovascular AMD (nAMD). Intravitreal injections of anti-VEGF drugs have shown dramatic visual benefits for AMD patients. However, a significant portion of AMD patients exhibit an incomplete response to therapy and, over the extended management course, can lose vision, with the formation of submacular fibrosis as one risk factor. We investigated a novel target for AMD treatments, fibroblast growth factor 2 (FGF2), which has been implicated in the pathophysiology of both angiogenesis and fibrosis in a variety of tissue and organ systems. The anti-FGF2 aptamer, RBM-007, was examined for treatment of nAMD in animal models. In in vivo studies conducted in mice and rats, RBM-007 was able to inhibit FGF2-induced angiogenesis, laser-induced choroidal neovascularization (CNV), and CNV with fibrosis. Pharmacokinetic studies of RBM-007 in the rabbit vitreous revealed high and relatively long-lasting profiles that are superior to other approved anti-VEGF drugs. The anti-angiogenic and anti-scarring dual action of RBM-007 holds promise as an additive or alternative therapy to anti-VEGF treatments for nAMD.
Collapse
Affiliation(s)
- Yusaku Matsuda
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Yosuke Nonaka
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Satoshi Futakawa
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Hirotaka Imai
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kazumasa Akita
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | | | | | - Yusuf Ali
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Robert B Bhisitkul
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Yoshikazu Nakamura
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan; Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
98
|
Wei Z, Volkova E, Blatchley MR, Gerecht S. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Adv Drug Deliv Rev 2019; 149-150:95-106. [PMID: 31421149 PMCID: PMC6889011 DOI: 10.1016/j.addr.2019.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
In recent years, as the mechanisms of vasculogenesis and angiogenesis have been uncovered, the functions of various pro-angiogenic growth factors (GFs) and cytokines have been identified. Therefore, therapeutic angiogenesis, by delivery of GFs, has been sought as a treatment for many vascular diseases. However, direct injection of these protein drugs has proven to have limited clinical success due to their short half-lives and systemic off-target effects. To overcome this, hydrogel carriers have been developed to conjugate single or multiple GFs with controllable, sustained, and localized delivery. However, these attempts have failed to account for the temporal complexity of natural angiogenic pathways, resulting in limited therapeutic effects. Recently, the emerging ideas of optimal sequential delivery of multiple GFs have been suggested to better mimic the biological processes and to enhance therapeutic angiogenesis. Incorporating sequential release into drug delivery platforms will likely promote the formation of neovasculature and generate vast therapeutic potential.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugenia Volkova
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael R Blatchley
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
99
|
Zhang J, Nugrahaningrum DA, Marcelina O, Ariyanti AD, Wang G, Liu C, Wu S, Kasim V. Tyrosol Facilitates Neovascularization by Enhancing Skeletal Muscle Cells Viability and Paracrine Function in Diabetic Hindlimb Ischemia Mice. Front Pharmacol 2019; 10:909. [PMID: 31474865 PMCID: PMC6702659 DOI: 10.3389/fphar.2019.00909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
As one of the most severe manifestations of diabetes, vascular complications are the main causes of diabetes-related morbidity and mortality. Hyperglycemia induces systemic abnormalities, including impaired angiogenesis, causing diabetic patients to be highly susceptible in suffering hindlimb ischemia (HLI). Despite its severe prognosis, there is currently no effective treatment for diabetic HLI. Skeletal muscle cells secrete multiple angiogenic factors, hence, recently are reported to be critical for angiogenesis; however, hyperglycemia disrupted the paracrine function in skeletal muscle cells, leading to the impaired angiogenesis potential observed in diabetic patients. The present study showed that tyrosol, a phenylethanoid compound, suppresses accumulation of intracellular reactive oxygen species (ROS) caused by hyperglycemia, most plausibly by promoting heme oxygenase-1 (HO-1) expression in skeletal muscle cells. Consequently, tyrosol exerts cytoprotective function against hyperglycemia-induced oxidative stress in skeletal muscle cells, increases their proliferation vigorously, and simultaneously suppresses apoptosis. Furthermore, tyrosol grossly increases the secretion of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from skeletal muscle cells. This leads to enhanced proliferation and migration capabilities of vascular endothelial and smooth muscle cells, two types of cells that are responsible in forming blood vessels, through cell-cell communication. Finally, in vivo experiment using the diabetic HLI mouse model showed that tyrosol injection into the gastrocnemius muscle of the ischemic hindlimb significantly enhances the formation of functional blood vessels and subsequently leads to significant recovery of blood perfusion. Overall, our findings highlight the potential of the pharmacological application of tyrosol as a small molecule drug for therapeutic angiogenesis in diabetic HLI patients.
Collapse
Affiliation(s)
- Jianqi Zhang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Dyah Ari Nugrahaningrum
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Agnes Dwi Ariyanti
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Guixue Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Caiping Liu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
100
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|