51
|
Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Bone regeneration is an interdisciplinary complex lesson, including but not limited to materials science, biomechanics, immunology, and biology. Having witnessed impressive progress in the past decades in the development of bone substitutes; however, it must be said that the most suitable biomaterial for bone regeneration remains an area of intense debate. Since its discovery, poly (lactic-co-glycolic acid) (PLGA) has been widely used in bone tissue engineering due to its good biocompatibility and adjustable biodegradability. This review systematically covers the past and the most recent advances in developing PLGA-based bone regeneration materials. Taking the different application forms of PLGA-based materials as the starting point, we describe each form's specific application and its corresponding advantages and disadvantages with many examples. We focus on the progress of electrospun nanofibrous scaffolds, three-dimensional (3D) printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds, and stents prepared by other traditional and emerging methods. Finally, we briefly discuss the current limitations and future directions of PLGA-based bone repair materials. STATEMENT OF SIGNIFICANCE: As a key synthetic biopolymer in bone tissue engineering application, the progress of PLGA-based bone substitute is impressive. In this review, we summarized the past and the most recent advances in the development of PLGA-based bone regeneration materials. According to the typical application forms and corresponding crafts of PLGA-based substitutes, we described the development of electrospinning nanofibrous scaffolds, 3D printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds and scaffolds fabricated by other manufacturing process. Finally, we briefly discussed the current limitations and proposed the newly strategy for the design and fabrication of PLGA-based bone materials or devices.
Collapse
|
52
|
Liu J, Wang J, Xue YF, Chen TT, Huang DN, Wang YX, Ren KF, Wang YB, Fu GS, Ji J. Biodegradable phosphorylcholine copolymer for cardiovascular stent coating. J Mater Chem B 2021; 8:5361-5368. [PMID: 32458930 DOI: 10.1039/d0tb00813c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phosphorylcholine (PC) based polymer coatings with excellent biocompatibility have shown successful commercialization in drug-eluting stents. However, poor degradability represents a challenge in the application of biodegradable stents. Herein, a biodegradable phosphorylcholine copolymer is developed based on one-step radical ring-opening polymerization (RROP). This copolymer was synthesized by copolymerization of a PC unit, degradable ester (2-methylene-1,3-dioxepane, MDO) unit and non-degradable butyl methacrylate (BMA) unit, which showed ratio controllability by changing the monomer ratio during polymerization. We demonstrated that the copolymer with the ratio of 34% MDO, 19% MPC and 47% BMA could form a stable coating by ultrasonic spray, and showed good blood compatibility, anti-adhesion properties, biodegradability, and rapamycin eluting capacity. In vivo study revealed its promising application as a biodegradable stent coating. This work provides a facile path to add biodegradability into PC based polymers for further bio-applications.
Collapse
Affiliation(s)
- Jun Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yun-Fan Xue
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ting-Ting Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Dan-Ni Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yun-Bing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Guo-Sheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310020, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
53
|
Scafa Udriște A, Niculescu AG, Grumezescu AM, Bădilă E. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2498. [PMID: 34065986 PMCID: PMC8151529 DOI: 10.3390/ma14102498] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
One of the leading causes of morbidity and mortality worldwide is coronary artery disease, a condition characterized by the narrowing of the artery due to plaque deposits. The standard of care for treating this disease is the introduction of a stent at the lesion site. This life-saving tubular device ensures vessel support, keeping the blood-flow path open so that the cardiac muscle receives its vital nutrients and oxygen supply. Several generations of stents have been iteratively developed towards improving patient outcomes and diminishing adverse side effects following the implanting procedure. Moving from bare-metal stents to drug-eluting stents, and recently reaching bioresorbable stents, this research field is under continuous development. To keep up with how stent technology has advanced in the past few decades, this paper reviews the evolution of these devices, focusing on how they can be further optimized towards creating an ideal vascular scaffold.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Cardiology Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Elisabeta Bădilă
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Internal Medicine Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
54
|
Ferlauto L, Vagni P, Fanelli A, Zollinger EG, Monsorno K, Paolicelli RC, Ghezzi D. All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials 2021; 274:120889. [PMID: 33992836 DOI: 10.1016/j.biomaterials.2021.120889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Transient bioelectronics has grown fast, opening possibilities never thought before. In medicine, transient implantable devices are interesting because they could eliminate the risks related to surgical retrieval and reduce the chronic foreign body reaction. Despite recent progress in this area, the potential of transient bioelectronics is still limited by their short functional lifetime owed to the fast dissolution rate of degradable metals, which is typically a few days or weeks. Here we report that a switch from degradable metals to an entirely polymer-based approach allows for a slower degradation process and a longer lifetime of the transient probe, thus opening new possibilities for transient medical devices. As a proof-of-concept, we fabricated all-polymeric transient neural probes that can monitor brain activity in mice for a few months, rather than a few days or weeks. Also, we extensively evaluated the foreign body reaction around the implant during the probe degradation. This kind of devices might pave the way for several applications in neuroprosthetics.
Collapse
Affiliation(s)
- Laura Ferlauto
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Adele Fanelli
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Rosa Chiara Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland.
| |
Collapse
|
55
|
Fang S, Ahlmann AH, Langhorn L, Hussein K, Sørensen JA, Guan X, Sheikh SP, Riber LP, Andersen DC. Small diameter polycaprolactone vascular grafts are patent in sheep carotid bypass but require antithrombotic therapy. Regen Med 2021; 16:117-130. [PMID: 33764157 DOI: 10.2217/rme-2020-0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Polycaprolactone (PCL) scaffolds exhibit high biocompatibility and are attractive as vascular conduits. Materials & methods: PCL tubes were cultivated in bioreactor with human adipose regenerative cells to assess ex vivo cytocompatibility, whereas in vivo PCL tube patency was evaluated in sheep carotid bypass with and without antithrombotic treatment. Results: Ex vivo results revealed increasing adipose regenerative cells on PCL using dynamic bioreactor culturing. In vivo data showed that 67% (2/3) of grafts in the antithrombotic group were patent at day 28, while 100% (3/3) of control grafts were occluded already during the first week due to thrombosis. Histology showed that patent PCL grafts were recellularized by host cells. Conclusion: PCL tubes may work as small diameter vascular scaffolds under antithrombotic treatment.
Collapse
Affiliation(s)
- Shu Fang
- Laboratory of Molecular & Cellular Cardiology, Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, Odense C 5000, Denmark.,The Danish Regenerative Center, Odense University Hospital, J. B. Winsløws Vej 4, Odense C 5000, Denmark.,Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, Odense C 5000, Denmark
| | - Alexander Høgsted Ahlmann
- Laboratory of Molecular & Cellular Cardiology, Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, Odense C 5000, Denmark.,Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, Odense C 5000, Denmark
| | - Louise Langhorn
- Biomedical Laboratory, University of Southern Denmark, J.B. Winsløws Vej 23, Odense C 5000, Denmark
| | - Kamal Hussein
- Laboratory of Molecular & Cellular Cardiology, Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, Odense C 5000, Denmark.,The Danish Regenerative Center, Odense University Hospital, J. B. Winsløws Vej 4, Odense C 5000, Denmark.,Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Jens Ahm Sørensen
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, Odense C 5000, Denmark.,Department of Plastic Surgery, Odense University Hospital, J.B. Winsløws Vej 4, Odense C 5000, Denmark
| | - Xiaowei Guan
- Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads Building 345A, Kongens Lyngby 2800, Denmark
| | - Søren Paludan Sheikh
- Laboratory of Molecular & Cellular Cardiology, Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, Odense C 5000, Denmark.,The Danish Regenerative Center, Odense University Hospital, J. B. Winsløws Vej 4, Odense C 5000, Denmark.,Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, Odense C 5000, Denmark
| | - Lars Peter Riber
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, Odense C 5000, Denmark.,Department of Cardiothoracic & Vascular Surgery, Odense University Hospital, J.B. Winsløws Vej 4, Odense C 5000, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular & Cellular Cardiology, Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, Odense C 5000, Denmark.,The Danish Regenerative Center, Odense University Hospital, J. B. Winsløws Vej 4, Odense C 5000, Denmark.,Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, Odense C 5000, Denmark
| |
Collapse
|
56
|
Li X, Tian Y, Zhang J, Cheng J, Wu G, Zhang Y, Zhao G, Ni Z. Effects of annealing constraint methods on poly(L‐lactic acid) monofilaments for application in stents annealing. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Jing Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering Nanjing Forestry University Nanjing China
| | - Yi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School Southeast University Nanjing China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| |
Collapse
|
57
|
Tian Y, Liu M, Liu W, Cheng J, Wu G, Han T, Zhang Y, Zhao G, Ni Z. Effects of annealing temperature on both radial supporting performance and axial flexibility of poly(L‐lactic acid) braided stents. J Appl Polym Sci 2021. [DOI: 10.1002/app.50517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Muqing Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Wentao Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering Nanjing Forestry University Nanjing China
| | - Ting Han
- Department of Thermal Analysis Instrument Mettler‐Toledo Company Shanghai China
| | - Yi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School Southeast University Nanjing China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| |
Collapse
|
58
|
Paunović N, Bao Y, Coulter FB, Masania K, Geks AK, Klein K, Rafsanjani A, Cadalbert J, Kronen PW, Kleger N, Karol A, Luo Z, Rüber F, Brambilla D, von Rechenberg B, Franzen D, Studart AR, Leroux JC. Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties. SCIENCE ADVANCES 2021; 7:7/6/eabe9499. [PMID: 33536222 PMCID: PMC7857684 DOI: 10.1126/sciadv.abe9499] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/17/2020] [Indexed: 05/19/2023]
Abstract
Central airway obstruction is a life-threatening disorder causing a high physical and psychological burden to patients. Standard-of-care airway stents are silicone tubes, which provide immediate relief but are prone to migration. Thus, they require additional surgeries to be removed, which may cause tissue damage. Customized bioresorbable airway stents produced by 3D printing would be highly needed in the management of this disorder. However, biocompatible and biodegradable materials for 3D printing of elastic medical implants are still lacking. Here, we report dual-polymer photoinks for digital light 3D printing of customized and bioresorbable airway stents. These stents exhibit tunable elastomeric properties with suitable biodegradability. In vivo study in healthy rabbits confirmed biocompatibility and showed that the stents stayed in place for 7 weeks after which they became radiographically invisible. This work opens promising perspectives for the rapid manufacturing of the customized medical devices for which high precision, elasticity, and degradability are sought.
Collapse
Affiliation(s)
- Nevena Paunović
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yinyin Bao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Kunal Masania
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
- Shaping Matter Lab, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands
| | - Anna Karoline Geks
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Karina Klein
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ahmad Rafsanjani
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
- SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
| | - Jasmin Cadalbert
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Peter W Kronen
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Veterinary Anaesthesia Services-International, Winterthur, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Nicole Kleger
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Agnieszka Karol
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Fabienne Rüber
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Davide Brambilla
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | | | - Daniel Franzen
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
59
|
Tian Y, Zhang J, Cheng J, Wu G, Zhang Y, Ni Z, Zhao G. A poly(L‐lactic acid) monofilament with high mechanical properties for application in biodegradable biliary stents. J Appl Polym Sci 2021. [DOI: 10.1002/app.49656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments, Southeast University Nanjing China
| | - Jing Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments, Southeast University Nanjing China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments, Southeast University Nanjing China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University Nanjing China
| | - Yi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology Zhongda Hospital, Medical School, Southeast University Nanjing China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments, Southeast University Nanjing China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments, Southeast University Nanjing China
| |
Collapse
|
60
|
Nutan B, Kumar A, Jewrajka SK. Library of Derivatizable Multiblock Copolymers by Nucleophilic Substitution Polymerization and Targeting Specific Properties. Biomacromolecules 2020; 21:5029-5043. [PMID: 33211470 DOI: 10.1021/acs.biomac.0c01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiblock copolymers (MBCs) are fascinating in the field of biology-polymer chemistry interfaces. Synthesizing libraries of MBCs with tailor-made functionality is challenging as it involves multiple steps. Herein, a simple synthesis, analogous to polyurethane/Michael addition reactions, has been introduced to obtain a library of derivatizable MBCs. Nucleophilic substitution polymerization (SNP) of poly(ε-caprolactone) and poly(ethylene glycol) blocks containing activated halide termini by primary mono/di/coamines or clickable amines provides functional MBCs. The structure of amines directs the properties of the MBCs. The self-assembly of small molecular weight primary diamine-based MBCs shows controlled release of hydrophobic model guest molecules and therapeutics. The primary diamine (no dangling chain) helps to form MBC micelles having a relatively tight core with a low diffusion property. Antimicrobial property in the MBCs has been introduced by separating the cationic centers from the lipophilic groups using a coamine as a nucleophilic agent and a small molecular weight dihalide as a chain extender. Clickable MBCs were synthesized by changing the structure of the nucleophile to obtain degradable amphiphilic conetworks and hydrogels. Varieties of macromolecular entities could be obtained by switching the nucleophilic agent and introducing a small molecular weight chain extender. This synthesis approach provides an opportunity to tune the chemical functionality, topological structure, and biological properties of macromolecular entities.
Collapse
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avinash Kumar
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
61
|
Ahuja R, Kumari N, Srivastava A, Bhati P, Vashisth P, Yadav PK, Jacob T, Narang R, Bhatnagar N. Biocompatibility analysis of PLA based candidate materials for cardiovascular stents in a rat subcutaneous implant model. Acta Histochem 2020; 122:151615. [PMID: 33066837 DOI: 10.1016/j.acthis.2020.151615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/18/2023]
Abstract
Modification of Polylactic acid (PLA), a biopolymer, is a strategy still to be fully explored for the next generation of bioresorbable vascular stent (BVS) biomaterials. With this focus, inclusions upto 5% of Polycaprolactone (PCL) and Magnesium in PLA were tested in the rat subcutaneous model and their cellular and tissue interactions characterized, specifically with respect to inflammatory response, angiogenesis and capsularization. The cytokines IL6, TNF Alpha and IL-1Beta were estimated in the peri-implant tissue, all of which showed a non-significant difference between the non-implanted animals and those containing PLA by 8 weeks, speaking to the benign nature of PLA as an implant biomaterial. Both modified materials, had increased macrophage counts and cytokine levels, except IL6 at 8 weeks. Vascularization only at 8 weeks in PLA PCL containing tissue was significantly higher than pure PLA, which may be more carefully controlled along with the material hydrophobicity for possible efforts towards therapeutic angiogenesis. Capsule thickness, measured by staining with both Hematoxylin & Eosin and Masson's Trichome did not show any differences between materials, including PLA.
Collapse
Affiliation(s)
- Ramya Ahuja
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - Nisha Kumari
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - Alok Srivastava
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - Pooja Bhati
- Department of Mechanical & Automation Engineering, Indira Gandhi Delhi Technical University for Women, India
| | - Priya Vashisth
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - P K Yadav
- Central Animal Facility, All India Institute of Medical Sciences, Delhi, India
| | - Tony Jacob
- Department of Anatomy, All India Institute of Medical Sciences, Delhi, India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Sciences, Delhi, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
62
|
Guo Y, Wang M, Ge J, Niu W, Chen M, Cheng W, Lei B. Bioactive biodegradable polycitrate nanoclusters enhances the myoblast differentiation and in vivo skeletal muscle regeneration via p38 MAPK signaling pathway. Bioact Mater 2020; 5:486-495. [PMID: 32322759 PMCID: PMC7162996 DOI: 10.1016/j.bioactmat.2020.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022] Open
Abstract
Complete skeletal muscle repair and regeneration due to severe large injury or disease is still a challenge. Biochemical cues are critical to control myoblast cell function and can be utilized to develop smart biomaterials for skeletal muscle engineering. Citric acid-based biodegradable polymers have received much attention on tissue engineering, however, their regulation on myoblast cell differentiation and mechanism was few investigated. Here, we find that citrate-based polycitrate-polyethylene glycol-polyethylenimine (POCG-PEI600) nanoclusters can significantly enhance the in vitro myoblast proliferation by probably reinforcing the mitochondrial number, promote the myotube formation and full-thickness skeletal muscle regeneration in vivo by activating the myogenic biomarker genes expression of Myod and Mhc. POCG-PEI600 nanoclusters could also promote the phosphorylation of p38 in MAP kinases (MAPK) signaling pathway, which led to the promotion of the myoblast differentiation. The in vivo skeletal muscle loss rat model also confirmed that POCG-PEI600 nanoclusters could significantly improve the angiogenesis, myofibers formation and complete skeletal muscle regeneration. POCG-PEI600 nanocluster could be also biodegraded into small molecules and eliminated in vivo, suggesting their high biocompatibility and biosafety. This study could provide a bioactive biomaterial-based strategy to repair and regenerate skeletal muscle tissue.
Collapse
Affiliation(s)
- Yi Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
63
|
Liu Q, Zheng S, Ye K, He J, Shen Y, Cui S, Huang J, Gu Y, Ding J. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials. Biomaterials 2020; 263:120327. [PMID: 32927304 DOI: 10.1016/j.biomaterials.2020.120327] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
While nanoscale modification of a biomaterial surface is known to influence various cell behaviors, it is unclear whether there is an optimal nanospacing of a bioactive ligand with respect to cell migration. Herein, we investigated the effects of nanospacing of arginine-glycine-aspartate (RGD) peptide on cell migration and its relation to cell adhesion. To this end, we prepared RGD nanopatterns with varied nanospacings (31-125 nm) against the nonfouling background of poly(ethylene glycol), and employed human umbilical vein endothelial cells (HUVECs) to examine cell behaviors on the nanopatterned surfaces. While HUVECs adhered well on surfaces of RGD nanospacing less than 70 nm and exhibited a monotonic decrease of adhesion with the increase of RGD nanospacing, cell migration exhibited a nonmonotonic change with the ligand nanospacing: the maximum migration velocity was observed around 90 nm of nanospacing, and slow or very slow migration occurred in the cases of small or large RGD nanospacings. Therefore, moderate cell adhesion is beneficial for fast cell migration. Further molecular biology studies revealed that attenuated cell adhesion and activated dynamic actin rearrangement accounted for the promotion of cell migration, and the genes of small G proteins such as Cdc42 were upregulated correspondingly. The present study sheds new light on cell migration and its relation to cell adhesion, and paves a way for designing biomaterials for applications in regenerative medicine.
Collapse
Affiliation(s)
- Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; Navy Special Medical Center, The Second Military Medical University, Shanghai, 200433, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yexin Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
64
|
Raut HK, Das R, Liu Z, Liu X, Ramakrishna S. Biocompatibility of Biomaterials for Tissue Regeneration or Replacement. Biotechnol J 2020; 15:e2000160. [DOI: 10.1002/biot.202000160] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/19/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Hemant Kumar Raut
- Division of Engineering Product Development Singapore University of Technology and Design 8 Somapah Rd Singapore 487372 Republic of Singapore
| | - Rupambika Das
- Division of Engineering Product Development Singapore University of Technology and Design 8 Somapah Rd Singapore 487372 Republic of Singapore
| | - Ziqian Liu
- Department of Mechanical Materials, and Manufacturing Engineering The University of Nottingham Ningbo, China 199 Taikang East Road Ningbo 315100 China
| | - Xiaoling Liu
- Department of Mechanical Materials, and Manufacturing Engineering The University of Nottingham Ningbo, China 199 Taikang East Road Ningbo 315100 China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology Department of Mechanical Engineering National University of Singapore Singapore 117574 Singapore
| |
Collapse
|
65
|
Wang S, Duan C, Yang W, Gao X, Shi J, Kang J, Deng Y, Shi XL, Chen ZG. Two-dimensional nanocoating-enabled orthopedic implants for bimodal therapeutic applications. NANOSCALE 2020; 12:11936-11946. [PMID: 32458924 DOI: 10.1039/d0nr02327b] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the promising orthopedic materials, polyetheretherketone (PEEK) has high chemical durability and similar mechanical properties to the cortical bone; nevertheless, the inherent bioinert nature of PEEK dramatically impedes its broader clinical applications in the management of bone infection. To address this challenge, herein, we developed a multifunctional two-dimensional (2D) nanocoating to assemble graphene oxide (GO) nanosheets, a polydopamine (pDA) nanofilm, and an oligopeptide onto the surface of porous sulfonated PEEK (SPEEK). The resulting multifunctional PEEK implants exhibited enhanced cytocompatibility, alkaline phosphatase activity, and calcium matrix deposition as well as osteogenesis-associated gene expression. Moreover, the animal experiments based on a rabbit femur defect model confirmed that the 2D nanocoating prominently boosted the in vivo osseointegration and bone remodeling. Besides, the GO/pDA hybrid complex anchoring on the SPEEK surface through π-π stacking can generate robust antibacterial phototherapy resulting from the synergetic photothermal/photodynamic therapeutic effects. Accordingly, this work provides a paradigm to empower inert PEEK implants with bi-/multi-modal therapeutic applications, such as against bone infection treatment.
Collapse
Affiliation(s)
- Song Wang
- College of Materials Science and Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. and Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunyan Duan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Weizhong Yang
- College of Materials Science and Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiangyu Gao
- College of Materials Science and Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiacheng Shi
- College of Materials Science and Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianping Kang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yi Deng
- College of Materials Science and Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China and Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Lei Shi
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia and School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi-Gang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia and School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
66
|
Hua R, Tian Y, Cheng J, Wu G, Jiang W, Ni Z, Zhao G. The effect of intrinsic characteristics on mechanical properties of poly(l-lactic acid) bioresorbable vascular stents. Med Eng Phys 2020; 81:118-124. [PMID: 32482508 DOI: 10.1016/j.medengphy.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 03/23/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022]
Abstract
Poly(L-lactic acid) (PLLA) is currently the bioresorbable polymer of choice for vascular stents with its superior biocompatibility and mechanical properties. However, it is still difficult to enhance the radial supporting capacity of PLLA stents without increasing the strut thickness. In this study, the performance of laser-cut thin-strut stents from two groups of PLLA tubes are investigated. We considered two groups of PLLA tubes. Group 1 indicates the longitudinally stretched from original 150-μm-thick tubes, and Group 2 indicates the directly thinned from original 150-μm-thick tubes. Three stages of mechanical tests were conducted in this study, which are defined as tensile tests of dog-bone specimens, radial loading tests of tubes and radial loading tests of stents. The results suggest that Group 2 has higher radial supporting capacity than Group 1 with the same wall thickness. This work serves as a basis for manufacturing thin-strut stents with sufficient radial supporting capacity.
Collapse
Affiliation(s)
- Rixin Hua
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
67
|
Tung WT, Zou J, Sun X, Wang W, Gould OEC, Kratz K, Ma N, Lendlein A. Coaxial electrospinning of PEEU/gelatin to fiber meshes with enhanced mesenchymal stem cell attachment and proliferation. Clin Hemorheol Microcirc 2020; 74:53-66. [PMID: 31743992 DOI: 10.3233/ch-199235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microfibers with a core-shell structure can be produced by co-axial electrospinning, allowing for the functionalization of the outer layer with bioactive molecules. In this study, a thermoplastic, degradable polyesteretherurethane (PEEU), consisting of poly(p-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments with different PPDO to PCL weight ratios, were processed into fiber meshes by co-axial electrospinning with gelatin. The prepared PEEU fibers have a diameter of 1.3±0.5 μm and an elastic modulus of around 5.1±1.0 MPa as measured by tensile testing in a dry state at 37°C, while the PEEU/Gelatin core-shell fibers with a gelatin content of 12±6 wt% and a diameter of 1.5±0.5 μm possess an elastic modulus of 15.0±1.1 MPa in a dry state at 37 °C but as low as 0.7±0.7 MPa when hydrated at 37 °C. Co-axial electrospinning allowed for the homogeneous distribution of the gelatin shell along the whole microfiber. Gelatin with conjugated Fluorescein (FITC) remained stable on the PEEU fibers after 7 days incubation in Phosphate-buffered saline (PBS) at 37 °C. The gelatin coating on PEEU fibers lead to enhanced human adipose tissue derived mesenchymal stem cell (hADSC) attachment and a proliferation rate 81.7±34.1 % higher in cell number in PEEU50/Gelatin fibers after 7 days of cell culture when compared to PEEU fibers without coating. In this work, we demonstrate that water-soluble gelatin can be incorporated as the outer shell of a polymer fiber via molecular entanglement, with a sustained presence and role in enhancing stem cell attachment and proliferation.
Collapse
Affiliation(s)
- Wing Tai Tung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,University of Potsdam, Potsdam, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xianlei Sun
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,University of Potsdam, Potsdam, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Oliver E C Gould
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| |
Collapse
|
68
|
|
69
|
Li F, Li X, He R, Cheng J, Ni Z, Zhao G. Preparation and evaluation of poly(D, L-lactic acid)/poly(L-lactide-co-ε-caprolactone) blends for tunable sirolimus release. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
70
|
Li X, Zhang W, Lin W, Qiu H, Qi Y, Ma X, Qi H, He Y, Zhang H, Qian J, Zhang G, Gao R, Zhang D, Ding J. Long-Term Efficacy of Biodegradable Metal-Polymer Composite Stents After the First and the Second Implantations into Porcine Coronary Arteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15703-15715. [PMID: 32159942 DOI: 10.1021/acsami.0c00971] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A biodegradable coronary stent is expected to eliminate the adverse events of an otherwise eternally implanting material after vessel remodeling. Both biocorrodible metals and biodegradable polymers have been tried as the matrix of the new-generation stent. Herein, we utilized a metal-polymer composite material to combine the advantages of the high mechanical strength of metals and the adjustable degradation rate of polymers to prepare the biodegradable stent. After coating polylactide (PLA) on the surface of iron, the degradation of iron was accelerated significantly owing to the decrease of local pH resulting from the hydrolysis of PLA, etc. We implanted the metal-polymer composite stent (MPS) into the porcine artery and examined its degradation in vivo, with the corresponding metal-based stent (MBS) as a control. Microcomputed tomography (micro-CT), coronary angiography (CA), and optical coherence tomography (OCT) were performed to observe the stents and vessels during the animal experiments. The MPS exhibited faster degradation than MBS, and the inflammatory response of MPS was acceptable 12 months after implantation. Additionally, we implanted another MPS after 1-year implantation of the first MPS to investigate the result of the MPS in the second implantation. The feasibility of the biodegradable MPS in second implantation in mammals was also confirmed.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Wenjiao Lin
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Hong Qiu
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xun Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Haiping Qi
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jie Qian
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Runlin Gao
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
71
|
Liu W, Feng Z, Ou-Yang W, Pan X, Wang X, Huang P, Zhang C, Kong D, Wang W. 3D printing of implantable elastic PLCL copolymer scaffolds. SOFT MATTER 2020; 16:2141-2148. [PMID: 32016231 DOI: 10.1039/c9sm02396h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(l-lactic acid) (PLLA) scaffolds have been used in regenerative medicine, however, they commonly suffer from low flexibility, restricting their application in the repair and reconstruction of soft tissues. In this study, poly(l-lactide-co-ε-caprolactone) (PLCL) copolymers were examined to modulate the elasticity of PLLA with the random presence of CL units in PLLA. Thermodynamic analysis revealed that the introduction of PCL could significantly decrease the melting point and glass transition temperature of PLLA, benefiting the extrusion and printing of PLCL. Diverse scaffolds with designed architectures including porous cubes with or without large holes, cambered plates with holes and round tubes could be easily constructed by 3D printing. In the process of elastic deformation, the maximum elastic stress of the copolymer scaffold was obviously increased from 19.6 to 31.5 MPa when the relative content of PCL was increased to 70%, while the elongation at break was evidently increased from 388% to about 1974%. The Young's modulus of PLCL was also significantly decreased (P < 0.05) in comparison with that of PLLA. PLCL scaffolds have good platelet and endotheliocyte adhesion ability and no obvious hemolysis was observed. In vivo subcutaneous implantation of PLCL scaffolds demonstrated superior biocompatibility. Collectively, this work highlights that copolymerization of PCL segments into PLLA is an effective approach to tune the 3D printability and the stiffness and elasticity of PLLA scaffolds. PLCL scaffolds hold great promise for the regeneration of soft tissues including but not limited to cartilage, myocardium, muscle, tendon and nervous tissues.
Collapse
Affiliation(s)
- Wenshuai Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China. and Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenbin Ou-Yang
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Xiangbin Pan
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China. and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
72
|
Jurczak P, Witkowska J, Rodziewicz-Motowidło S, Lach S. Proteins, peptides and peptidomimetics as active agents in implant surface functionalization. Adv Colloid Interface Sci 2020; 276:102083. [PMID: 31887572 DOI: 10.1016/j.cis.2019.102083] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The recent impact of implants on improving the human life quality has been enormous. During the past two decades we witnessed major advancements in both material and structural development of implants. They were driven mainly by the increasing patients' demand and the need to address the major issues that come along with the initially underestimated complexity of the bone-implant interface. While both, the materials and design of implants reached a certain, balanced state, recent years brought a shift in focus towards the bone-implant interface as the weakest link in the increasing implant long-term usability. As a result, several approaches were developed. They aimed at influencing and enhancing the implant osseointegration and its proper behavior when under load and stress. With this review, we would like to discuss the recent advancements in the field of implant surface modifications, emphasizing the importance of chemical methods, focusing on proteins, peptides and peptidomimetics as promising agents for titanium surface coatings.
Collapse
|
73
|
Jamshidi M, Rajabian M, Avery MB, Sundararaj U, Ronsky J, Belanger B, Wong JH, Mitha AP. A novel self-expanding primarily bioabsorbable braided flow-diverting stent for aneurysms: initial safety results. J Neurointerv Surg 2019; 12:700-705. [PMID: 31776171 DOI: 10.1136/neurintsurg-2019-015555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The advent of metal flow-diverting stents has provided neurointerventionalists with an option for treating aneurysms without requiring manipulations within the aneurysm sac. The large amount of metal in these stents, however, can lead to early and late thrombotic complications, and thus requires long-term antiplatelet agents. Bioabsorbable stents have been postulated to mitigate the risk of these complications. Here we present early data on the first self-expandable primarily bioabsorbable stent for aneurysms. METHODS Braided stents were developed using poly-L-lactic acid fibers with material surface area similar to metal flow diverters. Crush resistance force, hemolysis, and thrombogenicity were determined and compared with existing commercial devices. Stents were deployed in infra-renal rabbit aortas to determine angiographic side branch patency and to study neointima formation for a 1-month follow-up period. RESULTS Crush resistance force was determined to be on the order of existing commercial devices. Hemolytic behavior was similar to existing metal devices, and thrombogenicity was lower than metal flow-diverting stents. A smooth neointimal layer was found over the absorbable stent surface and all covered side branches were patent at follow-up. CONCLUSION The design of self-expanding primarily bioabsorbable flow-diverting stents is possible, and preliminary safety data is consistent with a favorable profile in terms of mechanical behavior, hemocompatibility, side branch patency, and histological effects. Additional in vitro and long-term in vivo studies are in progress and will help determine aneurysm occlusion rates and absorption characteristics of the stent.
Collapse
Affiliation(s)
- Mehdi Jamshidi
- Biomedical Engineering, University of Calgary Schulich School of Engineering, Calgary, Alberta, Canada
| | - Mahmoud Rajabian
- MIF Microscopy and Imaging Facility Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael B Avery
- Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | - Janet Ronsky
- Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Brooke Belanger
- Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - John H Wong
- Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Alim P Mitha
- Biomedical Engineering, University of Calgary Schulich School of Engineering, Calgary, Alberta, Canada .,Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
74
|
Zhang K, Fang Y, He Y, Yin H, Guan X, Pu Y, Zhou B, Yue W, Ren W, Du D, Li H, Liu C, Sun L, Chen Y, Xu H. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat Commun 2019; 10:5380. [PMID: 31772164 PMCID: PMC6879564 DOI: 10.1038/s41467-019-13115-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
Despite the efficacy of current starvation therapies, they are often associated with some intrinsic drawbacks such as poor persistence, facile tumor metastasis and recurrence. Herein, we establish an extravascular gelation shrinkage-derived internal stress strategy for squeezing and narrowing blood vessels, occluding blood & nutrition supply, reducing vascular density, inducing hypoxia and apoptosis and eventually realizing starvation therapy of malignancies. To this end, a biocompatible composite hydrogel consisting of gold nanorods (GNRs) and thermal-sensitive hydrogel mixture was engineered, wherein GRNs can strengthen the structural property of hydrogel mixture and enable robust gelation shrinkage-induced internal stresses. Systematic experiments demonstrate that this starvation therapy can suppress the growths of PANC-1 pancreatic cancer and 4T1 breast cancer. More significantly, this starvation strategy can suppress tumor metastasis and tumor recurrence via reducing vascular density and blood supply and occluding tumor migration passages, which thus provides a promising avenue to comprehensive cancer therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China.
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Tumor-targeting Theranostics, Guangxi Medical University, 22 Shuang-Yong Road, Nanning, Guangxi, 530021, P. R. China.
| | - Yan Fang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Yaping He
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Haohao Yin
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Xin Guan
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Yinying Pu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Bangguo Zhou
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Wenwen Yue
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Weiwei Ren
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Dou Du
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Hongyan Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Chang Liu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Liping Sun
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China.
| |
Collapse
|
75
|
Shi D, Kang Y, Zhang G, Gao C, Lu W, Zou H, Jiang H. Biodegradable atrial septal defect occluders: A current review. Acta Biomater 2019; 96:68-80. [PMID: 31158496 DOI: 10.1016/j.actbio.2019.05.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/11/2023]
Abstract
Atrial septal defect (ASD) is a common structural congenital heart disease. With the development of interventional closure devices and transcatheter techniques, interventional closure therapy has become the most well-accepted therapeutic alternative worldwide, as it offers a number of advantages over conventional therapies such as improved safety, easier operation, lower complication rates and invasiveness, and shorter anesthetic time and hospitalizations. During the past decades, various types of occluders based on nondegradable shape memory alloys have been used in clinical applications. Considering that the permanent existence of foreign nondegradable materials in vivo can cause many potential complications in the long term, the research and development of biodegradable occluders has emerged as a crucial issue for interventional treatment of ASD. This review aims to summarize partially or fully biodegradable occlusion devices currently reported in the literature from the aspects of design, construction, and evaluation of animal experiments. Furthermore, a comparison is made on the advantages and disadvantages of the materials used in biodegradable ASD occlusion devices, followed by an analysis of the problems and limitations of the occlusion devices. Finally, several strategies are proposed for future development of biodegradable cardiac septal defect occlusion devices. STATEMENT OF SIGNIFICANCE: Although occlusion devices based on nondegradable alloys have been widely used in clinical applications and saved numerouspatients, biodegradable occlusion devices may offer some advantages such as fewer complications, acceptable biocompatibility, and particularly temporary existence, thereby leaving "native" tissue behind, which will certainly become the development trend in the long term. This review summarizes almost all partially or fully biodegradable occlusion devices currently reported in the literature from the aspects of design, construction, and evaluation of animal experiments. Furthermore, a comparison is made on the advantages and disadvantages of the materials used in biodegradable ASD occlusion devices, followed by an analysis of the problems and limitations of the occlusion devices. Finally, several strategies are proposed for future development of biodegradable cardiac septal defect occlusion devices.
Collapse
|
76
|
Mehrjou B, Mo S, Dehghan-Baniani D, Wang G, Qasim AM, Chu PK. Antibacterial and Cytocompatible Nanoengineered Silk-Based Materials for Orthopedic Implants and Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31605-31614. [PMID: 31385497 DOI: 10.1021/acsami.9b09066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many postsurgical complications stem from bacteria colony formation on the surface of implants, but the usage of antibiotic agents may cause antimicrobial resistance. Therefore, there is a strong demand for biocompatible materials with an intrinsic antibacterial resistance not requiring extraneous chemical agents. In this study, homogeneous nanocones were fabricated by oxygen plasma etching on the surface of natural, biocompatible Bombyx mori silk films. The new hydroxyl bonds formed on the surface of the nanopatterned film by plasma etching increased the surface energy by around 176%. This hydrophilic nanostructure reduced the bacterial attachment by more than 90% for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and at the same time improved the proliferation of osteoblast cells by 30%. The nanoengineered substrate and pristine silk were cultured for 6 h with three different bacteria concentrations of 107, 105, and 103 CFU mL-1 and the cell proliferation on the nanopatterned samples was significantly higher due to limited bacteria attachment and prevention of biofilm formation. The concept and materials described here reveal a promising alternative to produce biomaterials with an inherent biocompatibility and bacterial resistance simultaneously to mitigate postsurgical infections and minimize the use of antibiotics.
Collapse
Affiliation(s)
- Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Shi Mo
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Dorsa Dehghan-Baniani
- Division of Biomedical Engineering, Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Sai Kung , Hong Kong
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Abdul Mateen Qasim
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| |
Collapse
|
77
|
Steinman NY, Domb AJ. Injectable Pasty Biodegradable Polyesters Derived from Castor Oil and Hydroxyl-Acid Lactones. J Pharmacol Exp Ther 2019; 370:736-741. [DOI: 10.1124/jpet.119.259077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
|
78
|
Qi Y, Li X, He Y, Zhang D, Ding J. Mechanism of Acceleration of Iron Corrosion by a Polylactide Coating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:202-218. [PMID: 30511850 DOI: 10.1021/acsami.8b17125] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Strong and biodegradable materials are key to the development of next-generation medical devices for interventional treatment. Biodegradable polymers such as polylactide (PLA) have controllable degradation profiles, but their mechanical strength is much weaker than some metallic materials such as iron; on the other hand, tuning the corrosion rate of iron to a proper time range for biomedical applications has always been a challenge. Very recently, we have achieved a complete corrosion of iron stent in vivo within the clinically required time frame by combining a PLA coating, which provides a new biomaterial type for the next-generation biodegradable coronary stents termed as a metal-polymer composite stent. The underlying mechanism of accelerating iron corrosion by a PLA coating remains an open fundamental topic. Herein, we investigated the corrosion mechanism of an iron sheet under a PLA coating in the biomimetic in vitro condition. The Pourbaix diagram (potential vs pH) was calculated to present the thermodynamic driving force of iron corrosion in the biomimetic aqueous medium. Electrochemical methods were applied to track the dynamic corrosion process and inspect various potential cues influencing iron corrosion. The present work reveals that acceleration of iron corrosion by the PLA coating arises mainly from decreasing the local pH owing to PLA hydrolysis and from alleviating the deposition of the passivation layer by the polymer coating.
Collapse
Affiliation(s)
- Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
79
|
Shi D, Kang Y, Zhang G, Gao C, Lu W, Yang C, Zou H, Jiang H. A comparative study on in vitro degradation behavior of PLLA-based copolymer monofilaments. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
80
|
Abstract
The quest for an ideal biodegradable stent for both adult coronary and pediatric congenital heart disease applications continues. Over the past few years, a lot of progress has been made toward development of a dedicated pediatric biodegradable stent that can be used for congenital heart disease applications. At present, there are no biodegradable stents available for use in congenital heart disease. In this article, the authors review the different biodegradable materials and their limitations and provide an overview of the current biodegradable stents being evaluated for congenital heart disease applications.
Collapse
Affiliation(s)
- Tre R Welch
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alan W Nugent
- Division of Cardiology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 21, Chicago, IL 60611, USA
| | - Surendranath R Veeram Reddy
- Division of Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Children's Health System of Texas, Childrens Medical Center, 1935 Medical District Drive, Dallas, TX 75235, USA.
| |
Collapse
|
81
|
Nutan B, Chandel AKS, Jewrajka SK. Liquid Prepolymer-Based in Situ Formation of Degradable Poly(ethylene glycol)-Linked-Poly(caprolactone)-Linked-Poly(2-dimethylaminoethyl)methacrylate Amphiphilic Conetwork Gels Showing Polarity Driven Gelation and Bioadhesion. ACS APPLIED BIO MATERIALS 2018; 1:1606-1619. [DOI: 10.1021/acsabm.8b00461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Arvind K. Singh Chandel
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
82
|
Shojaei S, Nikuei M, Goodarzi V, Hakani M, Khonakdar HA, Saeb MR. Disclosing the role of surface and bulk erosion on the viscoelastic behavior of biodegradable poly(ε-caprolactone)/poly(lactic acid)/hydroxyapatite nanocomposites. J Appl Polym Sci 2018. [DOI: 10.1002/app.47151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- S. Shojaei
- Department of Biomedical Engineering; Islamic Azad University, Central Tehran Branch; P.O. Box 13185/768, Tehran Iran
- Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute; Islamic Azad University, Central Tehran Branch; P.O. Box 13185-768, Tehran Iran
| | - M. Nikuei
- Department of Biomedical Engineering; Islamic Azad University, Central Tehran Branch; P.O. Box 13185/768, Tehran Iran
| | - V. Goodarzi
- Applied Biotechnology Research Center; Baqiyatallah University of Medical Sciences; P.O. Box 19945-546, Tehran Iran
| | - M. Hakani
- Department of Polymer Engineering & Color Technology; Amirkabir University of Technology; P.O. Box 15875-4413, Tehran Iran
| | - H. A. Khonakdar
- Iran Polymer and Petrochemical Institute; Pazhoohesh Blvd., Km 17, Tehran-Karaj Hwy 1497713115 Tehran Iran
- Leibniz Institute of Polymer Research; D-01067 Dresden Germany
| | - M. R. Saeb
- Department of Resin and Additives; Institute for Color Science and Technology; P.O. Box 16765-654, Tehran Iran
| |
Collapse
|
83
|
|
84
|
Jia H, Gu SY, Chang K. 3D printed self-expandable vascular stents from biodegradable shape memory polymer. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22091] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Han Jia
- Department of Polymeric Materials; School of Materials Science and Engineering; Tongji University; Shanghai China
| | - Shu-Ying Gu
- Department of Polymeric Materials; School of Materials Science and Engineering; Tongji University; Shanghai China
- Key Laboratory of Advanced Civil Engineering Materials; Ministry of Education; Tongji University; Shanghai China
| | - Kun Chang
- Department of Polymeric Materials; School of Materials Science and Engineering; Tongji University; Shanghai China
| |
Collapse
|
85
|
Maleckis K, Anttila E, Aylward P, Poulson W, Desyatova A, MacTaggart J, Kamenskiy A. Nitinol Stents in the Femoropopliteal Artery: A Mechanical Perspective on Material, Design, and Performance. Ann Biomed Eng 2018; 46:684-704. [PMID: 29470746 DOI: 10.1007/s10439-018-1990-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Endovascular stenting has matured into a commonly used treatment for peripheral arterial disease (PAD) due to its minimally invasive nature and associated reductions in short-term morbidity and mortality. The mechanical properties of the superelastic Nitinol alloy have played a major role in the explosion of peripheral artery stenting, with modern stents demonstrating reasonable resilience and durability. Yet in the superficial femoral and popliteal arteries, even the newest generation Nitinol stents continue to demonstrate clinical outcomes that leave significant room for improvement. Restenosis and progression of native arterial disease often lead to recurrence of symptoms and reinterventions that increase morbidity and health care expenditures. One of the main factors thought to be associated with stent failure in the femoropopliteal artery (FPA) is the unique and highly dynamic mechanical environment of the lower limb. Clinical and experimental data demonstrate that the FPA undergoes significant deformations with limb flexion. It is hypothesized that the inability of many existing stent designs to conform to these deformations likely plays a role in reconstruction failure, as repetitive movements of the leg and thigh combine with mechanical mismatch between the artery and the stent and result in mechanical damage to both the artery and the stent. In this review we will identify challenges and provide a mechanical perspective of FPA stenting, and then discuss current research directions with promise to provide a better understanding of Nitinol, specific features of stent design, and improved characterization of the biomechanical environment of the FPA to facilitate development of better stents for patients with PAD.
Collapse
Affiliation(s)
- Kaspars Maleckis
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Eric Anttila
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Paul Aylward
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - William Poulson
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Anastasia Desyatova
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Jason MacTaggart
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Alexey Kamenskiy
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
86
|
Montgomery M, Davenport Huyer L, Bannerman D, Mohammadi MH, Conant G, Radisic M. Method for the Fabrication of Elastomeric Polyester Scaffolds for Tissue Engineering and Minimally Invasive Delivery. ACS Biomater Sci Eng 2018; 4:3691-3703. [DOI: 10.1021/acsbiomaterials.7b01017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | | | - Milica Radisic
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
87
|
Qi Y, Qi H, He Y, Lin W, Li P, Qin L, Hu Y, Chen L, Liu Q, Sun H, Liu Q, Zhang G, Cui S, Hu J, Yu L, Zhang D, Ding J. Strategy of Metal-Polymer Composite Stent To Accelerate Biodegradation of Iron-Based Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:182-192. [PMID: 29243907 DOI: 10.1021/acsami.7b15206] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The new principle and technique to tune biodegradation rates of biomaterials is one of the keys to the development of regenerative medicine and next-generation biomaterials. Biodegradable stents are new-generation medical devices applied in percutaneous coronary intervention, etc. Recently, both corrodible metals and degradable polymers have drawn much attention in biodegradable stents or scaffolds. It is, however, a dilemma to achieve good mechanical properties and appropriate degradation profiles. Herein, we put forward a metal-polymer composite strategy to achieve both. Iron stents exhibit excellent mechanical properties but low corrosion rate in vivo. We hypothesized that coating of biodegradable aliphatic polyester could accelerate iron corrosion due to the acidic degradation products, etc. To demonstrate the feasibility of this composite material technique, we first conducted in vitro experiments to affirm that iron sheet corroded faster when covered by polylactide (PLA) coating. Then, we fabricated three-dimensional metal-polymer stents (MPS) and implanted the novel stents in the abdominal aorta of New Zealand white rabbits, setting metal-based stents (MBS) as a control. A series of in vivo experiments were performed, including measurements of residual mass and radial strength of the stents, histological analysis, micro-computed tomography, and optical coherence tomography imaging at the implantation site. The results showed that MPS could totally corrode in some cases, whereas iron struts of MBS in all cases remained several months after implantation. Corrosion rates of MPS could be easily regulated by adjusting the composition of PLA coatings.
Collapse
Affiliation(s)
- Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Haiping Qi
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Wenjiao Lin
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Peize Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Li Qin
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Yiwen Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Liping Chen
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Hongtao Sun
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jun Hu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|
88
|
Wang Y, Zhu T, Kuang H, Sun X, Zhu J, Shi Y, Wang C, Mo X, Lu S, Hong T. Preparation and evaluation of poly(ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering. RSC Adv 2018; 8:35917-35927. [PMID: 35558443 PMCID: PMC9088401 DOI: 10.1039/c8ra07123c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/16/2018] [Indexed: 01/18/2023] Open
Abstract
Due to the brittleness of gelatin, the resulting absence of mechanical performance restricts its applications in vascular tissue engineering. In this research, the fabrication of poly(ester-urethane) urea/gelatin (PU75) nanofibers via an electrospinning technique, followed by different crosslinking methods, resulted in the improvement of its mechanical properties. Poly(ester urethane) urea (PEUU) nanofibrous scaffolds and PU75-based nanofibrous scaffolds were characterized using scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, wide-angle X-ray diffraction (WAXRD), a mechanical properties test, a cytocompatibility assay, a hemolysis assay, and a histological analysis. Water contact angle (WCA) tests confirmed that the PU75-GA (PU75 nanofibers crosslinked with glutaraldehyde vapor) nanofibrous scaffold surfaces became more hydrophilic compared with other crosslinked nanofibrous scaffolds. The results show that the PU75-GA nanofibrous scaffold exhibited a combination of excellent mechanical properties, suitable pore diameters, hydrophilic properties, good cytocompatibility, and reliable hemocompatibility. Overall, PU75-GA nanofibers may be a potential scaffold for artificial blood vessel construction. SEM micrographs of the PEUU nanofibrous membrane, PU75 nanofibrous membrane, PU75-DT nanofibrous membrane, PU75-GA nanofibrous membrane, and PU75-E/N nanofibrous membrane and magnified 1000, 5000, and 10 000 times, respectively.![]()
Collapse
|