51
|
Li F, Chen Y, Anton M, Nielsen J. GotEnzymes: an extensive database of enzyme parameter predictions. Nucleic Acids Res 2022; 51:D583-D586. [PMID: 36169223 PMCID: PMC9825421 DOI: 10.1093/nar/gkac831] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/29/2023] Open
Abstract
Enzyme parameters are essential for quantitatively understanding, modelling, and engineering cells. However, experimental measurements cover only a small fraction of known enzyme-compound pairs in model organisms, much less in other organisms. Artificial intelligence (AI) techniques have accelerated the pace of exploring enzyme properties by predicting these in a high-throughput manner. Here, we present GotEnzymes, an extensive database with enzyme parameter predictions by AI approaches, which is publicly available at https://metabolicatlas.org/gotenzymes for interactive web exploration and programmatic access. The first release of this data resource contains predicted turnover numbers of over 25.7 million enzyme-compound pairs across 8099 organisms. We believe that GotEnzymes, with the readily-predicted enzyme parameters, would bring a speed boost to biological research covering both experimental and computational fields that involve working with candidate enzymes.
Collapse
Affiliation(s)
- Feiran Li
- Correspondence may also be addressed to Feiran Li.
| | | | | | - Jens Nielsen
- To whom correspondence should be addressed. Tel: +46 31 772 3804;
| |
Collapse
|
52
|
Edwardes LV, Caswell SJ, Giurrandino M, Zhai X, Gohlke A, Kostomiris DH, Pollard HK, Pflug A, Hamm GR, Jervis KV, Clarkson PN, Syson K. Dissecting the Kinetic Mechanism of Human Lysine Methyltransferase 2D and Its Interactions with the WRAD2 Complex. Biochemistry 2022; 61:1974-1987. [PMID: 36070615 PMCID: PMC9494746 DOI: 10.1021/acs.biochem.2c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human lysine methyltransferase 2D (hKMT2D) is an epigenetic writer catalyzing the methylation of histone 3 lysine 4. hKMT2D by itself has little catalytic activity and reaches full activation as part of the WRAD2 complex, additionally comprising binding partners WDR5, RbBP5, Ash2L, and DPY30. Here, a detailed mechanistic study of the hKMT2D SET domain and its WRAD2 interactions is described. We characterized the WRAD2 subcomplexes containing full-length components and the hKMT2D SET domain. By performing steady-state analysis as a function of WRAD2 concentration, we identified the inner stoichiometry and determined the binding affinities for complex formation. Ash2L and RbBP5 were identified as the binding partners critical for the full catalytic activity of the SET domain. Contrary to a previous report, product and dead-end inhibitor studies identified hKMT2D as a rapid equilibrium random Bi-Bi mechanism with EAP and EBQ dead-end complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) analysis showed that hKMT2D uses a distributive mechanism and gives further insights into how the WRAD2 components affect mono-, di-, and trimethylation. We also conclude that the Win motif of hKMT2D is not essential in complex formation, unlike other hKMT2 proteins.
Collapse
Affiliation(s)
- Lucy V Edwardes
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Sarah J Caswell
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Mariacarmela Giurrandino
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Xiang Zhai
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Boston, Massachusetts 02210, United States
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Demetrios H Kostomiris
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Boston, Massachusetts 02210, United States
| | - Hannah K Pollard
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Alexander Pflug
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory R Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Kate V Jervis
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Paul N Clarkson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Karl Syson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
53
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
54
|
Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B 2022; 12:3049-3062. [PMID: 35865092 PMCID: PMC9293739 DOI: 10.1016/j.apsb.2022.02.002] [Citation(s) in RCA: 499] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
Ninety percent of clinical drug development fails despite implementation of many successful strategies, which raised the question whether certain aspects in target validation and drug optimization are overlooked? Current drug optimization overly emphasizes potency/specificity using structure‒activity-relationship (SAR) but overlooks tissue exposure/selectivity in disease/normal tissues using structure‒tissue exposure/selectivity-relationship (STR), which may mislead the drug candidate selection and impact the balance of clinical dose/efficacy/toxicity. We propose structure‒tissue exposure/selectivity-activity relationship (STAR) to improve drug optimization, which classifies drug candidates based on drug's potency/selectivity, tissue exposure/selectivity, and required dose for balancing clinical efficacy/toxicity. Class I drugs have high specificity/potency and high tissue exposure/selectivity, which needs low dose to achieve superior clinical efficacy/safety with high success rate. Class II drugs have high specificity/potency and low tissue exposure/selectivity, which requires high dose to achieve clinical efficacy with high toxicity and needs to be cautiously evaluated. Class III drugs have relatively low (adequate) specificity/potency but high tissue exposure/selectivity, which requires low dose to achieve clinical efficacy with manageable toxicity but are often overlooked. Class IV drugs have low specificity/potency and low tissue exposure/selectivity, which achieves inadequate efficacy/safety, and should be terminated early. STAR may improve drug optimization and clinical studies for the success of clinical drug development.
Collapse
Affiliation(s)
- Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Meyer Squibb Company, Summit, NJ, 07920, USA
| |
Collapse
|
55
|
Kwon CW, Chung B, Yoo SH, Chang PS. Heterologous expression of a papain-like protease inhibitor (SnuCalCpI17) in the E. coli and its mode of inhibition. Appl Microbiol Biotechnol 2022; 106:4563-4574. [PMID: 35748913 DOI: 10.1007/s00253-022-12032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
The effect of the Escherichia coli (E. coli) Rosetta (DE3) system on the expression of recombinant papain-like cysteine protease inhibitors (SnuCalCpIs) was evaluated, and the inhibition mode of the expressed inhibitor was determined. SnuCalCpI08 and SnuCalCpI17, which previously had not been expressed in the E. coli BL21 (DE3) system due to rare codons of more than 10%, were successfully expressed in E. coli Rosetta (DE3) since the strain provides tRNAs for six rare codons. Initially, both inhibitors were expressed as inclusion bodies; however, the water solubility of SnuCalCpI17 could be improved by lowering the incubation temperature, reducing the IPTG concentration, and increasing the induction time. In contrast, the other inhibitor could not be solubilized in water. To validate whether the inhibitor was expressed with correct protein folding, a papain inhibition assay was performed with SnuCalCpI17. SnuCalCpI17 showed a half-maximal inhibitory concentration (IC50) of 105.671 ± 9.857 µg/mL and a slow-binding inhibition mode against papain at pH 7.0 with a Kiapp of 75.80 μg/mL. The slow-binding inhibitor has a slow dissociation from the inhibitor-target complex, resulting in a long residence time in vivo, and thus can effectively inhibit the target at doses far below the IC50 of the inhibitor. KEY POINTS: • Propeptide inhibitor (SnuCalCpI17) containing rare codons was expressed in E. coli Rosetta (DE3). • The slow-binding inhibition was shown by plotting the apparent first-order rate constant (kobs). • Protein-protein interaction between SnuCalCpIs and papain was verified by docking simulation.
Collapse
Affiliation(s)
- Chang Woo Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bokyong Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006, Republic of Korea
| | - Pahn-Shick Chang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
56
|
Adler NS, Cababie LA, Sarto C, Cavasotto CN, Gebhard L, Estrin D, Gamarnik A, Arrar M, Kaufman S. Insights into the product release mechanism of dengue virus NS3 helicase. Nucleic Acids Res 2022; 50:6968-6979. [PMID: 35736223 PMCID: PMC9262617 DOI: 10.1093/nar/gkac473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Abstract
The non-structural protein 3 helicase (NS3h) is a multifunctional protein that is critical in RNA replication and other stages in the flavivirus life cycle. NS3h uses energy from ATP hydrolysis to translocate along single stranded nucleic acid and to unwind double stranded RNA. Here we present a detailed mechanistic analysis of the product release stage in the catalytic cycle of the dengue virus (DENV) NS3h. This study is based on a combined experimental and computational approach of product-inhibition studies and free energy calculations. Our results support a model in which the catalytic cycle of ATP hydrolysis proceeds through an ordered sequential mechanism that includes a ternary complex intermediate (NS3h-Pi-ADP), which evolves releasing the first product, phosphate (Pi), and subsequently ADP. Our results indicate that in the product release stage of the DENV NS3h a novel open-loop conformation plays an important role that may be conserved in NS3 proteins of other flaviviruses as well.
Collapse
Affiliation(s)
| | | | - Carolina Sarto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, C1428EGA Argentina,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, C1428EGA Argentina
| | - Claudio N Cavasotto
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Pilar, Buenos Aires, B1630FHB Argentina,Universidad Austral, Facultad de Ciencias Biomédicas, and Facultad de Ingeniería, Pilar, Buenos Aires, B1630FHB Argentina,Universidad Austral, Austral Institute for Applied Artificial Intelligence, Pilar, Buenos Aires, B1630FHB Argentina
| | - Leopoldo G Gebhard
- CONICET-Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Bernal, Buenos Aires, B1876 Argentina
| | - Darío A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, C1428EGA Argentina,CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, C1428EGA Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir- CONICET, Buenos Aires, C1405BWE Argentina
| | | | - Sergio B Kaufman
- To whom correspondence should be addressed. Tel: +5411 4964 8289 ext 106; Fax: +5411 4962 5457;
| |
Collapse
|
57
|
Sangwan N, Singh J, Chauhan A, Prakash A, Khanduja KL, Medhi B, Avti PK. Terpenoid analogues as putative therapeutic agents towards glutathione peroxidase (GPX4) in neurodegenerative disorders: a dynamic computational approach. J Biomol Struct Dyn 2022:1-11. [PMID: 35706069 DOI: 10.1080/07391102.2022.2086923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Carvacrol, a monoterpenoid phenolic phytochemical, a potent antioxidant, and neuroprotective agent is an emerging neuroprotective agent for neurodegenerative diseases (NDDs). Considering scarce information on carvacrol analogues, we hypothesized an in silico investigation emphasizing their preferential binding towards glutathione peroxidase (GPX4) as a target across different species for evaluating through preclinical to clinical studies (2OBI and 6HN3 for Homo sapiens; 5L71 for Mus musculus). Enrichment analysis suggests that ROC (0.59) and AUC (0.61) values have higher sensitivity and significant number of ranked actives. Extra Precision (XP) of 59 compounds was conducted, followed by molecular dynamics and trajectory analysis. Top three hits were chosen for each target i.e., 101203408, 101419546, 59294 (2OBI); 101419546, 100938426, and 28092 (6HN3); and 12059, 52434, 335 (5L71) implying high docking score. 101419546 is common among 2OBI and 6HN3 targets, indicating a multi-target approach. Trajectory analysis of hits provides a permissible range of RMSD, RMSF, Rgyr (∼1.3-2 Å, ∼0.84-1.09 Å, ∼15.05-15.29 Å). Overlapped dynamically simulated 3D-structures of Apo and complexes display significant conformational changes in RMSD of the complexes (∼1.40-2.0 Å) in contrast to Apo (∼1.3-1.8 Å), suggesting structural stability and compactness of the complexes within 45-90 ns. DCCM and PCA analysis shows positive correlation and residual clustering among residues of complexes. The establishment of firm H-bonding, favorable aromaticity and ADMET profile makes them promising drugs across various GPX4 targets among the species. Studies considering the targets across different species aids in anticipating and discovering a common compound for future NDDs therapeutics from bench to bedside.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
58
|
Mons E, Roet S, Kim RQ, Mulder MPC. A Comprehensive Guide for Assessing Covalent Inhibition in Enzymatic Assays Illustrated with Kinetic Simulations. Curr Protoc 2022; 2:e419. [PMID: 35671150 DOI: 10.1002/cpz1.419] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covalent inhibition has become more accepted in the past two decades, as illustrated by the clinical approval of several irreversible inhibitors designed to covalently modify their target. Elucidation of the structure-activity relationship and potency of such inhibitors requires a detailed kinetic evaluation. Here, we elucidate the relationship between the experimental read-out and the underlying inhibitor binding kinetics. Interactive kinetic simulation scripts are employed to highlight the effects of in vitro enzyme activity assay conditions and inhibitor binding mode, thereby showcasing which assumptions and corrections are crucial. Four stepwise protocols to assess the biochemical potency of (ir)reversible covalent enzyme inhibitors targeting a nucleophilic active site residue are included, with accompanying data analysis tailored to the covalent binding mode. Together, this will serve as a guide to make an educated decision regarding the most suitable method to assess covalent inhibition potency. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol I: Progress curve analysis of substrate association competition Basic Data Analysis Protocol 1A: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 1B: One-step irreversible covalent inhibition Basic Data Analysis Protocol 1C: Two-step reversible covalent inhibition Basic Data Analysis Protocol 1D: Two-step irreversible covalent inhibition with substrate depletion Basic Protocol II: Incubation time-dependent potency IC50 (t) Basic Data Analysis Protocol 2: Two-step irreversible covalent inhibition Basic Protocol III: Preincubation time-dependent inhibition without dilution Basic Data Analysis Protocol 3: Preincubation time-dependent inhibition without dilution Basic Data Analysis Protocol 3Ai: Two-step irreversible covalent inhibition Alternative Data Analysis Protocol 3Aii: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 3Bi: One-step irreversible covalent inhibition Alternative Data Analysis Protocol 3Bii: One-step irreversible covalent inhibition Basic Data Analysis Protocol 3C: Two-step reversible covalent inhibition Basic Protocol IV: Preincubation time-dependent inhibition with dilution/competition Basic Data Analysis Protocol 4: Preincubation time-dependent inhibition with dilution Basic Data Analysis Protocol 4Ai: Two-step irreversible covalent inhibition Alternative Data Analysis Protocol 4Aii: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 4Bi: One-step irreversible covalent inhibition Alternative Data Analysis Protocol 4Bii: One-step irreversible covalent inhibition.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.,Current: Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sander Roet
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robbert Q Kim
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
59
|
Pöhner I, Quotadamo A, Panecka-Hofman J, Luciani R, Santucci M, Linciano P, Landi G, Di Pisa F, Dello Iacono L, Pozzi C, Mangani S, Gul S, Witt G, Ellinger B, Kuzikov M, Santarem N, Cordeiro-da-Silva A, Costi MP, Venturelli A, Wade RC. Multitarget, Selective Compound Design Yields Potent Inhibitors of a Kinetoplastid Pteridine Reductase 1. J Med Chem 2022; 65:9011-9033. [PMID: 35675511 PMCID: PMC9289884 DOI: 10.1021/acs.jmedchem.2c00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The optimization
of compounds with multiple targets is a difficult
multidimensional problem in the drug discovery cycle. Here, we present
a systematic, multidisciplinary approach to the development of selective
antiparasitic compounds. Computational fragment-based design of novel
pteridine derivatives along with iterations of crystallographic structure
determination allowed for the derivation of a structure–activity
relationship for multitarget inhibition. The approach yielded compounds
showing apparent picomolar inhibition of T. brucei pteridine reductase 1 (PTR1), nanomolar inhibition of L.
major PTR1, and selective submicromolar inhibition of parasite
dihydrofolate reductase (DHFR) versus human DHFR. Moreover, by combining
design for polypharmacology with a property-based on-parasite optimization,
we found three compounds that exhibited micromolar EC50 values against T. brucei brucei while retaining
their target inhibition. Our results provide a basis for the further
development of pteridine-based compounds, and we expect our multitarget
approach to be generally applicable to the design and optimization
of anti-infective agents.
Collapse
Affiliation(s)
- Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, D-69120 Heidelberg, Germany
| | - Antonio Quotadamo
- Tydock Pharma srl, Strada Gherbella 294/B, 41126 Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Joanna Panecka-Hofman
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lucia Dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Nuno Santarem
- Instituto de Investigação e Inovação em Saúde, Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal.,Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Tydock Pharma srl, Strada Gherbella 294/B, 41126 Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, D-69120 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, D-69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
60
|
Moreno-Yruela C, Olsen CA. Determination of Slow-Binding HDAC Inhibitor Potency and Subclass Selectivity. ACS Med Chem Lett 2022; 13:779-785. [PMID: 35586419 PMCID: PMC9109163 DOI: 10.1021/acsmedchemlett.1c00702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) 1-3 regulate chromatin structure and gene expression. These three enzymes are targets for cancer chemotherapy and have been studied for the treatment of immune disorders and neurodegeneration, but there is a lack of selective pharmacological tool compounds to unravel their individual roles. Potent inhibitors of HDACs 1-3 often display slow-binding kinetics, which causes a delay in inhibitor-enzyme equilibration and may affect assay readout. Here we compare the potencies and selectivities of slow-binding inhibitors measured by discontinuous and continuous assays. We find that entinostat, a clinical candidate, inhibits HDACs 1-3 by a two-step slow-binding mechanism with lower potencies than previously reported. In addition, we show that RGFP966, commercialized as an HDAC3-selective probe, is a slow-binding inhibitor with inhibitor constants of 57, 31, and 13 nM against HDACs 1-3, respectively. These data highlight the need for thorough kinetic investigation in the development of selective HDAC probes.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
61
|
Kinetic Modeling of Time-Dependent Enzyme Inhibition by Pre-Steady-State Analysis of Progress Curves: The Case Study of the Anti-Alzheimer's Drug Galantamine. Int J Mol Sci 2022; 23:ijms23095072. [PMID: 35563466 PMCID: PMC9105972 DOI: 10.3390/ijms23095072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/27/2023] Open
Abstract
The Michaelis–Menten model of enzyme kinetic assumes the free ligand approximation, the steady-state approximation and the rapid equilibrium approximation. Analytical methods to model slow-binding inhibitors by the analysis of initial velocities have been developed but, due to their inherent complexity, they are seldom employed. In order to circumvent the complications that arise from the violation of the rapid equilibrium assumption, inhibition is commonly evaluated by pre-incubating the enzyme and the inhibitors so that, even for slow inhibitors, the binding equilibrium is established before the reaction is started. Here, we show that for long drug-target residence time inhibitors, the conventional analysis of initial velocities by the linear regression of double-reciprocal plots fails to provide a correct description of the inhibition mechanism. As a case study, the inhibition of acetylcholinesterase by galantamine, a drug approved for the symptomatic treatment of Alzheimer’s disease, is reported. For over 50 years, analysis based on the conventional steady-state model has overlooked the time-dependent nature of galantamine inhibition, leading to an erroneous assessment of the drug potency and, hence, to discrepancies between biochemical data and the pharmacological evidence. Re-examination of acetylcholinesterase inhibition by pre-steady state analysis of the reaction progress curves showed that the potency of galantamine has indeed been underestimated by a factor of ~100.
Collapse
|
62
|
Patel EN, Turner LD, Hixon MS, Janda KD. Identification of Slow-Binding Inhibitors of the BoNT/A Protease. ACS Med Chem Lett 2022; 13:742-747. [PMID: 35450355 PMCID: PMC9014515 DOI: 10.1021/acsmedchemlett.2c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a lethal toxin, which causes botulism, and is categorized as a bioterrorism threat, which causes flaccid paralysis and death. Botulinum A neurotoxicity is governed through its light chain (LC), a zinc metalloprotease. Pharmacological investigations aimed at negating BoNT/A's LC have typically looked to inhibitors that have been shown to inhibit the light chain's activity by reversible zinc chelation within its active site. This report outlines the first examples of nonpeptidic inhibitors of the BoNT/A LC that possess slow-binding kinetics, a needed logic to counteract the longevity of BoNT/A. Cyclopropane, alkyl, and alkenyl derivatives of 2,4-dichlorocinamic hydroxamic acid (DCHA) were shown to possess both one-step and two-step slow-binding kinetics. Structure-kinetic relationships (SKRs) were observed and were rationalized with the aid of docking models that predicted improved interactions with residues within a hydrophobic cleft adjacent to the active site.
Collapse
Affiliation(s)
- Ealin N. Patel
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lewis D. Turner
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Biosplice Therapeutics, 9360 Towne Centre Drive, San Diego, California 92121, United States
| | - Mark S. Hixon
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
63
|
Fungal-derived compounds and mycogenic nanoparticles with antimycobacterial activity: a review. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AbstractTuberculosis (TB) is a persistent lung infection caused by Mycobacterium tuberculosis. The disease is characterized by high mortality rates of over 1 million per year. Unfortunately, the potency and effectiveness of currently used anti-TB drugs is gradually decreasing due to the constant development of persistence and resistance by M. tuberculosis. The adverse side effects associated with current anti-TB drugs, along with anti-TB drug resistance, present an opportunity to bio-prospect novel potent anti-TB drugs from unique sources. Fundamentally, fungi are a rich source of bioactive secondary metabolites with valuable therapeutic potential. Enhancing the potency and effectiveness of fungal-based anti-TB drug leads by chemical synthesis and/or modification with nanomaterials, may result in the discovery of novel anti-TB drugs. In this review, the antimycobacterial activity of fungal-derived compounds and mycogenic nanoparticles are summarized. Numerous fungal-derived compounds as well as some mycogenic nanoparticles that exhibit strong antimycobacterial activity that is comparable to that of approved drugs, were found. If fully explored, fungi holds the promise to become key drivers in the generation of lead compounds in TB-drug discovery initiatives.
Collapse
|
64
|
Bashir K, Naz S, Rasheed HM, Farooq U, Shah AJ, McCauley EP, Crews P, Khan T. Tandem high resolution mass spectrometry based phytochemical composition of Sauromatum guttatum tubers and its enzyme inhibitory potential with molecular docking. J Chromatogr A 2022; 1672:463055. [DOI: 10.1016/j.chroma.2022.463055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
|
65
|
Morsby J, Thimes RL, Olson JE, McGarraugh HH, Payne JN, Camden JP, Smith BD. Enzyme Sensing Using 2-Mercaptopyridine-Carbonitrile Reporters and Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:6419-6426. [PMID: 35224403 PMCID: PMC8867545 DOI: 10.1021/acsomega.2c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The high sensitivity and functional group selectivity of surface-enhanced Raman scattering (SERS) make it an attractive method for enzyme sensing, but there is currently a severe lack of enzyme substrates that release SERS reporter molecules with favorable detection properties. We find that 2-mercaptopyridine-3-carbonitrile ( o-MPN) and 2-mercaptopyridine-5-carbonitrile ( p-MPN) are highly effective as SERS reporter molecules that can be captured by silver or gold nanoparticles to give intense SERS spectra, each with a distinctive nitrile peak at 2230 cm-1. p-MPN is a more sensitive reporter and can be detected at low nanomolar concentrations. An assay validation study synthesized two novel substrate molecules, Glc-o-MPN and Glc-p-MPN, and showed that they can be cleaved efficiently by β-glucosidase (K m = 228 and 162 μM, respectively), an enzyme with broad industrial and biomedical utility. Moreover, SERS detection of the released reporters ( o-MPN or p-MPN) enabled sensing of β-glucosidase activity and β-glucosidase inhibition. Comparative experiments using a crude almond flour extract showed that the presence of β-glucosidase activity could be confirmed by SERS detection in a much shorter time period (>10 time shorter) than by UV-vis absorption detection. It is likely that a wide range of enzyme assays and diagnostic tests can be developed using 2-mercaptopyridine-carbonitriles as SERS reporter molecules.
Collapse
Affiliation(s)
- Janeala
J. Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jacob E. Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Hannah H. McGarraugh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jason N. Payne
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| |
Collapse
|
66
|
Dwibedi V, Jain S, Singhal D, Mittal A, Rath SK, Saxena S. Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases. Appl Microbiol Biotechnol 2022; 106:1399-1417. [PMID: 35106636 DOI: 10.1007/s00253-022-11801-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
A quest for identification of novel, safe and efficient natural compounds, as additives in the modern food and cosmetic industries, has been prompted by concerns about toxicity and side effects of synthetic products. Plant phenolic compounds are one of the most documented natural products due to their multifarious biological applications. Grape (Vitis vinifera) is an important source of phenolic compounds such as phenolic acids, tannins, quinones, coumarins and, most importantly, flavonoids/flavones. This review crisply encapsulates enzyme inhibitory activities of various grape polyphenols towards different key human-ailment-associated enzymes: xanthine oxidase (gout), tyrosinase (hyperpigmentation), α-amylase and α-glucosidase (diabetes mellitus), pancreatic lipase (obesity), cholinesterase (Alzheimer's disease), angiotensin i-converting enzymes (hypertension), α-synuclein (Parkinson's disease) and histone deacetylase (various diseases). The review also depicts the enzyme inhibitory mechanism of various grape polyphenols and briefly discusses their stature as potential therapeutic and drug development candidates. KEY POINTS: • Nineteen major bioactive polyphenols from the grape/grape products and their disease targets are presented • Sixty-two important polyphenols as enzyme inhibitors from grape/grape products are presented • A thorough description and graphical presentation of biological significance of polyphenols against various diseases.
Collapse
Affiliation(s)
- Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Anuradha Mittal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, Danteswari College of Pharmacy, Borpadar, Jagdalpur, Chhattisgarh, 494221, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| |
Collapse
|
67
|
Jiang Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic Biol Med 2022; 179:375-387. [PMID: 34785321 PMCID: PMC9018116 DOI: 10.1016/j.freeradbiomed.2021.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Natural forms of vitamin E comprise four tocopherols and four tocotrienols. During the last twenty years, there have been breakthroughs in our understanding of vitamin E metabolism and biological activities of vitamin E metabolites. Research has established that tocopherols and tocotrienols are metabolized via ω-hydroxylase (CYP4F2)-initiated side chain oxidation to form 13'-hydroxychromanol and 13'-carobyxychromanol (13'-COOH). 13'-COOHs are further metabolized via β-oxidation and sulfation to intermediate carboxychromanols, terminal metabolite carboxyethyl-hydroxychroman (CEHC), and sulfated analogs. Animal and human studies show that γ-, δ-tocopherol and tocotrienols are more extensively metabolized than α-tocopherol (αT), as indicated by higher formation of CEHCs and 13'-COOHs from non-αT forms than those from αT. 13'-COOHs are shown to be inhibitors of cyclooxygenase-1/-2 and 5-lipoxygenase and much stronger than CEHCs for these activities. 13'-COOHs inhibit cancer cell growth, modulate cellular lipids and activate peroxisome proliferator-activated receptor-γ and pregnane X receptor. Consistent with mechanistic findings, αT-13'-COOH or δTE-13'-COOH, respective metabolites of αT or δ-tocotrienol, show anti-inflammatory and cancer-preventive effects, modulates the gut microbiota and prevents β-amyloid formation in mice. Therefore, 13'-COOHs are a new class of bioactive compounds with anti-inflammatory and anti-cancer activities and potentially capable of modulating lipid and drug metabolism. Based on the existing evidence, this author proposes that metabolites may contribute to disease-preventing effects of γ-, δ-tocopherol and tocotrienols. The role of metabolites in αT's actions may be somewhat limited considering controlled metabolism of αT because of its association with tocopherol-transport protein and less catabolism by CYP4F2 than other vitamin E forms.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| |
Collapse
|
68
|
Anti-Diabetes, Anti-Gout, and Anti-Leukemia Properties of Essential Oils from Natural Spices Clausena indica, Zanthoxylum rhetsa, and Michelia tonkinensis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030774. [PMID: 35164038 PMCID: PMC8840550 DOI: 10.3390/molecules27030774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography–mass spectrometry (GC–MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.
Collapse
|
69
|
Probing altered enzyme activity in the biochemical characterization of cancer. Biosci Rep 2022; 42:230680. [PMID: 35048115 PMCID: PMC8819661 DOI: 10.1042/bsr20212002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Enzymes have evolved to catalyze their precise reactions at the necessary rates, locations, and time to facilitate our development, to respond to a variety of insults and challenges, and to maintain a healthy, balanced state. Enzymes achieve this extraordinary feat through their unique kinetic parameters, myriad regulatory strategies, and their sensitivity to their surroundings, including substrate concentration and pH. The Cancer Genome Atlas (TCGA) highlights the extraordinary number of ways in which the finely tuned activities of enzymes can be disrupted, contributing to cancer development and progression often due to somatic and/or inherited genetic alterations. Rather than being limited to the domain of enzymologists, kinetic constants such as kcat, Km, and kcat/Km are highly informative parameters that can impact a cancer patient in tangible ways—these parameters can be used to sort tumor driver mutations from passenger mutations, to establish the pathways that cancer cells rely on to drive patients’ tumors, to evaluate the selectivity and efficacy of anti-cancer drugs, to identify mechanisms of resistance to treatment, and more. In this review, we will discuss how changes in enzyme activity, primarily through somatic mutation, can lead to altered kinetic parameters, new activities, or changes in conformation and oligomerization. We will also address how changes in the tumor microenvironment can affect enzymatic activity, and briefly describe how enzymology, when combined with additional powerful tools, and can provide us with tremendous insight into the chemical and molecular mechanisms of cancer.
Collapse
|
70
|
Read BJ, Fisher G, Wissett OLR, Machado TFG, Nicholson J, Mitchell JBO, da Silva RG. Allosteric Inhibition of Acinetobacter baumannii ATP Phosphoribosyltransferase by Protein:Dipeptide and Protein:Protein Interactions. ACS Infect Dis 2022; 8:197-209. [PMID: 34928596 DOI: 10.1021/acsinfecdis.1c00539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis in bacteria, namely, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate. Catalytic (HisGS) and regulatory (HisZ) subunits assemble in a hetero-octamer where HisZ activates HisGS and mediates allosteric inhibition by histidine. In Acinetobacter baumannnii, HisGS is necessary for the bacterium to persist in the lung during pneumonia. Inhibition of ATPPRT is thus a promising strategy for specific antibiotic development. Here, A. baumannii ATPPRT is shown to follow a rapid equilibrium random kinetic mechanism, unlike any other ATPPRT. Histidine noncompetitively inhibits ATPPRT. Binding kinetics indicates histidine binds to free ATPPRT and to ATPPRT:PRPP and ATPPRT:ATP binary complexes with similar affinity following a two-step binding mechanism, but with distinct kinetic partition of the initial enzyme:inhibitor complex. The dipeptide histidine-proline inhibits ATPPRT competitively and likely uncompetitively, respectively, against PRPP and ATP. Rapid kinetics analysis shows His-Pro binds to the ATPPRT:ATP complex via a two-step binding mechanism. A related HisZ that shares 43% sequence identity with A. baumannii HisZ is a tight-binding allosteric inhibitor of A. baumannii HisGS. These findings lay the foundation for inhibitor design against A. baumannii ATPPRT.
Collapse
Affiliation(s)
- Benjamin J. Read
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Gemma Fisher
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Oliver L. R. Wissett
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Teresa F. G. Machado
- School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - John Nicholson
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - John B. O. Mitchell
- School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Rafael G. da Silva
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
71
|
Demir EA, Colak A, Uzuner SC, Yasar A, Bekircan O, Kabahasanoglu A. In vitro, in silico and Pharmaco-toxicological Efficiencies of some Triazole Derivatives on Inhibition of Digestive Enzyme Alpha-amylase. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2022; 65. [DOI: 10.1590/1678-4324-2022210368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
72
|
Adamovich SN, Ushakov IA, Oborina EN, Vashchenko AV. Silatrane-sulfonamide hybrids: Synthesis, characterization, and evaluation of biological activity. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
73
|
Funes Chabán M, Hrast M, Frlan R, Graikioti DG, Athanassopoulos CM, Carpinella MC. Inhibition of MurA Enzyme from Escherichia coli and Staphylococcus aureus by Diterpenes from Lepechinia meyenii and Their Synthetic Analogs. Antibiotics (Basel) 2021; 10:1535. [PMID: 34943747 PMCID: PMC8698320 DOI: 10.3390/antibiotics10121535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Enzymes MurA and MurF, involved in bacterial cell wall synthesis, have been validated as targets for the discovery of novel antibiotics. A panel of plant-origin antibacterial diterpenes and synthetic analogs derived therefrom were investigated for their inhibitory properties on these enzymes from Escherichia coli and Staphylococcus aureus. Six compounds were proven to be effective for inhibiting MurA from both bacteria, with IC50 values ranging from 1.1 to 25.1 µM. To further mechanistically investigate the nature of binding and to explain the activity, these compounds were docked into the active site of MurA from E. coli. The aromatic ring of the active compounds showed a T-shaped π-π interaction with the phenyl ring of Phe328, and at least one hydrogen bond was formed between the hydroxy groups and Arg120 and/or Arg91. The results disclosed here establish new chemical scaffolds for the development of novel entities targeting MurA as potential antibiotics to combat the threat of pathogenic bacteria, particularly resistant strains.
Collapse
Affiliation(s)
- Macarena Funes Chabán
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Córdoba 5016, Argentina;
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (R.F.)
| | - Rok Frlan
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (R.F.)
| | - Dafni G. Graikioti
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.G.G.); (C.M.A.)
| | - Constantinos M. Athanassopoulos
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.G.G.); (C.M.A.)
| | - María Cecilia Carpinella
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Córdoba 5016, Argentina;
| |
Collapse
|
74
|
Fujiwara D, Mihara K, Takayama R, Nakamura Y, Ueda M, Tsumuraya T, Fujii I. Chemical Modification of Phage-Displayed Helix-Loop-Helix Peptides to Construct Kinase-Focused Libraries. Chembiochem 2021; 22:3406-3409. [PMID: 34605137 PMCID: PMC9297947 DOI: 10.1002/cbic.202100450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Indexed: 11/11/2022]
Abstract
Conformationally constrained peptides hold promise as molecular tools in chemical biology and as a new modality in drug discovery. The construction and screening of a target-focused library could be a promising approach for the generation of de novo ligands or inhibitors against target proteins. Here, we have prepared a protein kinase-focused library by chemically modifying helix-loop-helix (HLH) peptides displayed on phage and subsequently tethered to adenosine. The library was screened against aurora kinase A (AurA). The selected HLH peptide Bip-3 retained the α-helical structure and bound to AurA with a KD value of 13.7 μM. Bip-3 and the adenosine-tethered peptide Bip-3-Adc provided IC50 values of 103 μM and 7.7 μM, respectively, suggesting that Bip-3-Adc bivalently inhibited AurA. In addition, the selectivity of Bip-3-Adc to several protein kinases was tested, and was highest against AurA. These results demonstrate that chemical modification can enable the construction of a kinase-focused library of phage-displayed HLH peptides.
Collapse
Affiliation(s)
- Daisuke Fujiwara
- Department of Biological ScienceGraduate School of ScienceOsaka Prefecture University1-1, Gakuen-cho, Naka-ku, SakaiOsaka599-8531Japan
| | - Kousuke Mihara
- Department of Biological ScienceGraduate School of ScienceOsaka Prefecture University1-1, Gakuen-cho, Naka-ku, SakaiOsaka599-8531Japan
| | - Ryo Takayama
- Department of Biological ScienceGraduate School of ScienceOsaka Prefecture University1-1, Gakuen-cho, Naka-ku, SakaiOsaka599-8531Japan
| | - Yusuke Nakamura
- Department of Biological ScienceGraduate School of ScienceOsaka Prefecture University1-1, Gakuen-cho, Naka-ku, SakaiOsaka599-8531Japan
| | - Mitsuhiro Ueda
- Department of ChemistryGraduate School of ScienceOsaka Prefecture University1-1, Gakuen-cho, Naka-ku, SakaiOsaka599-8531Japan
| | - Takeshi Tsumuraya
- Department of Biological ScienceGraduate School of ScienceOsaka Prefecture University1-1, Gakuen-cho, Naka-ku, SakaiOsaka599-8531Japan
| | - Ikuo Fujii
- Department of Biological ScienceGraduate School of ScienceOsaka Prefecture University1-1, Gakuen-cho, Naka-ku, SakaiOsaka599-8531Japan
| |
Collapse
|
75
|
Wang J, Cao Z, Wang F, Wang P, An J, Fu X, Liu T, Li Y, Li Y, Zhao Y, Lin H, He B. Cysteine derivatives as acetyl lysine mimics to inhibit zinc-dependent histone deacetylases for treating cancer. Eur J Med Chem 2021; 225:113799. [PMID: 34500130 DOI: 10.1016/j.ejmech.2021.113799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022]
Abstract
Zinc-dependent histone deacetylases (HDACs) are important epigenetic regulators that have become important drug targets for treating cancer. Although five HDAC inhibitors have been approved for treating several cancers, there is still a huge demand on discovering new HDAC inhibitors to explore the therapeutic potentials for treating solid tumor cancers. Substrate mimics are a powerful rational design approach for the development of potent inhibitors. Here we describe the rational design, synthesis, biological evaluation, molecular docking and in vivo efficacy study of a class of HDAC inhibitors using Nε-acetyl lysine mimics that are derived from cysteine. As a result, compounds 7a, 9b and 13d demonstrated pan-HDAC inhibition and broad cytotoxicity against several cancer cell lines, comparable to the approved HDAC inhibitor SAHA. Furthermore, 13d significantly inhibited tumor growth in a A549 xenograft mice model without any obvious weight loss, supporting that the cysteine-derived acetyl lysine mimics are promising HDAC inhibitors with therapeutic potentials for treating cancer.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Fang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jianxiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
76
|
Banni GAHD, Nehmé R. Capillary electrophoresis for enzyme-based studies: Applications to lipases and kinases. J Chromatogr A 2021; 1661:462687. [PMID: 34864234 DOI: 10.1016/j.chroma.2021.462687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Capillary electrophoresis (CE) is a powerful technique continuously expanding into new application fields. One of these applications involves the study of enzymes, their catalytic activities and the alteration of this activity by specific ligands. In this review, two model enzymes, lipases and kinases, will be used since they differ substantially in their modes of action, reaction requirements and applications making them perfect subjects to demonstrate the advantages and limitations of CE-based enzymatic assays. Indeed, the ability to run CE in various operation modes and hyphenation to different detectors is essential for lipase-based studies. Additionally, the low sample consumption provided by CE promotes it as a promising technique to assay human and viral nucleoside kinases. Undeniably, these are rarely commercially available enzymes and must be frequently produced in the laboratory, a process which requires special sets of skills. CE-based lipase and kinase reactions can be performed outside the capillary (pre-capillary) where the reactants are mixed in a vial prior to their separation or, inside the capillary (in-capillary) where the reactants are mixed before the electrophoretic analysis. These enzyme-based applications of CE will be compared to those of liquid chromatography-based applications in terms of advantages and limitations. Binding assays based on affinity CE and the compelling microscale thermophoresis (MST) will be briefly presented as they allow a broad understanding of the molecular mechanism behind ligand binding and of the resulting modulation in activity.
Collapse
Affiliation(s)
- Ghassan Al Hamoui Dit Banni
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, Orléans 45067, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, Orléans 45067, France.
| |
Collapse
|
77
|
Park NY, Im S, Jiang Q. Different forms of vitamin E and metabolite 13'-carboxychromanols inhibit cyclooxygenase-1 and its catalyzed thromboxane in platelets, and tocotrienols and 13'-carboxychromanols are competitive inhibitors of 5-lipoxygenase. J Nutr Biochem 2021; 100:108884. [PMID: 34710615 DOI: 10.1016/j.jnutbio.2021.108884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/01/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Cyclooxygenase (COX-1 and COX-2)- and 5-lipoxygenase (5-LOX)-catalyzed biosynthesis of eicosanoids play important roles in inflammation and chronic diseases. The vitamin E family has four tocopherols and tocotrienols. We have shown that the metabolites of δ-tocopherol (δT) and δ-tocotrienol (δTE), i.e., δT-13'-carboxychromanol (COOH) and δTE-13'-COOH, respectively, inhibit COX-1/-2 and 5-LOX activity, but the nature of how they inhibit 5-LOX is not clear. Further, the impact of tocopherols and tocotrienols on COX-1/-2 or 5-LOX activity has not been fully delineated. In this study, we found that tocopherols and tocotrienols inhibited human recombinant COX-1 with IC50s of 1-12 µM, and suppressed COX-1-mediated formation of thromboxane in collagen-stimulated rat's platelets with IC50s of 8-50 µM. None of the vitamin E forms directly inhibited COX-2 activity. 13'-COOHs inhibited COX-1 and COX-2 enzyme activity with IC50s of 3-4 and 4-10 µM, respectively, blocked thromboxane formation in collagen- and ionophore-stimulated rats' platelets with IC50s of 1.5-2.5 µM, and also inhibited COX-2-mediated prostaglandins in stimulated cells. Using enzyme kinetics, we observed that δT-13'-COOH, δTE-13'-COOH and δTE competitively inhibited 5-LOX activity with Ki of 1.6, 0.8 and 2.2 µM, respectively. These compounds decreased leukotriene B4 from stimulated neutrophil-like cells without affecting translocation of 5-LOX from cytosol to the nucleus. Our study reveals inhibitory effects of vitamin E forms and 13'-COOHs on COX-1 activity and thromboxane formation in platelets, and elucidates mechanisms underlying their inhibition of 5-LOX. These observations are useful for understanding the role of these compounds in disease prevention and therapy.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Suji Im
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Qing Jiang
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
78
|
Residue-resolved monitoring of protein hyperpolarization at sub-second time resolution. Commun Chem 2021; 4:147. [PMID: 36697662 PMCID: PMC9814832 DOI: 10.1038/s42004-021-00587-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Signal-enhancement techniques for NMR spectroscopy are important to amplify the weak resonances provided by nuclear spins. Recently, 'hyperpolarization' techniques have been intensively investigated. These provide nuclear spin states far from equilibrium yielding strong signal boosts up to four orders of magnitude. Here we propose a method for real-time NMR of 'hyperpolarized' proteins at residue resolution. The approach is based on dissolution dynamic nuclear polarization (d-DNP), which enables the use of hyperpolarized buffers that selectively boost NMR signals of solvent-exposed protein residues. The resulting spectral sparseness and signal enhancements enable recording of residue-resolved spectra at a 2 Hz sampling rate. Thus, we monitor the hyperpolarization level of different protein residues simultaneously under near-physiological conditions. We aim to address two points: 1) NMR experiments are often performed under conditions that increase sensitivity but are physiologically irrelevant; 2) long signal accumulation impedes fast real-time monitoring. Both limitations are of fundamental relevance to ascertain pharmacological relevance and study protein kinetics.
Collapse
|
79
|
Nickelsen A, Jose J. Label-free flow cytometry-based enzyme inhibitor identification. Anal Chim Acta 2021; 1179:338826. [PMID: 34535248 DOI: 10.1016/j.aca.2021.338826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022]
Abstract
Fluorescence-based methods for the identification of enzyme inhibitors are widespread, but usually require protein or ligand labelling. In this study, we present a label-free displacement assay that takes advantage of the intrinsic fluorescence of a tight binding ligand avoiding any labeling. Autodisplay-based accessibility of the target enzyme on the cell surface of Escherichia coli enabled the quantification of fluorescent ligand binding by flow cytometry. Human protein kinase CK2 was used as proof-of-concept enzyme and its ATP competitive inhibitor (E)-1,3-dichloro-6-[(4-methoxyphenylimino)methyl]dibenzo[b,d]furan-2,7-diol (compound 5) was shown to exhibit intrinsic fluorescence (λmax(ex) = 370 nm, λmax(em) = 585 nm). Binding of compound 5 to CK2 displaying cells was quantified via flow cytometry with linearly increasing relative fluorescence up to a concentration of 1.25 μM. The addition of the non-fluorescent CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) competed for compound 5 binding with a half maximal fluorescence reduction at 15.6 μM TBB. This new and simple binding assay provides a valuable tool for the screening of high affinity enzyme inhibitors, overcoming the limitations of fluorescent ligand labelling.
Collapse
Affiliation(s)
- Anna Nickelsen
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
80
|
Rozenski J, Asfaw AA, Van Schepdael A. Overview of in-capillary enzymatic reactions using capillary electrophoresis. Electrophoresis 2021; 43:57-73. [PMID: 34510496 DOI: 10.1002/elps.202100161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review summarizes the research that has recently been performed on in-capillary enzymatic reactions integrated with capillary electrophoresis. The manuscript is subdivided in homogeneous and heterogeneous approaches. The main homogeneous techniques are Electrophoretically Mediated Microanalysis, At-inlet and Transverse Diffusion of Laminar Flow Profiles. The main heterogeneous ones are Immobilized MicroEnzyme Reactors with enzymes grafted on either non-magnetic or magnetic particles. The overview covers the period from 2018 to early 2021. The applications range from drug discovery over natural products to food, beverage and pesticide analysis.
Collapse
Affiliation(s)
- Jef Rozenski
- Department ofPharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Adissu Alemayehu Asfaw
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven- University of Leuven, Leuven, Belgium.,Department of Pharmaceutical Analysis and Quality Assurance, College of Health Sciences, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven- University of Leuven, Leuven, Belgium
| |
Collapse
|
81
|
Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from Toxoplasma gondii. Int J Mol Sci 2021; 22:ijms22157830. [PMID: 34360597 PMCID: PMC8345934 DOI: 10.3390/ijms22157830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 μM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites.
Collapse
|
82
|
Liang L, Ma K, Wang Z, Janissen R, Yu Z. Dynamics and inhibition of MLL1 CXXC domain on DNA revealed by single-molecule quantification. Biophys J 2021; 120:3283-3291. [PMID: 34280370 DOI: 10.1016/j.bpj.2021.03.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
CpG islands recruit MLL1 via the CXXC domain to modulate chromatin structure and regulate gene expression. The amino acid motif of CXXC also plays a pivotal role in MLL1's structure and function and serves as a target for drug design. In addition, the CpG pattern in an island governs spatially dependent collaboration among CpGs in recruiting epigenetic enzymes. However, current studies using short DNA fragments cannot probe the dynamics of CXXC on long DNA with crowded CpG motifs. Here, we used single-molecule magnetic tweezers to examine the binding dynamics of MLL1's CXXC domain on a long DNA with a CpG island. The mechanical strand separation assay allows profiling of protein-DNA complexes and reports force-dependent unfolding times. Further design of a hairpin detector reveals the unfolding time of individual CXXC-CpG complexes. Finally, in a proof of concept we demonstrate the inhibiting effect of dimethyl fumarate on the CXXC-DNA complexes by measuring the dose response curve of the unfolding time. This demonstrates the potential feasibility of using single-molecule strand separation as a label-free detector in drug discovery and chemical biology.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Kangkang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, South-Holland, The Netherlands
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
83
|
Martínez-Aldino IY, Villaseca-Murillo M, Morales-Jiménez J, Rivera-Chávez J. Absolute configuration and protein tyrosine phosphatase 1B inhibitory activity of xanthoepocin, a dimeric naphtopyrone from Penicillium sp. IQ-429. Bioorg Chem 2021; 115:105166. [PMID: 34384957 DOI: 10.1016/j.bioorg.2021.105166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an active target for developing drugs to treat type II diabetes, obesity, and cancer. However, in the past, research programs targeting this enzyme focused on discovering inhibitors of truncated models (hPTP1B1-282, hPTP1B1-298, or hPTP1B1-321), losing valuable information about the ligands' mechanism of inhibition and selectivity. Nevertheless, finding an allosteric site in hPTP1B1-321, and the full-length (hPTP1B1-400) protein expression, have shifted the strategies to discover new PTP1B inhibitors. Accordingly, as part of a research program directed at finding non-competitive inhibitors of hPTP1B1-400 from Pezizomycotina, the extract of Penicillium sp. (IQ-429) was chemically investigated. This study led to xanthoepocin (1) isolation, which was elucidated by means of spectroscopic and spectrometric data. The absolute configuration of 1 was determined to be 7R8S9R7'R8'S9'R by comparing the theoretical and experimental ECD spectra and by GIAO-NMR DP4 + statistical analysis. Xanthoepocin (1) inhibited the phosphatase activity of hPTP1B1-400 (IC50 value of 8.8 ± 1.0 µM) in a mixed type fashion, with ki and αki values of 5.5 and 6.6 μM, respectively. Docking xanthoepocin (1) with a homologated model of hPTP1B1-400 indicated that it binds in a pocket different from the catalytic triad at the interface of the N and C-terminal domains. Molecular dynamics (MD) simulations showed that 1 locks the WPD loop of hPTP1B1-400 in a closed conformation, avoiding substrate binding, products release, and catalysis, suggesting an allosteric modulation triggered by large-scale conformational and dynamics changes. Intrinsic quenching fluorescence experiments indicated that 1 behaves like a static quencher of hPTP1B1-400 (KSV = 1.1 × 105 M-1), and corroborated that it binds to the enzyme with an affinity constant (ka) of 3.7 × 105 M-1. Finally, the drug-likeness and medicinal chemistry friendliness of 1 were predicted with SwissADME.
Collapse
Affiliation(s)
- Ingrid Y Martínez-Aldino
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Ciudad de México, Mexico
| | - Martha Villaseca-Murillo
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Ciudad de México, Mexico
| | - Jesús Morales-Jiménez
- CONACYT-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4a sección, 78216 San Luis Potosí, Mexico.
| | - José Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Ciudad de México, Mexico.
| |
Collapse
|
84
|
Copeland RA. Chance Favors the Perplexed Mind: The Critical Role of Mechanistic Biochemistry in Drug Discovery. Biochemistry 2021; 60:2275-2284. [PMID: 34259514 DOI: 10.1021/acs.biochem.1c00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scientific discoveries often start with an observation that does not quite make sense, within the framework of a well-established hypothesis. It is when researchers delve deeply to understand such perplexing data that established hypotheses are modified or replaced, and new and expanded knowledge of the system can be gained. This is often the case in the field of drug discovery. In this Perspective, case studies demonstrate how an understanding of perplexing data can lead to novel discoveries regarding the biological function of drug targets, or the mechanisms of compound-target interactions, that can ultimately result in new drugs entering the clinic. These case studies reinforce two interdependent themes: (1) that understanding the pathophysiological context in which drug targets function and the mechanistic details of drug-target interactions are critical to efficient and effective drug discovery and (2) that investing time and energy into following up on perplexing data can lead to novel discoveries that can drive the development of new and improved medicines.
Collapse
Affiliation(s)
- Robert A Copeland
- Accent Therapeutics, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, United States
| |
Collapse
|
85
|
Xu M, Liang H, Meng SS, Gu ZY. Enhancing the enzymatic inhibition performance of Cu-based metal-organic frameworks by shortening the organic ligands. Analyst 2021; 146:4235-4241. [PMID: 34096937 DOI: 10.1039/d1an00531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Creating more exposed active sites on the metal-organic framework (MOF) surface is crucial for enhancing the recognition ability of MOF artificial receptors. Here, a copper-based MOF Cu(im)2 (im = imidazole) was utilized to act as an artificial receptor, inhibiting the activity of α-chymotrypsin. The shortest diazole ligand reduced the distance between regenerative copper sites, creating as many active sites as possible on the MOF unit surface. The amount of copper(ii) centers on the Cu(im)2 surface was calculated to be 4.96 × 106μm-2. Thus, Cu(im)2 showed exceedingly higher inhibition performance than other copper-based MOFs. The ChT activity was almost inhibited (88.8%) after the incubation with only 20 μg mL-1 Cu(im)2 for 10 min. The binding between ChT and Cu(im)2 was very fast with high affinity. Further results proved that Cu(im)2 inhibited the activity of ChT through electrostatic interactions and coordination interactions via the mixed inhibition mode. This strategy to use short ligands to create more active sites on the MOF surface provides a new direction to enhance the inhibition efficiency.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
86
|
Alacid Y, Martínez-Tomé MJ, Mateo CR. Reusable Fluorescent Nanobiosensor Integrated in a Multiwell Plate for Screening and Quantification of Antidiabetic Drugs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25624-25634. [PMID: 34043318 DOI: 10.1021/acsami.1c02505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A highly stable and reusable fluorescent multisample nanobiosensor for the detection of α-glucosidase inhibitors has been developed by coupling fluorescent liposomal nanoparticles based on conjugated polymers (L-CPNs) to the enzyme α-glucosidase, one of the main target enzymes in the treatment of type 2 diabetes. The mechanism of sensing is based on the fluorescence "turn-on" of L-CPNs by p-nitrophenol (PNP), the end product of the enzymatic hydrolysis of p-nitrophenyl-α-d-glucopyranoside. L-CPNs, composed of lipid vesicles coated with a blue-emitting cationic polyfluorene, were designed and characterized to obtain a good response to PNP. Two nanobiosensor configurations were developed in this study. In the first step, a single-sample nanobiosensor composed of L-CPNs and α-glucosidase entrapped in a sol-gel glass was developed in order to characterize and optimize the device. In the second part, the nanobiosensor was integrated and adapted to a multiwell microplate and the possibility of reusing it and performing multiple measurements simultaneously with samples containing different α-glucosidase inhibitors was investigated. Using super-resolution confocal microscopy, L-CPNs could be visualized within the sol-gel matrix, and the quenching of their fluorescence, induced by the substrate, was directly observed in situ. The device was also shown to be useful not only as a platform for screening of antidiabetic drugs but also for quantifying their presence. The latter application was successfully tested with the currently available drug, acarbose.
Collapse
Affiliation(s)
- Yolanda Alacid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - C Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| |
Collapse
|
87
|
Antibacterial properties and carbonic anhydrase inhibition profiles of azido sulfonyl carbamate derivatives. Future Med Chem 2021; 13:1285-1299. [PMID: 34075799 DOI: 10.4155/fmc-2020-0387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The aim of this study was to identify inhibition of carbonic anhydrase I and II (CA I and II) isozymes by azido sulfonyl carbamates through both in vitro and in silico approaches and also to determine the drug-likeness properties and antibacterial activities of azido sulfonyl carbamates. Methods & Results: In vitro inhibition and molecular docking studies of azido sulfonyl carbamate derivatives (1-4) on isozymes were performed. Except for derivative 4, all derivatives inhibited human CA I and II. Almost all compounds had antibacterial effects. The docking results showed that compound 3 had the best results, with binding energy of -8.20 kcal/mol for human CA I and -8.24 kcal/mol for human CA II. Conclusion: Molecule 4 inhibited only CA I. Its usage as a potential chemotherapeutic agent specific to the CA I isozyme may be considered.
Collapse
|
88
|
Zhai X, Brownell JE. Biochemical perspectives on targeting KMT2 methyltransferases in cancer. Trends Pharmacol Sci 2021; 42:688-699. [PMID: 34074527 DOI: 10.1016/j.tips.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 02/05/2023]
Abstract
KMT2 methyltransferases are important regulators of gene transcription through the methylation of histone H3 lysine 4 at promoter and enhancer regions. They reside in large, multisubunit protein complexes, which not only regulate their catalytic activities but also mediate their interactions with chromatin. The KMT2 family was initially associated with cancer due to the discovery of KMT2A translocations in mixed-lineage leukemia (MLL). However, emerging evidences suggest that the methyltransferase activity of KMT2 enzymes can also be important in cancer, raising the prospect of targeting the catalytic domain of KMT2 as a therapeutic strategy. In this review, we summarize recent advances in our understanding of KMT2 enzyme mechanisms and their regulation on nucleosomes, which will provide mechanistic insights into therapeutic discoveries targeting their methyltransferase activities.
Collapse
Affiliation(s)
- Xiang Zhai
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Waltham, MA 02451, USA.
| | | |
Collapse
|
89
|
Stanford SM, Diaz MA, Ardecky RJ, Zou J, Roosild T, Holmes ZJ, Nguyen TP, Hedrick MP, Rodiles S, Guan A, Grotegut S, Santelli E, Chung TDY, Jackson MR, Bottini N, Pinkerton AB. Discovery of Orally Bioavailable Purine-Based Inhibitors of the Low-Molecular-Weight Protein Tyrosine Phosphatase. J Med Chem 2021; 64:5645-5653. [PMID: 33914534 DOI: 10.1021/acs.jmedchem.0c02126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity-associated insulin resistance plays a central role in the pathogenesis of type 2 diabetes. A promising approach to decrease insulin resistance in obesity is to inhibit the protein tyrosine phosphatases that negatively regulate insulin receptor signaling. The low-molecular-weight protein tyrosine phosphatase (LMPTP) acts as a critical promoter of insulin resistance in obesity by inhibiting phosphorylation of the liver insulin receptor activation motif. Here, we report development of a novel purine-based chemical series of LMPTP inhibitors. These compounds inhibit LMPTP with an uncompetitive mechanism and are highly selective for LMPTP over other protein tyrosine phosphatases. We also report the generation of a highly orally bioavailable purine-based analogue that reverses obesity-induced diabetes in mice.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Department of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| | - Michael A Diaz
- Department of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| | - Robert J Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jiwen Zou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Tarmo Roosild
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Zachary J Holmes
- Department of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| | - Tiffany P Nguyen
- Department of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Socorro Rodiles
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - April Guan
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Grotegut
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Michael R Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
90
|
Smirnovienė J, Baranauskienė L, Zubrienė A, Matulis D. A standard operating procedure for an enzymatic activity inhibition assay. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:345-352. [PMID: 33864100 DOI: 10.1007/s00249-021-01530-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
This Standard Operating Protocol (SOP) describes the key steps of experimental setup for an inhibition assay of enzymatic activity. The protocol begins with the design of an experiment, including the choice of a catalytic reaction, optimal conditions, fraction and concentration of the active enzyme, substrate and inhibitor concentrations and the positive and negative controls. The protocol ends with the data analysis followed by a typical example of an experiment. Despite an apparently standard procedure, the assay has a number of possible pitfalls such as low fraction of the active enzyme or errors in the analysis such as application of an improper model or incorrect determination of the inhibition constant while not recognizing the dependence on enzyme concentration. The protocol provides examples of necessary steps and controls to avoid these problems and obtain highly reliable results.
Collapse
Affiliation(s)
- Joana Smirnovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Lina Baranauskienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
91
|
The In Vitro and In Silico Inhibition Mechanism of Glutathione Reductase by Resorcinol Derivatives: A Molecular Docking Study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|
93
|
Leal M, Zampini IC, Mercado MI, Moreno MA, Simirgiotis MJ, Bórquez J, Ponessa G, Isla MI. Flourensia fiebrigii S.F. blake: A medicinal plant from the Argentinean highlands with potential use as anti-rheumatic and anti-inflammatory. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113296. [PMID: 32841690 DOI: 10.1016/j.jep.2020.113296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flourensia fiebrigii is a plant used in traditional medicine in the Argentine Calchaquí Valley as purgative, expectorant, anti-rheumatic and anti-inflammatory. AIM OF THE STUDY The aim of this study was to analyze the macroscopic and microscopic characteristics of F. fiebrigii leaf and stem, the phytochemical composition of leaves ethanolic extracts and to validate its traditional use as anti-rheumatic and anti-inflammatory. MATERIALS AND METHODS The macroscopic and microscopic description of F. fiebrigii leaf and stem was carried out. Two extracts (immersions and tinctures) from leaves were obtained. The phytochemical analysis and UHPLC-OT-MS metabolome fingerprinting of both extracts were performed. The anti-rheumatic and anti-inflammatory activities of both extracts were determined using enzymatic inhibition assays of xanthine-oxidase (XOD), secretory phospholipase A2 (sPLA2) and lipoxygenase (LOX). RESULTS The macroscopic and micrographic characters of F. fiebrigii were described to allow the botanical characterization of the plant species. The leaves extracts showed a high level of phenolic compounds with similar chromatographic patterns. Forty-five compounds were identified based on UHPLC-OT-MS including several sesquiterpenes, chalcones, flavonoids, isoflavonoids, a lignan and phenylpropanoids phenolic acids that have been identified for the first time in this plant species. F. fiebrigii extracts were able to inhibit the XOD activity and, consequently, the formation of uric acid and reactive oxygen species, primary cause of diseases, such as gouty arthritis (IC50 values of 1.10-2.12 μg/mL). Pro-inflammatory enzymes like sPLA2 and LOX were also inhibited by F. fiebrigii extracts (IC50 values of 22.00-2.20 μg/mL) decreasing the production of inflammation mediators. CONCLUSIONS The present work validates the traditional medicinal use of F. fiebrigii as anti-rheumatic and anti-inflammatory through the use of enzymatic assays. The presence of several chemical compounds with demonstrated anti-rheumatic and anti-inflammatory properties also supports the bioactivity of the F. fiebrigii.
Collapse
Affiliation(s)
- Mariana Leal
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Alejandra Moreno
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina
| | - Mario Juan Simirgiotis
- Instituto de Farmacia, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 5090000, Chile
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, 1240000, Chile
| | - Graciela Ponessa
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
94
|
Modulating catalytic activity of human topoisomerase II α enzyme by fluorescent gold nanoclusters. Int J Biol Macromol 2020; 170:523-531. [PMID: 33387542 DOI: 10.1016/j.ijbiomac.2020.12.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
Precise monitoring of the enzyme activity by a suitable modulator is one of the very fundamental aspects of drug designing that provides the opportunity to overcome the challenges of several diseases. Herein, inhibition of human Topoisomerase IIα enzyme which serves as a potential target site for several anti-cancer drugs is demonstrated by using ultra-small size gold nanoclusters (Au NCs) with the dimension comparable with size of the active site of the enzyme. Molecular dynamics simulation results demonstrate that the Au NCs strongly interact with the human Topo IIα enzyme at its active site or allosteric site depending on forms of enzyme. Additionally, binding energy and interaction profile provides the molecular basis of understanding of interactions of ultra-small size Au NCs and human Topo IIα enzyme. Enthalpy change (ΔH) and binding constant (K) are measured based on a sequential binding model of the Au NCs with the enzyme as demonstrated by the ITC study. Moreover, the in-vitro inhibition study of the catalytic activity of the enzyme and gel electrophoresis indicates that the ultra-small size Au NCs may be used as a potent inhibitor of human Topo IIα enzyme.
Collapse
|
95
|
Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation. Cells 2020; 9:cells9122721. [PMID: 33371192 PMCID: PMC7767226 DOI: 10.3390/cells9122721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
The aberrant function of chromatin regulatory networks (epigenetics) is a hallmark of cancer promoting oncogenic gene expression. A growing body of evidence suggests that the disruption of specific chromatin-associated protein complexes has therapeutic potential in malignant conditions, particularly those that are driven by aberrant chromatin modifiers. Of note, a number of enzymatic inhibitors that block the catalytic function of histone modifying enzymes have been established and entered clinical trials. Unfortunately, many of these molecules do not have potent single-agent activity. One potential explanation for this phenomenon is the fact that those drugs do not profoundly disrupt the integrity of the aberrant network of multiprotein complexes on chromatin. Recent advances in drug development have led to the establishment of novel inhibitors of protein–protein interactions as well as targeted protein degraders that may provide inroads to longstanding effort to physically disrupt oncogenic multiprotein complexes on chromatin. In this review, we summarize some of the current concepts on the role epigenetic modifiers in malignant chromatin states with a specific focus on myeloid malignancies and recent advances in early-phase clinical trials.
Collapse
|
96
|
Eddershaw AR, Stubbs CJ, Edwardes LV, Underwood E, Hamm GR, Davey PRJ, Clarkson PN, Syson K. Characterization of the Kinetic Mechanism of Human Protein Arginine Methyltransferase 5. Biochemistry 2020; 59:4775-4786. [PMID: 33274632 DOI: 10.1021/acs.biochem.0c00554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are of great interest for the development of therapeutics due to their involvement in a number of malignancies, such as lung and colon cancer. PRMT5 catalyzes the formation of symmetrical dimethylarginine of a wide variety of substrates and is responsible for the majority of this mark within cells. To gain insight into the mechanism of PRMT5 inhibition, we co-expressed the human PRMT5:MEP50 complex (hPRMT5:MEP50) in insect cells for a detailed mechanistic study. In this report, we carry out steady state, product, and dead-end inhibitor studies that show hPRMT5:MEP50 uses a rapid equilibrium random order mechanism with EAP and EBQ dead-end complexes. We also provide evidence of ternary complex formation in solution using hydrogen/deuterium exchange mass spectrometry. Isotope exchange and intact protein mass spectrometry further rule out ping-pong as a potential enzyme mechanism, and finally, we show that PRMT5 exhibits a pre-steady state burst that corresponds to an initial slow turnover with all four active sites of the hetero-octamer being catalytically active.
Collapse
Affiliation(s)
- Alice R Eddershaw
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Christopher J Stubbs
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Lucy V Edwardes
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Elizabeth Underwood
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory R Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals, R&D AstraZeneca, Cambridge CB4 0WG, U.K
| | - Paul R J Davey
- Chemistry, Oncology, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Paul N Clarkson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Karl Syson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
97
|
Dalberto PF, de Souza EV, Abbadi BL, Neves CE, Rambo RS, Ramos AS, Macchi FS, Machado P, Bizarro CV, Basso LA. Handling the Hurdles on the Way to Anti-tuberculosis Drug Development. Front Chem 2020; 8:586294. [PMID: 33330374 PMCID: PMC7710551 DOI: 10.3389/fchem.2020.586294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
98
|
Pinto MF, Figueiredo F, Silva A, Pombinho AR, Pereira PJB, Macedo-Ribeiro S, Rocha F, Martins PM. Major Improvements in Robustness and Efficiency during the Screening of Novel Enzyme Effectors by the 3-Point Kinetics Assay. SLAS DISCOVERY 2020; 26:373-382. [PMID: 32981414 DOI: 10.1177/2472555220958386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives). In this post-Michaelis-Menten approach, each screened reaction is probed in three different occasions, none of which necessarily coincide with the initial period of constant velocity. Enzymology principles rather than subjective criteria are applied to identify unwanted outliers such as assay artifacts, and then to accurately distinguish true enzyme modulation effects from false positives. The exclusion and selection criteria are defined based on the 3-point reaction coordinates, whose relative positions along the time-courses may change from well to well or from plate to plate, if necessary. The robustness and efficiency of the new method is illustrated during a small drug repurposing screening of potential modulators of the deubiquinating activity of ataxin-3, a protein implicated in Machado-Joseph disease. Apparently, intractable Z factors are drastically enhanced after (1) eliminating spurious results, (2) improving the normalization method, and (3) increasing the assay resilience to systematic and random variability. Numerical simulations further demonstrate that the 3-point analysis is highly sensitive to specific, catalytic, and slow-onset modulation effects that are particularly difficult to detect by typical endpoint assays.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Alexandra Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - António R Pombinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fernando Rocha
- Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Pedro M Martins
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
99
|
Jonsson BH, Liljas A. Perspectives on the Classical Enzyme Carbonic Anhydrase and the Search for Inhibitors. Biophys J 2020; 119:1275-1280. [PMID: 32910900 DOI: 10.1016/j.bpj.2020.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/19/2023] Open
Abstract
Carbonic anhydrase (CA) is a thoroughly studied enzyme. Its primary role is the rapid interconversion of carbon dioxide and bicarbonate in the cells, where carbon dioxide is produced, and in the lungs, where it is released from the blood. At the same time, it regulates pH homeostasis. The inhibitory function of sulfonamides on CA was discovered some 80 years ago. There are numerous physiological-therapeutic conditions in which inhibitors of carbonic anhydrase have a positive effect, such as glaucoma, or act as diuretics. With the realization that several isoenzymes of carbonic anhydrase are associated with the development of several types of cancer, such as brain and breast cancer, the development of inhibitor drugs specific to those enzyme forms has exploded. We would like to highlight the breadth of research on the enzyme as well as draw the attention to some problems in recent published work on inhibitor discovery.
Collapse
Affiliation(s)
- Bengt-Harald Jonsson
- Department of Physics, Chemistry, and Biology, Division of Chemistry, Linköping University, Linköping, Sweden
| | - Anders Liljas
- Departments of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
100
|
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules 2020; 25:molecules25061259. [PMID: 32168746 PMCID: PMC7144000 DOI: 10.3390/molecules25061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
Collapse
|