51
|
Dedic N, Kühne C, Gomes KS, Hartmann J, Ressler KJ, Schmidt MV, Deussing JM. Deletion of CRH From GABAergic Forebrain Neurons Promotes Stress Resilience and Dampens Stress-Induced Changes in Neuronal Activity. Front Neurosci 2019; 13:986. [PMID: 31619956 PMCID: PMC6763571 DOI: 10.3389/fnins.2019.00986] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of the corticotropin-releasing hormone (CRH) system has been implicated in stress-related psychopathologies such as depression and anxiety. Although most studies have linked CRH/CRH receptor 1 signaling to aversive, stress-like behavior, recent work has revealed a crucial role for distinct CRH circuits in maintaining positive emotional valence and appetitive responses under baseline conditions. Here we addressed whether deletion of CRH, specifically from GABAergic forebrain neurons (Crh CKO-GABA mice) differentially affects general behavior under baseline and chronic stress conditions. Expression mapping in Crh CK O-GABA mice revealed absence of Crh in GABAergic neurons of the cortex and limbic regions including the hippocampus, central nucleus of the amygdala and the bed nucleus of the stria terminals, but not in the paraventricular nucleus of hypothalamus. Consequently, conditional CRH knockout animals exhibited no alterations in circadian and stress-induced corticosterone release compared to controls. Under baseline conditions, absence of Crh from forebrain GABAergic neurons resulted in social interaction deficits but had no effect on other behavioral measures including locomotion, anxiety, immobility in the forced swim test, acoustic startle response and fear conditioning. Interestingly, following exposure to chronic social defeat stress, Crh CKO-GABA mice displayed a resilient phenotype, which was accompanied by a dampened, stress-induced expression of immediate early genes c-fos and zif268 in several brain regions. Collectively our data reveals the requirement of GABAergic CRH circuits in maintaining appropriate social behavior in naïve animals and further supports the ability of CRH to promote divergent behavioral states under baseline and severe stress conditions.
Collapse
Affiliation(s)
- Nina Dedic
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| | - Claudia Kühne
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karina S Gomes
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Laboratory of Neuropsychopharmacology, Paulista State University, Araraquara, Brazil
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States.,Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| | - Mathias V Schmidt
- Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
52
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
53
|
Itoga CA, Chen Y, Fateri C, Echeverry PA, Lai JM, Delgado J, Badhon S, Short A, Baram TZ, Xu X. New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. J Comp Neurol 2019; 527:2474-2487. [PMID: 30861133 DOI: 10.1002/cne.24676] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
Corticotropin-releasing hormone (CRH) is an essential, evolutionarily-conserved stress neuropeptide. In addition to hypothalamus, CRH is expressed in brain regions including amygdala and hippocampus where it plays crucial roles in modulating the function of circuits underlying emotion and cognition. CRH+ fibers are found in nucleus accumbens (NAc), where CRH modulates reward/motivation behaviors. CRH actions in NAc may vary by the individual's stress history, suggesting roles for CRH in neuroplasticity and adaptation of the reward circuitry. However, the origin and extent of CRH+ inputs to NAc are incompletely understood. We employed viral genetic approaches to map both global and CRH+ projection sources to NAc in mice. We injected into NAc variants of a new designer adeno-associated virus that permits robust retrograde access to NAc-afferent projection neurons. Cre-dependent viruses injected into CRH-Cre mice enabled selective mapping of CRH+ afferents. We employed anterograde AAV1-directed axonal tracing to verify NAc CRH+ fiber projections and established the identity of genetic reporter-labeled cells via validated antisera against native CRH. We quantified the relative contribution of CRH+ neurons to total NAc-directed projections. Combined retrograde and anterograde tracing identified the paraventricular nucleus of the thalamus, bed nucleus of stria terminalis, basolateral amygdala, and medial prefrontal cortex as principal sources of CRH+ projections to NAc. CRH+ NAc afferents were selectively enriched in NAc-projecting brain regions involved in diverse aspects of the sensing, processing and memory of emotionally salient events. These findings suggest multiple, complex potential roles for the molecularly-defined, CRH-dependent circuit in modulation of reward and motivation behaviors.
Collapse
Affiliation(s)
- Christy A Itoga
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Yuncai Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Cameron Fateri
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Paula A Echeverry
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Jennifer M Lai
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Jasmine Delgado
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Shapatur Badhon
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Annabel Short
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California.,Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| |
Collapse
|
54
|
Schmidt HD, Rupprecht LE, Addy NA. Neurobiological and Neurophysiological Mechanisms Underlying Nicotine Seeking and Smoking Relapse. MOLECULAR NEUROPSYCHIATRY 2019; 4:169-189. [PMID: 30815453 PMCID: PMC6388439 DOI: 10.1159/000494799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Tobacco-related morbidity and mortality continue to be a significant public health concern. Unfortunately, current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, a better understanding of the neurobiological and neurophysiological mechanisms that promote smoking relapse is needed to develop novel smoking cessation medications. Here, we review preclinical studies focused on identifying the neurotransmitter and neuromodulator systems that mediate nicotine relapse, often modeled in laboratory animals using the reinstatement paradigm, as well as the plasticity-dependent neurophysiological mechanisms that facilitate nicotine reinstatement. Particular emphasis is placed on how these neuroadaptations relate to smoking relapse in humans. We also highlight a number of important gaps in our understanding of the neural mechanisms underlying nicotine reinstatement and critical future directions, which may lead toward the development of novel, target pharmacotherapies for smoking cessation.
Collapse
Affiliation(s)
- Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E. Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Sciences, New Haven, Connecticut, USA
| |
Collapse
|
55
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
56
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
57
|
Abstract
Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy.
Collapse
Affiliation(s)
- Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| |
Collapse
|
58
|
Carboni L, Romoli B, Bate ST, Romualdi P, Zoli M. Increased expression of CRF and CRF-receptors in dorsal striatum, hippocampus, and prefrontal cortex after the development of nicotine sensitization in rats. Drug Alcohol Depend 2018; 189:12-20. [PMID: 29857328 DOI: 10.1016/j.drugalcdep.2018.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine addiction supports tobacco smoking, a main preventable cause of disease and death in Western countries. It develops through long-term neuroadaptations in the brain reward circuit by modulating intracellular pathways and regulating gene expression. This study assesses the regional expression of the transcripts of the CRF transmission in a nicotine sensitization model, since it is hypothesised that the molecular neuroadaptations that mediate the development of sensitization contribute to the development of addiction. METHODS Rats received intraperitoneal nicotine administrations (0.4 mg/kg) once daily for either 1 day or over 5 days. Locomotor activity was assessed to evaluate the development of sensitization. The mRNA expression of CRF and CRF1 and CRF2 receptors was measured by qPCR in the ventral mesencephalon, ventral striatum, dorsal striatum (DS), prefrontal cortex (PFCx), and hippocampus (Hip). RESULTS Acute nicotine administration increased locomotor activity in rats. In the sub-chronic group, locomotor activity progressively increased and reached a clear sensitization. Significant effects of sensitization on CRF mRNA levels were detected in the DS (increasing effect). Significantly higher CRF1 and CRF2 receptor levels after sensitization were detected in the Hip. Additionally, CRF2 receptor levels were augmented by sensitization in the PFCx, and treatment and time-induced increases were detected in the DS. Nicotine treatment effects were observed on CRF1R levels in the DS. CONCLUSIONS This study suggests that the CRF transmission, in addition to its role in increasing withdrawal-related anxiety, may be involved in the development of nicotine-habituated behaviours through reduced control of impulses and the aberrant memory plasticity characterising addiction.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy; Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Simon T Bate
- Statistical Sciences, GlaxoSmithKline, 980 Great West Rd, Brentford, Middlesex, TW8 9GS, UK
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy
| |
Collapse
|
59
|
Wolfman SL, Gill DF, Bogdanic F, Long K, Al-Hasani R, McCall JG, Bruchas MR, McGehee DS. Nicotine aversion is mediated by GABAergic interpeduncular nucleus inputs to laterodorsal tegmentum. Nat Commun 2018; 9:2710. [PMID: 30006624 PMCID: PMC6045623 DOI: 10.1038/s41467-018-04654-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/04/2018] [Indexed: 11/24/2022] Open
Abstract
Nicotine use can lead to dependence through complex processes that are regulated by both its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb), but the downstream targets of the IPN that mediate aversion are unknown. Here we show that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optogenetics in tissue slices from mouse brain. Selective stimulation of these IPN axon terminals in LDTg in vivo elicits avoidance behavior, suggesting that these projections contribute to aversion. Nicotine modulates these synapses in a concentration-dependent manner, with strong enhancement only seen at higher concentrations that elicit aversive responses in behavioral tests. Optogenetic inhibition of the IPN-LDTg connection blocks nicotine conditioned place aversion, suggesting that the IPN-LDTg connection is a critical part of the circuitry that mediates the aversive effects of nicotine.
Collapse
Affiliation(s)
- Shannon L Wolfman
- Committee on Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Daniel F Gill
- Committee on Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Fili Bogdanic
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Katie Long
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Ream Al-Hasani
- St. Louis College of Pharmacy, Center for Clinical Pharmacology and Division of Basic Research of the Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jordan G McCall
- St. Louis College of Pharmacy, Center for Clinical Pharmacology and Division of Basic Research of the Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Basic Research, Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael R Bruchas
- Division of Basic Research, Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
60
|
Kelly EA, Fudge JL. The neuroanatomic complexity of the CRF and DA systems and their interface: What we still don't know. Neurosci Biobehav Rev 2018; 90:247-259. [PMID: 29704516 PMCID: PMC5993645 DOI: 10.1016/j.neubiorev.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 12/28/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates the stress response. Long known to contribute to regulation of the adrenal stress response initiated in the hypothalamic-pituitary axis (HPA), a complex pattern of extrahypothalamic CRF expression is also described in rodents and primates. Cross-talk between the CRF and midbrain dopamine (DA) systems links the stress response to DA regulation. Classically CRF + cells in the extended amygdala and paraventricular nucleus (PVN) are considered the main source of this input, principally targeting the ventral tegmental area (VTA). However, the anatomic complexity of both the DA and CRF system has been increasingly elaborated in the last decade. The DA neurons are now recognized as having diverse molecular, connectional and physiologic properties, predicted by their anatomic location. At the same time, the broad distribution of CRF cells in the brain has been increasingly delineated using different species and techniques. Here, we review updated information on both CRF localization and newer conceptualizations of the DA system to reconsider the CRF-DA interface.
Collapse
Affiliation(s)
- E A Kelly
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States
| | - J L Fudge
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States; University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Psychiatry, Rochester, NY, United States.
| |
Collapse
|
61
|
Dedic N, Kühne C, Jakovcevski M, Hartmann J, Genewsky AJ, Gomes KS, Anderzhanova E, Pöhlmann ML, Chang S, Kolarz A, Vogl AM, Dine J, Metzger MW, Schmid B, Almada RC, Ressler KJ, Wotjak CT, Grinevich V, Chen A, Schmidt MV, Wurst W, Refojo D, Deussing JM. Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety. Nat Neurosci 2018; 21:803-807. [PMID: 29786085 DOI: 10.1038/s41593-018-0151-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
The interplay between corticotropin-releasing hormone (CRH) and the dopaminergic system has predominantly been studied in addiction and reward, while CRH-dopamine interactions in anxiety are scarcely understood. We describe a new population of CRH-expressing, GABAergic, long-range-projecting neurons in the extended amygdala that innervate the ventral tegmental area and alter anxiety following chronic CRH depletion. These neurons are part of a distinct CRH circuit that acts anxiolytically by positively modulating dopamine release.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Claudia Kühne
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jakob Hartmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Andreas J Genewsky
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karina S Gomes
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Laboratory of Neuropsychopharmacology, Paulista State University, Araraquara, Brazil
| | - Elmira Anderzhanova
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Max L Pöhlmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simon Chang
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Adam Kolarz
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Annette M Vogl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Julien Dine
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael W Metzger
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bianca Schmid
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rafael C Almada
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Carsten T Wotjak
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Technische Universität München, Chair of Developmental Genetics, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany
| | - Damian Refojo
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
62
|
Authement ME, Langlois LD, Shepard RD, Browne CA, Lucki I, Kassis H, Nugent FS. A role for corticotropin-releasing factor signaling in the lateral habenula and its modulation by early-life stress. Sci Signal 2018; 11:11/520/eaan6480. [PMID: 29511121 DOI: 10.1126/scisignal.aan6480] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Centrally released corticotropin-releasing factor or hormone (extrahypothalamic CRF or CRH) in the brain is involved in the behavioral and emotional responses to stress. The lateral habenula (LHb) is an epithalamic brain region involved in value-based decision-making and stress evasion. Through its inhibition of dopamine-mediated reward circuitry, the increased activity of the LHb is associated with addiction, depression, schizophrenia, and behavioral disorders. We found that extrahypothalamic CRF neurotransmission increased neuronal excitability in the LHb. Through its receptor CRFR1 and subsequently protein kinase A (PKA), CRF application increased the intrinsic excitability of LHb neurons by affecting changes in small-conductance SK-type and large-conductance BK-type K+ channels. CRF also reduced inhibitory γ-aminobutyric acid-containing (GABAergic) synaptic transmission onto LHb neurons through endocannabinoid-mediated retrograde signaling. Maternal deprivation is a severe early-life stress that alters CRF neural circuitry and is likewise associated with abnormal mental health later in life. LHb neurons from pups deprived of maternal care exhibited increased intrinsic excitability, reduced GABAergic transmission, decreased abundance of SK2 channel protein, and increased activity of PKA, without any substantial changes in Crh or Crhr1 expression. Furthermore, maternal deprivation blunted the response of LHb neurons to subsequent, acute CRF exposure. Activating SK channels or inhibiting postsynaptic PKA activity prevented the effects of both CRF and maternal deprivation on LHb intrinsic excitability, thus identifying potential pharmacological targets to reverse central CRF circuit dysregulation in patients with associated disorders.
Collapse
Affiliation(s)
- Michael E Authement
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Ludovic D Langlois
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Ryan D Shepard
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Caroline A Browne
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Irwin Lucki
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Haifa Kassis
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Fereshteh S Nugent
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
63
|
Xue S, Kallupi M, Zhou B, Smith LC, Miranda PO, George O, Janda KD. An enzymatic advance in nicotine cessation therapy. Chem Commun (Camb) 2018; 54:1686-1689. [PMID: 29308799 PMCID: PMC6231713 DOI: 10.1039/c7cc09134f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A nicotine-degrading enzyme termed NicA2 was altered (NicA2-J1) through fusion of an albumin binding domain to increase its half-life. Examination of NicA2-J1 in vivo demonstrated a complete blockade of brain nicotine access, which in turn blunted nicotine's psychoactive effects. These data further support development of pharmacokinetic nicotine cessation therapeutics.
Collapse
Affiliation(s)
- Song Xue
- Departments of Chemistry, Immunology, Microbiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
64
|
Social Stress-Induced Alterations in CRF Signaling in the VTA Facilitate the Emergence of Addiction-like Behavior. J Neurosci 2018; 36:8780-2. [PMID: 27559161 DOI: 10.1523/jneurosci.1815-16.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
|
65
|
Klenowski PM, Tapper AR. Molecular, Neuronal, and Behavioral Effects of Ethanol and Nicotine Interactions. Handb Exp Pharmacol 2018; 248:187-212. [PMID: 29423839 DOI: 10.1007/164_2017_89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
66
|
A little rein on addiction. Semin Cell Dev Biol 2017; 78:120-129. [PMID: 28986065 DOI: 10.1016/j.semcdb.2017.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Rewarding and aversive experiences influence emotions, motivate specific behaviors, and modify future action in animals. Multiple conserved vertebrate neural circuits have been discovered that act in a species-specific manner to reinforce behaviors that are rewarding, while attenuating those with an adverse outcome. A growing body of research now suggests that malfunction of the same circuits is an underlying cause for many human disorders and mental ailments. The habenula (Latin for "little rein") complex, an epithalamic structure that regulates midbrain monoaminergic activity has emerged in recent years as one such region in the vertebrate brain that modulates behavior. Its dysfunction, on the other hand, is implicated in a spectrum of psychiatric disorders in humans such as schizophrenia, depression and addiction. Here, I review the progress in identification of potential mechanisms involving the habenula in addiction.
Collapse
|
67
|
Leonard MZ, DeBold JF, Miczek KA. Escalated cocaine "binges" in rats: enduring effects of social defeat stress or intra-VTA CRF. Psychopharmacology (Berl) 2017; 234:2823-2836. [PMID: 28725939 PMCID: PMC5709163 DOI: 10.1007/s00213-017-4677-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Exposure to intermittent social defeat stress elicits corticotropin releasing factor (CRF) release into the VTA and induces long-term modulation of mesocorticolimbic dopamine activity in rats. These adaptations are associated with an intense cocaine-taking phenotype, which is prevented by CRF receptor antagonists. OBJECTIVE The present studies examine whether infusion of CRF into the VTA is sufficient to escalate cocaine-taking behavior, in the absence of social defeat experience. Additionally, we aimed to characterize changes in cocaine valuation that may promote binge-like cocaine intake. METHODS Male Long-Evans rats were microinjected into the VTA with CRF (50 or 500 ng/side), vehicle, or subjected to social defeat stress, intermittently over 10 days. Animals were then trained to self-administer IV cocaine (FR5). Economic demand for cocaine was evaluated using a within-session behavioral-economics threshold procedure, which was followed by a 24-h extended access "binge." RESULTS Rats that experienced social defeat or received intra-VTA CRF microinfusions (50 ng) both took significantly more cocaine than controls over the 24-h binge but showed distinct patterns of intake. Behavioral economic analysis revealed that individual demand for cocaine strongly predicts binge-like consumption, and demand elasticity (i.e. α) is augmented by intra-VTA CRF, but not by social defeat. The effects of CRF on cocaine-taking were also prevented by intra-VTA pretreatment with CP376395, but not Astressin-2B. CONCLUSIONS Repeated infusion of CRF into the VTA persistently alters cocaine valuation and intensifies binge-like drug intake in a CRF-R1-dependent manner. Conversely, the persistent pattern of cocaine bingeing induced by social defeat stress may suggest impaired inhibitory control, independent of reward valuation.
Collapse
Affiliation(s)
| | - Joseph F DeBold
- Department of Psychology, Tufts University, Medford, MA, USA
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, MA, USA.
- Department of Neuroscience, Tufts University, Boston, MA, USA.
| |
Collapse
|
68
|
George O. Individual differences in the neuropsychopathology of addiction. DIALOGUES IN CLINICAL NEUROSCIENCE 2017; 19:217-229. [PMID: 29302219 PMCID: PMC5741105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy.
Collapse
Affiliation(s)
- Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
69
|
Roberto M, Spierling SR, Kirson D, Zorrilla EP. Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:5-51. [PMID: 29056155 PMCID: PMC6155477 DOI: 10.1016/bs.irn.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug addiction is a complex disorder that is characterized by compulsivity to seek and take the drug, loss of control in limiting intake of the drug, and emergence of a withdrawal syndrome in the absence of the drug. The transition from casual drug use to dependence is mediated by changes in reward and brain stress functions and has been linked to a shift from positive reinforcement to negative reinforcement. The recruitment of brain stress systems mediates the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. In this chapter we focus on behavioral and cellular neuropharmacological studies that have implicated brain stress systems (i.e., corticotropin-releasing factor [CRF]) in the transition to addiction and the predominant brain regions involved. We also discuss the implication of CRF recruitment in compulsive eating disorders.
Collapse
Affiliation(s)
- Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States.
| | | | - Dean Kirson
- The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
70
|
Grieder TE, George O, Yee M, Bergamini MA, Chwalek M, Maal-Bared G, Vargas-Perez H, van der Kooy D. Deletion of α5 nicotine receptor subunits abolishes nicotinic aversive motivational effects in a manner that phenocopies dopamine receptor antagonism. Eur J Neurosci 2017; 46:1673-1681. [PMID: 28498560 DOI: 10.1111/ejn.13605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 01/03/2023]
Abstract
Nicotine addiction is a worldwide epidemic that claims millions of lives each year. Genetic deletion of α5 nicotinic acetylcholine receptor (nAChR) subunits has been associated with increased nicotine intake, however, it remains unclear whether acute nicotine is less aversive or more rewarding, and whether mice lacking the α5 nAChR subunit can experience withdrawal from chronic nicotine. We used place conditioning and conditioned taste avoidance paradigms to examine the effect of α5 subunit-containing nAChR deletion (α5 -/-) on conditioned approach and avoidance behaviour in nondependent and nicotine-dependent and -withdrawn mice, and compared these motivational effects with those elicited after dopamine receptor antagonism. We show that nondependent α5 -/- mice find low, non-motivational doses of nicotine rewarding, and do not show an aversive conditioned response or taste avoidance to higher aversive doses of nicotine. Furthermore, nicotine-dependent α5 -/- mice do not show a conditioned aversive motivational response to withdrawal from chronic nicotine, although they continue to exhibit a somatic withdrawal syndrome. These effects phenocopy those observed after dopamine receptor antagonism, but are not additive, suggesting that α5 nAChR subunits act in the same pathway as dopamine and are critical for the experience of nicotine's aversive, but not rewarding motivational effects in both a nondependent and nicotine-dependent and -withdrawn motivational state. Genetic deletion of α5 nAChR subunits leads to a behavioural phenotype that exactly matches that observed after antagonizing dopamine receptors, thus we suggest that modulation of nicotinic receptors containing α5 subunits may modify dopaminergic signalling, suggesting novel therapeutic treatments for smoking cessation.
Collapse
Affiliation(s)
- Taryn E Grieder
- Institute of Medical Science, University of Toronto, 1110-160 College St, Toronto, ON, M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Center for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Center for the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Mandy Yee
- Institute of Medical Science, University of Toronto, 1110-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Michael A Bergamini
- Institute of Medical Science, University of Toronto, 1110-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Michal Chwalek
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Geith Maal-Bared
- Institute of Medical Science, University of Toronto, 1110-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Hector Vargas-Perez
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek van der Kooy
- Institute of Medical Science, University of Toronto, 1110-160 College St, Toronto, ON, M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
71
|
Sotiriou I, Chalkiadaki K, Nikolaidis C, Sidiropoulou K, Chatzaki E. Pharmacotherapy in smoking cessation: Corticotropin Releasing Factor receptors as emerging intervention targets. Neuropeptides 2017; 63:49-57. [PMID: 28222901 DOI: 10.1016/j.npep.2017.02.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
Smoking represents perhaps the single most important health risk factor and a global contributor to mortality that can unquestionably be prevented. Smoking is responsible for many diseases, including various types of cancer, chronic obstructive pulmonary disease, coronary heart disease, peripheral vascular disease and peptic ulcer, while it adversely affects fetal formation and development. Since smoking habit duration is a critical factor for mortality, the goal of treatment should be its timely cessation and relapse prevention. Drug intervention therapy is an important ally in smoking cessation. Significant positive steps have been achieved in the last few years in the development of supportive compounds. In the present review, we analyze reports studying the role of Corticotropin Releasing Factor (CRF), the principle neuroendocrine mediator of the stress response and its two receptors (CRF1 and CRF2) in the withdrawal phase as well as in the abstinence from nicotine use. Although still in pre-clinical evaluation, therapeutic implications of these data were investigated in order to highlight potential pharmaceutical interventions.
Collapse
Affiliation(s)
- Ioannis Sotiriou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Christos Nikolaidis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| |
Collapse
|
72
|
Extended Amygdala to Ventral Tegmental Area Corticotropin-Releasing Factor Circuit Controls Binge Ethanol Intake. Biol Psychiatry 2017; 81:930-940. [PMID: 27113502 PMCID: PMC5010800 DOI: 10.1016/j.biopsych.2016.02.029] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/06/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) signaling at the CRF1 receptor (CRF1R) in the ventral tegmental area (VTA) can modulate ethanol consumption in rodents. However, the effects of binge-like ethanol drinking on this system have not been thoroughly characterized, and little is known about the role of CRF2R or the CRF neurocircuitry involved. METHODS The effects of binge-like ethanol consumption on the VTA CRF system were assessed following drinking-in-the-dark procedures. Intra-VTA infusions of selective CRF1R and/or CRF2R compounds were employed to assess the contributions of these receptors in modulating binge-like ethanol consumption (n = 89). To determine the potential role of CRF projections from the bed nucleus of the stria terminalis (BNST) to the VTA, CRF neurons in this circuit were chemogenetically inhibited (n = 32). Binge-induced changes in VTA CRF system protein and messenger RNA were also assessed (n = 58). RESULTS Intra-VTA antagonism of CRF1R and activation of CRF2R resulted in decreased ethanol intake, which was eliminated by simultaneous blockade of both receptors. Chemogenetic inhibition of local CRF neurons in the VTA did not alter binge-like ethanol drinking, but inhibition of VTA-projecting CRF neurons from the BNST significantly reduced intake. CONCLUSIONS We provide novel evidence that 1) blunted binge-like ethanol consumption stemming from CRF1R blockade requires intact CRF2R signaling, and CRF2R activation reduces binge-like drinking; 2) inhibiting VTA-projecting BNST CRF neurons attenuates binge-like drinking; and 3) binge-like ethanol drinking alters protein and messenger RNA associated with the VTA-CRF system. These data suggest that ethanol-induced activation of BNST-to-VTA CRF projections is critical in driving binge-like ethanol intake.
Collapse
|
73
|
Vargas-Perez H, Grieder TE, Ting-A-Kee R, Maal-Bared G, Chwalek M, van der Kooy D. A single administration of the hallucinogen, 4-acetoxy-dimethyltryptamine, prevents the shift to a drug-dependent state and the expression of withdrawal aversions in rodents. Eur J Neurosci 2017; 45:1410-1417. [PMID: 28378435 DOI: 10.1111/ejn.13572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023]
Abstract
Despite several studies suggesting the therapeutic use of 5-hydroxytryptamine receptors type 2A (5-HT2A ) agonists in the treatment of substance use disorders, the neurobiological basis accounting for such effects are still unknown. It has been observed that chronic exposure to drugs of abuse produces molecular and cellular adaptations in ventral tegmental area (VTA) neurons, mediated by brain-derived neurotrophic factor (BDNF). These BDNF-induced adaptations in the VTA are associated with the establishment of aversive withdrawal motivation that leads to a drug-dependent state. Growing evidence suggests that 5-HT2A receptor signaling can regulate the expression of BDNF in the brain. In this study, we observed that a single systemic or intra-VTA administration of a 5-HT2A agonist in rats and mice blocks both the aversive conditioned response to drug withdrawal and the mechanism responsible for switching from a drug-naive to a drug-dependent motivational system. Our results suggest that 5-HT2A agonists could be used as therapeutic agents to reverse a drug dependent state, as well as inhibiting the aversive effects produced by drug withdrawal.
Collapse
Affiliation(s)
- Hector Vargas-Perez
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada.,The Nierika Intercultural Medicine Institute, Ocuilan, Estado de México, México.,Postgrado en Ciencias Cognitivas, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Taryn E Grieder
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Ryan Ting-A-Kee
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Geith Maal-Bared
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Michal Chwalek
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek van der Kooy
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
74
|
Bruijnzeel AW. Neuropeptide systems and new treatments for nicotine addiction. Psychopharmacology (Berl) 2017; 234:1419-1437. [PMID: 28028605 PMCID: PMC5420481 DOI: 10.1007/s00213-016-4513-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal, and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA,Department of Neuroscience, University of Florida, Gainesville, Florida, USA,Center for Addiction Research and Education, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
75
|
Abstract
Addiction has been conceptualized as a three-stage cycle—binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation—that worsens over time and involves allostatic changes in hedonic function via changes in the brain reward and stress systems. Using the withdrawal/negative affect stage and negative reinforcement as an important source of motivation for compulsive drug seeking, we outline the neurobiology of the stress component of the withdrawal/negative affect stage and relate it to a derivative of the Research Domain Criteria research construct for the study of psychiatric disease, known as the Addictions Neuroclinical Assessment. Using the Addictions Neuroclinical Assessment, we outline five subdomains of negative emotional states that can be operationally measured in human laboratory settings and paralleled by animal models. We hypothesize that a focus on negative emotionality and stress is closely related to the acute neurobiological alterations that are experienced in addiction and may serve as a bridge to a reformulation of the addiction nosology to better capture individual differences in patients for whom the withdrawal/negative affect stage drives compulsive drug taking.
Collapse
Affiliation(s)
- Laura E Kwako
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
76
|
Abstract
W. Horsley Gantt and Joseph V. Brady laid a rich foundation for understanding the concept of emotion, derived from 2 prominent traditions of physiology and psychology: classic conditioning and operant conditioning, respectively. This framework guided my fierce interest in motivation in general and the interaction between reward and stress, which began at John Hopkins with my thesis work under the guidance of Drs. Zoltan Annau, Solomon Synder, and Joseph Brady, among many others. Using the study of the neurobiology of addiction as a framework, I argue that drug addiction not only involves positive reinforcement associated with the rewarding effects of drugs of abuse but also involves another major source of reinforcement, specifically negative reinforcement driven by negative emotional states (termed the "dark side" of addiction). Excessive activation of the brain reward systems leads to antireward or a decrease in the function of normal reward-related neurocircuitry and persistent recruitment of the brain stress systems, both of which may be neurobiologically linked. Understanding the neuroplasticity of the neurocircuitry that comprises the negative reinforcement associated with addiction is a key to understanding negative emotional states in general and their pathophysiology.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
77
|
Vranjkovic O, Pina M, Kash TL, Winder DG. The bed nucleus of the stria terminalis in drug-associated behavior and affect: A circuit-based perspective. Neuropharmacology 2017; 122:100-106. [PMID: 28351600 DOI: 10.1016/j.neuropharm.2017.03.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
The bed nucleus of the stria terminalis was first described nearly a century ago and has since emerged as a region central to motivated behavior and affective states. The last several decades have firmly established a role for the BNST in drug-associated behavior and implicated this region in addiction-related processes. Whereas past approaches used to characterize the BNST have focused on a more general role of this region and its subnuclei in behavior, more recent work has begun to reveal its elaborate circuitry and cellular components. Such recent developments are largely owed to methodological advances, which have made possible efforts previously deemed intractable, such as tracing of long-range cell-type specific projections and identifying functional efferent and afferent connections. In this review, we integrate earlier foundational work with more recent and advanced studies to construct a broad overview of the molecular neurocircuitry of the BNST in drug-associated behavior and affect. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Oliver Vranjkovic
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
| | - Melanie Pina
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA; Department of Psychiatry, Vanderbilt University School of Medicine, USA; Department of Pharmacology, Vanderbilt University School of Medicine, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
78
|
Molas S, DeGroot SR, Zhao-Shea R, Tapper AR. Anxiety and Nicotine Dependence: Emerging Role of the Habenulo-Interpeduncular Axis. Trends Pharmacol Sci 2017; 38:169-180. [PMID: 27890353 PMCID: PMC5258775 DOI: 10.1016/j.tips.2016.11.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022]
Abstract
While innovative modern neuroscience approaches have aided in discerning brain circuitry underlying negative emotional behaviors including fear and anxiety responses, how these circuits are recruited in normal and pathological conditions remains poorly understood. Recently, genetic tools that selectively manipulate single neuronal populations have uncovered an understudied circuit, the medial habenula (mHb)-interpeduncular (IPN) axis, that modulates basal negative emotional responses. Interestingly, the mHb-IPN pathway also represents an essential circuit that signals heightened anxiety induced by nicotine withdrawal. Insights into how this circuit interconnects with regions more classically associated with anxiety, and how chronic nicotine exposure induces neuroadaptations resulting in an anxiogenic state, may thereby provide novel strategies and molecular targets for therapies that facilitate smoking cessation, as well as for anxiety relief.
Collapse
Affiliation(s)
- Susanna Molas
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Steven R DeGroot
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA; Graduate Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rubing Zhao-Shea
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
79
|
Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 2017; 18:73-85. [DOI: 10.1038/nrn.2016.165] [Citation(s) in RCA: 594] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
80
|
Giardino WJ, Rodriguez ED, Smith ML, Ford MM, Galili D, Mitchell SH, Chen A, Ryabinin AE. Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger-Westphal nucleus urocortin-1 neuropeptide system. Transl Psychiatry 2017; 7:e1021. [PMID: 28140406 PMCID: PMC5299395 DOI: 10.1038/tp.2016.293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/25/2016] [Accepted: 12/15/2016] [Indexed: 11/23/2022] Open
Abstract
Midbrain neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) are activated by alcohol, and enriched with stress-responsive neuropeptide modulators (including the paralog of corticotropin-releasing factor, urocortin-1). Evidence suggests that EWcp neurons promote behavioral processes for alcohol-seeking and consumption, but a definitive role for these cells remains elusive. Here we combined targeted viral manipulations and gene array profiling of EWcp neurons with mass behavioral phenotyping in C57BL/6 J mice to directly define the links between EWcp-specific urocortin-1 expression and voluntary binge alcohol intake, demonstrating a specific importance for EWcp urocortin-1 activity in escalation of alcohol intake.
Collapse
Affiliation(s)
- W J Giardino
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - E D Rodriguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - D Galili
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - S H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. E-mail:
| |
Collapse
|
81
|
The CRF System as a Therapeutic Target for Neuropsychiatric Disorders. Trends Pharmacol Sci 2016; 37:1045-1054. [PMID: 27717506 DOI: 10.1016/j.tips.2016.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 11/21/2022]
Abstract
The major neuropsychiatric disorders are devastating illnesses that are only modestly responsive to treatment. Improving the treatment of these conditions will require innovative new strategies that depart from previously focused-on pharmacological mechanisms. Considerable preclinical and clinical data indicate corticotropin-releasing factor (CRF) signaling as a target for new psychotropic drug development. Here we review alterations in the CRF system reported in several psychiatric conditions. We also examine the preclinical work that has dissected the distinctive roles of CRF receptors in specific circuits relevant to these disorders. We further describe the clinical trials of CRF1 receptor antagonists that have been conducted. Although these clinical trials have thus far met with limited therapeutic success, the unfolding complexity of the CRF system promises many future directions for studying its role in the etiology and treatment of neuropsychiatric conditions.
Collapse
|
82
|
Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse. Brain Struct Funct 2016; 222:1705-1732. [PMID: 27638512 DOI: 10.1007/s00429-016-1303-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
We examined the morphological features of corticotropin-releasing factor (CRF) neurons in a mouse line in which modified yellow fluorescent protein (Venus) was expressed under the CRF promoter. We previously generated the CRF-Venus knock-in mouse, in which Venus is inserted into the CRF gene locus by homologous recombination. In the present study, the neomycin phosphotransferase gene (Neo), driven by the pgk-1 promoter, was deleted from the CRF-Venus mouse genome, and a CRF-Venus∆Neo mouse was generated. Venus expression is much more prominent in the CRF-Venus∆Neo mouse when compared to the CRF-Venus mouse. In addition, most Venus-expressing neurons co-express CRF mRNA. Venus-expressing neurons constitute a discrete population of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVH) that project to the median eminence. Venus-expressing neurons were also found in brain regions outside the neuroendocrine PVH, including the olfactory bulb, the piriform cortex (Pir), the extended amygdala, the hippocampus, the neocortices, Barrington's nucleus, the midbrain/pontine dorsal tegmentum, the periaqueductal gray, and the inferior olivary nucleus (IO). Venus-expressing perikarya co-expressing CRF mRNA could be observed clearly even in regions where CRF-immunoreactive perikarya could hardly be identified. We demonstrated that the CRF neurons contain glutamate in the Pir and IO, while they contain gamma-aminobutyric acid in the neocortex, the bed nucleus of the stria terminalis, the hippocampus, and the amygdala. A population of CRF neurons was demonstrated to be cholinergic in the midbrain tegmentum. The CRF-Venus∆Neo mouse may be useful for studying the structural and functional properties of CRF neurons in the mouse brain.
Collapse
|
83
|
Henckens MJAG, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 2016; 17:636-51. [PMID: 27586075 DOI: 10.1038/nrn.2016.94] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dysregulation of the corticotropin-releasing factor (CRF)-urocortin (UCN) system has been implicated in stress-related psychopathologies such as depression and anxiety. It has been proposed that CRF-CRF receptor type 1 (CRFR1) signalling promotes the stress response and anxiety-like behaviour, whereas UCNs and CRFR2 activation mediate stress recovery and the restoration of homeostasis. Recent findings, however, provide clear evidence that this view is overly simplistic. Instead, a more complex picture has emerged that suggests that there are brain region- and cell type-specific effects of CRFR signalling that are influenced by the individual's prior experience and that shape molecular, cellular and ultimately behavioural responses to stressful challenges.
Collapse
Affiliation(s)
- Marloes J A G Henckens
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
84
|
Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology 2016; 41:2424-46. [PMID: 26934955 PMCID: PMC4987841 DOI: 10.1038/npp.2016.32] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 01/09/2023]
Abstract
Addictive substances are known to increase dopaminergic signaling in the mesocorticolimbic system. The origin of this dopamine (DA) signaling originates in the ventral tegmental area (VTA), which sends afferents to various targets, including the nucleus accumbens, the medial prefrontal cortex, and the basolateral amygdala. VTA DA neurons mediate stimuli saliency and goal-directed behaviors. These neurons undergo robust drug-induced intrinsic and extrinsic synaptic mechanisms following acute and chronic drug exposure, which are part of brain-wide adaptations that ultimately lead to the transition into a drug-dependent state. Interestingly, recent investigations of the differential subpopulations of VTA DA neurons have revealed projection-specific functional roles in mediating reward, aversion, and stress. It is now critical to view drug-induced neuroadaptations from a circuit-level perspective to gain insight into how differential dopaminergic adaptations and signaling to targets of the mesocorticolimbic system mediates drug reward. This review hopes to describe the projection-specific intrinsic characteristics of these subpopulations, the differential afferent inputs onto these VTA DA neuron subpopulations, and consolidate findings of drug-induced plasticity of VTA DA neurons and highlight the importance of future projection-based studies of this system.
Collapse
|
85
|
Chen NA, Ganella DE, Bathgate RAD, Chen A, Lawrence AJ, Kim JH. Knockdown of corticotropin-releasing factor 1 receptors in the ventral tegmental area enhances conditioned fear. Eur Neuropsychopharmacol 2016; 26:1533-1540. [PMID: 27397862 DOI: 10.1016/j.euroneuro.2016.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 12/01/2022]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) coordinates the physiological and behavioural responses to stress. CRF receptors are highly expressed in the ventral tegmental area (VTA), an important region for motivated behaviour. Therefore, we examined the role of CRF receptor type 1 (CRFR1) in the VTA in conditioned fear, using a viral-mediated RNA interference approach. Following stereotaxic injection of a lentivirus that contained either shCRF-R1 or a control sequence, mice received tone-footshock pairings. Intra-VTA shCRF-R1 did not affect tone-elicited freezing during conditioning. Once conditioned fear was acquired, however, shCRF-R1 mice consistently showed stronger freezing to the tone even after extinction and reinstatement. These results implicate a novel role of VTA CRF-R1 in conditioned fear, and suggest how stress may modulate aversive learning and memory.
Collapse
Affiliation(s)
- Nicola A Chen
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia
| | - Despina E Ganella
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia
| | - Ross A D Bathgate
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, VIC 3010 Australia
| | - Alon Chen
- Department of stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, Florey Institute of Neuroscience & Mental Health, Parkville, VIC 3052 Australia; The Florey Department of Neuroscience & Mental Health, Australia.
| |
Collapse
|
86
|
Episodic Social Stress-Escalated Cocaine Self-Administration: Role of Phasic and Tonic Corticotropin Releasing Factor in the Anterior and Posterior Ventral Tegmental Area. J Neurosci 2016; 36:4093-105. [PMID: 27053215 DOI: 10.1523/jneurosci.2232-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/23/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking. In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated cocaine taking, and that persistently elevated CRF tone in the VTA may drive later cocaine seeking through increased activation of pVTA CRF-R1 and aVTA CRF-R2. SIGNIFICANCE STATEMENT Corticotropin releasing factor (CRF) within the ventral tegmental area (VTA) has emerged as a likely candidate molecule underlying the fundamental link between stress history and escalated drug self-administration. However, the nature of CRF release in the VTA during acute and repeated stress, as well as its role in enduring neuroadaptations driving later drug taking and seeking, are poorly understood. These experiments explore how CRF is released and interacts with its receptors in specific regions of the VTA both during and after stress to fuel later escalated cocaine taking and seeking behavior. Understanding these acute and persistent changes to the VTA CRF system may lead to better therapeutic interventions for addiction.
Collapse
|
87
|
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 2016; 3:760-773. [PMID: 27475769 PMCID: PMC6135092 DOI: 10.1016/s2215-0366(16)00104-8] [Citation(s) in RCA: 1980] [Impact Index Per Article: 220.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
Abstract
Drug addiction represents a dramatic dysregulation of motivational circuits that is caused by a combination of exaggerated incentive salience and habit formation, reward deficits and stress surfeits, and compromised executive function in three stages. The rewarding effects of drugs of abuse, development of incentive salience, and development of drug-seeking habits in the binge/intoxication stage involve changes in dopamine and opioid peptides in the basal ganglia. The increases in negative emotional states and dysphoric and stress-like responses in the withdrawal/negative affect stage involve decreases in the function of the dopamine component of the reward system and recruitment of brain stress neurotransmitters, such as corticotropin-releasing factor and dynorphin, in the neurocircuitry of the extended amygdala. The craving and deficits in executive function in the so-called preoccupation/anticipation stage involve the dysregulation of key afferent projections from the prefrontal cortex and insula, including glutamate, to the basal ganglia and extended amygdala. Molecular genetic studies have identified transduction and transcription factors that act in neurocircuitry associated with the development and maintenance of addiction that might mediate initial vulnerability, maintenance, and relapse associated with addiction.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
88
|
Root DH, Wang HL, Liu B, Barker DJ, Mód L, Szocsics P, Silva AC, Maglóczky Z, Morales M. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans. Sci Rep 2016; 6:30615. [PMID: 27477243 PMCID: PMC4967922 DOI: 10.1038/srep30615] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023] Open
Abstract
The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson's disease.
Collapse
Affiliation(s)
- David H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - Hui-Ling Wang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - Bing Liu
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - David J Barker
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - László Mód
- Department of Psychology, Szent Borbála Hospital, H-2800, Tatabánya, Hungary
| | - Péter Szocsics
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, 49 Convent Drive Bldg 49 Room 3A72, Bethesda, MD 20892-4478, USA
| | - Zsófia Maglóczky
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
89
|
Targeting the Brain Stress Systems for the Treatment of Tobacco/Nicotine Dependence: Translating Preclinical and Clinical Findings. CURRENT ADDICTION REPORTS 2016; 3:314-322. [PMID: 31275802 DOI: 10.1007/s40429-016-0115-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tobacco use is the leading cause of preventable mortality in the United States, and Food and Drug Administration (FDA) approved medications fail to maintain long-term abstinence for the majority of smokers. One of the principal mechanisms associated with the initiation, maintenance of, and relapse to smoking is stress. Targeting the brain stress systems as a potential treatment strategy for tobacco dependence may be of therapeutic benefit. This review explores brain stress systems in tobacco use and dependence. The corticotropin-releasing factor (CRF) system, the hypothalamic-pituitary-adrenal (HPA) axis, and the noradrenergic system are discussed in relation to tobacco use. Preclinical and clinical investigations targeting these stress systems as treatment strategies for stress-induced tobacco use are also discussed. Overall, nicotine-induced activation of the CRF system, and subsequent activation of the HPA axis and noradrenergic system may be related to stress-induced nicotine-motivated behaviors. Pharmacological agents that decrease stress-induced hyperactivation of these brain stress systems may improve smoking-related outcomes.
Collapse
|
90
|
Perturbations in Effort-Related Decision-Making Driven by Acute Stress and Corticotropin-Releasing Factor. Neuropsychopharmacology 2016; 41:2147-59. [PMID: 26830960 PMCID: PMC4908645 DOI: 10.1038/npp.2016.15] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/10/2023]
Abstract
Acute stress activates numerous systems in a coordinated effort to promote homeostasis, and can exert differential effects on mnemonic and cognitive functions depending on a myriad of factors. Stress can alter different forms of cost/benefit decision-making, yet the mechanisms that drive these effects, remain unclear. In the present study, we probed how corticotropin-releasing factor (CRF) may contribute to stress-induced alterations in cost/benefit decision-making, using an task where well-trained rats chose between a low effort/low reward lever (LR; two pellets) and a high effort/high reward lever (HR; four pellets), with the effort requirement increasing over a session (2, 5, 10, and 20 presses). One-hour restraint stress markedly reduced preference for the HR option, but this effect was attenuated by infusions of the CRF antagonist, alpha-helical CRF. Conversely, central CRF infusion mimicked the effect of stress on decision-making, as well as increased decision latencies and reduced response vigor. CRF infusions did not alter preference for larger vs smaller rewards, but did reduce responding for food delivered on a progressive ratio, suggesting that these treatments may amplify perceived effort costs that may be required to obtain rewards. CRF infusions into the ventral tegmental area recapitulated the effect of central CRF treatment and restraint on choice behavior, suggesting that these effects may be mediated by perturbations in dopamine transmission. These findings highlight the involvement of CRF in regulating effort-related decisions and suggest that increased CRF activity may contribute to motivational impairments and abnormal decision-making associated with stress-related psychiatric disorders such as depression.
Collapse
|
91
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
92
|
Barker DJ, Root DH, Zhang S, Morales M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J Chem Neuroanat 2016; 73:33-42. [PMID: 26763116 PMCID: PMC4818729 DOI: 10.1016/j.jchemneu.2015.12.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022]
Abstract
The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal diversity in the VTA with a focus on cell phenotypes that participate in 'multiplexed' neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or by the integration of glutamate and GABA into a single axon terminal. In addition, we discuss our current understanding of the functional role that these multiplexed signaling pathways have in the lateral habenula and the nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various psychopathologies including drug addiction and depression.
Collapse
Affiliation(s)
- David J Barker
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - David H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - Shiliang Zhang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
93
|
Pang X, Liu L, Ngolab J, Zhao-Shea R, McIntosh JM, Gardner PD, Tapper AR. Habenula cholinergic neurons regulate anxiety during nicotine withdrawal via nicotinic acetylcholine receptors. Neuropharmacology 2016; 107:294-304. [PMID: 27020042 DOI: 10.1016/j.neuropharm.2016.03.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/07/2016] [Accepted: 03/23/2016] [Indexed: 11/17/2022]
Abstract
Cholinergic neurons in the medial habenula (MHb) modulate anxiety during nicotine withdrawal although the molecular neuroadaptation(s) within the MHb that induce affective behaviors during nicotine cessation is largely unknown. MHb cholinergic neurons are unique in that they robustly express neuronal nicotinic acetylcholine receptors (nAChRs), although their behavioral role as autoreceptors in these neurons has not been described. To test the hypothesis that nAChR signaling in MHb cholinergic neurons could modulate anxiety, we expressed novel "gain of function" nAChR subunits selectively in MHb cholinergic neurons of adult mice. Mice expressing these mutant nAChRs exhibited increased anxiety-like behavior that was alleviated by blockade with a nAChR antagonist. To test the hypothesis that anxiety induced by nicotine withdrawal may be mediated by increased MHb nicotinic receptor signaling, we infused nAChR subtype selective antagonists into the MHb of nicotine naïve and withdrawn mice. While antagonists had little effect on nicotine naïve mice, blocking α4β2 or α6β2, but not α3β4 nAChRs in the MHb alleviated anxiety in mice undergoing nicotine withdrawal. Consistent with behavioral results, there was increased functional expression of nAChRs containing the α6 subunit in MHb neurons that also expressed the α4 subunit. Together, these data indicate that MHb cholinergic neurons regulate nicotine withdrawal-induced anxiety via increased signaling through nicotinic receptors containing the α6 subunit and point toward nAChRs in MHb cholinergic neurons as molecular targets for smoking cessation therapeutics.
Collapse
Affiliation(s)
- Xueyan Pang
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Liwang Liu
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Jennifer Ngolab
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Rubing Zhao-Shea
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84108, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul D Gardner
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
94
|
Torres OV, O'Dell LE. Stress is a principal factor that promotes tobacco use in females. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:260-8. [PMID: 25912856 PMCID: PMC4618274 DOI: 10.1016/j.pnpbp.2015.04.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Tobacco use is a major economic and health problem. It is particularly concerning that women consume more tobacco products, have a more difficult time quitting smoking, and are less likely to benefit from smoking cessation therapy than men. As a result, women are at higher risk of developing tobacco-related diseases. Clinical evidence suggests that women are more susceptible to anxiety disorders, and are more likely to smoke in order to cope with stress than men. During smoking abstinence, women experience more intense anxiety than men and report that the anxiety-reducing effects of smoking are the main reason for their continued tobacco use and relapse. Consistent with this, pre-clinical studies using rodent models suggest that females display more intense stress during nicotine withdrawal than males. This review posits that in women, stress is a principal factor that promotes the initiation of tobacco use and relapse behavior during abstinence. Studies are reviewed at both the clinical and pre-clinical levels to provide support for our hypothesis that stress plays a central role in promoting tobacco use vulnerability in females. The clinical implications of this work are also considered with regard to treatment approaches and the need for more research to help reduce health disparities produced by tobacco use in women.
Collapse
Affiliation(s)
- Oscar V Torres
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79902, USA.
| |
Collapse
|
95
|
Hwa LS, Holly EN, DeBold JF, Miczek KA. Social stress-escalated intermittent alcohol drinking: modulation by CRF-R1 in the ventral tegmental area and accumbal dopamine in mice. Psychopharmacology (Berl) 2016; 233:681-90. [PMID: 26576941 PMCID: PMC4729595 DOI: 10.1007/s00213-015-4144-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Excessive alcohol (EtOH) drinking is difficult to model in animals despite the extensive human literature demonstrating that stress increases EtOH consumption. OBJECTIVE The current experiments show escalations in voluntary EtOH drinking caused by a history of social defeat stress and intermittent access to EtOH in C57BL/6J mice compared to non-stressed mice given intermittent EtOH or continuous EtOH. To explore a mechanistic link between stress and drinking, we studied the role of corticotropin-releasing factor type-1 receptors (CRF-R1) in the dopamine-rich ventral tegmental area (VTA). RESULTS Intra-VTA infusions of a CRF-R1 antagonist, CP376395, infused into the VTA dose-dependently and selectively reduced intermittent EtOH intake in stressed and non-stressed mice, but not in mice given continuous EtOH. In contrast, intra-VTA infusions of the CRF-R2 antagonist astressin2B non-specifically suppressed both EtOH and H2O drinking in the stressed group without effects in the non-stressed mice. Using in vivo microdialysis in the nucleus accumbens (NAc) shell, we observed that stressed mice drinking EtOH intermittently had elevated levels of tonic dopamine concentrations compared to non-stressed drinking mice. Also, VTA CP376395 potentiated dopamine output to the NAc only in the stressed group causing further elevations of dopamine post-infusion. CONCLUSIONS These findings illustrate a role for extrahypothalamic CRF-R1 as especially important for stress-escalated EtOH drinking beyond schedule-escalated EtOH drinking. CRF-R1 may be a mechanism for balancing the dysregulation of stress and reward in alcohol use disorders.
Collapse
Affiliation(s)
- Lara S Hwa
- Psychology Department, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Elizabeth N Holly
- Psychology Department, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Joseph F DeBold
- Psychology Department, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Klaus A Miczek
- Psychology Department, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA.
- Neuroscience Department, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
96
|
Pomrenze MB, Millan EZ, Hopf FW, Keiflin R, Maiya R, Blasio A, Dadgar J, Kharazia V, De Guglielmo G, Crawford E, Janak PH, George O, Rice KC, Messing RO. A Transgenic Rat for Investigating the Anatomy and Function of Corticotrophin Releasing Factor Circuits. Front Neurosci 2015; 9:487. [PMID: 26733798 PMCID: PMC4689854 DOI: 10.3389/fnins.2015.00487] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 11/14/2022] Open
Abstract
Corticotrophin-releasing factor (CRF) is a 41 amino acid neuropeptide that coordinates adaptive responses to stress. CRF projections from neurons in the central nucleus of the amygdala (CeA) to the brainstem are of particular interest for their role in motivated behavior. To directly examine the anatomy and function of CRF neurons, we generated a BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh promoter. Using Cre-dependent reporters, we found that Cre expressing neurons in these rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL) and the oval nucleus of the BNST. We detected major projections from CeA CRF neurons to parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral hypothalamus. Optogenetic stimulation of CeA CRF neurons evoked GABA-ergic responses in 11% of non-CRF neurons in the medial CeA (CeM) and 44% of non-CRF neurons in the CeL. Chemogenetic stimulation of CeA CRF neurons induced Fos in a similar proportion of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons. The CRF1 receptor antagonist R121919 reduced this Fos induction by two-thirds in these regions. These results indicate that CeL CRF neurons provide both local inhibitory GABA and excitatory CRF signals to other CeA neurons, and demonstrate the value of the Crh-Cre rat as a tool for studying circuit function and physiology of CRF neurons.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin Austin, TX, USA
| | - E Zayra Millan
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - F Woodward Hopf
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Ronald Keiflin
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Rajani Maiya
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin Austin, TX, USA
| | - Angelo Blasio
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin Austin, TX, USA
| | - Jahan Dadgar
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at AustinAustin, TX, USA; Department of Neurology, University of California, San FranciscoSan Francisco, CA, USA
| | - Viktor Kharazia
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Giordano De Guglielmo
- Committee on The Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Elena Crawford
- Committee on The Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Patricia H Janak
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Olivier George
- Committee on The Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Kenner C Rice
- Chemical Biology Research Branch, Drug Design and Synthesis Section, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism Rockville, MD, USA
| | - Robert O Messing
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at AustinAustin, TX, USA; Department of Neurology, University of California, San FranciscoSan Francisco, CA, USA
| |
Collapse
|
97
|
Chen Y, Molet J, Gunn BG, Ressler K, Baram TZ. Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons. Endocrinology 2015; 156:4769-80. [PMID: 26402844 PMCID: PMC4655217 DOI: 10.1210/en.2015-1673] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transgenic mice, including lines targeting corticotropin-releasing factor (CRF or CRH), have been extensively employed to study stress neurobiology. These powerful tools are poised to revolutionize our understanding of the localization and connectivity of CRH-expressing neurons, and the crucial roles of CRH in normal and pathological conditions. Accurate interpretation of studies using cell type-specific transgenic mice vitally depends on congruence between expression of the endogenous peptide and reporter. If reporter expression does not faithfully reproduce native gene expression, then effects of manipulating unintentionally targeted cells may be misattributed. Here, we studied CRH and reporter expression patterns in 3 adult transgenic mice: Crh-IRES-Cre;Ai14 (tdTomato mouse), Crfp3.0CreGFP, and Crh-GFP BAC. We employed the CRH antiserum generated by Vale after validating its specificity using CRH-null mice. We focused the analyses on stress-salient regions, including hypothalamus, amygdala, bed nucleus of the stria terminalis, and hippocampus. Expression patterns of endogenous CRH were consistent among wild-type and transgenic mice. In tdTomato mice, most CRH-expressing neurons coexpressed the reporter, yet the reporter identified a few non-CRH-expressing pyramidal-like cells in hippocampal CA1 and CA3. In Crfp3.0CreGFP mice, coexpression of CRH and the reporter was found in central amygdala and, less commonly, in other evaluated regions. In Crh-GFP BAC mice, the large majority of neurons expressed either CRH or reporter, with little overlap. These data highlight significant diversity in concordant expression of reporter and endogenous CRH among 3 available transgenic mice. These findings should be instrumental in interpreting important scientific findings emerging from the use of these potent neurobiological tools.
Collapse
Affiliation(s)
- Yuncai Chen
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| | - Jenny Molet
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| | - Benjamin G Gunn
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| | - Kerry Ressler
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| | - Tallie Z Baram
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| |
Collapse
|
98
|
Neuroscience of nicotine for addiction medicine: novel targets for smoking cessation medications. PROGRESS IN BRAIN RESEARCH 2015; 223:191-214. [PMID: 26806777 DOI: 10.1016/bs.pbr.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Morbidity and mortality associated with tobacco smoking constitutes a significant burden on healthcare budgets all over the world. Therefore, promoting smoking cessation is an important goal of health professionals and policy makers throughout the world. Nicotine is a major psychoactive component in tobacco that is largely responsible for the widespread addiction to tobacco. A majority of the currently available FDA-approved smoking cessation medications act via neuronal nicotinic receptors. These medications are effective in approximately half of all the smokers, who want to quit and relapse among abstinent smokers continues to be high. In addition to relapse among abstinent smokers, unpleasant effects associated with nicotine withdrawal are a major motivational factor in continued tobacco smoking. Over the last two decades, animal studies have helped in identifying several neural substrates that are involved in nicotine-dependent behaviors including those associated with nicotine withdrawal and relapse to tobacco smoking. In this review, first the role of specific brain regions/circuits that are involved in nicotine dependence will be discussed. Next, the review will describe the role of specific nicotinic receptor subunits in nicotine dependence. Finally, the review will discuss the role of classical neurotransmitters (dopamine, serotonin, noradrenaline, glutamate, and γ-aminobutyric acid) as well as endogenous opioid and endocannabinoid signaling in nicotine dependence. The nicotinic and nonnicotinic neural substrates involved in nicotine-dependent behaviors can serve as possible targets for future smoking cessation medications.
Collapse
|
99
|
Ettenberg A, Cotten SW, Brito MA, Klein AK, Ohana TA, Margolin B, Wei A, Wenzel JM. CRF antagonism within the ventral tegmental area but not the extended amygdala attenuates the anxiogenic effects of cocaine in rats. Pharmacol Biochem Behav 2015; 138:148-55. [PMID: 26441142 DOI: 10.1016/j.pbb.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 01/24/2023]
Abstract
In addition to its initial rewarding effects, cocaine has been shown to produce profound negative/anxiogenic actions. Recent work on the anxiogenic effects of cocaine has examined the role of corticotropin releasing factor (CRF), with particular attention paid to the CRF cell bodies resident to the extended amygdala (i.e., the central nucleus of the amygdala [CeA] and the bed nucleus of the stria terminalis [BNST]) and the interconnections within and projections outside the region (e.g., to the ventral tegmental area [VTA]). In the current study, localized CRF receptor antagonism was produced by intra-BNST, intra-CeA or intra-VTA application of the CRF antagonists, D-Phe CRF(12-41) or astressin-B. The effect of these treatments were examined in a runway model of i.v. cocaine self-administration that has been shown to be sensitive to both the initial rewarding and delayed anxiogenic effects of the drug in the same animal on the same trial. These dual actions of cocaine are reflected in the development of an approach-avoidance conflict ("retreat behaviors") about goal box entry that stems from the mixed associations that subjects form about the goal. CRF antagonism within the VTA, but not the CeA or BNST, significantly reduced the frequency of approach-avoidance retreat behaviors while leaving start latencies (an index of the positive incentive properties of cocaine) unaffected. These results suggest that the critical CRF receptors contributing to the anxiogenic state associated with acute cocaine administration may lie outside the extended amygdala, and likely involve CRF projections to the VTA.
Collapse
Affiliation(s)
- Aaron Ettenberg
- Behavioral Pharmacology Laboratory, Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States.
| | - Samuel W Cotten
- Behavioral Pharmacology Laboratory, Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Michael A Brito
- Behavioral Pharmacology Laboratory, Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Adam K Klein
- Behavioral Pharmacology Laboratory, Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Tatum A Ohana
- Behavioral Pharmacology Laboratory, Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Benjamin Margolin
- Behavioral Pharmacology Laboratory, Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Alex Wei
- Behavioral Pharmacology Laboratory, Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Jennifer M Wenzel
- Behavioral Pharmacology Laboratory, Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| |
Collapse
|
100
|
Cigarettes and alcohol: The influence of nicotine on operant alcohol self-administration and the mesolimbic dopamine system. Biochem Pharmacol 2015; 97:550-557. [PMID: 26253689 DOI: 10.1016/j.bcp.2015.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022]
Abstract
Studies in human populations consistently demonstrate an interaction between nicotine and ethanol use, each drug influencing the use of the other. Here we present data and review evidence from animal studies that nicotine influences operant self-administration of ethanol. The operant reinforcement paradigm has proven to be a behaviorally relevant and quantitative model for studying ethanol-seeking behavior. Exposure to nicotine can modify the reinforcing properties of ethanol during different phases of ethanol self-administration, including acquisition, maintenance, and reinstatement. Our data suggest that non-daily intermittent nicotine exposure can trigger a long-lasting increase in ethanol self-administration. The biological basis for interactions between nicotine and ethanol is not well understood but may involve the stress hormone systems and adaptations in the mesolimbic dopamine system. Future studies that combine operant self-administration with techniques for monitoring or manipulating in vivo neurophysiology may provide new insights into the neuronal mechanisms that link nicotine and alcohol use.
Collapse
|