51
|
Chen YP, Lai CC, Tsai WS. Full-color based on bismuth core-shell nanoparticles in one-step fabrication. OPTICS EXPRESS 2020; 28:24511-24525. [PMID: 32906991 DOI: 10.1364/oe.398903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Plasmonic resonances in metallic nanostructures are promising for the structure-dependent color-rendering effect. In this study, bismuth is selected as an alternative plasmonic material due to its large tunable range from near-ultraviolet to near-infrared. Various sizes of core-shell bismuth nanoparticles are fabricated on a large-area silicon substrate using a one-step thermal evaporation deposition process. Particle diameters, cross-sections, and arrangement are characterized at 12 featured sections, which reveal spectral shifts and full visible colors in a hue order with a color gamut that is close to sRGB. Color palettes on the chromaticity coordinates rendered from both measured and simulation reflection spectra are in very good accordance with the microscopic image colors of all sections.
Collapse
|
52
|
Schulz F, Pavelka O, Lehmkühler F, Westermeier F, Okamura Y, Mueller NS, Reich S, Lange H. Structural order in plasmonic superlattices. Nat Commun 2020; 11:3821. [PMID: 32732893 PMCID: PMC7393164 DOI: 10.1038/s41467-020-17632-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/07/2020] [Indexed: 01/26/2023] Open
Abstract
The assembly of plasmonic nanoparticles into ordered 2D- and 3D-superlattices could pave the way towards new tailored materials for plasmonic sensing, photocatalysis and manipulation of light on the nanoscale. The properties of such materials strongly depend on their geometry, and accordingly straightforward protocols to obtain precise plasmonic superlattices are highly desirable. Here, we synthesize large areas of crystalline mono-, bi- and multilayers of gold nanoparticles >20 nm with a small number of defects. The superlattices can be described as hexagonal crystals with standard deviations of the lattice parameter below 1%. The periodic arrangement within the superlattices leads to new well-defined collective plasmon-polariton modes. The general level of achieved superlattice quality will be of benefit for a broad range of applications, ranging from fundamental studies of light-matter interaction to optical metamaterials and substrates for surface-enhanced spectroscopies.
Collapse
Affiliation(s)
- Florian Schulz
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Ondřej Pavelka
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Felix Lehmkühler
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Yu Okamura
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| | - Niclas S Mueller
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| | - Stephanie Reich
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| | - Holger Lange
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
53
|
Lee KL, Hou HS, Cheng JY, Wei PK. High-Throughput and Dynamic Study of Drug and Cell Interactions Using Contrast Images in Aluminum-Based Nanoslit Arrays. Anal Chem 2020; 92:9674-9681. [DOI: 10.1021/acs.analchem.0c00972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kuang-Li Lee
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hsien-San Hou
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
54
|
Winkler JM, Ruckriegel MJ, Rojo H, Keitel RC, De Leo E, Rabouw FT, Norris DJ. Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers. ACS NANO 2020; 14:5223-5232. [PMID: 32159334 DOI: 10.1021/acsnano.9b09698] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arrays of metallic particles patterned on a substrate have emerged as a promising design for on-chip plasmonic lasers. In past examples of such devices, the periodic particles provided feedback at a single resonance wavelength, and organic dye molecules were used as the gain material. Here, we introduce a flexible template-based fabrication method that allows a broader design space for Ag particle-array lasers. Instead of dye molecules, we integrate colloidal quantum dots (QDs), which offer better photostability and wavelength tunability. Our fabrication approach also allows us to easily adjust the refractive index of the substrate and the QD-film thickness. Exploiting these capabilities, we demonstrate not only single-wavelength lasing but dual-wavelength lasing via two distinct strategies. First, by using particle arrays with rectangular lattice symmetries, we obtain feedback from two orthogonal directions. The two output wavelengths from this laser can be selected individually using a linear polarizer. Second, by adjusting the QD-film thickness, we use higher-order transverse waveguide modes in the QD film to obtain dual-wavelength lasing at normal and off-normal angles from a symmetric square array. We thus show that our approach offers various design possibilities to tune the laser output.
Collapse
Affiliation(s)
- Jan M Winkler
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Max J Ruckriegel
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Henar Rojo
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Robert C Keitel
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Eva De Leo
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Freddy T Rabouw
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
55
|
Wang X, Ma X, Shi E, Lu P, Dou L, Zhang X, Wang H. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906459. [PMID: 32072751 DOI: 10.1002/smll.201906459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Light coupling with patterned subwavelength hole arrays induces enhanced transmission supported by the strong surface plasmon mode. In this work, a nanostructured plasmonic framework with vertically built-in nanohole arrays at deep-subwavelength scale (6 nm) is demonstrated using a two-step fabrication method. The nanohole arrays are formed first by the growth of a high-quality two-phase (i.e., Au-TiN) vertically aligned nanocomposite template, followed by selective wet-etching of the metal (Au). Such a plasmonic nanohole film owns high epitaxial quality with large surface coverage and the structure can be tailored as either fully etched or half-way etched nanoholes via careful control of the etching process. The chemically inert and plasmonic TiN plays a role in maintaining sharp hole boundary and preventing lattice distortion. Optical properties such as enhanced transmittance and anisotropic dielectric function in the visible regime are demonstrated. Numerical simulation suggests an extended surface plasmon mode and strong field enhancement at the hole edges. Two demonstrations, including the enhanced and modulated photoluminescence by surface coupling with 2D perovskite nanoplates and the refractive index sensing by infiltrating immersion liquids, suggest the great potential of such plasmonic nanohole array for reusable surface plasmon-enhanced sensing applications.
Collapse
Affiliation(s)
- Xuejing Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Enzheng Shi
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ping Lu
- Sandia National Laboratory, Albuquerque, NM, 87185, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47906, USA
- School of Electrical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
56
|
Jo W, Choi J, Kang HS, Kim M, Baik S, Lee BJ, Pang C, Kim HT. Programmable Fabrication of Submicrometer Bent Pillar Structures Enabled by a Photoreconfigurable Azopolymer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5058-5064. [PMID: 31809014 DOI: 10.1021/acsami.9b19420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anisotropic small structures found throughout living nature have unique functionalities as seen by Gecko lizards. Here, we present a simple yet programmable method for fabricating anisotropic, submicrometer-sized bent pillar structures using photoreconfiguration of an azopolymer. A slant irradiation of a p-polarized light on the pillar structure of an azopolymer simply results in a bent pillar structure. By combining the field-gradient effect and directionality of photofluidization, control of the bending shape and the curvature is achieved. With the bent pillar patterned surface, anisotropic wetting and directional adhesion are demonstrated. Moreover, the bent pillar structures can be transferred to other polymers, highlighting the practical importance of this method. We believe that this pragmatic method to fabricate bent pillars can be used in a reliable manner for many applications requiring the systematic variation of a bent pillar structure.
Collapse
Affiliation(s)
| | | | - Hong Suk Kang
- Interface Materials and Chemical Engineering Research Center , Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114 , Republic of Korea
| | | | - Sangyul Baik
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon , Kyunggi-do 16419 , Republic of Korea
| | | | - Changhyun Pang
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University , Suwon , Kyunggi-do 16419 , Republic of Korea
| | | |
Collapse
|
57
|
El Shamy RS, Khalil D, Swillam MA. Mid Infrared Optical Gas Sensor Using Plasmonic Mach-Zehnder Interferometer. Sci Rep 2020; 10:1293. [PMID: 31992726 PMCID: PMC6987126 DOI: 10.1038/s41598-020-57538-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022] Open
Abstract
In this work, we propose an optimized design for on-chip gas sensor using metal-insulator (MI) plasmonic waveguide in the mid infrared range and utilizing a Mach-Zehnder Inetrferometer (MZI). The MI waveguide utilizes a high index dielectric layer on top of the metal to enhance the sensitivity of the sensor. The thickness and the refractive index of this layer are optimized to achieve high sensitivity. Using this layer, a design that exhibits high performance for both wavelength and intensity interrogation schemes is achieved. In addition, another one that furtherly enhances the sensor performance for intensity interrogation is also proposed. This design also minimizes the sensor sensitivity to wavelength variations. Intensity interrogation scheme has the advantage of eliminating the size and cost needed by wide wavelength band measurements including either spectrometer or tunable laser in wavelength interrogation. The first design sensitivity has reached 10000 nm/RIU with wavelength interrogation figure of merit (FOMλ) of 133RIU−1 and intensity interrogation FOMI of 239RIU−1. While the second one exhibit FOMI of 363RIU−1, both with length of 250 µm around 4.6 µm wavelength. Finally, these structures are cheap, compact, and easy to fabricate.
Collapse
Affiliation(s)
- Raghi S El Shamy
- Department of Physics, School of Science and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.,Department of Electronics and Communication, Faculty of Engineesring, Ain Shams University, Abassia, Cairo, 11517, Egypt
| | - Diaa Khalil
- Department of Electronics and Communication, Faculty of Engineesring, Ain Shams University, Abassia, Cairo, 11517, Egypt
| | - Mohamed A Swillam
- Department of Physics, School of Science and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
58
|
Affiliation(s)
- Kiran Raj M
- Department of Biomedical EngineeringNational University of Singapore Singapore 117576 Singapore
| | - Suman Chakraborty
- Department of Mechanical EngineeringIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
59
|
Wang L, Wang Z, Li L, Zhang J, Liu J, Hu J, Wu X, Weng Z, Chu X, Li J, Qiao Z. Magnetic-plasmonic Ni@Au core-shell nanoparticle arrays and their SERS properties. RSC Adv 2020; 10:2661-2669. [PMID: 35496119 PMCID: PMC9048804 DOI: 10.1039/c9ra10354f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
In this paper, large-area magnetic-plasmonic Ni@Au core-shell nanoparticle arrays (NPAs) with tunable compositions were successfully fabricated by a direct laser interference ablation (DLIA) incorporated with thermal dewetting method. The magnetic properties of the Ni@Au core-shell NPAs were analyzed and the saturation magnetization (M s) of the Ni80@Au20 nanoparticles was found to be higher than that of nickel-only nanoparticles with the same diameter. Using Rhodamine 6G (R6G) as a Raman reporter molecule, the surface enhanced Raman scattering (SERS) property of the Ni@Au core-shell NPAs with a grain size distribution of 48 ± 42 nm and a short-distance order of about 200 nm was examined. A SERS enhancement factor of 2.5 × 106 was realized on the Ni50@Au50 NPA substrate, which was 9 times higher than that for Au nanoparticles with the same size distribution. This was due to the enhanced local surface plasmon resonance (LSPR) between the ferromagnetic Ni cores and the surface polariton of the Au shells of each nanoparticle. The fabrication of the Ni@Au core-shell NPAs with different compositions offers a new avenue to tailor the optical and magnetic properties of the nanostructured films for chemical and diagnostic applications.
Collapse
Affiliation(s)
- Lu Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology Changchun 130022 China +86 431 85582925 +86 431 85582926
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology Changchun 130022 China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology Changchun 130022 China +86 431 85582925 +86 431 85582926
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology Changchun 130022 China
| | - Li Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology Changchun 130022 China +86 431 85582925 +86 431 85582926
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology Changchun 130022 China
| | - Jingran Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology Changchun 130022 China +86 431 85582925 +86 431 85582926
| | - Jinyun Liu
- College of Information Engineering, North China University of Science and Technology Tangshan 063210 China
| | - Jing Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology Changchun 130022 China +86 431 85582925 +86 431 85582926
| | - Xiaomin Wu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology Changchun 130022 China +86 431 85582925 +86 431 85582926
| | - Zhankun Weng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology Changchun 130022 China +86 431 85582925 +86 431 85582926
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology Changchun 130022 China
| | - Xueying Chu
- School of Science, Changchun University of Science and Technology Changchun 130022 China
| | - Jinhua Li
- School of Science, Changchun University of Science and Technology Changchun 130022 China
| | - Zhongliang Qiao
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, School of Physics and Electronic Engineering, Hainan Normal University Haikou 571158 China +86 898-65861468 +86 898 65861468
| |
Collapse
|
60
|
Nan J, Zhu S, Ye S, Sun W, Yue Y, Tang X, Shi J, Xu X, Zhang J, Yang B. Ultrahigh-Sensitivity Sandwiched Plasmon Ruler for Label-Free Clinical Diagnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905927. [PMID: 31782568 DOI: 10.1002/adma.201905927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Optical biosensors, especially those based on plasmonic structures, have emerged recently as a potential tool for disease diagnostics. Plasmonic biosensors have demonstrated impressive benefits for the label-free detection of trace biomarkers in human serum. However, widespread applications of these technologies are hindered because of their insufficient sensitivity, their relatively complex chemical immobilization processes, and the use of prism couplers. Accordingly, a sandwiched plasmon ruler (SW-PR) based on a Au nanohole array with ultrahigh sensitivity arising from the plasmonic coupling effect is developed. Highly confined surface charges caused by Bloch wave surface plasmon polarizations substantially increase the coupling efficiency. This platform exhibits thickness sensitivity as high as 61 nm nm-1 and can detect at least 200 000-fold lower analyte concentrations than a nanowell sensing platform with the same wavelength shift. Additionally, the sandwiched plasmonic biosensor allows precise and label-free testing of clinical biomarkers, namely C-reactive protein and procalcitonin, in patient serum samples without requiring a sophisticated prism coupler, extra antibodies, or a chemical immobilization technique. This study yields new insight into the structural design of plasmon rulers and will open exciting avenues for disease diagnosis and therapy follow-up at the point-of-care.
Collapse
Affiliation(s)
- Jingjie Nan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Weihong Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Ying Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Xiaoduo Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jingwei Shi
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Xuesong Xu
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
61
|
Vala M, Ertsgaard CT, Wittenberg NJ, Oh SH. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry. ACS Sens 2019; 4:3265-3274. [PMID: 31762262 DOI: 10.1021/acssensors.9b01780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Refractometric sensors utilizing surface plasmon resonance (SPR) should satisfy a series of performance metrics, bulk sensitivity, thin-film sensitivity, refractive-index resolution, and high-Q-factor resonance, as well as practical requirements such as manufacturability and the ability to separate optical and fluidic paths via reflection-mode sensing. While many geometries such as nanohole, nanoslit, and nanoparticles have been employed, it is nontrivial to engineer nanostructures to satisfy all of the aforementioned requirements. We combine gold nanohole arrays with a water-index-matched Cytop film to demonstrate reflection-mode, high-Q-factor (Qexp = 143) symmetric plasmonic sensor architecture. Using template stripping with a Cytop film, we can replicate a large number of index-symmetric nanohole arrays, which support sharp plasmonic resonances that can be probed by light reflected from their backside with a high extinction amplitude. The reflection geometry separates the optical and microfluidic paths without sacrificing sensor performance as is the case of standard (index-asymmetric) nanohole arrays. Furthermore, plasmon hybridization caused by the array refractive-index symmetry enables dual-mode detection that allows distinction of refractive-index changes occurring at different distances from the surface, making it possible to identify SPR response from differently sized particles or to distinguish binding events near the surface from bulk index changes. Due to the unique combination of a dual-mode reflection-configuration sensing, high-Q plasmonic modes, and template-stripping nanofabrication, this platform can extend the utility of nanohole SPR for sensing applications involving biomolecules, polymers, nanovesicles, and biomembranes.
Collapse
Affiliation(s)
- Milan Vala
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic
| | - Christopher T. Ertsgaard
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
62
|
Jibril L, Chen PC, Hu J, Odom TW, Mirkin CA. Massively Parallel Nanoparticle Synthesis in Anisotropic Nanoreactors. ACS NANO 2019; 13:12408-12414. [PMID: 31613599 DOI: 10.1021/acsnano.9b05781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work reports a massively parallel approach for synthesizing inorganic nanoparticles (Au, Ag, Se, and mixed oxides of Cu, Co, Ni, Ge, and Ta) based upon lithographically generated arrays of square pyramidal nanoholes, which serve as nanoreactors. Particle precursor-containing polymers are spin-coated onto the nanoreactors, which upon dewetting generate a morphology of isolated polymer droplets in each nanoreactor. This dewetting process yields a well-defined and precisely controlled volume of polymer and therefore particle precursor in each nanoreactor. Subsequent stepwise annealing (first at 150 °C and then at 500 °C) yields arrays of monodisperse, site-isolated particles with sub-5 nm position control. By varying the precursor loading of the polymer, particle size can be systematically controlled in the 7-30 nm range. This work not only introduces the concept of merging block copolymer inks with nanohole arrays in the synthesis of nanoparticles but also underscores the value of the nanoreactor shape in controlling resulting particle position.
Collapse
|
63
|
Wang D, Guan J, Hu J, Bourgeois MR, Odom TW. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices. Acc Chem Res 2019; 52:2997-3007. [PMID: 31596570 DOI: 10.1021/acs.accounts.9b00345] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rationally assembled nanostructures exhibit distinct physical and chemical properties beyond their individual units. Developments in nanofabrication techniques have enabled the patterning of a wide range of nanomaterial designs over macroscale (>in.2) areas. Periodic metal nanostructures show long-range diffractive interactions when the lattice spacing is close to the wavelength of the incident light. The collective coupling between metal nanoparticles in a lattice introduces sharp and intense plasmonic surface lattice resonances, in contrast to the broad localized resonances from single nanoparticles. Plasmonic nanoparticle lattices exhibit strongly enhanced optical fields within the subwavelength vicinity of the nanoparticle unit cells that are 2 orders of magnitude higher than that of individual units. These intense electromagnetic fields can manipulate nanoscale processes such as photocatalysis, optical spectroscopy, nonlinear optics, and light harvesting. This Account focuses on advances in exciton-plasmon coupling and light-matter interactions with plasmonic nanoparticle lattices. First, we introduce the fundamentals of ultrasharp surface lattice resonances; these resonances arise from the coupling of the localized surface plasmons of a nanoparticle to the diffraction mode from the lattice. Second, we discuss how integrating dye molecules with plasmonic nanoparticle lattices can result in an architecture for nanoscale lasing at room temperature. The lasing emission wavelength can be tuned in real time by adjusting the refractive index environment or varying the lattice spacing. Third, we describe how manipulating either the shape of the unit cell or the lattice geometry can control the lasing emission properties. Low-symmetry plasmonic nanoparticle lattices can show polarization-dependent lasing responses, and multiscale plasmonic superlattices-finite patches of nanoparticles grouped into microscale arrays-can support multiple plasmon resonances for controlled multimodal nanolasing. Fourth, we discuss how the assembly of photoactive emitters on the nanocavity arrays behaves as a hybrid materials system with enhanced exciton-plasmon coupling. Positioning metal-organic framework materials around nanoparticles produces mixed photon modes with strongly enhanced photoluminescence at wavelengths determined by the lattice. Deterministic coupling of quantum emitters in two-dimensional materials to plasmonic lattices leads to preserved single-photon emission and reduced decay lifetimes. Finally, we highlight emerging applications of nanoparticle lattices from compact, fully reconfigurable imaging devices to solid-state emitter structures. Plasmonic nanoparticle lattices are a versatile, scalable platform for tunable flat optics, nontrivial topological photonics, and modified chemical reactivities.
Collapse
|
64
|
Fernandez-Bravo A, Wang D, Barnard ES, Teitelboim A, Tajon C, Guan J, Schatz GC, Cohen BE, Chan EM, Schuck PJ, Odom TW. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. NATURE MATERIALS 2019; 18:1172-1176. [PMID: 31548631 DOI: 10.1038/s41563-019-0482-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones1-3. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions4,5. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales6-9, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires10,11. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation6-9,12-15. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm-2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.
Collapse
Affiliation(s)
| | - Danqing Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
| | - Edward S Barnard
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ayelet Teitelboim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl Tajon
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Trilo Therapeutics, San Francisco, CA, USA
| | - Jun Guan
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
| | - George C Schatz
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - P James Schuck
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| | - Teri W Odom
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
65
|
Yang L, Zhou Z, Song J, Chen X. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem Soc Rev 2019; 48:5140-5176. [PMID: 31464313 PMCID: PMC6768714 DOI: 10.1039/c9cs00011a] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review contributes towards a systematic understanding of the mechanism of shape-dependent effects on nanoparticles (NPs) for elaborating and predicting their properties and applications based on the past two decades of research. Recently, the significance of shape-dependent physical chemistry and biomedicine has drawn ever increasing attention. While there has been a great deal of effort to utilize NPs with different morphologies in these fields, so far research studies are largely localized in particular materials, synthetic methods, or biomedical applications, and have ignored the interactional and interdependent relationships of these areas. This review is a comprehensive description of the NP shapes from theory, synthesis, property to application. We figure out the roles that shape plays in the properties of different kinds of nanomaterials together with physicochemical and biomedical applications. Through systematic elaboration of these shape-dependent impacts, better utilization of nanomaterials with diverse morphologies would be realized and definite strategies would be expected for breakthroughs in these fields. In addition, we have proposed some critical challenges and open problems that need to be addressed in nanotechnology.
Collapse
Affiliation(s)
- Lijiao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
66
|
Li R, Bourgeois MR, Cherqui C, Guan J, Wang D, Hu J, Schaller RD, Schatz GC, Odom TW. Hierarchical Hybridization in Plasmonic Honeycomb Lattices. NANO LETTERS 2019; 19:6435-6441. [PMID: 31390214 DOI: 10.1021/acs.nanolett.9b02661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports hierarchical hybridization as a mode-mixing scheme to account for the unique optical properties of non-Bravais lattices of plasmonic nanoparticles (NPs). The formation of surface lattice resonances (SLRs) mediated by localized surface plasmons (LSPs) of different multipolar orders (dipole and quadrupole) can result in asymmetric electric near-field distributions surrounding the NPs. This asymmetry is because of LSP hybridization at the individual NP level from LSPs of different multipole order and at the unit cell level (NP dimer) from LSPs of the same multipole order. Fabricated honeycomb lattices of silver NPs exhibit ultrasharp SLRs at the Γ point that can also facilitate nanolasing. Modeling of the stimulated emission process revealed that the multipolar component of the lattice plasmon mode was responsible for feedback for lasing. By leveraging multipolar LSP responses in Al NP lattices, we achieved two distinct Γ point band-edge modes from a single honeycomb lattice. This work highlights how multipolar LSP coupling in plasmonic lattices with a non-Bravais symmetry has important implications for the design of SLRs and their associated plasmonic near-field distributions. These relatively unexplored degrees of freedom can decrease both ohmic and radiative losses in nanoscale systems and enable SLRs to build unanticipated connections among photonics and nanochemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard D Schaller
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | | | | |
Collapse
|
67
|
Juodėnas M, Tamulevičius T, Henzie J, Erts D, Tamulevičius S. Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra. ACS NANO 2019; 13:9038-9047. [PMID: 31329417 DOI: 10.1021/acsnano.9b03191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic metal nanoparticles arranged in periodic arrays can generate surface lattice plasmon resonances (SLRs) with high Q-factors. These collective resonances are interesting because the associated electromagnetic field is delocalized throughout the plane of the array, enabling applications such as biosensing and nanolasing. In most cases such periodic nanostructures are created via top-down nanofabrication processes. Here we describe a capillary-force-assisted particle assembly method (CAPA) to assemble monodisperse single-crystal colloidal Ag cuboctahedra into nearly defect-free >1 cm2 hexagonal lattices. These arrays are large enough to be measured with conventional ultraviolet-visible spectroscopy, which revealed an extinction peak with a Q-factor of 30 at orthogonal illumination and up to 80 at oblique illumination angles. We explain how the experimental extinction changes with different light polarizations and angles of incidence, and compare the evolution of the peaks with computational models based on the coupled dipole approximation and the finite element method. These arrays can support high Q-factors even when exposed to air, because of the high aspect ratio of the single-crystal nanoparticles. The observation of SLRs in a self-assembled system demonstrates that a high level of long-range positional control can be achieved at the single-particle level.
Collapse
Affiliation(s)
- Mindaugas Juodėnas
- Institute of Materials Science , Kaunas University of Technology , K. Baršausko St. 59 , Kaunas LT-51423 , Lithuania
| | - Tomas Tamulevičius
- Institute of Materials Science , Kaunas University of Technology , K. Baršausko St. 59 , Kaunas LT-51423 , Lithuania
- Department of Physics , Kaunas University of Technology , Studentų St. 50 , Kaunas LT-51368 , Lithuania
| | - Joel Henzie
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Donats Erts
- Institute of Chemical Physics , University of Latvia , 19 Raina Blvd. , Riga LV-1586 , Latvia
| | - Sigitas Tamulevičius
- Institute of Materials Science , Kaunas University of Technology , K. Baršausko St. 59 , Kaunas LT-51423 , Lithuania
- Department of Physics , Kaunas University of Technology , Studentų St. 50 , Kaunas LT-51368 , Lithuania
| |
Collapse
|
68
|
Alam M, Mahmood A, Azam S, Butt MS, Haq AU, Massoud Y. Impedance Model of Cylindrical Nanowires for Metamaterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1104. [PMID: 31374968 PMCID: PMC6722615 DOI: 10.3390/nano9081104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022]
Abstract
In metamaterials, metallic nanowires are used for creating artificial materials to functionalize them for various nanophotonics applications. Strong polarization-dependent response coupled with complex dielectric function at optical frequencies gives additional degrees of freedom to achieve scattering, absorption, and other benefits that go much beyond what is possible with conventional materials. In this paper, we propose an extended cylindrical wave impedance approach at optical frequencies to model the internal and external impedance of the metallic nanowire. Equivalent analytical expression for the scattering, extinction, and absorption cross-sectional area efficiencies are derived in terms of impedances. The motivation is to develop an all-mode solution ( TM n and TE n modes), by bringing the complex problem of plasmonic nanowire to linear system theory, where established methods can be applied to enable new applications. The equivalence of the impedance solution is compared with electromagnetic field solution and numerical full-wave field simulations. The proposed solution is accurate and may contribute to the rapid and efficient future designs for the metallic nanowire-based nanophotonic metamaterials.
Collapse
Affiliation(s)
- Mehboob Alam
- Department of Electrical Engineering, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
| | - Ali Mahmood
- Department of Electrical Engineering, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
| | - Shahida Azam
- Department of Electrical Engineering, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
| | - Madiha Saher Butt
- Department of Electrical Engineering, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
| | - Anwar Ul Haq
- Department of Informatics (I-13), Bolzmanstr. 3, Technical University Munich, 85748 Garching, Germany.
| | - Yehia Massoud
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
69
|
Knudson MP, Li R, Wang D, Wang W, Schaller RD, Odom TW. Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays. ACS NANO 2019; 13:7435-7441. [PMID: 30938987 DOI: 10.1021/acsnano.9b01142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper reports how geometric effects in low-symmetry plasmonic nanoparticle arrays can produce polarization-dependent lasing responses. We developed a scalable fabrication procedure to pattern rhombohedral arrays of aluminum anisotropic nanoparticles that support lattice plasmon modes from both first-order and second-order diffraction coupling. We found that nanoparticle shape can be used to engineer the spatial overlap between electromagnetic hot spots of different lattice modes and dye gain to support plasmonic lasing. The lasing behavior revealed that plasmon-exciton energy transfer depends on polarization, with stronger coupling and faster dynamics when the transition dipole moments of the excited gain are aligned with the electric field of the plasmon modes.
Collapse
Affiliation(s)
| | | | | | | | - Richard D Schaller
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | | |
Collapse
|
70
|
Huang K, Wu J, Chen Z, Xu H, Wu Z, Tao K, Yang T, Wu Q, Zhou H, Huang B, Chen H, Chen J, Liu C. Nanostructured High-Performance Thin-Film Transistors and Phototransistors Fabricated by a High-Yield and Versatile Near-Field Nanolithography Strategy. ACS NANO 2019; 13:6618-6630. [PMID: 31082195 DOI: 10.1021/acsnano.9b00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thin-film transistors (TFTs) and field-effect transistors (FETs) are basic units to build functional electronic circuits and investigate transport physics. In conventional TFTs or FETs, performance in terms of current level, on-off ratio, and the sensitivity of detection is limited by homogeneous semiconducting layers. In this paper, we develop TFTs with submicron heterostructures by using a strategy based on near-field photolithography. We use an array of total-reflective polydimethylsiloxane pyramids or trenches as a soft photomask in photolithography to induce multiple reflections and diffractions to focus the light. The textured feature enables the generation of gaps, dots, and grids at the nanoscale, with dimensions as small as sub-100 nm on substrates at the centimeter scale. We demonstrated the very high performance oxide TFTs on the nanoscale and periodic degenerately doped heterojunctions, and they yielded a nearly 20-fold increase in transconductance and apparent device mobility. The on-off ratio was higher than 109, with notably enhanced output current and clear scaling effect with channel length. We also built nanostructured wide-gap/narrow-gap heterojunctions to balance the high on-off ratio and sensitive photoresponse in a unidirectional phototransistor. This study shows the viability of programming a variety of nanoscale submicron patterns or interfaces in TFTs and FETs to significantly enlarge the scope of research on multifunctional TFTs and FETs.
Collapse
Affiliation(s)
- Kairong Huang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zihao Chen
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Huihua Xu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Tengzhou Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Qian Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Hang Zhou
- Shenzhen Key Lab of Thin Film Transistor and Advanced Display, Peking University Shenzhen Graduate School , Peking University , Shenzhen 518055 , China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518000 , China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
- State Key Lab of Silicon Materials , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
71
|
Lee WK, Odom TW. Designing Hierarchical Nanostructures from Conformable and Deformable Thin Materials. ACS NANO 2019; 13:6170-6177. [PMID: 31184137 DOI: 10.1021/acsnano.9b03862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This Perspective focuses on the design of hierarchical structures in deformable thin materials by patterning mechanical instabilities. Fabrication of three-dimensional (3D) structures with multiple length scales-starting at the nanoscale-can result in on-demand surface functionalities from the modification of the mechanical, chemical, and optical properties of materials. Conventional top-down lithography, however, cannot achieve 3D patterns over large areas (>cm2). In contrast, a bottom-up approach based on controlling strain in layered nanomaterials conformally coated on polymeric substrates can produce multiscale structures in parallel. In-plane and out-of-plane structural hierarchies formed by conformal buckling show unique structure-function relationships. Programmable hierarchical surfaces offer prospects to tune global- and local-level characteristics of nanomaterials that will positively impact applications in nanomechanics, nanoelectronics, and nanophotonics.
Collapse
|
72
|
Abstract
The basic theoretical understanding of light interacting with nanostructured metals that has existed since the early 1900s has become more relevant in the last two decades, largely because of new approaches to structure metals down to the nanometer scale or smaller. Here, a broad overview of the concepts and applications of nanostructuring metals for light-based technologies is given. The theory of the response of metals to an applied oscillating field is given, including a discussion of nonlocal, nonlinear and quantum effects. Using this metal response, the guiding of electromagnetic (light) waves using metals is given, with a particular emphasis on the impact of nanostructured metals for tighter confinement and slower propagation. Similarly, the influence of metal nanostructures on light scattering by isolated metal structures, like nanoparticles and nanoantennas, is described, with basic results presented including plasmonic/circuit resonances, the single channel limit, directivity enhancement, the maximum power transfer theorem, limits on the magnetic response from kinetic inductance and the scaling of gap plasmons to the nanometer scale and smaller. A brief overview of nanofabrication approaches to creating metal nanostructures is given. Finally, existing and emerging light-based applications are presented, including those for sensing, spectroscopy (including local refractive index, Raman, IR absorption), detection (including Schottky detectors), switching (including terahertz photoconductive antennas), modulation, energy harvesting and photocatalysis, light emission (including lasers and tunneling based light emission), optical tweezing, nonlinear optics, subwavelength imaging and lithography and high density data storage.
Collapse
|
73
|
Size and shape control of a variety of metallic nanostructures using tilted, rotating evaporation and lithographic lift-off techniques. Sci Rep 2019; 9:7682. [PMID: 31118461 PMCID: PMC6531472 DOI: 10.1038/s41598-019-44074-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/05/2019] [Indexed: 11/29/2022] Open
Abstract
Here, we demonstrate a simple top-down method for nanotechnology whereby electron beam (ebeam) lithography can be combined with tilted, rotated thermal evaporation to control the topography and size of an assortment of metallic objects at the nanometre scale. In order to do this, the evaporation tilt angle is varied between 1 and 24°. The technique allows the 3-dimensional tailoring of a range of metallic object shapes from sharp, flat bottomed spikes to hollow cylinders and rings—all of which have rotational symmetry and whose critical dimensions are much smaller than the lithographic feature size. The lithographic feature size is varied from 400 nm down to 40 nm. The nanostructures are characterized using electron microscopy techniques—the specific shape can be predicted using topographic modelling of the deposition. Although individual nanostructures are studied here, the idea can easily be extended to fabricate arrays for e.g. photonics and metamaterials. Being a generic technique—depending on easily controlled lithographic and evaporation parameters—it can be readily incorporated into any standard planar process and could be adapted to suit other thin-film materials deposited using physical means.
Collapse
|
74
|
Valsecchi C, Gomez Armas LE, Weber de Menezes J. Large Area Nanohole Arrays for Sensing Fabricated by Interference Lithography. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2182. [PMID: 31083502 PMCID: PMC6539013 DOI: 10.3390/s19092182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
Abstract
Several fabrication techniques are recently used to produce a nanopattern for sensing, as focused ion beam milling (FIB), e-beam lithography (EBL), nanoimprinting, and soft lithography. Here, interference lithography is explored for the fabrication of large area nanohole arrays in metal films as an efficient, flexible, and scalable production method. The transmission spectra in air of the 1 cm2 substrate were evaluated to study the substrate behavior when hole-size, periodicity, and film thickness are varied, in order to elucidate the best sample for the most effective sensing performance. The efficiency of the nanohole array was tested for bulk sensing and compared with other platforms found in the literature. The sensitivity of ~1000 nm/RIU, achieved with an array periodicity in the visible range, exceeds near infrared (NIR) performances previously reported, and demonstrates that interference lithography is one of the best alternative to other expensive and time-consuming nanofabrication methods.
Collapse
Affiliation(s)
- Chiara Valsecchi
- Engineering Department, Universidade Federal do Pampa, Alegrete 97546-550, RS, Brazil.
| | | | | |
Collapse
|
75
|
Cesaria M, Taurino A, Manera MG, Minunni M, Scarano S, Rella R. Gold nanoholes fabricated by colloidal lithography: novel insights into nanofabrication, short-range correlation and optical properties. NANOSCALE 2019; 11:8416-8432. [PMID: 30985849 DOI: 10.1039/c8nr09911a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Colloidal lithography is widely used as a low cost and large-area deposition approach, alternative to the conventional small-area expensive lithographic techniques, for the fabrication of short-range ordered sub-wavelength metallic nanostructures. This paper contributes to the understanding of the impact of the fabrication protocol of a colloidal mask on the optical and sensing properties of short range-ordered nanohole (NH) distributions fabricated by colloidal lithography in optically thin (20 nm thick) gold films. We consider polystyrene nanospheres (PS-NSPs) with a nominal diameter of 80 nm, electrostatically adsorbed from a salt-free colloidal solution onto a polydiallyldimethylammonium (PDDA) countercharged monolayer. By avoiding the conventional polyelectrolyte multilayer and based on the interplay between the deposition times of both PDDA and PS-NSPs, we demonstrate effective simplification of the commonly applied deposition protocol and effective tuning of the NH-to-NH spacing (dNN) with negligible agglomeration. Comparison with NH samples prepared by salt-containing colloidal solutions points out the negative impact of salt addition on the optical properties. The effective tuning of dNN obtained by our protocol demonstrates highly correlated disorder under unsaturated adsorption and allows a discussion on the analogies of the optical response between long- and short- range ordered NH systems, which is a still debated topic. By Fast Fourier Transform of autocorrelation images of scanning electron microscopy micrographs we demonstrate quantitatively, rather than in principle, the correspondence between an inherent ordering length-scale and dNN. As optical transducers for detecting refractive index changes, our samples exhibit significant bulk sensitivity (∼309 nm RIU-1) in the framework of short range ordered NH systems.
Collapse
Affiliation(s)
- Maura Cesaria
- Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce, Italy.
| | | | | | | | | | | |
Collapse
|
76
|
Khan AU, Guo Y, Chen X, Liu G. Spectral-Selective Plasmonic Polymer Nanocomposites Across the Visible and Near-Infrared. ACS NANO 2019; 13:4255-4266. [PMID: 30908010 DOI: 10.1021/acsnano.8b09386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
State-of-the-art commercial light-reflecting glass is coated with a metalized film to decrease the transmittance of electromagnetic waves. In addition to the cost of the metalized film, one major limitation of such light-reflecting glass is the lack of spectral selectivity over the entire visible and near-infrared (NIR) spectrum. To address this challenge, we herein effectively harness the transmittance, reflectance, and filtration of any wavelength across the visible and NIR, by judiciously controlling the planar orientation of two-dimensional plasmonic silver nanoplates (AgNPs) in polymer nanocomposites. In contrast to conventional bulk polymer nanocomposites where plasmonic nanoparticles are randomly mixed within a polymer matrix, our thin-film polymer nanocomposites comprise a single layer, or any desired number of multiple layers, of planarly oriented AgNPs separated by tunable spacings. This design employs a minimal amount of metal and yet efficiently manages light across the visible and NIR. The thin-film plasmonic polymer nanocomposites are expected to have a significant impact on spectral-selective light modulation, sensing, optics, optoelectronics, and photonics.
Collapse
|
77
|
Prasad A, Choi J, Jia Z, Park S, Gartia MR. Nanohole array plasmonic biosensors: Emerging point-of-care applications. Biosens Bioelectron 2019; 130:185-203. [PMID: 30738247 PMCID: PMC6475599 DOI: 10.1016/j.bios.2019.01.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 01/18/2023]
Abstract
Point-of-care (POC) applications have expanded hugely in recent years and is likely to continue, with an aim to deliver cheap, portable, and reliable devices to meet the demands of healthcare industry. POC devices are designed, prototyped, and assembled using numerous strategies but the key essential features that biosensing devices require are: (1) sensitivity, (2) selectivity, (3) specificity, (4) repeatability, and (5) good limit of detection. Overall the fabrication and commercialization of the nanohole array (NHA) setup to the outside world still remains a challenge. Here, we review the various methods of NHA fabrication, the design criteria, the geometrical features, the effects of surface plasmon resonance (SPR) on sensing as well as current state-of-the-art of existing NHA sensors. This review also provides easy-to-understand examples of NHA-based POC biosensing applications, its current status, challenges, and future prospects.
Collapse
Affiliation(s)
- Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Junseo Choi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; NIH Center for BioModular Multiscale Systems for Precision Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zheng Jia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; NIH Center for BioModular Multiscale Systems for Precision Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunggook Park
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; NIH Center for BioModular Multiscale Systems for Precision Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
78
|
Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proc Natl Acad Sci U S A 2019; 116:5925-5930. [PMID: 30850522 DOI: 10.1073/pnas.1818902116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper describes how metal-organic frameworks (MOFs) conformally coated on plasmonic nanoparticle arrays can support exciton-plasmon modes with features resembling strong coupling but that are better understood by a weak coupling model. Thin films of Zn-porphyrin MOFs were assembled by dip coating on arrays of silver nanoparticles (NP@MOF) that sustain surface lattice resonances (SLRs). Coupling of excitons with these lattice plasmons led to an SLR-like mixed mode in both transmission and transient absorption spectra. The spectral position of the mixed mode could be tailored by detuning the SLR in different refractive index environments and by changing the periodicity of the nanoparticle array. Photoluminescence showed mode splitting that can be interpreted as modulation of the exciton line shape by the Fano profile of the surface lattice mode, without requiring Rabi splitting. Compared with pristine Zn-porphyrin, hybrid NP@MOF structures achieved a 16-fold enhancement in emission intensity. Our results establish MOFs as a crystalline molecular emitter material that can couple with plasmonic structures for energy exchange and transfer.
Collapse
|
79
|
Larson S, Carlson D, Ai B, Zhao Y. The extraordinary optical transmission and sensing properties of Ag/Ti composite nanohole arrays. Phys Chem Chem Phys 2019; 21:3771-3780. [PMID: 30706926 DOI: 10.1039/c8cp07729k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag/Ti composite nanohole arrays are fabricated by a simple combination of nanosphere lithography, reactive ion etching, and dual e-beam deposition techniques. Based on the X-ray diffraction, conductivity, and ellipsometry measurements, there exists a Ag composition threshold CAg = 80 at% above which Ag is percolated through the entire film. Significant extraordinary optical transmission (EOT) is observed in nanohole samples with composition larger than the threshold. The main EOT peak position, the (1,0) Ag/glass resonance peak, redshifts as the CAg value decreased, but its index sensitivity monotonically increased with CAg till a value of 300 RIU nm-1 for the CAg = 100 at% sample is achieved. However, the LSPR peak of the nanoholes can achieve a sensitivity of 390 nm RIU-1 when CAg decreases from 100 at% to 85 at%. This study demonstrates that besides the shape, size, and measurement configuration, the resonances and sensitivities of nanohole arrays can be effectively predicted and tuned by the composition of a plasmonic composite.
Collapse
Affiliation(s)
- Steven Larson
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
80
|
Microwave-assisted solid-state synthesis of Au nanoparticles, size-selective speciation, and their self-assembly into 2D-superlattice. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
81
|
Tu L, Huang L, Wang W. A novel micromachined Fabry-Perot interferometer integrating nano-holes and dielectrophoresis for enhanced biochemical sensing. Biosens Bioelectron 2019; 127:19-24. [DOI: 10.1016/j.bios.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
|
82
|
Performance metrics and enabling technologies for nanoplasmonic biosensors. Nat Commun 2018; 9:5263. [PMID: 30531967 PMCID: PMC6288137 DOI: 10.1038/s41467-018-06419-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/04/2018] [Indexed: 11/08/2022] Open
Abstract
Nanoplasmonic structures can tightly confine light onto a material's surface to probe biomolecular interactions not easily accessed by other sensing techniques. New and exciting developments in nanofabrication processes, nano-optical trapping, graphene devices, mid-infrared spectroscopy, and metasurfaces will greatly empower the performance and functionalities of nanoplasmonic sensors.
Collapse
|
83
|
Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection. Biosens Bioelectron 2018; 117:32-39. [DOI: 10.1016/j.bios.2018.05.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/31/2018] [Indexed: 01/31/2023]
|
84
|
Liu G, Chen L, Liu J, Qiu M, Xie Z, Chang J, Zhang Y, Li P, Lei DY, Zheng Z. Scanning Nanowelding Lithography for Rewritable One-Step Patterning of Sub-50 nm High-Aspect-Ratio Metal Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801772. [PMID: 30024062 DOI: 10.1002/adma.201801772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/09/2018] [Indexed: 05/28/2023]
Abstract
The development of a new nanolithographic strategy, named scanning nanowelding lithography (SNWL), for the one-step fabrication of arbitrary high-aspect-ratio nanostructures of metal is reported in this study. Different from conventional pattern transfer and additive printing strategies which require subtraction or addition of materials, SNWL makes use of a sharp scanning tip to reshape metal thin films or existing nanostructures into desirable high-aspect-ratio patterns, through a cold-welding effect of metal at the nanoscale. As a consequence, SNWL can easily fabricate, in one step and at ambient conditions, sub-50 nm metal nanowalls with remarkable aspect ratio >5, which are found to be strong waveguide of light. More importantly, SNWL outweighs the existing strategies in terms of the unique ability to erase the as-made nanostructures and rewrite them into other shapes and orientations on-demand. Taking advantages of the serial and rewriting capabilities of SNWL, the smart information storage-erasure of Morse codes is demonstrated. SNWL is a promising method to construct arbitrary high-aspect-ratio nanostructure arrays that are highly desirable for biological, medical, optical, electronic, and information applications.
Collapse
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Lina Chen
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jin Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Meng Qiu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhuang Xie
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Chang
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Peng Li
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dang Yuan Lei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
85
|
Cho S, Ciappesoni MA, Allen MS, Allen JW, Leedy KD, Wenner BR, Kim SJ. Efficient broadband energy detection from the visible to near-infrared using a plasmon FET. NANOTECHNOLOGY 2018; 29:285201. [PMID: 29638219 DOI: 10.1088/1361-6528/aabd6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmon based field effect transistors (FETs) can be used to convert energy induced by incident optical radiation to electrical energy. Plasmonic FETs can efficiently detect incident light and amplify it by coupling to resonant plasmonic modes thus improving selectivity and signal to noise ratio. The spectral responses can be tailored both through optimization of nanostructure geometry as well as constitutive materials. In this paper, we studied various plasmonic nanostructures using gold for a wideband spectral response from visible to near-infrared. We show, using empirical data and simulation results, that detection loss exponentially increases as the volume of metal nanostructure increases and also a limited spectral response is possible using gold nanostructures in a plasmon to electric conversion device. Finally, we demonstrate a plasmon FET that offers a broadband spectral response from visible to telecommunication wavelengths.
Collapse
Affiliation(s)
- Seongman Cho
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33146, United States of America
| | | | | | | | | | | | | |
Collapse
|
86
|
Wang D, Bourgeois MR, Lee WK, Li R, Trivedi D, Knudson MP, Wang W, Schatz GC, Odom TW. Stretchable Nanolasing from Hybrid Quadrupole Plasmons. NANO LETTERS 2018; 18:4549-4555. [PMID: 29912567 DOI: 10.1021/acs.nanolett.8b01774] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper reports a robust and stretchable nanolaser platform that can preserve its high mode quality by exploiting hybrid quadrupole plasmons as an optical feedback mechanism. Increasing the size of metal nanoparticles in an array can introduce ultrasharp lattice plasmon resonances with out-of-plane charge oscillations that are tolerant to lateral strain. By patterning these nanoparticles onto an elastomeric slab surrounded by liquid gain, we realized reversible, tunable nanolasing with high strain sensitivity and no hysteresis. Our semiquantum modeling demonstrates that lasing build-up occurs at the hybrid quadrupole electromagnetic hot spots, which provides a route toward mechanical modulation of light-matter interactions on the nanoscale.
Collapse
|
87
|
Song J, Zhou W. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering. NANO LETTERS 2018; 18:4409-4416. [PMID: 29923727 DOI: 10.1021/acs.nanolett.8b01467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Optical nanoantennas can concentrate light and enhance light-matter interactions in subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional optical nanoantennas operating at a single wavelength band are not suitable for multiband applications. Here, we propose and exploit an out-of-plane plasmonic engineering strategy to design and create composite optical nanoantennas that can support multiple nanolocalized modes at different resonant wavelengths. These multiresonant composite nanoantennas are composed of vertically stacked building blocks of metal-insulator-metal loop nanoantennas. Studies of multiresonant composite nanoantennas demonstrate that the number of supported modes depends on the number of vertically stacked building blocks and the resonant wavelengths of individual modes are tunable by controlling the out-of-plane geometries of their building blocks. In addition, numerical studies show that the resonant wavelengths of individual modes in composite nanoantennas can deviate from the optical response of building blocks due to hybridization of magnetic modes in neighboring building blocks. Using Au nanohole arrays as deposition masks to fabricate arrays of multilayered composite nanoantennas, we experimentally demonstrate their multiresonant optical properties in good agreement with theory predictions. These studies show that out-of-plane engineered multiresonant composite nanoantennas can provide new opportunities for fundamental nanophotonics research and practical applications involving optical multiband operations, such as multiphoton process, broadband solar energy conversion, and wavelength-multiplexed optical system.
Collapse
Affiliation(s)
- Junyeob Song
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Wei Zhou
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
88
|
Lee KL, Chang CC, You ML, Pan MY, Wei PK. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance. Sci Rep 2018; 8:9762. [PMID: 29950690 PMCID: PMC6021451 DOI: 10.1038/s41598-018-28122-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022] Open
Abstract
Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.
Collapse
Affiliation(s)
- Kuang-Li Lee
- Research Center for Applied Sciences, Academia Sinica, 128, section 2, Academia Road, Nangkang, Taipei, 11529, Taiwan.
| | - Chia-Chun Chang
- Department of Optoelectronics, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Meng-Lin You
- Research Center for Applied Sciences, Academia Sinica, 128, section 2, Academia Road, Nangkang, Taipei, 11529, Taiwan
| | - Ming-Yang Pan
- Research Center for Applied Sciences, Academia Sinica, 128, section 2, Academia Road, Nangkang, Taipei, 11529, Taiwan
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, 128, section 2, Academia Road, Nangkang, Taipei, 11529, Taiwan.
- Department of Optoelectronics, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Institute of Biophotonics, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
89
|
Liu X, Gao J, Gao J, Yang H, Wang X, Wang T, Shen Z, Liu Z, Liu H, Zhang J, Li Z, Wang Y, Li Q. Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings. LIGHT, SCIENCE & APPLICATIONS 2018; 7:14. [PMID: 30839598 PMCID: PMC6106985 DOI: 10.1038/s41377-018-0009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/08/2018] [Accepted: 02/24/2018] [Indexed: 06/09/2023]
Abstract
In common plasmonic structures, absorption and radiation losses are often mutually restricted and can seriously influence the device performance. The current study presents a compound structure composed of multilayer grating stripes and multilayer shallow trenches. A small depth was adopted for the trench configuration to exclude the extra bend loss. These two sections supported Fabry-Perot resonance and cavity modes, respectively, with hybrid modes formed through intercoupling. In addition, the total loss for the entire framework was clearly reduced due to the introduction of the trench geometry, indicating that both absorption and radiation losses were successfully taken into consideration in the compound structure. Significantly, such a low loss realized by the hybridization of surface plasmon polariton modes has rarely been seen before. Moreover, the debatable relationship between the total and partial quality factors was described for the first time based on a hybrid mode analysis to establish a new approach to investigate the different resonance modes. In the detailed calculation process, the relative electric field intensity was first adopted to stipulate the effective areas for the various modes, which is more reasonable than using the common definition that is based on a unit structure. The multilayer trench grating exhibited a relatively low loss without weakening energy localization, which is significant in the design of plasmonic devices.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
- University of the Chinese Academy of Sciences, Beijing, 100039 China
| | - Jinbo Gao
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
- University of the Chinese Academy of Sciences, Beijing, 100039 China
| | - Jinsong Gao
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
- University of the Chinese Academy of Sciences, Beijing, 100039 China
| | - Haigui Yang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Xiaoyi Wang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Tongtong Wang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Zhenfeng Shen
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Zhen Liu
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Hai Liu
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Jian Zhang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Zizheng Li
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Yanchao Wang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
| | - Qiang Li
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 China
- University of the Chinese Academy of Sciences, Beijing, 100039 China
| |
Collapse
|
90
|
Li W, Fan S. Nanophotonic control of thermal radiation for energy applications [Invited]. OPTICS EXPRESS 2018; 26:15995-16021. [PMID: 30114851 DOI: 10.1364/oe.26.015995] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/17/2018] [Indexed: 05/23/2023]
Abstract
The ability to control thermal radiation is of fundamental importance for a wide range of applications. Nanophotonic structures, where at least one of the structural features are at a wavelength or sub-wavelength scale, can have thermal radiation properties that are drastically different from conventional thermal emitters, and offer exciting opportunities for energy applications. Here we review recent developments of nanophotonic control of thermal radiation, and highlight some exciting energy application opportunities, such as daytime radiative cooling, thermal textile, and thermophotovoltaic systems that are enabled by nanophotonic structures.
Collapse
|
91
|
Kravets VG, Kabashin AV, Barnes WL, Grigorenko AN. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem Rev 2018; 118:5912-5951. [PMID: 29863344 PMCID: PMC6026846 DOI: 10.1021/acs.chemrev.8b00243] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
When metal nanoparticles are arranged
in an ordered array, they
may scatter light to produce diffracted waves. If one of the diffracted
waves then propagates in the plane of the array, it may couple the
localized plasmon resonances associated with individual nanoparticles
together, leading to an exciting phenomenon, the drastic narrowing
of plasmon resonances, down to 1–2 nm in spectral width. This
presents a dramatic improvement compared to a typical single particle
resonance line width of >80 nm. The very high quality factors of
these
diffractively coupled plasmon resonances, often referred to as plasmonic
surface lattice resonances, and related effects have made this topic
a very active and exciting field for fundamental research, and increasingly,
these resonances have been investigated for their potential in the
development of practical devices for communications, optoelectronics,
photovoltaics, data storage, biosensing, and other applications. In
the present review article, we describe the basic physical principles
and properties of plasmonic surface lattice resonances: the width
and quality of the resonances, singularities of the light phase, electric
field enhancement, etc. We pay special attention to the conditions
of their excitation in different experimental architectures by considering
the following: in-plane and out-of-plane polarizations of the incident
light, symmetric and asymmetric optical (refractive index) environments,
the presence of substrate conductivity, and the presence of an active
or magnetic medium. Finally, we review recent progress in applications
of plasmonic surface lattice resonances in various fields.
Collapse
Affiliation(s)
- V G Kravets
- School of Physics and Astronomy , University of Manchester , Manchester , M13 9PL , U.K
| | - A V Kabashin
- Aix Marseille Univ , CNRS, LP3 , Marseille , France.,MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio) , BioNanophotonic Lab. , 115409 Moscow , Russia
| | - W L Barnes
- School for Physics and Astronomy , University of Exeter , Exeter , EX4 4QL , U.K
| | - A N Grigorenko
- School of Physics and Astronomy , University of Manchester , Manchester , M13 9PL , U.K
| |
Collapse
|
92
|
Komiyama H. Fabrication of a Vertically Aligned Au Nanorod Array via Block-Copolymer-Templated Electroplating. ChemistrySelect 2018. [DOI: 10.1002/slct.201800648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hideaki Komiyama
- Iyoda Supra-Integrated Material Project; Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); Tokyo Institute of Technology; 4259-S2-3 Nagatsuta, Midori-ku Yokohama Kanagawa 226-8503 Japan
| |
Collapse
|
93
|
Zhang B, Meng F, Feng J, Wang J, Wu Y, Jiang L. Manipulation of Colloidal Particles in Three Dimensions via Microfluid Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707291. [PMID: 29682819 DOI: 10.1002/adma.201707291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/25/2018] [Indexed: 05/12/2023]
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education; School of Chemistry; Beijing Advanced Innovation Center for Biomedical Engineering; Beihang University; Beijing 100191 P. R. China
| | - Fanshu Meng
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jiangang Feng
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Yuchen Wu
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education; School of Chemistry; Beijing Advanced Innovation Center for Biomedical Engineering; Beihang University; Beijing 100191 P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
94
|
Dai HK, Xie CB, Liang HC, Qian LY, Han CQ, Yan CC, Zhao YP. Growth and optical properties of Ag-Ti composite nanorods based on oblique angle co-deposition technique. OPTICS EXPRESS 2018; 26:12022-12037. [PMID: 29716119 DOI: 10.1364/oe.26.012022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Ag-Ti composite nanorod structures with various Ag compositions were fabricated by the oblique angle co-deposition technique, and their optical transmission spectra are tuned by composition ratios of Ag and Ti, polarization directions, and deposition angles. Such tunable optical properties have potential applications in optoelectronics. Specially, for the Ag80 composite nanorod structures, there exists a wavelength, where it is isotropic. We also show that the transmission spectra of the Ag80 composite nanorod structure for the deposition angle of 87.5° are greater than 90%, while the transmission spectra for the 75° deposition angle are lower than 20%. Utilizing such a property, high or low transmission lenses can be designed.
Collapse
|
95
|
Tiefenauer RF, Tybrandt K, Aramesh M, Vörös J. Fast and Versatile Multiscale Patterning by Combining Template-Stripping with Nanotransfer Printing. ACS NANO 2018; 12:2514-2520. [PMID: 29480710 DOI: 10.1021/acsnano.7b08290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal nanostructures are widely used in plasmonic and electronic applications due to their inherent properties. Often, the fabrication of such nanostructures is limited to small areas, as the processing is costly, low-throughput, and comprises harsh fabrication conditions. Here, we introduce a template-stripping based nanotransfer printing method to overcome these limitations. This versatile technique enables the transfer of arbitrary thin film metal structures onto a variety of substrates, including glass, Kapton, silicon, and PDMS. Structures can range from tens of nanometers to hundreds of micrometers over a wafer scale area. The process is organic solvent-free, multilayer compatible, and only takes minutes to perform. The stability of the transferred gold structures on glass exceeds by far those fabricated by e-beam evaporation. Therefore, an adhesion layer is no longer needed, enabling a faster and cheaper fabrication as well as the production of superior nanostructures. Structures can be transferred onto curved substrates, and the technique is compatible with roll-to-roll fabrication; thus, the process is suitable for flexible and stretchable electronics.
Collapse
Affiliation(s)
- Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics , ETH Zürich , 8092 Zürich , Switzerland
| | - Klas Tybrandt
- Laboratory of Biosensors and Bioelectronics , ETH Zürich , 8092 Zürich , Switzerland
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , 601 74 Norrköping , Sweden
| | - Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics , ETH Zürich , 8092 Zürich , Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics , ETH Zürich , 8092 Zürich , Switzerland
| |
Collapse
|
96
|
Deeb C, Guo Z, Yang A, Huang L, Odom TW. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays. NANO LETTERS 2018; 18:1454-1459. [PMID: 29369639 DOI: 10.1021/acs.nanolett.7b05223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Excited-state interactions between nanoscale cavities and photoactive molecules are critical in plasmonic nanolasing, although the underlying details are less-resolved. This paper reports direct visualization of the energy-transfer dynamics between two-dimensional arrays of plasmonic gold bowtie nanocavities and dye molecules. Transient absorption microscopy measurements of single bowties within the array surrounded by gain molecules showed fast excited-state quenching (2.6 ± 1 ps) characteristic of individual nanocavities. Upon optical pumping at powers above threshold, lasing action emerged depending on the spacing of the array. By correlating ultrafast microscopy and far-field light emission characteristics, we found that bowtie nanoparticles acted as isolated cavities when the diffractive modes of the array did not couple to the plasmonic gap mode. These results demonstrate how ultrafast microscopy can provide insight into energy relaxation pathways and, specifically, how nanocavities in arrays can show single-unit nanolaser properties.
Collapse
Affiliation(s)
| | - Zhi Guo
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | - Libai Huang
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
97
|
Hsu SW, Rodarte AL, Som M, Arya G, Tao AR. Colloidal Plasmonic Nanocomposites: From Fabrication to Optical Function. Chem Rev 2018; 118:3100-3120. [DOI: 10.1021/acs.chemrev.7b00364] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Su-Wen Hsu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, MC 0448, La Jolla, California 92039-0448, United States
| | - Andrea L. Rodarte
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, MC 0448, La Jolla, California 92039-0448, United States
| | - Madhura Som
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, MC 0448, La Jolla, California 92039-0448, United States
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, MC 0448, La Jolla, California 92039-0448, United States
| | - Andrea R. Tao
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, MC 0448, La Jolla, California 92039-0448, United States
| |
Collapse
|
98
|
Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026401. [PMID: 28825412 DOI: 10.1088/1361-6633/aa8732] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.
Collapse
Affiliation(s)
- Fei Ding
- SDU Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
99
|
Choi B, Dou X, Fang Y, Phillips BM, Jiang P. Outstanding surface plasmon resonance performance enabled by templated oxide gratings. Phys Chem Chem Phys 2018; 18:26078-26087. [PMID: 27711494 DOI: 10.1039/c6cp04977j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report a simple and scalable soft-lithography-based templating technology for fabricating Au-covered oxide (titania and zirconia) gratings by using DVDs as a structural template. The resulting plasmonic gratings simultaneously exhibit very high surface plasmon resonance (SPR) sensitivity (up to ∼940 nm per refractive index unit, nm per RIU) and figure of merit (FOM, up to 62.5). The effects of thermal annealing of the templated oxide gratings on their final plasmonic properties have been systematically investigated by both experiments and finite-difference time-domain (FDTD) simulations. Higher SPR sensitivities and slightly reduced FOMs have been observed for the annealed gratings. Additionally, the amplitude of the SPR dips gradually decreases with increasing annealing temperatures. Scanning electron microscopy and X-ray diffraction show that the annealing process enlarges the crystal domain sizes of the oxides and smoothens the final plasmonic grating surface. Systematic FDTD simulations reveal that the SPR properties (e.g., dip amplitude) of Au-covered oxide gratings are significantly affected by the deformation of the track-pitch structure caused by thermal annealing, agreeing with the experimental results. The outstanding SPR performance combined with the high thermal stability of the crystalline oxides could make the templated plasmonic gratings a promising SPR platform for many important sensing applications, such as in situ probing heterogeneous catalytic reactions under realistic conditions.
Collapse
Affiliation(s)
- Baeck Choi
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Xuan Dou
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Yin Fang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Blayne M Phillips
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Peng Jiang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
100
|
Lee KL, Tsai PC, You ML, Pan MY, Shi X, Ueno K, Misawa H, Wei PK. Enhancing Surface Sensitivity of Nanostructure-Based Aluminum Sensors Using Capped Dielectric Layers. ACS OMEGA 2017; 2:7461-7470. [PMID: 30023553 PMCID: PMC6044818 DOI: 10.1021/acsomega.7b01349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/23/2017] [Indexed: 06/08/2023]
Abstract
The studies of nanostructure-based aluminum sensors have attracted huge attention because aluminum is a more cost-effective plasmonic material. However, the intrinsic properties of the aluminum metal, having a large imaginary part of the dielectric function and a longer electromagnetic field decay length and problems of poor long-term chemical stability, limit the surface-sensing capability and applicability of nanostructures. We propose the combination of capped aluminum nanoslits and a thin-capped dielectric layer to overcome these limitations. We show that the dielectric layer can positively enhance the wavelength sensitivities of the Wood's anomaly-dominant resonance and asymmetric Fano resonance in capped aluminum nanoslits. The maximum improvement can be reached by a factor of 3.5. Besides, there is an optimal layer thickness for the surface sensitivity because of the trade-off relationship between the refractive index sensitivity and decay length. We attribute the enhanced surface sensitivity to a reduced evanescent length, which is confirmed by the finite difference time-domain calculations. The protein-protein interaction experiments verify the high-surface sensitivity of the structures, and a limit of quantification (LOQ) of 1 pg/mL anti-bovine serum albumin is achieved. Such low-cost, highly sensitive aluminum-based nanostructures can benefit various sensing applications.
Collapse
Affiliation(s)
- Kuang-Li Lee
- Research
Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nangkang, Taipei 11529, Taiwan
| | - Po-Cheng Tsai
- Institute
of Optoelectronic Sciences, National Taiwan
Ocean University, Keelung 20224, Taiwan
| | - Meng-Lin You
- Research
Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nangkang, Taipei 11529, Taiwan
| | - Ming-Yang Pan
- Research
Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nangkang, Taipei 11529, Taiwan
| | - Xu Shi
- Research
Institute for Electronic Science, Hokkaido
University, Hokkaido 060-0808, Japan
| | - Kosei Ueno
- Research
Institute for Electronic Science, Hokkaido
University, Hokkaido 060-0808, Japan
| | - Hiroaki Misawa
- Research
Institute for Electronic Science, Hokkaido
University, Hokkaido 060-0808, Japan
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 20010, Taiwan
| | - Pei-Kuen Wei
- Research
Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nangkang, Taipei 11529, Taiwan
- Institute
of Optoelectronic Sciences, National Taiwan
Ocean University, Keelung 20224, Taiwan
- Institute
of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|