51
|
Zhou X, Ruan W, Wang T, Liu H, Du L, Huang J. Exploring the impact of gut microbiota on abdominal aortic aneurysm risk through a bidirectional Mendelian randomization analysis. J Vasc Surg 2024; 79:763-775.e2. [PMID: 38042512 DOI: 10.1016/j.jvs.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE The abdominal aortic aneurysm (AAA) is associated with alterations in the composition of the gut microbiota; however, the precise causal relationship remains unclear. Elucidating this complex interplay could provide new insights into the pathogenesis of AAA. METHODS A bidirectional two-sample Mendelian randomization analysis was conducted using genome-wide association study summary data on the gut microbiota (n = 18,340) and AAA (n = 353,087). A total of 196 gut microbial taxa across taxonomic levels were examined for their potential causal effects on AAA risk. Conversely, the effect of AAA on these microbial taxa was also analyzed. RESULTS Nine microbial taxa were identified as having a causal influence on AAA risk. Specifically, increased risk were associated with genus Bilophila (odds ratio [OR], 1.359; P = .0119), genus Catenibacterium (OR, 1.348; P = .0058), genus family XIII AD3011 group (OR, 1.507; P = .004), genus Oxalobacter (OR, 1.157; P = .0449), and genus Prevotella 7 (OR, 1.194; P = .0306), whereas decreased risks were linked to class Lentisphaeria (OR, 0.829; P = .0361), order Victivallales (OR, 0.829; P = .0361), family Victivallaceae (OR, 0.814; P = .0057), and genus Anaerotruncus (OR, 0.773; P = .0497). Furthermore, AAA was found to influence the abundance of 14 microbial taxa across various taxonomic levels. Notably, bidirectional associations were observed with the class Lentisphaeria and the order Victivallales. CONCLUSIONS This study provides novel evidence for a reciprocal causal relationship between gut microbiota and AAA risk, thereby offering new insights into the pathogenesis of AAA. These findings also suggest promising avenues for microbiome-based therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu, PR China; Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, PR China; Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weiqiang Ruan
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ting Wang
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, PR China
| | - Huizhen Liu
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, PR China
| | - Liang Du
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, PR China; Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, PR China; Medical Equipment Innovation Research Center, West China School of Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jin Huang
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, PR China; Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, PR China; Medical Equipment Innovation Research Center, West China School of Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
52
|
Wu R, Sun F, Zhang W, Ren J, Liu GH. Targeting aging and age-related diseases with vaccines. NATURE AGING 2024; 4:464-482. [PMID: 38622408 DOI: 10.1038/s43587-024-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Aging is a major risk factor for numerous chronic diseases. Vaccination offers a promising strategy to combat these age-related diseases by targeting specific antigens and inducing immune responses. Here, we provide a comprehensive overview of recent advances in vaccine-based interventions targeting these diseases, including Alzheimer's disease, type II diabetes, hypertension, abdominal aortic aneurysm, atherosclerosis, osteoarthritis, fibrosis and cancer, summarizing current approaches for identifying disease-associated antigens and inducing immune responses against these targets. Further, we reflect on the recent development of vaccines targeting senescent cells, as a strategy for more broadly targeting underlying causes of aging and associated pathologies. In addition to highlighting recent progress in these areas, we discuss important next steps to advance the therapeutic potential of these vaccines, including improving and robustly demonstrating efficacy in human clinical trials, as well as rigorously evaluating the safety and long-term effects of these vaccine strategies.
Collapse
Affiliation(s)
- Ruochen Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
53
|
Shridas P, Ji A, Trumbauer AC, Noffsinger VP, Meredith LW, de Beer FC, Mullick AE, Webb NR, Karounos DG, Tannock LR. Antisense oligonucleotide targeting hepatic Serum Amyloid A limits the progression of angiotensin II-induced abdominal aortic aneurysm formation. Atherosclerosis 2024; 391:117492. [PMID: 38461759 PMCID: PMC11006562 DOI: 10.1016/j.atherosclerosis.2024.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND AND AIMS Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. We reported that deficiency of Serum Amyloid A (SAA) significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. The aim of this study is to investigate whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. METHODS Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with AngII until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. RESULTS Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSIONS We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine, University of Kentucky, Lexington, 40536, Kentucky, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536, Kentucky, USA.
| | - Ailing Ji
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536, Kentucky, USA
| | - Andrea C Trumbauer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536, Kentucky, USA
| | - Victoria P Noffsinger
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536, Kentucky, USA
| | - Luke W Meredith
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536, Kentucky, USA
| | - Frederick C de Beer
- Department of Internal Medicine, University of Kentucky, Lexington, 40536, Kentucky, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536, Kentucky, USA
| | | | - Nancy R Webb
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536, Kentucky, USA; Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, 40536, Kentucky, USA
| | - Dennis G Karounos
- Department of Internal Medicine, University of Kentucky, Lexington, 40536, Kentucky, USA; Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, 40536, Kentucky, USA; Department of Veterans Affairs, Lexington, 40536, Kentucky, USA
| | - Lisa R Tannock
- Department of Internal Medicine, University of Kentucky, Lexington, 40536, Kentucky, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536, Kentucky, USA
| |
Collapse
|
54
|
Lindenberger M, Ziegler M, Bjarnegård N, Ebbers T, Dyverfeldt P. Regional and Global Aortic Pulse Wave Velocity in Patients with Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg 2024; 67:506-513. [PMID: 37777048 DOI: 10.1016/j.ejvs.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is commonly defined as localised aortic dilatation with a diameter > 30 mm. The pathophysiology of AAA includes chronic inflammation and enzymatic degradation of elastin, possibly increasing aortic wall stiffness and pulse wave velocity (PWV). Whether aortic stiffness is more prominent in the abdominal aorta at the aneurysm site is not elucidated. The aim of this study was to evaluate global and regional aortic PWV in patients with AAA. METHODS Experimental study of local PWV in the thoracic descending and abdominal aorta in patients with AAA and matched controls. The study cohort comprised 25 patients with an AAA > 30 mm (range 36 - 70 mm, all male, age range 65 - 76 years) and 27 age and sex matched controls free of AAA. PWV was measured with applanation tonometry (carotid-femoral PWV, cfPWV) as well as a 4D flow MRI technique, assessing regional aortic PWV. Blood pressure and anthropometrics were measured. RESULTS Global aortic PWV was greater in men with an AAA than controls, both by MRI (AAA 8.9 ± 2.4 m/s vs. controls 7.1 ± 1.5 m/s; p = .007) and cfPWV (AAA 11.0 ± 2.1 m/s vs. controls 9.3 ± 2.3 m/s; p = .007). Regionally, PWV was greater in the abdominal aorta in the AAA group (AAA 7.0 ± 1.8 m/s vs. controls 5.8 ± 1.0 m/s; p = .022), but similar in the thoracic descending aorta (AAA 8.7 ± 3.2 m/s vs. controls 8.2 ± 2.4 m/s; p = .59). Furthermore, PWV was positively associated with indices of central adiposity both in men with AAA and controls. CONCLUSION PWV is higher in men with AAA compared with matched controls in the abdominal but not the thoracic descending aorta. Furthermore, aortic stiffness was linked with central fat deposition. It remains to be seen whether there is a causal link between AAA and increased regional aortic stiffness.
Collapse
Affiliation(s)
- Marcus Lindenberger
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Magnus Ziegler
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| | - Niclas Bjarnegård
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
55
|
Jia D, Wang K, Huang L, Zhou Z, Zhang Y, Chen N, Yang Q, Wen Z, Jiang H, Yao C, Wu R. Revealing PPP1R12B and COL1A1 as piRNA pathway genes contributing to abdominal aortic aneurysm through integrated analysis and experimental validation. Gene 2024; 897:148068. [PMID: 38070790 DOI: 10.1016/j.gene.2023.148068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a permanent dilation of the abdominal aorta, with a high mortality rate when rupturing. Although lots of piRNA pathway genes (piRPGs) have recently been linked to both neoplastic and non-neoplastic illnesses, their role in AAA is still unknown. Utilizing integrative bioinformatics methods, this research discovered piRPGs as biomarkers for AAA and explore possible molecular mechanisms. METHODS The datasets were obtained from the Gene Expression Omnibus and piRPGs were identified from the Genecards database. The "limma" and "clusterProfiler" R-packages were used to discover differentially expressed genes and perform enrichment analysis, respectively. Hub piRPGs were further filtered using least absolute shrinkage and selection operator regression, random forests, as well as receiver operating characteristic curve. Additionally, multi-factor logistic regression (MLR), extreme gradient boosting (XGboost), and artificial neural network (ANN) were employed to construct prediction models. The relationship between hub piRPGs and immune infiltrating cells and sgGSEA were further studied. The expression of hub piRPGs was verified by qRT-PCR, immunohistochemistry, and western blotting in AAA and normal vascular tissues and analyzed by scRNA-seq in mouse AAA model. SRAMP and cMAP database were utilized for the prediction of N6-methyladenosine (m6A) targets therapeutic drug. RESULTS 34 differentially expressed piRPGs were identified in AAA and enriched in pathways of immune regulation and gene silence. Three piRPGs (PPP1R12B, LRP10, and COL1A1) were further screened as diagnostic genes and used to construct prediction model. Compared with MLR and ANN, Xgboost showed better predictive ability, and PPP1R12B might have the ability to distinguish small and large AAA. Furthermore, the expression levels of PPP1R12B and COL1A1 were consistent with the results of bioinformatics analysis, and PPP1R12B showed a downward trend that may be related to m6A. CONCLUSION The results suggest that piRPGs might serve a significant role in AAA. PPP1R12B, COL1A1, and LRP10 had potential as diagnostic-specific biomarkers for AAA and performed better in XGboost model. The expression and localization of PPP1R12B and COL1A1 were experimentally verified. Besides, downregulation of PPP1R12B caused by m6A might contribute to the formation of AAA.
Collapse
Affiliation(s)
- Dongdong Jia
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Kangjie Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Lin Huang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhihao Zhou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Yinfeng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, PR China
| | - Nuo Chen
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Qingqi Yang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zengjin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, PR China
| | - Hui Jiang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Chen Yao
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Ridong Wu
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China.
| |
Collapse
|
56
|
Hu K, Zhong L, Lin W, Zhao G, Pu W, Feng Z, Zhou M, Ding J, Zhang J. Pathogenesis-Guided Rational Engineering of Nanotherapies for the Targeted Treatment of Abdominal Aortic Aneurysm by Inhibiting Neutrophilic Inflammation. ACS NANO 2024; 18:6650-6672. [PMID: 38369729 DOI: 10.1021/acsnano.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Abdominal aortic aneurysm (AAA) remains a fatal disease in the elderly. Currently, no drugs can be clinically used for AAA therapy. Considering the pivotal role of neutrophils in the pathogenesis of AAA, herein we propose the targeted therapy of AAA by site-specifically regulating neutrophilic inflammation. Based on a luminol-conjugated α-cyclodextrin material (LaCD), intrinsically anti-inflammatory nanoparticles (NPs) were engineered by simple nanoprecipitation, which were examined as a nanotherapy (defined as LaCD NP). After efficient accumulation in the aneurysmal aorta and localization in pathologically relevant inflammatory cells in rats with CaCl2-induced AAA, LaCD NP significantly alleviated AAA progression, as implicated by the decreased aortic expansion, suppressed elastin degradation, inhibited calcification, and improved structural integrity of the abdominal aorta. By functionalizing LaCD NP with alendronate, a calcification-targeting moiety, the in vivo aneurysmal targeting capability of LaCD NP was considerably enhanced, thereby affording significantly potentiated therapeutic outcomes in AAA rats. Mechanistically, LaCD NP can effectively inhibit neutrophil-mediated inflammatory responses in the aneurysmal aorta. Particularly, LaCD NP potently attenuated the formation of neutrophil extracellular traps (NETs), thereby suppressing NETs-mediated pro-inflammatory events and NETosis-associated negative effects responsible for AAA progression. Consequently, we demonstrated the effectiveness and underlying mechanisms of anti-NETosis nanotherapies for the targeted treatment of AAA. Our findings provide promising insights into discovering precision therapies for AAA and other inflammatory vascular diseases.
Collapse
Affiliation(s)
- Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Ling Zhong
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Wenjie Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Guanli Zhao
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Zhiqiang Feng
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Min Zhou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jun Ding
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
- Yu-Yue Pathology Scientific Research Center, 313 Gaoteng Avenue, Jiulongpo District, Chongqing 400039, People's Republic of China
| |
Collapse
|
57
|
Chatterjee D, Shen TC, Mukherjee P, Lee S, Garrett JW, Zacharias N, Pickhardt PJ, Summers RM. Automated detection of incidental abdominal aortic aneurysms on computed tomography. Abdom Radiol (NY) 2024; 49:642-650. [PMID: 38091064 DOI: 10.1007/s00261-023-04119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE To detect and assess abdominal aortic aneurysms (AAAs) on CT in a large asymptomatic adult patient population using fully-automated deep learning software. MATERIALS AND METHODS The abdominal aorta was segmented using a fully-automated deep learning model trained on 66 manually-segmented abdominal CT scans from two datasets. The axial diameters of the segmented aorta were extracted to detect the presence of AAAs-maximum axial aortic diameter greater than 3 cm were labeled as AAA positive. The trained system was then externally-validated on CT colonography scans of 9172 asymptomatic outpatients (mean age, 57 years) referred for colorectal cancer screening. Using a previously-validated automated calcified atherosclerotic plaque detector, we correlated abdominal aortic Agatston and volume scores with the presence of AAA. RESULTS The deep learning software detected AAA on the external validation dataset with a sensitivity, specificity, and AUC of 96%, (95% CI 89%, 100%), 96% (96%, 97%), and 99% (98%, 99%) respectively. The Agatston and volume scores of reported AAA-positive cases were statistically significantly greater than those of reported AAA-negative cases (p < 0.0001). Using plaque alone as a AAA detector, at a threshold Agatston score of 2871, the sensitivity and specificity were 84% (73%, 94%) and 87% (86%, 87%), respectively. CONCLUSION Fully-automated detection and assessment of AAA on CT is feasible and accurate. There was a strong statistical association between the presence of AAA and the quantity of abdominal aortic calcified atherosclerotic plaque.
Collapse
Affiliation(s)
- Devina Chatterjee
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, 20892-1182, USA
| | - Thomas C Shen
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, 20892-1182, USA
| | - Pritam Mukherjee
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, 20892-1182, USA
| | - Sungwon Lee
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, 20892-1182, USA
| | - John W Garrett
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Nicholas Zacharias
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Ronald M Summers
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, 20892-1182, USA.
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bldg. 10 Room 1C224D MSC 1182, Bethesda, MD, 20892-1182, USA.
| |
Collapse
|
58
|
Wang K, Zhou Z, Huang L, Kan Q, Wang Z, Wu W, Yao C. PINK1 dominated mitochondria associated genes signature predicts abdominal aortic aneurysm with metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166919. [PMID: 38251428 DOI: 10.1016/j.bbadis.2023.166919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
Abdominal aortic aneurysm (AAA) is typically asymptomatic but a devastating cardiovascular disorder, with overall mortality exceeding 80 % once it ruptures. Some patients with AAA may also have comorbid metabolic syndrome (MS), suggesting a potential common underlying pathogenesis. Mitochondrial dysfunction has been reported as a key factor contributing to the deterioration of both AAA and MS. However, the intricate interplay between metabolism and mitochondrial function, both contributing to the development of AAA, has not been thoroughly explored. In this study, we identified candidate genes related to mitochondrial function in AAA and MS. Subsequently, we developed a nomoscore model comprising hub genes (PINK1, ACSL1, CYP27A1, and SLC25A11), identified through the application of two machine learning algorithms, to predict AAA. We observed a marked disparity in immune infiltration profiles between high- and low-nomoscore groups. Furthermore, we confirmed a significant upregulation of the expression of the four hub genes in AAA tissues. Among these, ACSL1 showed relatively higher expression in LPS-treated RAW264.7 cell lines, while CYP27A1 exhibited a notable decrease. Moreover, SLC25A11 displayed a significant upregulation in AngII-treated VSMCs. Conversely, the expression level of PINK1 declined in LPS-stimulated RAW264.7 cell lines but significantly increased in AngII-treated VSMCs. In vivo experiments revealed that the activation of PINK1-mediated mitophagy inhibited the development of AAA in mice. In this current study, we have innovatively identified four mitochondrial function-related genes through integrated bioinformatic analysis. This discovery sheds light on the regulatory mechanisms and unveils promising therapeutic targets for the comorbidity of AAA and MS.
Collapse
Affiliation(s)
- Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Zhou
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lin Huang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qinghui Kan
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhecun Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Weibin Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chen Yao
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
59
|
Du P, Hou Y, Su C, Gao J, Yang Y, Zhang J, Cui X, Tang J. The future for the therapeutics of abdominal aortic aneurysm: engineered nanoparticles drug delivery for abdominal aortic aneurysm. Front Bioeng Biotechnol 2024; 11:1324406. [PMID: 38249799 PMCID: PMC10796665 DOI: 10.3389/fbioe.2023.1324406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease with a high mortality rate. Several screening and diagnostic methods have been developed for AAA early diagnosis. Open surgery and endovascular aortic repair (EVAR) are clinically available for patients who meet the indications for surgery. However, for non-surgical patients, limited drugs exist to inhibit or reverse the progression of aneurysms due to the complex pathogenesis and biological structure of AAA, failing to accumulate precisely on the lesion to achieve sufficient concentrations. The recently developed nanotechnology offers a new strategy to address this problem by developing drug-carrying nanoparticles with enhanced water solubility and targeting capacity, prolonged duration, and reduced side effects. Despite the rising popularity, limited literature is available to highlight the progression of the field. Herein, in this review, we first discuss the pathogenesis of AAA, the methods of diagnosis and treatment that have been applied clinically, followed by the review of research progressions of constructing different drug-loaded nanoparticles for AAA treatment using engineered nanoparticles. In addition, the feasibility of extracellular vesicles (EVs) and EVs-based nanotechnology for AAA treatment in recent years are highlighted, together with the future perspective. We hope this review will provide a clear picture for the scientists and clinicians to find a new solution for AAA clinical management.
Collapse
Affiliation(s)
- Pengchong Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yachen Hou
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Chang Su
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jiamin Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| |
Collapse
|
60
|
Wang Y, Liu Z, Song S, Wang J, Jin C, Jia L, Ma Y, Yuan T, Cai Z, Xiang M. IRF5 governs macrophage adventitial infiltration to fuel abdominal aortic aneurysm formation. JCI Insight 2024; 9:e171488. [PMID: 38175709 PMCID: PMC11143966 DOI: 10.1172/jci.insight.171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the expansion of the aortic wall. One of the most significant features is the infiltration of macrophages in the adventitia, which drives vasculature remodeling. The role of macrophage-derived interferon regulatory factor 5 (IRF5) in macrophage infiltration and AAA formation remains unknown. RNA sequencing of AAA adventitia identified Irf5 as the top significantly increased transcription factor that is predominantly expressed in macrophages. Global and myeloid cell-specific deficiency of Irf5 reduced AAA progression, with a marked reduction in macrophage infiltration. Further cellular investigations indicated that IRF5 promotes macrophage migration by direct regulation of downstream phosphoinositide 3-kinase γ (PI3Kγ, Pik3cg). Pik3cg ablation hindered AAA progression, and myeloid cell-specific salvage of Pik3cg restored AAA progression and macrophage infiltration derived from Irf5 deficiency. Finally, we found that IRF5 and PI3Kγ expression in the adventitia is significantly increased in patients with AAA. These findings reveal that the IRF5-dependent regulation of PI3Kγ is essential for AAA formation.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Zhenjie Liu
- Department of Vascular Surgery, The second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfang Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Chunna Jin
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Liangliang Jia
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Yuankun Ma
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Tan Yuan
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Zhejun Cai
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Meixiang Xiang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| |
Collapse
|
61
|
Zhang L, Wei J, Wei J, Zhang Z, Zhang J, Tang Q, Wang Y, Pan Y, Qin X. Identification of Clinical Heterogeneity and Construction of Prediction Models for Novel Subtypes in Patients with Abdominal Aortic Aneurysm: An Unsupervised Machine Learning Study. Ann Vasc Surg 2024; 98:75-86. [PMID: 37380047 DOI: 10.1016/j.avsg.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is one of the most common diseases in vascular surgery. Endovascular aneurysm repair (EVAR) can effectively treat AAA. It is essential to accurately classify patients with AAA who need EVAR. METHODS We enrolled 266 patients with AAA who underwent EVAR. Unsupervised machine learning algorithms (UMLAs) were used to cluster subjects according to similar clinical characteristics. To verify UMLA's accuracy, the operative and postoperative results of the 2 clusters were analyzed. Finally, a prediction model was developed using binary logistic regression analysis. RESULTS UMLAs could correctly classify patients based on their clinical characteristics. Patients in Cluster 1 were older, had a higher BMI, and were more likely than patients in Cluster 2 to develop pneumonia, chronic obstructive pulmonary disease, and cerebrovascular disease. The aneurysm diameter, neck angulation, diameter and angulation of bilateral common iliac arteries, and incidence of iliac artery aneurysm were significantly higher in cluster 1 patients than in cluster 2. Cluster 1 had a longer operative time, a longer length of stay in the intensive care unit and hospital, a higher medical expense, and a higher incidence of reintervention. A nomogram was established based on the BMI, neck angulation, left common iliac artery (LCIA) diameter and angulation, and right common iliac artery (RCIA) diameter and angulation. The nomogram was evaluated using receiver operating characteristic curve analysis, with an area under the curve of 0.933 (95% confidence interval, 0.902-0.963) and a C-index of 0.927. CONCLUSIONS Our findings demonstrate that UMLAs can be used to rationally classify a heterogeneous cohort of patients with AAA effectively, and the analysis of postoperative variables also verified the accuracy of UMLAs. We established a prediction model for new subtypes of AAA, which can improve the quality of management of patients with AAA.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jingpeng Wei
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jindou Wei
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Zhanman Zhang
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jiangfeng Zhang
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Qianhui Tang
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yue Wang
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yicong Pan
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xiao Qin
- Department of Vascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
62
|
Ristow I, Riedel C, Lenz A, Well L, Adam G, Panuccio G, Kölbel T, Bannas P. Current Imaging Strategies in Patients with Abdominal Aortic Aneurysms. ROFO-FORTSCHR RONTG 2024; 196:52-61. [PMID: 37699431 DOI: 10.1055/a-2119-6448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND An abdominal aortic aneurysm (AAA) is defined as a localized dilatation of the abdominal aorta of ≥ 3 cm. With a prevalence of 4-8 %, AAA is one of the most common vascular diseases in Western society. Radiological imaging is an elementary component in the diagnosis, monitoring, and treatment planning of AAA patients. METHOD This is a narrative review article on preoperative imaging strategies of AAA, incorporating expert opinions based on the current literature and standard-of-care practices from our own center. Examples are provided to illustrate clinical cases from our institution. RESULTS AND CONCLUSION Radiological imaging plays a pivotal role in the initial diagnosis and monitoring of patients with AAA. Ultrasound is the mainstay imaging modality for AAA screening and surveillance. Contrast-enhanced CT angiography is currently considered the gold standard for preoperative imaging and image-based treatment planning in AAA repair. New non-contrast MR angiography techniques are robustly applicable and allow precise determination of aortic diameters, which is of critical importance, particularly with regard to current diameter-based surgical treatment guidelines. 3D imaging with multiplanar reformation and automatic centerline positioning enables more accurate assessment of the maximum aortic diameter. Modern imaging techniques such as 4D flow MRI have the potential to further improve individualized risk stratification in patients with AAA. KEY POINTS · Ultrasound is the mainstay imaging modality for AAA screening and monitoring. · Contrast-enhanced CT angiography is the gold standard for preoperative imaging in AAA repair. · Non-contrast MR angiography allows for accurate monitoring of aortic diameters in AAA patients. · Measurement of aortic diameters is more accurate with 3D-CT/MRI compared to ultrasound. · Research seeks new quantitative imaging biomarkers for AAA risk stratification, e. g., using 4D flow MRI.
Collapse
Affiliation(s)
- Inka Ristow
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Riedel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giuseppe Panuccio
- German Aortic Center Hamburg, Department of Vascular Medicine, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Germany
| | - Tilo Kölbel
- German Aortic Center Hamburg, Department of Vascular Medicine, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
63
|
Zhang Z, Wang Z, Fan H, Li J, Ding J, Zhou G, Yuan C. The Indispensable Roles of GMDS and GMDS-AS1 in the Advancement of Cancer: Fucosylation, Signal Pathway and Molecular Pathogenesis. Mini Rev Med Chem 2024; 24:1712-1722. [PMID: 38591197 DOI: 10.2174/0113895575285276240324080234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Fucosylation is facilitated by converting GDP-mannose to GDP-4-keto-6-deoxymannose, which GDP-mannose 4,6-dehydratase, a crucial enzyme in the route, carries out. One of the most prevalent glycosylation alterations linked to cancer has reportedly been identified as fucosylation. There is mounting evidence that GMDS is intimately linked to the onset and spread of cancer. Furthermore, the significance of long-chain non-coding RNAs in the development and metastasis of cancer is becoming more well-recognized, and the regulatory mechanism of lncRNAs has emerged as a prominent area of study in the biological sciences. GMDS-AS1, an antisense RNA of GMDS, was discovered to have the potential to be an oncogene. We have acquired and analyzed relevant data to understand better how GMDS-AS1 and its lncRNA work physiologically and in tumorigenesis and progression. Additionally, we have looked into the possible effects of these molecules on cancer treatment approaches and patient outcomes. The physiological roles and putative processes of GMDS and lncRNA GMDS-AS1 throughout the development and progression of tumors have been assembled and examined. We also examined how these chemicals might affect patient prognosis and cancer therapy approaches. GMDS and GMDS-AS1 were determined to be research subjects by searching and gathering pertinent studies using the PubMed system. The analysis of these research articles demonstrated the close relationship between GMDS and GMDS-AS1 and tumorigenesis and the factors that influence them. GMDS plays a vital role in regulating fucosylation. The related antisense gene GMDS-AS1 affects the biological behaviors of cancer cells through multiple pathways, including the key processes of proliferation, migration, invasion, and apoptosis, providing potential biomarkers and therapeutic targets for cancer treatment and prognosis assessment.
Collapse
Affiliation(s)
- Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Zhuowei Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Hong Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Jiayi Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Jiaqi Ding
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443005, China
| |
Collapse
|
64
|
Liu Y, Lou J, Weng Y, Xu K, Huang W, Zhang J, Liu X, Tang L, Du C. Increased Expression of Mevalonate Pathway-Related Enzymes in Angiotensin II-Induced Abdominal Aortic Aneurysms. Int Heart J 2024; 65:758-769. [PMID: 39085115 DOI: 10.1536/ihj.23-623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Abdominal aortic aneurysm (AAA) is characterized by permanent luminal expansion and a high mortality rate due to aortic rupture. Despite the identification of abnormalities in the mevalonate pathway (MVA) in many diseases, including cardiovascular diseases, the potential impact of this pathway on AAA remains unclear. This study aims to investigate whether the expression of the MVA-related enzyme is altered during the progression of angiotensin II (Ang II) -induced AAA.Ang II 28D and Ang II 5D groups were continuously perfused with Ang II for 28 days and 5 days, respectively, and the Sham group was perfused with saline. The general and remodeling characteristics of AAA were determined by biochemical and histological analysis. Alteration of MVA-related enzyme expressions was revealed by western blot and single-cell RNA sequencing (scRNA-seq).The continuous Ang II infusion for 28 days showed significant aorta expansion and arterial remodeling. Although the arterial diameter slightly increased, the aneurysm formation was not found in Ang II induction for 5 days. MVA-related enzyme expression and activation of small GTP-binding proteins were significantly increased after Ang II-induced. As verified by scRNA-seq, the key enzyme gene expression was also higher in Ang II 28D. Similarly, it was detected that the expression levels of the above enzymes and the activity of small G proteins were elevated in the early stage of AAA as induced by Ang II infusion for 5 days.Continuous Ang II infusion-induced abdominal aortic expansion and arterial remodeling were accompanied by altered expression of key enzymes in the MVA.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | | | - Yingzheng Weng
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Kun Xu
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Wenghao Huang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | - Jingyuan Zhang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University
| | | | | | | |
Collapse
|
65
|
Kalchev Y, Urdzhanova H, Stanev S, Cheshmedzhieva B, Pavlova M, Lengerova G, Murdjeva M. Yersinia enterocolitica Bacteremia Associated with a Ruptured Abdominal Aortic Aneurysm: A Case Report with Literature Review. Microorganisms 2023; 11:2911. [PMID: 38138055 PMCID: PMC10745443 DOI: 10.3390/microorganisms11122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Yersinia enterocolitica is a foodborne pathogen, mainly associated with disorders involving the gastrointestinal tract, including diarrhea, ileitis, and mesenteric lymphadenitis. Extraintestinal presentation is uncommon in healthy individuals, but bacteremia is reported in immunocompromised hosts. We present a 74-year-old male with Y. enterocolitica serogroup O:3 bacteremia who complicated to rupture of an abdominal aortic aneurysm. With the current case report, we aimed to emphasize the association of Y. enterocolitica bacteremia with abdominal aortic aneurysm rupture. Better surveillance is needed, not only to reduce morbidity and mortality but also to update current epidemiological data on the incidence of such associations.
Collapse
Affiliation(s)
- Yordan Kalchev
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Laboratory of Microbiology, University Hospital St. George, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Hristina Urdzhanova
- Department of Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Stefan Stanev
- Clinic of Vascular Surgery, University Hospital St. George, 4000 Plovdiv, Bulgaria
| | | | - Maria Pavlova
- National Reference Laboratory of Enteric Infections, Pathogenic Cocci and Diphtheria, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
| | - Gergana Lengerova
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Laboratory of Microbiology, University Hospital St. George, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Laboratory of Microbiology, University Hospital St. George, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
66
|
Hariri E, Matta M, Layoun H, Badwan O, Braghieri L, Owens AP, Burton R, Bhandari R, Mix D, Bartholomew J, Schumick D, Elbadawi A, Kapadia S, Hazen SL, Svensson LG, Cameron SJ. Antiplatelet Therapy, Abdominal Aortic Aneurysm Progression, and Clinical Outcomes. JAMA Netw Open 2023; 6:e2347296. [PMID: 38085542 PMCID: PMC10716735 DOI: 10.1001/jamanetworkopen.2023.47296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Importance Preclinical studies suggest a potential role for aspirin in slowing abdominal aortic aneurysm (AAA) progression and preventing rupture. Evidence on the clinical benefit of aspirin in AAA from human studies is lacking. Objective To investigate the association of aspirin use with aneurysm progression and long-term clinical outcomes in patients with AAA. Design, Setting, and Participants This was a retrospective, single-center cohort study. Adult patients with at least 2 available vascular ultrasounds at the Cleveland Clinic were included, and patients with history of aneurysm repair, dissection, or rupture were excluded. All patients were followed up for 10 years. Data were analyzed from May 2022 to July 2023. Main Outcomes and Measures Clinical outcomes were time-to-first occurrence of all-cause mortality, major bleeding, or composite of dissection, rupture, and repair. Multivariable-adjusted Cox proportional-hazard regression was used to estimate hazard ratios (HR) for all-cause mortality, and subhazard ratios competing-risk regression using Fine and Gray proportional subhazards regression was used for major bleeding and composite outcome. Aneurysm progression was assessed by comparing the mean annualized change of aneurysm diameter using multivariable-adjusted linear regression and comparing the odds of having rapid progression (annual diameter change >0.5 cm per year) using logistic regression. Results A total of 3435 patients (mean [SD] age 73.7 [9.0] years; 2672 male patients [77.5%]; 120 Asian, Hispanic, American Indian, or Pacific Islander patients [3.4%]; 255 Black patients [7.4%]; 3060 White patients [89.0%]; and median [IQR] follow-up, 4.9 [2.5-7.5] years) were included in the final analyses, of which 2150 (63%) were verified to be taking aspirin by prescription. Patients taking aspirin had a slower mean (SD) annualized change in aneurysm diameter (2.8 [3.0] vs 3.8 [4.2] mm per year; P = .001) and lower odds of having rapid aneurysm progression compared with patients not taking aspirin (adjusted odds ratio, 0.64; 95% CI, 0.49-0.89; P = .002). Aspirin use was not associated with risk of all-cause mortality (adjusted HR [aHR], 0.92; 95% CI, 0.79-1.07; P = .32), nor was aspirin use associated with major bleeding (aHR, 0.88; 95% CI, 0.76-1.03; P = .12), or composite outcome (aHR, 1.16; 95% CI, 0.93-1.45; P = .09) at 10 years. Conclusions In this retrospective study of a clinical cohort of 3435 patients with objectively measured changes in aortic aneurysm growth, aspirin use was significantly associated with slower progression of AAA with a favorable safety profile.
Collapse
Affiliation(s)
- Essa Hariri
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
- Division of Cardiology, Johns Hopkins Medicine, Baltimore, Maryland
| | - Milad Matta
- Cardiovascular Medicine, Section of Vascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Habib Layoun
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Osamah Badwan
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Lorenzo Braghieri
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - A. Phillip Owens
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Ohio
| | - Robert Burton
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Rohan Bhandari
- Cardiovascular Medicine, Section of Vascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Doran Mix
- Department of Surgery, Division of Vascular Surgery, University of Rochester Medical Center, New York
| | - John Bartholomew
- Cardiovascular Medicine, Section of Vascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - David Schumick
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of Case Western Reserve University, Cleveland, Ohio
| | - Ayman Elbadawi
- Division of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Samir Kapadia
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of Case Western Reserve University, Cleveland, Ohio
- Department of Cardiovascular Medicine, Section of Preventive Cardiology, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Lars G. Svensson
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Scott J. Cameron
- Cardiovascular Medicine, Section of Vascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of Case Western Reserve University, Cleveland, Ohio
- Department of Hematology, Taussig Cancer Institute, Cleveland, Ohio
| |
Collapse
|
67
|
Jadli A, Gomes K, Ballasy N, Wijesuriya T, Belke D, Fedak P, Patel V. Inhibition of smooth muscle cell death by Angiotensin 1-7 protects against abdominal aortic aneurysm. Biosci Rep 2023; 43:BSR20230718. [PMID: 37947205 PMCID: PMC10695742 DOI: 10.1042/bsr20230718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) represents a debilitating vascular disease characterized by aortic dilatation and wall rupture if it remains untreated. We aimed to determine the effects of Ang 1-7 in a murine model of AAA and to investigate the molecular mechanisms involved. Eight- to 10-week-old apolipoprotein E-deficient mice (ApoEKO) were infused with Ang II (1.44 mg/kg/day, s.c.) and treated with Ang 1-7 (0.576 mg/kg/day, i.p.). Echocardiographic and histological analyses showed abdominal aortic dilatation and extracellular matrix remodeling in Ang II-infused mice. Treatment with Ang 1-7 led to suppression of Ang II-induced aortic dilatation in the abdominal aorta. The immunofluorescence imaging exhibited reduced smooth muscle cell (SMC) density in the abdominal aorta. The abdominal aortic SMCs from ApoEKO mice exhibited markedly increased apoptosis in response to Ang II. Ang 1-7 attenuated cell death, as evident by increased SMC density in the aorta and reduced annexin V/propidium iodide-positive cells in flow cytometric analysis. Gene expression analysis for contractile and synthetic phenotypes of abdominal SMCs showed preservation of contractile phenotype by Ang 1-7 treatment. Molecular analyses identified increased mitochondrial fission, elevated cellular and mitochondrial reactive oxygen species (ROS) levels, and apoptosis-associated proteins, including cytochrome c, in Ang II-treated aortic SMCs. Ang 1-7 mitigated Ang II-induced mitochondrial fission, ROS generation, and levels of pro-apoptotic proteins, resulting in decreased cell death of aortic SMCs. These results highlight a critical vasculo-protective role of Ang 1-7 in a degenerative aortic disease; increased Ang 1-7 activity may provide a promising therapeutic strategy against the progression of AAA.
Collapse
Affiliation(s)
- Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Karina P. Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Noura N. Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Tishani Methsala Wijesuriya
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W.M. Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
68
|
Wechselberger C, Messner B, Bernhard D. The Role of Trace Elements in Cardiovascular Diseases. TOXICS 2023; 11:956. [PMID: 38133357 PMCID: PMC10747024 DOI: 10.3390/toxics11120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Essential trace elements play an important role in human physiology and are associated with various functions regulating cellular metabolism. Non-essential trace elements, on the other hand, often have well-documented toxicities that are dangerous for the initiation and development of diseases due to their widespread occurrence in the environment and their accumulation in living organisms. Non-essential trace elements are therefore regarded as serious environmental hazards that are harmful to health even in low concentrations. Many representatives of these elements are present as pollutants in our environment, and many people may be exposed to significant amounts of these substances over the course of their lives. Among the most common non-essential trace elements are heavy metals, which are also associated with acute poisoning in humans. When these elements accumulate in the body over years of chronic exposure, they often cause severe health damage in a variety of tissues and organs. In this review article, the role of selected essential and non-essential trace elements and their role in the development of exemplary pathophysiological processes in the cardiovascular system will be examined in more detail.
Collapse
Affiliation(s)
- Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
69
|
Zhang K, Yue J, Yin L, Chen J, Chen Y, Hu L, Shen J, Yu N, Gong Y, Liu Z. Comprehensive bioinformatics analysis revealed potential key genes and pathways underlying abdominal aortic aneurysm. Comput Struct Biotechnol J 2023; 21:5423-5433. [PMID: 38022704 PMCID: PMC10665597 DOI: 10.1016/j.csbj.2023.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a permanent, asymptomatic segmental dilatation of the abdominal aorta, with a high mortality risk upon rupture. Identification of potential key genes and pathways may help to develop curative drugs for AAA. We conducted RNA-seq on abdominal aortic tissues from both AAA patients and normal individuals as a control group. Integrated bioinformatic analysis was subsequently performed to comprehensively reveal potential key genes and pathways. A total of 1148 differential expressed genes (DEGs) (631 up-regulated and 517 down-regulated) were identified in our study. Gene Ontology (GO) analysis revealed enrichment in terms related to extracellular matrix organization, while KEGG analysis indicated enrichment in hematopoietic cell lineage and ECM-receptor interaction. Protein-protein interaction (PPI) network analysis revealed several candidate key genes, and differential expression of 6 key genes (CXCL8, CCL2, PTGS2, SELL, CCR7, and CXCL1) was validated by Gene Expression Omnibus (GEO) datasets. Receiver operating characteristic curve (ROC) analysis demonstrated these genes' high discriminatory ability between AAA and normal tissues. Immunohistochemistry indicated that several key genes were highly expressed in AAA tissues. Single-cell RNA sequencing revealed differential distribution patterns of these identified key genes among various cell types. 26 potential drugs linked to our key genes were found through DGIdb. Overall, our study provides a comprehensive evaluation of potential key genes and pathways in AAA, which could pave the way for the development of curative pharmacological therapies.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Jianing Yue
- Department of Vascular Surgery, Zhongshan Hospital of Fudan University School of Medicine, Shanghai 200032, China
| | - Li Yin
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Jinyi Chen
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Yunlu Chen
- Clinical Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Lanting Hu
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Jian Shen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Naiji Yu
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Yunxia Gong
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Zhenjie Liu
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| |
Collapse
|
70
|
Shridas P, Ji A, Trumbauer AC, Noffsinger VP, Meredith LW, de Beer FC, Mullick AE, Webb NR, Karounos DG, Tannock LR. Antisense Oligonucleotide Targeting Hepatic Serum Amyloid A Limits the Progression of Angiotensin II-Induced Abdominal Aortic Aneurysm Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554377. [PMID: 37662383 PMCID: PMC10473661 DOI: 10.1101/2023.08.22.554377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
OBJECTIVE Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. Obesity is also associated with increases in serum amyloid A (SAA). We previously reported that deficiency of SAA significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. In this study, we investigated whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. APPROACH AND RESULTS Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with angiotensin II (AngII) until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSION We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.
Collapse
|
71
|
Xie J, Tang Z, Chen Q, Jia X, Li C, Jin M, Wei G, Zheng H, Li X, Chen Y, Liao W, Liao Y, Bin J, Huang S. Clearance of Stress-Induced Premature Senescent Cells Alleviates the Formation of Abdominal Aortic Aneurysms. Aging Dis 2023; 14:1778-1798. [PMID: 37196124 PMCID: PMC10529745 DOI: 10.14336/ad.2023.0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 05/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by various pathophysiological processes, including chronic inflammation, oxidative stress, and proteolytic activity in the aortic wall. Stress-induced premature senescence (SIPS) has been implicated in regulating these pathophysiological processes, but whether SIPS contributes to AAA formation remains unknown. Here, we detected SIPS in AAA from patients and young mice. The senolytic agent ABT263 prevented AAA development by inhibiting SIPS. Additionally, SIPS promoted the transformation of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a synthetic phenotype, whereas inhibition of SIPS by the senolytic drug ABT263 suppressed VSMC phenotypic switching. RNA sequencing and single-cell RNA sequencing analysis revealed that fibroblast growth factor 9 (FGF9), secreted by stress-induced premature senescent VSMCs, was a key regulator of VSMC phenotypic switching and that FGF9 knockdown abolished this effect. We further showed that the FGF9 level was critical for the activation of PDGFRβ/ERK1/2 signaling, facilitating VSMC phenotypic change. Taken together, our findings demonstrated that SIPS is critical for VSMC phenotypic switching through the activation of FGF9/PDGFRβ/ERK1/2 signaling, promoting AAA development and progression. Thus, targeting SIPS with the senolytic agent ABT263 may be a valuable therapeutic strategy for the prevention or treatment of AAA.
Collapse
Affiliation(s)
- Jingfang Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Qiqi Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Xiaoqian Jia
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| |
Collapse
|
72
|
Shen Y, Gao Y, Shi J, Huang Z, Dai R, Fu Y, Zhou Y, Kong W, Cui Q. MicroRNA-disease Network Analysis Repurposes Methotrexate for the Treatment of Abdominal Aortic Aneurysm in Mice. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1030-1042. [PMID: 36030000 PMCID: PMC10928436 DOI: 10.1016/j.gpb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a permanent dilatation of the abdominal aorta and is highly lethal. The main purpose of the current study is to search for noninvasive medical therapies for AAA, for which there is currently no effective drug therapy. Network medicine represents a cutting-edge technology, as analysis and modeling of disease networks can provide critical clues regarding the etiology of specific diseases and therapeutics that may be effective. Here, we proposed a novel algorithm to quantify disease relations based on a large accumulated microRNA-disease association dataset and then built a disease network covering 15 disease classes and 304 diseases. Analysis revealed some patterns for these diseases. For instance, diseases tended to be clustered and coherent in the network. Surprisingly, we found that AAA showed the strongest similarity with rheumatoid arthritis and systemic lupus erythematosus, both of which are autoimmune diseases, suggesting that AAA could be one type of autoimmune diseases in etiology. Based on this observation, we further hypothesized that drugs for autoimmune diseases could be repurposed for the prevention and therapy of AAA. Finally, animal experiments confirmed that methotrexate, a drug for autoimmune diseases, was able to alleviate the formation and development of AAA.
Collapse
Affiliation(s)
- Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yuanxu Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macao Special Administrative Region 999078, China; Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiangcheng Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhou Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Rongbo Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
73
|
Huckaby LV, Leshnower BG. Sex and Gender Differences in Aortic Disease. US CARDIOLOGY REVIEW 2023; 17:e14. [PMID: 39559522 PMCID: PMC11571386 DOI: 10.15420/usc.2022.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/06/2023] [Indexed: 11/20/2024] Open
Abstract
Dilatation of the thoracic or abdominal aorta can progress to dissection or rupture with significant associated morbidity and mortality. Aortic disease remains a treatable contributor to mortality in the US and its burden is likely underestimated. Recent clinical studies have uncovered sex and gender distinctions in the epidemiology, pathophysiology, and outcomes of aortic disease. Despite this, there has been little progress in the application of these findings to clinical practice. Improved understanding of the sex-specific mechanisms of aortic disease may inform personalized indications for elective repair and thus reduce the morbidity of aortic catastrophe. The objective of this review is to summarize known clinical and biological sex differences in both thoracic and abdominal aortic disease and highlight promising areas for future investigation.
Collapse
|
74
|
Jing J, Chang M, Jiang S, Wang T, Sun Q, Yang J, Ma C, Li T. Clinical value of serum miR-1-3p as a potential circulating biomarker for abdominal aortic aneurysm. Ann Med 2023; 55:2260395. [PMID: 37751480 PMCID: PMC10524769 DOI: 10.1080/07853890.2023.2260395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Although abdominal aortic aneurysm (AAA) is associated with life-threatening complications, there are still limited reliable biomarkers for diagnostic purpose. MicroRNAs (miRNAs) have been proposed as the potential diagnostic and risk stratification markers of AAA patients, and we aim to evaluate the serum level of miR-1-3p and its diagnostic value in AAA. METHODS This study included 200 AAA patients and 200 controls. Demographic data and clinical information were collected from the subjects' medical records. Individual image analyses of AAA morphology were determined based on computed tomography angiography (CTA). The levels of serum miRNA expression were detected by quantitative real-time PCR. Bioinformatics tools were used to identify the target genes of miR-1-3p and their potential biological functions were further enriched. RESULTS Serum miR-1-3p levels in the AAA group were significantly lower when compared with those in the control group in overall and subgroup comparisons. It was negatively related to WBC, CRP, maximal aneurysm diameter, area, and volume in AAA patients. Circulating miR-1-3p levels could significantly discriminate between AAA patients and healthy individuals with an area under the curve (AUC) of 0.672 (95% CI = 0.619-0.724, p < 0.001), a sensitivity of 84.5% and a specificity of 45.5%. Serum miR-1-3p was associated with a reduced risk of AAA even after adjustment for possible risk factors (OR = 0.440 per unit increase, 95% CI = 0.301-0.643, p < 0.001). And low levels of serum miR-1-3p could significantly elevate the risk of AAA in both univariate and multivariate logistic regression analyses with ORs of 4.076 and 4.136, respectively (all p < 0.001). Further GO enrichment analysis revealed that miR-1-3p was mainly involved in negative regulation of apoptotic process, sprouting angiogenesis, angiogenesis, positive regulation of blood vessel endothelial cell migration, positive regulation of cell proliferation, regulation of cell shape, etc. CONCLUSIONS MiR-1-3p can be used as a promising circulating biomarker in the development of AAA, and it may participate in multiple biological processes to play a crucial role in AAA pathogenesis.
Collapse
Affiliation(s)
- Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Miao Chang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianlong Wang
- Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiuyan Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
75
|
Chakraborty A, Li Y, Zhang C, Li Y, Rebello KR, Li S, Xu S, Vasquez HG, Zhang L, Luo W, Wang G, Chen K, Coselli JS, LeMaire SA, Shen YH. Epigenetic Induction of Smooth Muscle Cell Phenotypic Alterations in Aortic Aneurysms and Dissections. Circulation 2023; 148:959-977. [PMID: 37555319 PMCID: PMC10529114 DOI: 10.1161/circulationaha.123.063332] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Smooth muscle cell (SMC) phenotypic switching has been increasingly detected in aortic aneurysm and dissection (AAD) tissues. However, the diverse SMC phenotypes in AAD tissues and the mechanisms driving SMC phenotypic alterations remain to be identified. METHODS We examined the transcriptomic and epigenomic dynamics of aortic SMC phenotypic changes in mice with angiotensin II-induced AAD by using single-cell RNA sequencing and single-cell sequencing assay for transposase-accessible chromatin. SMC phenotypic alteration in aortas from patients with ascending thoracic AAD was examined by using single-cell RNA sequencing analysis. RESULTS Single-cell RNA sequencing analysis revealed that aortic stress induced the transition of SMCs from a primary contractile phenotype to proliferative, extracellular matrix-producing, and inflammatory phenotypes. Lineage tracing showed the complete transformation of SMCs to fibroblasts and macrophages. Single-cell sequencing assay for transposase-accessible chromatin analysis indicated that these phenotypic alterations were controlled by chromatin remodeling marked by the reduced chromatin accessibility of contractile genes and the induced chromatin accessibility of genes involved in proliferation, extracellular matrix, and inflammation. IRF3 (interferon regulatory factor 3), a proinflammatory transcription factor activated by cytosolic DNA, was identified as a key driver of the transition of aortic SMCs from a contractile phenotype to an inflammatory phenotype. In cultured SMCs, cytosolic DNA signaled through its sensor STING (stimulator of interferon genes)-TBK1 (tank-binding kinase 1) to activate IRF3, which bound and recruited EZH2 (enhancer of zeste homolog 2) to contractile genes to induce repressive H3K27me3 modification and gene suppression. In contrast, double-stranded DNA-STING-IRF3 signaling induced inflammatory gene expression in SMCs. In Sting-/- mice, the aortic stress-induced transition of SMCs into an inflammatory phenotype was prevented, and SMC populations were preserved. Finally, profound SMC phenotypic alterations toward diverse directions were detected in human ascending thoracic AAD tissues. CONCLUSIONS Our study reveals the dynamic epigenetic induction of SMC phenotypic alterations in AAD. DNA damage and cytosolic leakage drive SMCs from a contractile phenotype to an inflammatory phenotype.
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yang Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Kimberly R Rebello
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Shengyu Li
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Samantha Xu
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Kaifu Chen
- Department of Pediatrics, Harvard Medical School, Boston, MA (K.C.)
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
76
|
Atkinson G, Bianco R, Di Gregoli K, Johnson JL. The contribution of matrix metalloproteinases and their inhibitors to the development, progression, and rupture of abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1248561. [PMID: 37799778 PMCID: PMC10549934 DOI: 10.3389/fcvm.2023.1248561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) account for up to 8% of deaths in men aged 65 years and over and 2.2% of women. Patients with AAAs often have atherosclerosis, and intimal atherosclerosis is generally present in AAAs. Accordingly, AAAs are considered a form of atherosclerosis and are frequently referred to as atherosclerotic aneurysms. Pathological observations advocate inflammatory cell infiltration alongside adverse extracellular matrix degradation as key contributing factors to the formation of human atherosclerotic AAAs. Therefore, macrophage production of proteolytic enzymes is deemed responsible for the damaging loss of ECM proteins, especially elastin and fibrillar collagens, which characterise AAA progression and rupture. Matrix metalloproteinases (MMPs) and their regulation by tissue inhibitors metalloproteinases (TIMPs) can orchestrate not only ECM remodelling, but also moderate the proliferation, migration, and apoptosis of resident aortic cells, alongside the recruitment and subsequent behaviour of inflammatory cells. Accordingly, MMPs are thought to play a central regulatory role in the development, progression, and eventual rupture of abdominal aortic aneurysms (AAAs). Together, clinical and animal studies have shed light on the complex and often diverse effects MMPs and TIMPs impart during the development of AAAs. This dichotomy is underlined from evidence utilising broad-spectrum MMP inhibition in animal models and clinical trials which have failed to provide consistent protection from AAA progression, although more encouraging results have been observed through deployment of selective inhibitors. This review provides a summary of the supporting evidence connecting the contribution of individual MMPs to AAA development, progression, and eventual rupture. Topics discussed include structural, functional, and cell-specific diversity of MMP members; evidence from animal models of AAA and comparisons with findings in humans; the dual role of MMPs and the requirement to selectively target individual MMPs; and the advances in identifying aberrant MMP activity. As evidenced, our developing understanding of the multifaceted roles individual MMPs perform during the progression and rupture of AAAs, should motivate clinical trials assessing the therapeutic potential of selective MMP inhibitors, which could restrict AAA-related morbidity and mortality worldwide.
Collapse
Affiliation(s)
| | | | | | - Jason L. Johnson
- Laboratory of Cardiovascular Pathology, Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
77
|
Wang S, Liu H, Yang P, Wang Z, Ye P, Xia J, Chen S. A role of inflammaging in aortic aneurysm: new insights from bioinformatics analysis. Front Immunol 2023; 14:1260688. [PMID: 37744379 PMCID: PMC10511768 DOI: 10.3389/fimmu.2023.1260688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Aortic aneurysms (AA) are prevalent worldwide with a notable absence of drug therapies. Thus, identifying potential drug targets is of utmost importance. AA often presents in the elderly, coupled with consistently raised serum inflammatory markers. Given that ageing and inflammation are pivotal processes linked to the evolution of AA, we have identified key genes involved in the inflammaging process of AA development through various bioinformatics methods, thereby providing potential molecular targets for further investigation. Methods The transcriptome data of AA was procured from the datasets GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database, whilst gene data of ageing and inflammation were obtained from the GeneCards Database. To identify key genes, differentially expressed analysis using the "Limma" package and WGCNA were implemented. Protein-protein intersection (PPI) analysis and machine learning (ML) algorithms were employed for the screening of potential biomarkers, followed by an assessment of the diagnostic value. Following the acquisition of the hub inflammaging and AA-related differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory network was established. The CIBERSORT algorithm was utilized to investigate immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating immunocytes was also evaluated. Lastly, wet laboratory experiments were carried out to confirm the expression of hub IADEGs. Results 342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and GSE7084 datasets were procured by intersecting the results of "Limma" and WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them demonstrated a high diagnostic value. Immune cell infiltration outcomes unveiled immune dysregulation in AA. In the wet laboratory experiments, 3 hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an expression trend in line with the bioinformatics analysis result. Discussion Our research identified three genes - BLNK, HLA-DRA, and HLA-DQB1- that play a significant role in promoting the development of AA through inflammaging, providing novel insights into the future understanding and therapeutic intervention of AA.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
78
|
Tomihama RT, Dass S, Chen S, Kiang SC. Machine learning and image analysis in vascular surgery. Semin Vasc Surg 2023; 36:413-418. [PMID: 37863613 DOI: 10.1053/j.semvascsurg.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/22/2023]
Abstract
Deep learning, a subset of machine learning within artificial intelligence, has been successful in medical image analysis in vascular surgery. Unlike traditional computer-based segmentation methods that manually extract features from input images, deep learning methods learn image features and classify data without making prior assumptions. Convolutional neural networks, the main type of deep learning for computer vision processing, are neural networks with multilevel architecture and weighted connections between nodes that can "auto-learn" through repeated exposure to training data without manual input or supervision. These networks have numerous applications in vascular surgery imaging analysis, particularly in disease classification, object identification, semantic segmentation, and instance segmentation. The purpose of this review article was to review the relevant concepts of machine learning image analysis and its application to the field of vascular surgery.
Collapse
Affiliation(s)
- Roger T Tomihama
- Department of Radiology, Section of Vascular and Interventional Radiology, Linda University School of Medicine, 11234 Anderson Street, Suite MC-2605E, Loma Linda, CA 92354.
| | - Saharsh Dass
- Department of Radiology, Section of Vascular and Interventional Radiology, Linda University School of Medicine, 11234 Anderson Street, Suite MC-2605E, Loma Linda, CA 92354
| | - Sally Chen
- Department of Surgery, Division of Vascular Surgery, Linda University School of Medicine, Loma Linda, CA
| | - Sharon C Kiang
- Department of Surgery, Division of Vascular Surgery, Linda University School of Medicine, Loma Linda, CA; Department of Surgery, Division of Vascular Surgery, Veterans Affairs Loma Linda Healthcare System, Loma Linda, CA
| |
Collapse
|
79
|
Xu C, Liu X, Yu L, Fang X, Yao L, Lau H, Vyas P, Pryke L, Xu B, Tang L, Jiang J, Chen X. CD147 monoclonal antibody attenuates abdominal aortic aneurysm formation in angiotensin II-Infused apoE -/- mice. Int Immunopharmacol 2023; 122:110526. [PMID: 37393837 DOI: 10.1016/j.intimp.2023.110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a life threatening vascular disease. Our previous study reported the upregulation of CD147 expression in human aortic aneurysms. OBJECTIVE In this study, we injected apoE-/- mice intraperitoneally with CD147 monoclonal antibody or IgG control antibody to observe its effect on Angiotensin II (AngII) induced AAA formation. METHODS ApoE-/- mice were randomly divided into an AngⅡ+CD147 antibody group (n = 20) and an AngⅡ+IgG antibody group (n = 20). The Alzet osmotic minipump was implanted subcutaneously into the backs of mice to infuse AngII (1000 ng/kg/min) for 28 days and subsequently treated with CD147 monoclonal antibody or control IgG mAb (10 μg/mouse/day) beginning one day after surgery. Body weight, food intake, drinking volume and blood pressure were measured weekly throughout the study. After 4 weeks of injection, routine bloodwork measuring liver function, kidney function and lipid levels were recorded. Hematoxylin and eosin (H&E), Masson's trichrome, and Elastic van Gieson (EVG) staining were used to evaluate the pathological changes in blood vessels. In addition, Immunohistochemical assay was used to detect infiltration of inflammatory cells. Tandem mass tag (TMT)-based proteomic analysis was used to define differentially expressed proteins (DEPs) using a p-value < 0.05 and fold change > 1.2 or < 0.83 as the threshold. Subsequently, we conducted protein-protein interaction (PPI) network and GO enrichment analysis to determine the core biological function altered after CD147 antibody injection. RESULTS The CD147 monoclonal antibody suppresses Ang II-induced AAA formation in apoE-/- mice and reduced aortic expansion, elastic lamina degradation, and inflammatory cells accumulation. Bioinformatics analysis showed that Ptk6, Itch, Casp3, and Oas1a were the hub DEPs. These DEPs in the two group were mainly involved in collagen fibril organization, extracellular matrix organization, and muscle contraction. These data robustly demonstrated that CD147 monoclonal antibody suppresses Ang II-induced AAA formation through reduction of inflammatory response and regulation of the above defined hub proteins and biological processes. Thus, the CD147 monoclonal antibody might be a promising target in the treatment of abdominal aortic aneurysm.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, PR China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaoxin Fang
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Lei Yao
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - HuiChong Lau
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA
| | - Punit Vyas
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Luke Pryke
- Internal medicine, Indiana University, Indianapolis, IN 46202
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, PR China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China; Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
80
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
81
|
Liu S, Long C, Hong Y, Gu X, Weng R, Zhong Z. Prevalence of risk factors associated with rupture of abdominal aortic aneurysm (AAA): a single center retrospective study. PeerJ 2023; 11:e15752. [PMID: 37554333 PMCID: PMC10405793 DOI: 10.7717/peerj.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease. The mortality rate for an AAA rupture is very high. Understanding the risk factors for AAA rupture would help AAA management, but little is known about these risk factors in the Chinese population. METHODS This retrospective study included patients that were diagnosed with AAA during the last 5 years in a large national hospital in southern China. AAA patients were divided into a rupture and non-rupture group. Clinical data were extracted from the hospital medical record system. Clinical features were compared between the rupture and non-rupture groups. The associations between potential risk factors and rupture risk were evaluated using a multivariate logistic regression analysis. RESULTS A total of 337 AAA patients were included for analysis in the present study. AAA diameter was significantly larger, and high-sensitivity C-reactive protein (hs-CRP) and serum creatinine levels were both significantly higher in AAA rupture patients. High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels were significantly lower in AAA rupture patients. After adjustment, the multivariate logistic analysis found that AAA diameter and hs-CRP were independently positively associated with AAA rupture, and HDL-C level was adversely associated with AAA rupture. CONCLUSIONS Our data suggests that larger AAA diameter and higher hs-CRP level are associated with a higher risk of AAA rupture, and higher HDL-C level is associated with a lower risk of AAA rupture. The results of this study may be helpful for the management of AAA patients in southern China.
Collapse
Affiliation(s)
- Sudong Liu
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou, China
- Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou, China
| | - Caifu Long
- Meizhou Clinical Medical School, Guangdong Medical University, Meizhou, China
| | - Yuanjia Hong
- Meizhou Clinical Medical School, Guangdong Medical University, Meizhou, China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou, China
- Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou, China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou, China
- Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou, China
| | - Zhixiong Zhong
- Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou, China
- Center for Cardiovascular Diseases, Meizhou People’s Hospital (Huangtang Hospital), Meizhou, China
| |
Collapse
|
82
|
Lin J, Chen S, Yao Y, Yan M. Status of diagnosis and therapy of abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1199804. [PMID: 37576107 PMCID: PMC10416641 DOI: 10.3389/fcvm.2023.1199804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by localized dilation of the abdominal aorta. They are associated with several serious consequences, including compression of adjacent abdominal organs, pain, treatment-related financial expenditure. The main complication of AAA is aortic rupture, which is responsible for about 200,000 deaths per year worldwide. An increasing number of researchers are dedicating their efforts to study AAA, resulting in significant progress in this field. Despite the commendable progress made thus far, there remains a lack of established methods to effectively decelerate the dilation of aneurysms. Therefore, further studies are imperative to expand our understanding and enhance our knowledge concerning AAAs. Although numerous factors are known to be associated with the occurrence and progression of AAA, the exact pathway of development remains unclear. While asymptomatic at most times, AAA features a highly unpredictable disease course, which could culminate in the highly deadly rupture of the aneurysmal aorta. Current guidelines recommend watchful waiting and lifestyle adjustment for smaller, slow-growing aneurysms, while elective/prophylactic surgical repairs including open repair and endovascular aneurysm repair are recommended for larger aneurysms that have grown beyond certain thresholds (55 mm for males and 50 mm for females). The latter is a minimally invasive procedure and is widely believed to be suited for patients with a poor general condition. However, several concerns have recently been raised regarding the postoperative complications and possible loss of associated survival benefits on it. In this review, we aimed to highlight the current status of diagnosis and treatment of AAA by an in-depth analysis of the findings from literatures.
Collapse
Affiliation(s)
- Jinping Lin
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuwei Chen
- Department of anesthesiology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Yuanyuan Yao
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Yan
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
83
|
Zalewski D, Chmiel P, Kołodziej P, Borowski G, Feldo M, Kocki J, Bogucka-Kocka A. Dysregulations of Key Regulators of Angiogenesis and Inflammation in Abdominal Aortic Aneurysm. Int J Mol Sci 2023; 24:12087. [PMID: 37569462 PMCID: PMC10418409 DOI: 10.3390/ijms241512087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular disease caused by localized weakening and broadening of the abdominal aorta. AAA is a clearly underdiagnosed disease and is burdened with a high mortality rate (65-85%) from AAA rupture. Studies indicate that abnormal regulation of angiogenesis and inflammation contributes to progression and onset of this disease; however, dysregulations in the molecular pathways associated with this disease are not yet fully explained. Therefore, in our study, we aimed to identify dysregulations in the key regulators of angiogenesis and inflammation in patients with AAA in peripheral blood mononuclear cells (using qPCR) and plasma samples (using ELISA). Expression levels of ANGPT1, CXCL8, PDGFA, TGFB1, VEGFB, and VEGFC and plasma levels of TGF-alpha, TGF-beta 1, VEGF-A, and VEGF-C were found to be significantly altered in the AAA group compared to the control subjects without AAA. Associations between analyzed factors and risk factors or biochemical parameters were also explored. Any of the analyzed factors was associated with the size of the aneurysm. The presented study identified dysregulations in key angiogenesis- and inflammation-related factors potentially involved in AAA formation, giving new insight into the molecular pathways involved in the development of this disease and providing candidates for biomarkers that could serve as diagnostic or therapeutic targets.
Collapse
Affiliation(s)
- Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Grzegorz Borowski
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (G.B.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (G.B.); (M.F.)
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| |
Collapse
|
84
|
Zhang L, Li Q, Zhou C, Zhang Z, Zhang J, Qin X. Immune-dysregulated neutrophils characterized by upregulation of CXCL1 may be a potential factor in the pathogenesis of abdominal aortic aneurysm and systemic lupus erythematosus. Heliyon 2023; 9:e18037. [PMID: 37519764 PMCID: PMC10372670 DOI: 10.1016/j.heliyon.2023.e18037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Background The abdominal aortic aneurysm (AAA) incidence is closely related to systemic lupus erythematosus (SLE). However, the common mechanisms between AAA and SLE are still unknown. The purpose of this research was to examine the main molecules and pathways involved in the immunization process that lead to the co-occurrence of AAA and SLE through the utilization of quantitative bioinformatics analysis of publicly available RNA sequencing databases. Moreover, routine blood test information was gathered from 460 patients to validate the findings. Materials and methods Datasets of both AAA (GSE57691 and GSE205071) and SLE (GSE50772 and GSE154851) were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were analyzed using bioinformatic tools. To determine the functions of the common differentially expressed genes (DEGs), Gene Ontology (GO) and Kyoto Encyclopedia analyses were conducted. Subsequently, the hub gene was identified through cytoHubba, and its validation was carried out in GSE47472 for AAA and GSE81622 for SLE. Immune cell infiltration analysis was performed to identify the key immune cells correlated with AAA and SLE, and to evaluate the correlation between key immune cells and the hub gene. Subsequently, the routine blood test data of 460 patients were collected, and the result of the immune cell infiltration analysis was further validated by univariate and multivariate logistic regression analysis. Results A total of 25 common DEGs were obtained, and three genes were screened by cytoHubba algorithms. Upon validation of the datasets, CXCL1 emerged as the hub gene with strong predictive capabilities, as evidenced by an area under the curve (AUC) > 0.7 for both AAA and SLE. The infiltration of immune cells was also validated, revealing a significant upregulation of neutrophils in the AAA and SLE datasets, along with a correlation between neutrophil infiltration and CXCL1 upregulation. Clinical data analysis revealed a significant increase in neutrophils in both AAA and SLE patients (p < 0.05). Neutrophils were found to be an independent factor in the diagnosis of AAA and SLE, exhibiting good diagnostic accuracy with AUC >0.7. Conclusion This study elucidates CXCL1 as a hub gene for the co-occurrence of AAA and SLE. Neutrophil infiltration plays a central role in the development of AAA and SLE and may serve to be a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Zhanman Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jiangfeng Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xiao Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
85
|
Bracco MI, Broda M, Lorenzen US, Florkow MC, Somphone O, Avril S, Biancolini ME, Rouet L. Fast strain mapping in abdominal aortic aneurysm wall reveals heterogeneous patterns. Front Physiol 2023; 14:1163204. [PMID: 37362444 PMCID: PMC10285457 DOI: 10.3389/fphys.2023.1163204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Abdominal aortic aneurysm patients are regularly monitored to assess aneurysm development and risk of rupture. A preventive surgical procedure is recommended when the maximum aortic antero-posterior diameter, periodically assessed on two-dimensional abdominal ultrasound scans, reaches 5.5 mm. Although the maximum diameter criterion has limited ability to predict aneurysm rupture, no clinically relevant tool that could complement the current guidelines has emerged so far. In vivo cyclic strains in the aneurysm wall are related to the wall response to blood pressure pulse, and therefore, they can be linked to wall mechanical properties, which in turn contribute to determining the risk of rupture. This work aimed to enable biomechanical estimations in the aneurysm wall by providing a fast and semi-automatic method to post-process dynamic clinical ultrasound sequences and by mapping the cross-sectional strains on the B-mode image. Specifically, the Sparse Demons algorithm was employed to track the wall motion throughout multiple cardiac cycles. Then, the cyclic strains were mapped by means of radial basis function interpolation and differentiation. We applied our method to two-dimensional sequences from eight patients. The automatic part of the analysis took under 1.5 min per cardiac cycle. The tracking method was validated against simulated ultrasound sequences, and a maximum root mean square error of 0.22 mm was found. The strain was calculated both with our method and with the established finite-element method, and a very good agreement was found, with mean differences of one order of magnitude smaller than the image spatial resolution. Most patients exhibited a strain pattern that suggests interaction with the spine. To conclude, our method is a promising tool for investigating abdominal aortic aneurysm wall biomechanics as it can provide a fast and accurate measurement of the cyclic wall strains from clinical ultrasound sequences.
Collapse
Affiliation(s)
- Marta Irene Bracco
- Mines Saint-Étienne, University Jean Monnet, INSERM, Sainbiose, Saint-Étienne, France
- Philips Research Paris, Suresnes, France
| | - Magdalena Broda
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Stephane Avril
- Mines Saint-Étienne, University Jean Monnet, INSERM, Sainbiose, Saint-Étienne, France
| | | | | |
Collapse
|
86
|
Guo X, Cai D, Dong K, Li C, Xu Z, Chen SY. DOCK2 Deficiency Attenuates Abdominal Aortic Aneurysm Formation-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:e210-e217. [PMID: 37021575 PMCID: PMC10212530 DOI: 10.1161/atvbaha.122.318400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially lethal disease that lacks pharmacological treatment. Degradation of extracellular matrix proteins, especially elastin laminae, is the hallmark for AAA development. DOCK2 (dedicator of cytokinesis 2) has shown proinflammatory effects in several inflammatory diseases and acts as a novel mediator for vascular remodeling. However, the role of DOCK2 in AAA formation remains unknown. METHODS Ang II (angiotensin II) infusion of ApoE-/- (apolipoprotein E deficient) mouse and topical elastase-induced AAA combined with DOCK2-/- (DOCK2 knockout) mouse models were used to study DOCK2 function in AAA formation/dissection. The relevance of DOCK2 to human AAA was examined using human aneurysm specimens. Elastin fragmentation in AAA lesion was observed by elastin staining. Elastin-degrading enzyme MMP (matrix metalloproteinase) activity was measured by in situ zymography. RESULTS DOCK2 was robustly upregulated in AAA lesion of Ang II-infused ApoE-/- mice, elastase-treated mice, as well as human AAA lesions. DOCK2-/- significantly attenuated the Ang II-induced AAA formation/dissection or rupture in mice along with reduction of MCP-1 (monocyte chemoattractant protein-1) and MMP expression and activity. Accordingly, the elastin fragmentation observed in ApoE-/- mouse aorta infused with Ang II and elastase-treated aorta was significantly attenuated by DOCK2 deficiency. Moreover, DOCK2-/- decreased the prevalence and severity of aneurysm formation, as well as the elastin degradation observed in the topical elastase model. CONCLUSIONS Our results indicate that DOCK2 is a novel regulator for AAA formation. DOCK2 regulates AAA development by promoting MCP-1 and MMP2 expression to incite vascular inflammation and elastin degradation.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Dunpeng Cai
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Kun Dong
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Chenxiao Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Zaiyan Xu
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Shi-You Chen
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology & Physiology, School of Medicine, The University of Missouri, Columbia, MO, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| |
Collapse
|
87
|
Chen L, Liu Y, Wang Z, Zhang L, Xu Y, Li Y, Zhang L, Wang G, Yang S, Xue G. Mesenchymal stem cell-derived extracellular vesicles protect against abdominal aortic aneurysm formation by inhibiting NET-induced ferroptosis. Exp Mol Med 2023:10.1038/s12276-023-00986-2. [PMID: 37121969 DOI: 10.1038/s12276-023-00986-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 05/02/2023] Open
Abstract
Neutrophil extracellular traps (NETs) play an important role in abdominal aortic aneurysm (AAA) formation; however, the underlying molecular mechanisms remain unclear. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may exert therapeutic effects on AAA through their immunomodulatory and regenerative abilities. This study aimed to examine the role and mechanism of MSC-EVs in regulating the development of NET-mediated AAA. Excessive release of NETs was observed in patients with AAA, and the levels of NET components were associated with the clinical outcomes of the patients. Datasets from the Gene Expression Omnibus database were analyzed and revealed that the PI3K/AKT pathway and ferroptosis were strongly associated with NETosis during AAA formation. Further experiments verified that NETs promoted AAA formation by inducing ferroptosis in smooth muscle cells (SMCs) by inhibiting the PI3K/AKT pathway. The PI3K agonist 740 Y-P, the ferroptosis inhibitor ferrostatin-1, and Padi4 deficiency significantly prevented AAA formation. MSC-EVs attenuated AAA formation by reducing NET release in an angiotensin II-induced AAA mouse model. In vitro experiments revealed that MSC-EVs reduced the release of NETs by shifting NETosis to apoptosis. Our study indicates an important role for NET-induced SMC ferroptosis in AAA formation and provides several potential targets for AAA treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, 200127, Shanghai, China
| | - Yuting Liu
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, 200127, Shanghai, China
| | - Zheyu Wang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, 200127, Shanghai, China
| | - Leiyang Zhang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 210000, Nanjing, China
| | - Yi Xu
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, 200127, Shanghai, China
| | - Yinan Li
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, 200127, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, 200127, Shanghai, China
| | - Guiming Wang
- Department of Vascular Surgery, The First Hospital of Shanxi Medical University, 030001, Taiyuan, China.
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, 200127, Shanghai, China.
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, 200127, Shanghai, China.
| |
Collapse
|
88
|
Lane BA, Cardoza RJ, Lessner SM, Vyavahare NR, Sutton MA, Eberth JF. Full-field strain mapping of healthy and pathological mouse aortas using stereo digital image correlation. J Mech Behav Biomed Mater 2023; 141:105745. [PMID: 36893686 PMCID: PMC10081968 DOI: 10.1016/j.jmbbm.2023.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/01/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
The murine aorta is a complex, heterogeneous structure that undergoes large and sometimes asymmetrical deformations under loading. For analytical convenience, mechanical behavior is predominantly described using global quantities that fail to capture critical local information essential to elucidating aortopathic processes. Here, in our methodological study, we used stereo digital image correlation (StereoDIC) to measure the strain profiles of speckle-patterned healthy and elastase-infused, pathological mouse aortas submerged in a temperature-controlled liquid medium. Our unique device rotates two 15-degree stereo-angle cameras that gather sequential digital images while simultaneously performing conventional biaxial pressure-diameter and force-length testing. A StereoDIC Variable Ray Origin (VRO) camera system model is employed to correct for high-magnification image refraction through hydrating physiological media. The resultant Green-Lagrange surface strain tensor was quantified at different blood vessel inflation pressures, axial extension ratios, and after aneurysm-initiating elastase exposure. Quantified results capture large, heterogeneous, inflation-related, circumferential strains that are drastically reduced in elastase-infused tissues. Shear strains, however, were very small on the tissue's surface. Spatially averaged StereoDIC-based strains were generally more detailed than those determined using conventional edge detection techniques.
Collapse
Affiliation(s)
- Brooks A Lane
- Biomedical Engineering, University of South Carolina, Columbia, SC, USA
| | - Ricardo J Cardoza
- Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan M Lessner
- Biomedical Engineering, University of South Carolina, Columbia, SC, USA; Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| | | | - Michael A Sutton
- Mechanical Engineering, University of South Carolina, Columbia, SC, USA
| | - John F Eberth
- Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
89
|
Meuli L, Menges AL, Stoklasa K, Steigmiller K, Reutersberg B, Zimmermann A. Inter-Hospital Transfer of Patients With Ruptured Abdominal Aortic Aneurysm in Switzerland. Eur J Vasc Endovasc Surg 2023; 65:484-492. [PMID: 36529366 DOI: 10.1016/j.ejvs.2022.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To analyse the association between inter-hospital transfer and hospital mortality in patients with ruptured abdominal aortic aneurysms (rAAA) in Switzerland. METHODS Secondary data analysis of case related hospital discharge data from the Swiss Federal Statistical Office for the years 2009 - 2018. All cases with rAAA as primary or secondary diagnosis were included. Cases with rAAA as a secondary diagnosis without surgical treatment and cases that had been transferred to another hospital without surgical treatment at the referring hospital were excluded. Logistic regression models for hospital mortality were constructed with age, sex, type of admission, van Walraven comorbidity score, type of treatment, insurance class, hospital level, and year of treatment as independent variables. RESULTS A total of 1 798 cases with rAAA were treated either surgically (62.5%) or palliatively (37.5%) in Switzerland from 1 January 2009 to 31 December 2018. Of these cases, 72.9% were treated directly (surgically or palliatively) at the hospital of first presentation, whereas 27.1% of all cases with rAAA were transferred between hospitals. The overall crude hospital mortality was 50.3%; being 23.1% in the surgically treated cohort and 95.7% in the palliatively treated cohort. Inter-hospital transfer was associated with better survival compared with patients who were admitted directly (OR 0.52; 95% CI 0.36 - 0.75; p < .001). Treatment in major hospitals was associated with significantly higher mortality rate compared with university hospitals (OR 1.98; 1.41 - 2.79; p < .001). There was no evidence of an association between open repair and hospital mortality (OR 1.06; 0.77 - 1.48; p = .72) compared with endovascular repair. CONCLUSION In a healthcare system such as Switzerland's with a highly specialised rescue chain, transfer of haemodynamically stable patients with rAAA is probably safe. In this setting, centralised medical care might outweigh the potential disadvantages of a short delay due to patient transfer. Further studies are needed to address potential confounding factors such as haemodynamic and anatomical features.
Collapse
Affiliation(s)
- Lorenz Meuli
- Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Anna-Leonie Menges
- Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Kerstin Stoklasa
- Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Klaus Steigmiller
- Department of Biostatistics at Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | | | - Alexander Zimmermann
- Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
90
|
Sun L, Li X, Luo Z, Li M, Liu H, Zhu Z, Wang J, Lu P, Wang L, Yang C, Wang T, He H, Li M, Shu C, Li J. Purinergic receptor P2 × 7 contributes to abdominal aortic aneurysm development via modulating macrophage pyroptosis and inflammation. Transl Res 2023:S1931-5244(23)00042-7. [PMID: 36967061 DOI: 10.1016/j.trsl.2023.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/17/2023]
Abstract
The purinergic receptor P2 × 7 has been established as an important mediator of inflammation and participates in a variety of cardiovascular diseases including atherosclerosis, however, its role in abdominal aortic aneurysms (AAA) remains unclear. In this study, we demonstrate that P2 × 7 plays essential roles in AAA development via modulating macrophage pyroptosis and inflammation. P2 × 7 is highly expressed in human AAA specimen, as well as in experimental murine AAA lesions (both CaCl2-and Angiotensin Ⅱ-induced AAA models), and it mainly confines in macrophages. Furthermore, P2 × 7 deficiency or pharmacological inhibition with its antagonist could significantly attenuate aneurysm formation in experimental murine AAA models, while P2 × 7 agonist could promote AAA development. The caspase-I activity, matrix metalloproteinase (MMP) activity, reactive oxygen species (ROS) production and pro-inflammatory gene expression were significant reduced in experimental AAA lesions in mice with P2 × 7 deficiency or inhibition. Mechanistically, macrophage P2 × 7 can mediate the activation of NLRP3 inflammasome and activate its downstream caspase-1 to initiate the pyroptosis pathway. After caspase-1 activation, it further cleaves pro-interleukin (IL)-1β and gasdermin D (GSDMD). Consequently, the N-terminal fragment of GSDMD forms pores on the cell membrane, leading to macrophage pyroptosis and release of the pro-inflammatory factor IL-1β. The resulting vascular inflammation further leads to the upregulation of MMP and ROS, thereby promoting AAA development. In summary, these data identify P2 × 7-mediated macrophage pyroptosis signaling pathway as a novel contributory mechanism of AAA formation.
Collapse
Affiliation(s)
- Likun Sun
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China; Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Li
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Zhongchen Luo
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Maohua Li
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, 410012, China
| | - Hongyu Liu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Zhaowei Zhu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Junwei Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Lunchang Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Chenzi Yang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Ming Li
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China; Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Jiehua Li
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China.
| |
Collapse
|
91
|
Li B, Hennessey H, Fenton J, Qadura M. Presentation and management of delayed aortic endograft infection. BMJ Case Rep 2023; 16:e252924. [PMID: 36898711 PMCID: PMC10008428 DOI: 10.1136/bcr-2022-252924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
A man in his 60s who underwent endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm 4 years ago presents with 1 week of abdominal pain, fever and leucocytosis. CT angiogram demonstrated an enlarged aneurysm sac with intraluminal gas and periaortic stranding consistent with infected EVAR. He was clinically unfit for an open surgical intervention due to his significant cardiac comorbidities, including hypertension, dyslipidaemia, type 2 diabetes, recent coronary artery bypass grafting and congestive heart failure secondary to ischaemic cardiomyopathy with an ejection fraction of 30%. Therefore, due to this significant surgical risk, he was treated with percutaneous drainage for the aortic collection and lifelong antibiotics. The patient is well 8 months following presentation with no signs of ongoing endograft infection, residual aneurysm sac enlargement, endoleak or haemodynamic instability.
Collapse
Affiliation(s)
- Ben Li
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Hooman Hennessey
- Division of Vascular and Interventional Radiology, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - John Fenton
- Division of Vascular Surgery, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
92
|
Lin YC, Chen QY, Xiao J, Shen LC, Li XT, Yang YZ, Guo PF, Lin MJ, Lin DC. Mouse Abdominal Aortic Aneurysm Model Induced by Periarterial Incubation of Papain. J Transl Med 2023; 103:100035. [PMID: 36925203 DOI: 10.1016/j.labinv.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/11/2023] Open
Abstract
For decades, numerous experimental animal models have been developed to examine the pathophysiologic mechanisms and potential treatments for abdominal aortic aneurysms (AAAs) in diverse species with varying chemical or surgical approaches. This study aimed to create an AAA mouse model by the periarterial incubation with papain, which can mimic human AAA with advantages such as simplicity, convenience, and high efficiency. Eighty C57BL/6J male mice were randomly assigned to 1 of the 4 groups: papain (1.0 or 2.0 mg), porcine pancreatic elastase, and phosphate-buffered solution. The aortic segment was wrapped for 20 minutes, and the diameter was measured using ultrasound preoperatively and postoperative days 7 and 14. Then, the mice were killed for histomorphometric and immunohistochemical analyses. According to ultrasound measurements and histomorphometric analyses, on postoperative day 7, 65% of mice in the 1.0-mg papain group and 60% of mice in the 2.0-mg papain group developed AAA. In both papain groups, 100% of mice developed AAA, and 65% of mice in the porcine pancreatic elastase group developed AAA on postoperative day 14. Furthermore, hematoxylin/eosin, elastin van Gieson, and Masson staining of tissues from the papain group revealed thickened media and intimal hyperplasia, collagen sediments, and elastin destruction, indicating that AAA histochemical alteration was similar to that of humans. In addition, the immunohistochemical analysis was conducted to detect infiltrated inflammatory cells, such as macrophages and leukocytes, in the aortic wall and hyperplasic adventitia. The expression of matrix metalloproteinase 2 and 9 was significantly upregulated in papain and human AAA tissues. Periarterial incubation with 1.0 mg of papain for 20 minutes can successfully create an experimental AAA model in mice for 14 days, which can be used to explore the mechanism and treatment of human AAA.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Department of Vascular Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Qin-Ye Chen
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Jie Xiao
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Li-Chuan Shen
- Department of Vascular Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Xian-Tao Li
- Department of Vascular Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Yu-Ze Yang
- The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Ping-Fan Guo
- Department of Vascular Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| | - Da-Cen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
93
|
Reutersberg B, Metschl S, Salvermoser M, Eckstein HH, Knappich C, Maegdefessel L, Jaroslav P, Busch A. CXCR4 - a possible serum marker for risk stratification of abdominal aortic aneurysms. VASA 2023; 52:124-132. [PMID: 36519232 DOI: 10.1024/0301-1526/a001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Abdominal aortic aneurysm (AAA) rupture is still associated with a mortality rate of 80-90%. Imaging techniques or molecular fingerprinting for patient-specific risk stratification to identify pending rupture are still lacking. The chemokine (C-X-C motif) receptor (CXCR4) activation by CXCL12 ligand has been identified as a marker of inflammation and atherosclerosis, associated with AAA. Both are highly expressed in the aortic aneurysm wall. However, it is still unclear whether different expression levels of CXCR4 and CXCL12 can distinguish ruptured AAAs (rAAA) from intact AAAs (iAAA). Patients and methods: Abdominal aortic tissue samples (rAAA: n=29; iAAA: n=54) were excised during open aortic repair. Corresponding serum samples from these patients (n=9 from rAAAs; n=47 from iAAA) were drawn pre-surgery. Healthy aortic tissue samples (n=8) obtained from adult kidney donors during transplantation and serum samples from healthy adult volunteers were used as controls (n=5 each). Results: CXCR4 was mainly expressed in the media of the aneurysmatic tissue. Focal positive staining was also observed in areas of inflammatory infiltrates within the adventitia. In tissue lysates, no significant differences between iAAA, rAAA, and healthy controls were observed upon ELISA analysis. In serum samples, the level of CXCR4 was significantly increased in rAAA by 4-fold compared to healthy controls (p=0.011) and 3.0-fold for rAAA compared to iAAA (p<0.001). Furthermore a significant positive correlation between aortic diameter and serum CXCR4 concentration was found for both, iAAA and rAAA (p=0.042). Univariate logistic regression analysis showed that increased CXCR4 serum concentrations were associated with AAA rupture (OR: 4.28, 95% CI: 1.95-12.1, p=0.001). Conclusions: CXCR4 concentration was significantly increased in serum of rAAA patients and showed a significant correlation with an increased aortic diameter. The level of CXCR4 in serum was associated with a more than 4-fold risk increase for rAAA and thus could possibly serve as a biomarker in the future. However, further validation in larger studies is required.
Collapse
Affiliation(s)
- Benedikt Reutersberg
- Department for Vascular and Endovascular Surgery, Munich Vascular Biobank, Munich Aortic Center (MAC), University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany.,Department for Vascular Surgery, University Hospital Zurich, Switzerland
| | - Susanne Metschl
- Department for Vascular and Endovascular Surgery, Munich Vascular Biobank, Munich Aortic Center (MAC), University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Michael Salvermoser
- Department for Vascular and Endovascular Surgery, Munich Vascular Biobank, Munich Aortic Center (MAC), University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany.,Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University of Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Munich Vascular Biobank, Munich Aortic Center (MAC), University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Christoph Knappich
- Department for Vascular and Endovascular Surgery, Munich Vascular Biobank, Munich Aortic Center (MAC), University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Munich Vascular Biobank, Munich Aortic Center (MAC), University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Pelisek Jaroslav
- Department for Vascular and Endovascular Surgery, Munich Vascular Biobank, Munich Aortic Center (MAC), University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany.,Department for Vascular Surgery, University Hospital Zurich, Switzerland
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Munich Vascular Biobank, Munich Aortic Center (MAC), University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany.,Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Germany
| |
Collapse
|
94
|
Tzirakis K, Kamarianakis Y, Kontopodis N, Ioannou CV. The Effect of Blood Rheology and Inlet Boundary Conditions on Realistic Abdominal Aortic Aneurysms under Pulsatile Flow Conditions. Bioengineering (Basel) 2023; 10:bioengineering10020272. [PMID: 36829766 PMCID: PMC9953019 DOI: 10.3390/bioengineering10020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The effects of non-Newtonian rheology and boundary conditions on various pathophysiologies have been studied quite extensively in the literature. The majority of results present qualitative and/or quantitative conclusions that are not thoroughly assessed from a statistical perspective. METHODS The finite volume method was employed for the numerical simulation of seven patient-specific abdominal aortic aneurysms. For each case, five rheological models and three inlet velocity boundary conditions were considered. Outlier- and heteroscedasticity-robust ANOVA tests assessed the simultaneous effect of rheological specifications and boundary conditions on fourteen variables that capture important characteristics of vascular flows. RESULTS The selection of inlet velocity profiles appears as a more critical factor relative to rheological specifications, especially regarding differences in the oscillatory characteristics of computed flows. Response variables that relate to the average tangential force on the wall over the entire cycle do not differ significantly across alternative factor levels, as long as one focuses on non-Newtonian specifications. CONCLUSIONS The two factors, namely blood rheological models and inlet velocity boundary condition, exert additive effects on variables that characterize vascular flows, with negligible interaction effects. Regarding thrombus-prone conditions, the Plug inlet profile offers an advantageous hemodynamic configuration with respect to the other two profiles.
Collapse
Affiliation(s)
- Konstantinos Tzirakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Crete, Greece
- Correspondence:
| | - Yiannis Kamarianakis
- Data Science Group, Institute of Applied and Computational Mathematics, Foundation for Research & Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Nikolaos Kontopodis
- Vascular Surgery Department, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Christos V. Ioannou
- Vascular Surgery Department, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
95
|
Cai D, Sun C, Murashita T, Que X, Chen SY. ADAR1 Non-Editing Function in Macrophage Activation and Abdominal Aortic Aneurysm. Circ Res 2023; 132:e78-e93. [PMID: 36688311 PMCID: PMC10316962 DOI: 10.1161/circresaha.122.321722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Macrophage activation plays a critical role in abdominal aortic aneurysm (AAA) development. However, molecular mechanisms controlling macrophage activation and vascular inflammation in AAA remain largely unknown. The objective of the study was to identify novel mechanisms underlying adenosine deaminase acting on RNA (ADAR1) function in macrophage activation and AAA formation. METHODS Aortic transplantation was conducted to determine the importance of nonvascular ADAR1 in AAA development/dissection. Ang II (Angiotensin II) infusion of ApoE-/- mouse model combined with macrophage-specific knockout of ADAR1 was used to study ADAR1 macrophage-specific role in AAA formation/dissection. The relevance of macrophage ADAR1 to human AAA was examined using human aneurysm specimens. Moreover, a novel humanized AAA model was established to test the role of human macrophages in aneurysm formation in human arteries. RESULTS Allograft transplantation of wild-type abdominal aortas to ADAR1+/- recipient mice significantly attenuated AAA formation, suggesting that nonvascular ADAR1 is essential for AAA development. ADAR1 deficiency in hematopoietic cells decreased the prevalence and severity of AAA while inhibited macrophage infiltration and aorta wall inflammation. ADAR1 deletion blocked the classic macrophage activation, diminished NF-κB (nuclear factor kappa B) signaling, and enhanced the expression of a number of anti-inflammatory microRNAs. Mechanistically, ADAR1 interacted with Drosha to promote its degradation, which attenuated Drosha-DGCR8 (DiGeorge syndrome critical region 8) interaction, and consequently inhibited pri- to pre-microRNA processing of microRNAs targeting IKKβ, resulting in an increased IKKβ (inhibitor of nuclear factor kappa-B) expression and enhanced NF-κB signaling. Significantly, ADAR1 was induced in macrophages and interacted with Drosha in human AAA lesions. Reconstitution of ADAR1-deficient, but not the wild type, human monocytes to immunodeficient mice blocked the aneurysm formation in transplanted human arteries. CONCLUSIONS Macrophage ADAR1 promotes aneurysm formation in both mouse and human arteries through a novel mechanism, that is, Drosha protein degradation, which inhibits the processing of microRNAs targeting NF-kB signaling and thus elicits macrophage-mediated vascular inflammation in AAA.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Takashi Murashita
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
96
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
97
|
Leach JR, Zhu C, Burris N, Hope MD. Editorial: Advances in aortic imaging. Front Cardiovasc Med 2023; 10:1137949. [PMID: 36818356 PMCID: PMC9929938 DOI: 10.3389/fcvm.2023.1137949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Affiliation(s)
- Joseph R. Leach
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Joseph R. Leach ✉
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Nicolas Burris
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Michael D. Hope
- California Advanced Imaging Medical Associates, San Francisco, CA, United States
| |
Collapse
|
98
|
Dai M, Zhu X, Zeng S, Liu Q, Hu R, Huang L, Wang Y, Deng J, Yu Q. Dexmedetomidine protects cells from Angiotensin II-induced smooth muscle cell phenotype switch and endothelial cell dysfunction. Cell Cycle 2023; 22:450-463. [PMID: 36196460 PMCID: PMC9879174 DOI: 10.1080/15384101.2022.2124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/07/2022] [Accepted: 09/10/2022] [Indexed: 01/29/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder greatly threatening life of the elderly population. Dexmedetomidine (DEX), an α2-adrenergic receptor agonist, has been shown to suppress AAA development. Nevertheless, the signaling pathways that might be mediated by DEX in AAA has not been clarified. Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) were treated with Angiotensin II (Ang II) to mimic AAA in vitro. BrdU, wound healing, and Transwell assays were utilized for measuring VSMC proliferation and migration. Western blotting was used for evaluating protein levels of contractile VSMC markers, collagens and matrix metalloproteinases (MMPs) in VSMCs as well as apoptosis- and HMGB1/TLR4/NF-κB signaling-related markers in ECs. Cell adhesion molecule expression and monocyte-endothelial adhesion were assessed by immunofluorescence staining and adhesion assays. Flow cytometry was implemented for analyzing EC apoptosis. Hematoxylin-eosin staining and ELISA were used to detect the effect of DEX in vivo. In this study, DEX inhibited Ang II-evoked VSMC phenotype switch and extracellular matrix degradation. DEX suppressed the inflammatory response and apoptosis of ECs induced by Ang II. DEX inhibited HMGB1/TLR4/NF-κB signaling pathway in Ang II-treated ECs. DEX attenuated Ang II-induced AAA and inflammation in mice. Overall, DEX ameliorates Ang II-induced VSMC phenotype switch, and inactivates HMGB1/TLR4/NF-κB signaling pathway to alleviate Ang II-induced EC dysfunction.
Collapse
Affiliation(s)
- Min Dai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohong Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Simin Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruilin Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lianghui Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Yu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
99
|
Åström Malm I, De Basso R, Blomstrand P. No differences in FBN1 genotype between men with and without abdominal aortic aneurysm. BMC Cardiovasc Disord 2023; 23:36. [PMID: 36670346 PMCID: PMC9854173 DOI: 10.1186/s12872-023-03068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is an aortic enlargement in which the transverse diameter reaches at least 30 mm. Certain risk factors, such as age, male gender, and smoking, are well known; however, less is known about the genetic factors involved. Fibrillin-1 (FBN1) is a protein that coordinates the deposition of elastin fibres in the extracellular matrix and is therefore likely to affect the elastic properties in the aortic wall. Previously studies have found associations between the FBN1-2/3 genotype and arterial stiffness, but how different FBN1 genotypes, AAA, and arterial stiffness are related has been less frequently investigated. AIM This study aimed to investigate whether there is a difference in FBN1 genotype between men with and without AAA. A further aim was to study whether the FBN1 genotype affects arterial wall stiffness differently in men with and without AAA. METHODS Pulse wave velocity and FBN1 genotyping were performed in 229 men (159 with AAA, 70 without AAA). Participants were recruited from ultrasound AAA surveillance programs or ongoing ultrasound screening programs from 2011 to 2016. RESULTS The distribution of the FBN1 genotype in the AAA and control groups were as follows: FBN1-2/2: 62% vs. 64%; FBN1-2/3: 8% vs. 14%; and FBN1-2/4: 30% vs. 21%, respectively. Men with AAA and FBN1-2/2 had increased central pulse wave velocity (p < 0.005) compared to the control group (those without AAA) with the FBN1-2/2 genotype. CONCLUSION No differences were found with respect to FBN1 genotypes between men with and without AAA. The development of AAA in men does not appear to be linked to a specific FBN1 genotype. Nevertheless, men with FBN1-2/2 and AAA have increased central arterial stiffness compared to men with the same FBN1 genotype but without AAA.
Collapse
Affiliation(s)
- Ida Åström Malm
- grid.118888.00000 0004 0414 7587Department of Natural Sciences and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Rachel De Basso
- grid.118888.00000 0004 0414 7587Department of Natural Sciences and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Peter Blomstrand
- grid.118888.00000 0004 0414 7587Department of Natural Sciences and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden ,grid.413253.2Department of Clinical Physiology, County Hospital Ryhov, Jönköping, Sweden
| |
Collapse
|
100
|
Cho HJ, Yoo JH, Kim MH, Ko KJ, Jun KW, Han KD, Hwang JK. Risk of various cancers in adults with abdominal aortic aneurysms. J Vasc Surg 2023; 77:80-88.e2. [PMID: 35850163 DOI: 10.1016/j.jvs.2022.03.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND The cause of death for patients with an abdominal aortic aneurysm (AAA) can be related to the AAA itself. However, cancer-related mortality could also be a contributing factor. In the present study, we examined the hypothesis that an association exists between AAAs and certain cancers. METHODS Information from 2009 to 2015 was extracted from the Korean National Health Insurance Service database. We included 14,920 participants with a new diagnosis of an AAA. Propensity score matching by age and sex with disease-free patients was used to select the control group of 44,760 participants. The primary end point of the present study was a new diagnosis of various cancers. RESULTS The hazard ratio (HR) for cancer incidence was higher in the AAA group than in the control group for hepatoma, pancreatic cancer, and lung cancer (HR, 1.376, 1.429, and 1.394, respectively). In the case of leukemia, the HR for cancer occurrence was not significantly higher in the AAA group than in the control group. However, when stratified by surgery, the HR was significantly higher for the surgical group (HR, 3.355), especially for endovascular aneurysm repair (HR, 3.864). CONCLUSIONS We found that AAAs are associated with an increased risk of cancer, in particular, hepatoma, pancreatic cancer, and lung cancer, even after adjusting for several comorbidities. Thus, continued follow-up is necessary for patients with an AAA to permit the early detection of the signs and symptoms of cancer.
Collapse
Affiliation(s)
- Hyung-Jin Cho
- Division of Vascular and Transplant Surgery, Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ju-Hwan Yoo
- Department of Biomedicine and Health Science, The Catholic University of Korea, Seoul, Korea
| | - Mi-Hyeong Kim
- Division of Vascular and Transplant Surgery, Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Jai Ko
- Department of Surgery, Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Kang-Woong Jun
- Division of Vascular and Transplant Surgery, Department of Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Kyung-do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea.
| | - Jeong-Kye Hwang
- Division of Vascular and Transplant Surgery, Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|