51
|
Mao J, Chen R, Xue L, Zhu Y, Zhao L, Wang J. Metformin and chidamide synergistically suppress multiple myeloma progression and enhance lenalidomide/bortezomib sensitivity. ENVIRONMENTAL TOXICOLOGY 2024; 39:2452-2465. [PMID: 38251764 DOI: 10.1002/tox.24093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Multiple myeloma (MM) is a common hematological malignancy, and patients with MM are recommended to take immunomodulatory drugs such as lenalidomide along with proteasome inhibitors such as bortezomib to extend survival. However, drug resistance influences the efficacy of treatment for MM. In our study, we found that metformin and chidamide both suppressed MM cell growth in a concentration- and time-dependent way (p < .001). Moreover, combined therapy with metformin and chidamide exhibited enhanced inhibition of the growth of MM cells compared with monotherapy (p < .05). Additionally, the triple-drug combination of metformin and chidamide with lenalidomide or bortezomib was used to stimulate the MM cells, and the results revealed that metformin and chidamide treatment sensitized MM cells to lenalidomide and bortezomib. As a result, the apoptosis (p < .001) together with cell cycle arrest at G0/G1 phase (p < .05) was stimulated by lenalidomide and bortezomib, and showed significant elevation in the triple-drug combination group compared with the lenalidomide or bortezomib treatment alone group (p < .05). Furthermore, the impacts of different drugs on glycolysis in MM cells were examined. We found that metformin and chidamide combined treatment significantly promoted glucose uptake and reduced energy production in MM cells treated with lenalidomide and bortezomib (p < .001), suggesting that metformin and chidamide affected glycolysis in MM cells and enhanced the sensitivity of lenalidomide and bortezomib in MM by regulating glucose metabolism. In conclusion, metformin and chidamide synergistically hindered MM cell growth and sensitized cells to lenalidomide/bortezomib. The findings of this study might provide novel clues to improve MM therapy.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Hematology, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Ran Chen
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lianguo Xue
- Department of Hematology, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Yuanxin Zhu
- Department of Hematology, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Lidong Zhao
- Department of Hematology, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Juan Wang
- Department of Pediatrics, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
52
|
Dhodapkar MV. Immune-Pathogenesis of Myeloma. Hematol Oncol Clin North Am 2024; 38:281-291. [PMID: 38195307 DOI: 10.1016/j.hoc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This research indicates that monoclonal gammopathy of undetermined significance (MGUS) and myeloma may stem from chronic immune activation and inflammation, causing immune dysfunction and spatial immune exclusion. As the conditions progress, a shift toward myeloma involves ongoing immune impairment, affecting both innate and adaptive immunity. Intriguingly, even in advanced myeloma stages, susceptibility to immune effector cells persists. This insight highlights the intricate interplay between immune responses and the development of these conditions, paving the way for potential therapeutic interventions targeting immune modulation in the management of MGUS and myeloma.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Winship Cancer Institute, 1365 Clifton Road, Atlanta, GA 30332, USA.
| |
Collapse
|
53
|
Shi L, Yan W, Xu J, Li L, Cui J, Liu Y, Du C, Yu T, Zhang S, Sui W, Deng S, Xu Y, Zou D, Wang H, Qiu L, An G. Immunophenotypic profile defines cytogenetic stability and unveils distinct prognoses in patients with newly-diagnosed multiple myeloma (NDMM). Ann Hematol 2024; 103:1305-1315. [PMID: 38049586 DOI: 10.1007/s00277-023-05573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Prognostic significance of multiple immune antigens in multiple myeloma has been well established. However, a level of uncertainty remains regarding the intrinsic relationship between immunophenotypes and cytogenetic stability and precise risk stratification. To address these unresolved issues, we conducted a study involving 1389 patients enrolled in the National Longitudinal Cohort of Hematological Diseases in China (NCT04645199). Our results revealed that the correlation between antigen expression and cytogenetics is more prominent than cytopenia or organ dysfunction. Most immune antigens, apart from CD38, CD138, and CD81, exhibit significant associations with the incidence of at least one cytogenetic abnormality. In turn, we identified CD138-low/CD27-neg as specific adverse immunophenotypic profile, which remaining independent impact on progression-free survival (HR, 1.49; P = 0.007) and overall survival (HR, 1.77; P < 0.001) even in the context of cytogenetics. Importantly, CD138-low/CD27-neg profile was also associated with inferior survival after first relapse (P < 0.001). Moreover, the antigen expression profiles were not strictly similar when comparing diagnosis and relapse; in particular, the CD138-low/CD27-neg pattern was notably increased after disease progression (19.1 to 29.1%; P = 0.005). Overall, our study demonstrates that diverse immune profiles are strongly associated with cytogenetic stability, and a specific immunophenotype (CD138-low/CD27-neg) could effectively predict prognoses across different disease stages.
Collapse
Affiliation(s)
- Lihui Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqiang Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jingyu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lingna Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jian Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuntong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shuaishuai Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
54
|
Fang J, Zhou F. BCMA-targeting chimeric antigen receptor T cell therapy for relapsed and/or refractory multiple myeloma. Ann Hematol 2024; 103:1069-1083. [PMID: 37704875 DOI: 10.1007/s00277-023-05444-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Recently, many new therapies have improved the outcomes of patients with relapsed and/or refractory multiple myeloma (RRMM). Nevertheless, recurrence is still unavoidable, and better treatment choices for RRMM are urgently needed. The clinical success of Chimera antigen receptor (CAR) T cell therapy in many hematological diseases, including leukemia and lymphoma, has drawn considerable attention to RRMM. As CAR T cell therapy continues to mature and challenge traditional therapies, it is gradually changing the treatment paradigm for MM patients. The B cell maturation antigen (BCMA), expressed in malignant plasma cells but not normal ones, is an ideal target for MM treatment, due to its high expression. The US Food and Drug Administration (FDA) and European Medicines Agency (EMA) has approved two BCMA-targeting CAR T cell products, idecabtagene vicleucel (Ide-cel) and ciltacabtagene autoleucel (Cilta-cel), for use in RRMM. In this review, we focus on data from RRMM patients involved in clinical trials of Ide-cel and Cilta-cel and discuss the present situation and future direction of CAR T cell therapy for this condition.
Collapse
Affiliation(s)
- Jiamin Fang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China.
| |
Collapse
|
55
|
Li M, Zhang CL, Zhou DS, Chan SH, Liu XQ, Chen SN, Yang ZY, Ju FE, Sang XY, Liu ZX, Zhang QX, Pan YM, Deng SS, Wang XM, Zhong L, Zhang XD, Du X. Identification of COQ2 as a regulator of proliferation and lipid peroxidation through genome-scale CRISPR-Cas9 screening in myeloma cells. Br J Haematol 2024; 204:1307-1324. [PMID: 38462771 DOI: 10.1111/bjh.19375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.
Collapse
Affiliation(s)
- Miao Li
- Department of Dermatovenereology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Chang-Lin Zhang
- Department of Dermatovenereology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Di-Sheng Zhou
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Sze-Hoi Chan
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xue-Qi Liu
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shu-Na Chen
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zi-Yi Yang
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fei-Er Ju
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiao-Yan Sang
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zi-Xuan Liu
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Qiao-Xia Zhang
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yu-Ming Pan
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Si-Si Deng
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiao-Mei Wang
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Li Zhong
- Department of Dermatovenereology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing-Ding Zhang
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
56
|
Geraldes C, Roque A, Sarmento-Ribeiro AB, Neves M, Ionita A, Gerivaz R, Tomé A, Afonso S, Silveira MP, Sousa P, Bergantim R, João C. Practical management of disease-related manifestations and drug toxicities in patients with multiple myeloma. Front Oncol 2024; 14:1282300. [PMID: 38585008 PMCID: PMC10995327 DOI: 10.3389/fonc.2024.1282300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 04/09/2024] Open
Abstract
Multiple myeloma (MM) is a very heterogeneous disease with multiple symptoms and clinical manifestations. MM affects mainly elderly patients and is difficult to manage in the presence of comorbidities, polypharmacy, frailty and adverse events of disease-targeted drugs. The rapid changes in MM treatment resulting from constant innovations in this area, together with the introduction of numerous new drugs with distinct mechanisms of action and toxicity profiles, have led to an increased complexity in the therapeutic decision-making and patient management processes. The prolonged exposure to novel agents, sometimes in combination with conventional therapies, makes this management even more challenging. A careful balance between treatment efficacy and its tolerability should be considered for every patient. During treatment, a close monitoring of comorbidities, disease-related manifestations and treatment side effects is recommended, as well as a proactive approach, with reinforcement of information and patient awareness for the early recognition of adverse events, allowing prompt therapeutic adjustments. In this review, we discuss various issues that must be considered in the treatment of MM patients, while giving practical guidance for monitoring, prevention and management of myeloma-related manifestations and treatment-related toxicities.
Collapse
Affiliation(s)
- Catarina Geraldes
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Adriana Roque
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Manuel Neves
- Hemato-Oncology Unit, Champalimaud Foundation, Lisboa, Portugal
| | - Alina Ionita
- Hematology Department, Portuguese Institute of Oncology Francisco Gentil, Lisboa, Portugal
| | - Rita Gerivaz
- Serviço de Hemato-oncologia, Hospital Garcia de Orta, Lisboa, Portugal
| | - Ana Tomé
- Serviço de Hemato-oncologia, Hospital Garcia de Orta, Lisboa, Portugal
| | - Sofia Afonso
- Serviço de Hematologia Clínica, Centro Hospitalar Universitário Cova da Beira, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Pedro Silveira
- Serviço de Imuno-Hemoterapia, Hospital Prof. Doutor Fernando Fonseca, EPE, Amadora, Portugal
| | - Patrícia Sousa
- Serviço de Imuno-Hemoterapia, Hospital Prof. Doutor Fernando Fonseca, EPE, Amadora, Portugal
| | - Rui Bergantim
- Serviço de Hematologia Clínica, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- Instituto de Investigação e Inovaçáo em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Pathology and Molecular Immunology, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Cristina João
- Hemato-Oncology Unit, Champalimaud Foundation, Lisboa, Portugal
- NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
57
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
58
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
59
|
Fan H, Wang B, Shi L, Pan N, Yan W, Xu J, Gong L, Li L, Liu Y, Du C, Cui J, Zhu G, Deng S, Sui W, Xu Y, Yi S, Hao M, Zou D, Chen X, Qiu L, An G. Monitoring Minimal Residual Disease in Patients with Multiple Myeloma by Targeted Tracking Serum M-Protein Using Mass Spectrometry (EasyM). Clin Cancer Res 2024; 30:1131-1142. [PMID: 38170583 PMCID: PMC10940853 DOI: 10.1158/1078-0432.ccr-23-2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE We investigated both the clinical utilities and the prognostic impacts of the clonotypic peptide mass spectrometry (MS)-EasyM, a blood-based minimal residual disease (MRD) monitoring protocol in multiple myeloma. EXPERIMENTAL DESIGN A total of 447 sequential serum samples from 56 patients with multiple myeloma were analyzed using EasyM. Patient-specific M-protein peptides were sequenced from diagnostic samples; sequential samples were quantified by EasyM to monitor the M-protein. The performance of EasyM was compared with serum immunofixation electrophoresis (IFE), bone marrow multiparameter flow cytometry (MFC), and next-generation flow cytometry (NGF) detection. The optimal balance of EasyM sensitivity/specificity versus NGF (10-5 sensitivity) was determined and the prognostic impact of MS-MRD status was investigated. RESULTS Of the 447 serum samples detected and measured by EasyM, 397, 126, and 92 had time-matching results for comparison with serum IFE, MFC-MRD, and NGF-MRD, respectively. Using a dotp >0.9 as the MS-MRD positive, sensitivity was 99.6% versus IFE and 100.0% versus MFC and NGF. Using an MS negative cutoff informed by ROC analysis (<1.86% of that at diagnosis), EasyM sensitivity remained high versus IFE (88.3%), MFC (85.1%), and NGF (93.2%), whereas specificity increased to 90.4%, 55.8%, and 93.2%, respectively. In the multivariate analysis, older diagnostic age was an independent predictor for progression-free survival [PFS; high risk (HR), 3.15; 1.26-7.86], the best MS-MRD status (MS-MRD negative) was independent predictor for both PFS (HR, 0.25; 0.12-0.52) and overall survival (HR, 0.16; 0.06-0.40). CONCLUSIONS EasyM is a highly sensitive and minimal invasive method of MRD monitoring in multiple myeloma; MS-MRD had significant predictive ability for survival outcomes.
Collapse
Affiliation(s)
- Huishou Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Bing Wang
- Shanghai Kuaixu Biotechnology Co., Ltd., Shanghai, China
| | - Lihui Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ni Pan
- Shanghai Kuaixu Biotechnology Co., Ltd., Shanghai, China
| | - Wenqiang Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jingyu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lingna Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuntong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jian Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiequn Chen
- Department of Hematology, Affiliated Hospital of Northwest University, Institute of Hematology, Northwest University, Xian, Shaanxi, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
60
|
Wu H, Qian J, Zhou L, Hu T, Zhang Y, Wang C, Yang Y, Gu C. FHND004 inhibits malignant proliferation of multiple myeloma by targeting PDZ-binding kinase in MAPK pathway. Aging (Albany NY) 2024; 16:4811-4831. [PMID: 38460944 PMCID: PMC10968680 DOI: 10.18632/aging.205634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 03/11/2024]
Abstract
Inhibitors of Epidermal growth factor receptor tyrosine kinase (EGFR-TKIs) are producing impressive benefits to responsive types of cancers but challenged with drug resistances. FHND drugs are newly modified small molecule inhibitors based on the third-generation EGFR-TKI AZD9291 (Osimertinib) that are mainly for targeting the mutant-selective EGFR, particularly for the non-small cell lung cancer (NSCLC). Successful applications of EGFR-TKIs to other cancers are less certain, thus the present pre-clinical study aims to explore the anticancer effect and downstream targets of FHND in multiple myeloma (MM), which is an incurable hematological malignancy and reported to be insensitive to first/second generation EGFR-TKIs (Gefitinib/Afatinib). Cell-based assays revealed that FHND004 and FHND008 significantly inhibited MM cell proliferation and promoted apoptosis. The RNA-seq identified the involvement of the MAPK signaling pathway. The protein chip screened PDZ-binding kinase (PBK) as a potential drug target. The interaction between PBK and FHND004 was verified by molecular docking and microscale thermophoresis (MST) assay with site mutation (N124/D125). Moreover, the public clinical datasets showed high expression of PBK was associated with poor clinical outcomes. PBK overexpression evidently promoted the proliferation of two MM cell lines, whereas the FHND004 treatment significantly inhibited survival of 5TMM3VT cell-derived model mice and growth of patient-derived xenograft (PDX) tumors. The mechanistic study showed that FHND004 downregulated PBK expression, thus mediating ERK1/2 phosphorylation in the MAPK pathway. Our study not only demonstrates PBK as a promising novel target of FHND004 to inhibit MM cell proliferation, but also expands the EGFR kinase-independent direction for developing anti-myeloma therapy.
Collapse
Affiliation(s)
- Hongjie Wu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianxin Zhou
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Hu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanjiao Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
61
|
Smith B, Li Y, Fields T, Tucker M, Staskiewicz A, Wong E, Ma H, Mao H, Wang X. Tumor integrin targeted theranostic iron oxide nanoparticles for delivery of caffeic acid phenethyl ester: preparation, characterization, and anti-myeloma activities. Front Pharmacol 2024; 15:1325196. [PMID: 38510655 PMCID: PMC10952826 DOI: 10.3389/fphar.2024.1325196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells preferentially in the bone marrow. Currently, emerging chemotherapy drugs with improved biosafety profiles, such as immunomodulatory agents and protease inhibitors, have been used in clinics to treat MM in both initial therapy or maintenance therapy post autologous hematopoietic stem cell transplantation (ASCT). We previously discovered that caffeic acid phenethyl ester (CAPE), a water-insoluble natural compound, inhibited the growth of MM cells by inducing oxidative stress. As part of our continuous effort to pursue a less toxic yet more effective therapeutic approach for MM, the objective of this study is to investigate the potential of CAPE for in vivo applications by using magnetic resonance imaging (MRI)-capable superparamagnetic iron oxide nanoparticles (IONP) as carriers. Cyclo (Arg-Gly-Asp-D-Phe-Cys) (RGD) is conjugated to IONP (RGD-IONP/CAPE) to target the overexpressed αvβ3 integrin on MM cells for receptor-mediated internalization and intracellular delivery of CAPE. A stable loading of CAPE on IONP can be achieved with a loading efficiency of 48.7% ± 3.3% (wt%). The drug-release studies indicate RGD-IONP/CAPE is stable at physiological (pH 7.4) and basic pH (pH 9.5) and subject to release of CAPE at acidic pH (pH 5.5) mimicking the tumor and lysosomal condition. RGD-IONP/CAPE causes cytotoxicity specific to human MM RPMI8226, U266, and NCI-H929 cells, but not to normal peripheral blood mononuclear cells (PBMCs), with IC50s of 7.97 ± 1.39, 16.75 ± 1.62, and 24.38 ± 1.71 μM after 72-h treatment, respectively. Apoptosis assays indicate RGD-IONP/CAPE induces apoptosis of RPMI8226 cells through a caspase-9 mediated intrinsic pathway, the same as applying CAPE alone. The apoptogenic effect of RGD-IONP/CAPE was also confirmed on the RPMI8226 cells co-cultured with human bone marrow stromal cells HS-5 in a Transwell model to mimic the MM microenvironment in the bone marrow. In conclusion, we demonstrate that water-insoluble CAPE can be loaded to RGD-IONP to greatly improve the biocompatibility and significantly inhibit the growth of MM cells in vitro through the induction of apoptosis. This study paves the way for investigating the MRI-trackable delivery of CAPE for MM treatment in animal models in the future.
Collapse
Affiliation(s)
- Barkley Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Yuancheng Li
- 5M Biomed, Limited Liability Company, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Travis Fields
- Division of Research, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Michael Tucker
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Anna Staskiewicz
- Division of Research, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Erica Wong
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Handong Ma
- Division of Research, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine–Georgia Campus, Suwanee, GA, United States
| |
Collapse
|
62
|
Li JR, Arsang-Jang S, Cheng Y, Sun F, D'Souza A, Dhakal B, Hari P, Huang Q, Auer P, Li Y, Urrutia R, Zhan F, Shaughnessy JD, Janz S, Dong J, Cheng C. Enhancing prognostic power in multiple myeloma using a plasma cell signature derived from single-cell RNA sequencing. Blood Cancer J 2024; 14:38. [PMID: 38443358 PMCID: PMC10915134 DOI: 10.1038/s41408-024-01024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Multiple myeloma (MM) is a heterogenous plasma cell malignancy, for which the established prognostic models exhibit limitations in capturing the full spectrum of outcome variability. Leveraging single-cell RNA-sequencing data, we developed a novel plasma cell gene signature. We evaluated and validated the associations of the resulting plasma cell malignancy (PBM) score with disease state, progression and clinical outcomes using data from five independent myeloma studies consisting of 2115 samples (1978 MM, 65 monoclonal gammopathy of undetermined significance, 35 smoldering MM, and 37 healthy controls). Overall, a higher PBM score was significantly associated with a more advanced stage within the spectrum of plasma cell dyscrasias (all p < 0.05) and a shorter overall survival in MM (hazard ratio, HR = 1.72; p < 0.001). Notably, the prognostic effect of the PBM score was independent of the International Staging System (ISS) and Revised ISS (R-ISS). The downstream analysis further linked higher PBM scores with the presence of cytogenetic abnormalities, TP53 mutations, and compositional changes in the myeloma tumor immune microenvironment. Our integrated analyses suggest the PBM score may provide an opportunity for refining risk stratification and guide decisions on therapeutic approaches to MM.
Collapse
Affiliation(s)
- Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Shahram Arsang-Jang
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yan Cheng
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Fumou Sun
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anita D'Souza
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Binod Dhakal
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Parameswaran Hari
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quillan Huang
- Department of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Paul Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John D Shaughnessy
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Siegfried Janz
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jing Dong
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
63
|
Pour L, Szarejko M, Bila J, Schjesvold FH, Spicka I, Maisnar V, Jurczyszyn A, Grudeva-Popova Z, Hájek R, Usenko G, Thuresson M, Norin S, Jarefors S, Bakker NA, Richardson PG, Mateos MV. Efficacy and safety of melflufen plus daratumumab and dexamethasone in relapsed/refractory multiple myeloma: results from the randomized, open-label, phase III LIGHTHOUSE study. Haematologica 2024; 109:895-905. [PMID: 37646660 PMCID: PMC10905085 DOI: 10.3324/haematol.2023.283509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Melphalan flufenamide (melflufen), a first-in-class alkylating peptide-drug conjugate, plus dexamethasone was approved in Europe for use in patients with triple-class refractory relapsed/refractory multiple myeloma (RRMM) with ≥3 prior lines of therapy and without prior autologous stem cell transplantation (ASCT) or with a time to progression >36 months after prior ASCT. The randomized LIGHTHOUSE study (NCT04649060) assessed melflufen plus daratumumab and dexamethasone (melflufen group) versus daratumumab in patients with RRMM with disease refractory to an immunomodulatory agent and a proteasome inhibitor or who had received ≥3 prior lines of therapy including an immunomodulatory agent and a proteasome inhibitor. A partial clinical hold issued by the US Food and Drug Administration for all melflufen studies led to financial constraints and premature study closure on February 23rd 2022 (data cut-off date). In total, 54 of 240 planned patients were randomized (melflufen group, N=27; daratumumab group, N=27). Median progression-free survival (PFS) was not reached in the melflufen group versus 4.9 months in the daratumumab group (Hazard Ratio: 0.18 [95% Confidence Interval, 0.05-0.65]; P=0.0032) at a median follow-up time of 7.1 and 6.6 months, respectively. Overall response rate (ORR) was 59% in the melflufen group versus 30% in the daratumumab group (P=0.0300). The most common grade ≥3 treatment-emergent adverse events in the melflufen group versus daratumumab group were neutropenia (50% vs. 12%), thrombocytopenia (50% vs. 8%), and anemia (32% vs. 19%). Melflufen plus daratumumab and dexamethasone demonstrated superior PFS and ORR versus daratumumab in RRMM and a safety profile comparable to previously published melflufen studies.
Collapse
Affiliation(s)
- Luděk Pour
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Babak Myeloma Group, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Monika Szarejko
- University Clinical Centre, Department of Hematology and Transplantology, Gdansk
| | - Jelena Bila
- Clinic of Hematology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade
| | - Fredrik H Schjesvold
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital and KG Jebsen Center for B Cell Malignancies, University of Oslo, Oslo
| | - Ivan Spicka
- 1 Department of Medicine - Department of Hematology, First Faculty of Medicine, Charles University and General Hospital in Prague, Prague, Czech Republic
| | - Vladimir Maisnar
- 4 Department of Medicine - Hematology, Charles University Hospital and Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Department of Hematology, Jagiellonian University Faculty of Medicine, Krakow
| | - Zhanet Grudeva-Popova
- Department of Clinical Oncology, Medical Faculty, Medical University of Plovdiv, Plovdic, Bulgaria
| | - Roman Hájek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Ganna Usenko
- City Clinical Hospital No. 4 of Dnipro City Council, Dnipro, Ukraine
| | | | | | | | | | | | | |
Collapse
|
64
|
Li Z, Yin X, Lyu C, Wang J, Liu K, Cui S, Ding S, Wang Y, Wang J, Guo D, Xu R. Zinc Oxide Nanoparticles Trigger Autophagy in the Human Multiple Myeloma Cell Line RPMI8226: an In Vitro Study. Biol Trace Elem Res 2024; 202:913-926. [PMID: 37432567 DOI: 10.1007/s12011-023-03737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023]
Abstract
Multiple myeloma (MM) is a malignant clonal proliferative plasma cell tumor. Zinc oxide nanoparticles (ZnO NPs) are used for antibacterial and antitumor applications in the biomedical field. This study investigated the autophagy-induced effects of ZnO NPs on the MM cell line RPMI8226 and the underlying mechanism. After RPMI8226 cells were exposed to various concentrations of ZnO NPs, the cell survival rate, morphological changes, lactate dehydrogenase (LDH) levels, cell cycle arrest, and autophagic vacuoles were monitored. Moreover, we investigated the expression of Beclin 1 (Becn1), autophagy-related gene 5 (Atg5), and Atg12 at the mRNA and protein levels, as well as the level of light chain 3 (LC3). The results showed that ZnO NPs could effectively inhibit the proliferation and promote the death of RPMI8226 cells in vitro in a dose- and time-dependent manner. ZnO NPs increased LDH levels, enhanced monodansylcadaverine (MDC) fluorescence intensity, and induced cell cycle arrest at the G2/M phases in RPMI8226 cells. Moreover, ZnO NPs significantly increased the expression of Becn1, Atg5, and Atg12 at the mRNA and protein levels and stimulated the production of LC3. We further validated the results using the autophagy inhibitor 3-methyladenine (3‑MA). Overall, we observed that ZnO NPs can trigger autophagy signaling in RPMI8226 cells, which may be a potential therapeutic approach for MM.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jingyi Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Kui Liu
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Siyuan Cui
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Shumin Ding
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Yingying Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong, University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
65
|
Ocio EM, Efebera YA, Hájek R, Straub J, Maisnar V, Eveillard JR, Karlin L, Mateos MV, Oriol A, Ribrag V, Richardson PG, Norin S, Obermüller J, Bakker NA, Pour L. ANCHOR: melflufen plus dexamethasone and daratumumab or bortezomib in relapsed/refractory multiple myeloma: final results of a phase I/IIa study. Haematologica 2024; 109:867-876. [PMID: 37646657 PMCID: PMC10905089 DOI: 10.3324/haematol.2023.283490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Melphalan flufenamide (melflufen), a first-in-class, alkylating peptide-drug conjugate, demonstrated clinical benefit in combination with dexamethasone in triple-class refractory multiple myeloma (MM). The phase I/IIa ANCHOR study evaluated melflufen (30 or 40 mg) and dexamethasone (40 mg with daratumumab; 20 mg followed by 40 mg with bortezomib; dose reduced if aged ≥75 years) in triplet combination with daratumumab (16 mg/kg; daratumumab arm) or bortezomib (1.3 mg/m2; bortezomib arm) in patients with relapsed/refractory MM refractory to an immunomodulatory agent and/or a proteasome inhibitor and who had received one to four prior lines of therapy. Primary objectives were to determine the optimal dose of melflufen in triplet combination (phase I) and overall response rate (phase IIa). In total, 33 patients were treated in the daratumumab arm and 23 patients received therapy in the bortezomib arm. No dose-limiting toxicities were reported at either melflufen dose level with either combination. With both triplet regimens, the most common grade ≥3 treatment-emergent adverse events were thrombocytopenia and neutropenia; thrombocytopenia was the most common treatment-emergent adverse event leading to treatment discontinuation. In the daratumumab arm, patients receiving melflufen 30 mg remained on treatment longer than those receiving the 40-mg dose. In the daratumumab arm, the overall response rate was 73% and median progression-free survival was 12.9 months. Notably, in the bortezomib arm, the overall response rate was 78% and median progression-free survival was 14.7 months. Considering the totality of the data, melflufen 30 mg was established as the recommended dose for use with dexamethasone and daratumumab or bortezomib for future studies in relapsed/refractory MM.
Collapse
Affiliation(s)
- Enrique M Ocio
- Hospital Universitario Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, Santander.
| | - Yvonne A Efebera
- Department of Hematology/Oncology, Division of Blood and Marrow Transplant and Cellular Therapy, OhioHealth, Columbus, OH, USA and OhioHealth, Columbus, OH
| | - Roman Hájek
- Department of Hematooncology, University Hospital Ostrava, Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jan Straub
- Všeobecná fakultní nemocnice, Prague, Czech Republic
| | - Vladimir Maisnar
- Fourth Department of Medicine - Hematology, Charles University Hospital, Hradec Králové, Czech Republic
| | | | - Lionel Karlin
- Department of Hematology, Centre Hospitalier Lyon-Sud, University Claude Bernard Lyon 1, Pierre-Bénite
| | | | - Albert Oriol
- Institut Català d'Oncologia and Josep Carreras Research Institute, Hospital Germans Trias i Pujol, Badalona
| | - Vincent Ribrag
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif
| | | | | | | | | | - Luděk Pour
- Fakultní nemocnice Brno, Brno, Czech Republic
| |
Collapse
|
66
|
Lim SM, Wijeratne N, Choy KW, Nguyen TTH, Setiawan L, Loh TP. A review of clinical guidelines, laboratory recommendations and external quality assurance programs for monoclonal gammopathy testing. Crit Rev Clin Lab Sci 2024; 61:107-126. [PMID: 37776896 DOI: 10.1080/10408363.2023.2257306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Monoclonal gammopathy (MG) is a spectrum of diseases ranging from the benign asymptomatic monoclonal gammopathy of undetermined significance to the malignant multiple myeloma. Clinical guidelines and laboratory recommendations have been developed to inform best practices in the diagnosis, monitoring, and management of MG. In this review, the pathophysiology, relevant laboratory testing recommended in clinical practice guidelines and laboratory recommendations related to MG testing and reporting are examined. The clinical guidelines recommend serum protein electrophoresis, serum immunofixation and serum free light chain measurement as initial screening. The laboratory recommendations omit serum immunofixation as it offers limited additional diagnostic value. The laboratory recommendations offer guidance on reporting findings beyond monoclonal protein, which was not required by the clinical guidelines. The clinical guidelines suggested monitoring total IgA concentration by turbidimetry or nephelometry method if the monoclonal protein migrates in the non-gamma region, whereas the laboratory recommendations make allowance for involved IgM and IgG. Additionally, several external quality assurance programs for MG protein electrophoresis and free light chain testing are also appraised. The external quality assurance programs show varied assessment criteria for protein electrophoresis reporting and unit of measurement. There is also significant disparity in reported monoclonal protein concentrations with wide inter-method analytical variation noted for both monoclonal protein quantification and serum free light chain measurement, however this variation appears smaller when the same method was used. Greater harmonization among laboratory recommendations and reporting format may improve clinical interpretation of MG testing.
Collapse
Affiliation(s)
| | - Nilika Wijeratne
- Dorevitch Pathology, Melbourne, Australia
- School of Clinical Sciences at Monash Health, Department of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
- Eastern Health Pathology, Eastern Health, Box Hill, Australia
- Dorevitch Pathology, Heidelberg, Australia
| | | | | | - Lyana Setiawan
- Dharmais Hospital National Cancer Centre, West Jakarta, Indonesia
| | - Tze Ping Loh
- National University Hospital, Singapore, Singapore
| |
Collapse
|
67
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
68
|
Torcasio R, Gallo Cantafio ME, Veneziano C, De Marco C, Ganino L, Valentino I, Occhiuzzi MA, Perrotta ID, Mancuso T, Conforti F, Rizzuti B, Martino EA, Gentile M, Neri A, Viglietto G, Grande F, Amodio N. Targeting of mitochondrial fission through natural flavanones elicits anti-myeloma activity. J Transl Med 2024; 22:208. [PMID: 38413989 PMCID: PMC10898065 DOI: 10.1186/s12967-024-05013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | | | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ilenia Valentino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | - Teresa Mancuso
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Bruno Rizzuti
- SS Rende (CS), Department of Physics, CNR-NANOTEC, University of Calabria, Via Pietro Bucci, 87036, Rende, CS, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018, Saragossa, Spain
| | | | - Massimo Gentile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Antonino Neri
- Scientific Directorate, IRCCS Di Reggio Emilia, Emilia Romagna, Reggio Emilia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
69
|
Wang C, Wang W, Wang M, Deng J, Sun C, Hu Y, Luo S. Different evasion strategies in multiple myeloma. Front Immunol 2024; 15:1346211. [PMID: 38464531 PMCID: PMC10920326 DOI: 10.3389/fimmu.2024.1346211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Multiple myeloma is the second most common malignant hematologic malignancy which evolved different strategies for immune escape from the host immune surveillance and drug resistance, including uncontrolled proliferation of malignant plasma cells in the bone marrow, genetic mutations, or deletion of tumor antigens to escape from special targets and so. Therefore, it is a big challenge to efficiently treat multiple myeloma patients. Despite recent applications of immunomodulatory drugs (IMiDS), protease inhibitors (PI), targeted monoclonal antibodies (mAb), and even hematopoietic stem cell transplantation (HSCT), it remains hardly curable. Summarizing the possible evasion strategies can help design specific drugs for multiple myeloma treatment. This review aims to provide an integrative overview of the intrinsic and extrinsic evasion mechanisms as well as recently discovered microbiota utilized by multiple myeloma for immune evasion and drug resistance, hopefully providing a theoretical basis for the rational design of specific immunotherapies or drug combinations to prevent the uncontrolled proliferation of MM, overcome drug resistance and improve patient survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
70
|
Massoni-Badosa R, Aguilar-Fernández S, Nieto JC, Soler-Vila P, Elosua-Bayes M, Marchese D, Kulis M, Vilas-Zornoza A, Bühler MM, Rashmi S, Alsinet C, Caratù G, Moutinho C, Ruiz S, Lorden P, Lunazzi G, Colomer D, Frigola G, Blevins W, Romero-Rivero L, Jiménez-Martínez V, Vidal A, Mateos-Jaimez J, Maiques-Diaz A, Ovejero S, Moreaux J, Palomino S, Gomez-Cabrero D, Agirre X, Weniger MA, King HW, Garner LC, Marini F, Cervera-Paz FJ, Baptista PM, Vilaseca I, Rosales C, Ruiz-Gaspà S, Talks B, Sidhpura K, Pascual-Reguant A, Hauser AE, Haniffa M, Prosper F, Küppers R, Gut IG, Campo E, Martin-Subero JI, Heyn H. An atlas of cells in the human tonsil. Immunity 2024; 57:379-399.e18. [PMID: 38301653 PMCID: PMC10869140 DOI: 10.1016/j.immuni.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/07/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.
Collapse
Affiliation(s)
| | | | - Juan C Nieto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Paula Soler-Vila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amaia Vilas-Zornoza
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marco Matteo Bühler
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Sonal Rashmi
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Clara Alsinet
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Ginevra Caratù
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Catia Moutinho
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Sara Ruiz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Patricia Lorden
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Giulia Lunazzi
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Will Blevins
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Lucia Romero-Rivero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anna Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Judith Mateos-Jaimez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Maiques-Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France; Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France; Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Sara Palomino
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Navarra Health Department (CHN), Public University of Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Navarra Health Department (CHN), Public University of Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Xabier Agirre
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hamish W King
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Peter M Baptista
- Department of Otorhinolaryngology, University of Navarra, Pamplona, Spain
| | - Isabel Vilaseca
- Otorhinolaryngology Head-Neck Surgery Department, Hospital Clínic, IDIBAPS Universitat de Barcelona, Barcelona, Spain
| | - Cecilia Rosales
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Benjamin Talks
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Department of Otolaryngology, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Keval Sidhpura
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Felipe Prosper
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Departamento de Hematología, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ivo Glynne Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Hematopathology Section, Pathology Department, Hospital Clinic, Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - José Ignacio Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
71
|
Tonon G. Myeloma and DNA damage. Blood 2024; 143:488-495. [PMID: 37992215 DOI: 10.1182/blood.2023021384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT DNA-damaging agents have represented the first effective treatment for the blood cancer multiple myeloma, and after 65 years since their introduction to the clinic, they remain one of the mainstay therapies for this disease. Myeloma is a cancer of plasma cells. Despite exceedingly slow proliferation, myeloma cells present extended genomic rearrangements and intense genomic instability, starting at the premalignant stage of the disease. Where does such DNA damage stem from? A reliable model argues that the powerful oncogenes activated in myeloma as well the phenotypic peculiarities of cancer plasma cells, including the dependency on the proteasome for survival and the constant presence of oxidative stress, all converge on modulating DNA damage and repair. Beleaguered by these contraposing forces, myeloma cells survive in a precarious balance, in which the robust engagement of DNA repair mechanisms to guarantee cell survival is continuously challenged by rampant genomic instability, essential for cancer cells to withstand hostile selective pressures. Shattering this delicate equilibrium has been the goal of the extensive use of DNA-damaging agents since their introduction in the clinic, now enriched by novel approaches that leverage upon synthetic lethality paradigms. Exploiting the impairment of homologous recombination caused by myeloma genetic lesions or treatments, it is now possible to design therapeutic combinations that could target myeloma cells more effectively. Furthermore, DNA-damaging agents, as demonstrated in solid tumors, may sensitize cells to immune therapies. In all, targeting DNA damage and repair remains as central as ever in myeloma, even for the foreseeable future.
Collapse
Affiliation(s)
- Giovanni Tonon
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology and Center for Omics Sciences, Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
72
|
Geng J, Zhao J, Fan R, Zhu Z, Zhang Y, Zhu Y, Yang Y, Xu L, Lin X, Hu K, Rudan I, Song P, Li X, Wu X. Global, regional, and national burden and quality of care of multiple myeloma, 1990-2019. J Glob Health 2024; 14:04033. [PMID: 38299781 PMCID: PMC10832550 DOI: 10.7189/jogh.14.04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Background Multiple myeloma (MM) is the second most common haematologic malignancy, presenting a great disease burden on the general population; however, the quality of care of MM is overlooked. We therefore assessed gains and disparity in quality of care worldwide from 1990 to 2019 based on a novel summary indicator - the quality of care index (QCI) - and examined its potential for improvement. Methods Using the Global Burden of Disease 2019 data set, we calculated the QCI of MM for 195 countries and territories. We used the principal component analysis to extract the first principal component of ratios with the combinations of mortality to incidence, prevalence to incidence, disability-adjusted life years to prevalence, and years of life lost to years lived with disability as QCI. We also conducted a series of descriptive and comparative analyses of QCI disparities with age, gender, period, geographies, and sociodemographic development, and compared the QCI among countries with similar socio-demographic index (SDI) through frontier analysis. Results The age-standardised rates of MM were 1.92 (95% uncertainty interval (UI) = 1.68, 2.12) in incidence and 1.42 (95% UI = 1.24, 1.52) in deaths per 100 000 population in 2019, and were predicted to increase in the future. The global age-standardised QCI increased from 51.31 in 1990 to 64.28 in 2019. In 2019, New Zealand had the highest QCI at 99.29 and the Central African Republic had the lowest QCI at 10.74. The gender disparity of QCI was reduced over the years, with the largest being observed in the sub-Saharan region. Regarding age, QCI maintained a decreasing trend in patients aged >60 in SDI quintiles. Generally, QCI improved with the SDI increase. Results of frontier analysis suggested that there is a potential to improve the quality of care across all levels of development spectrum. Conclusions Quality of care of MM improved during the past three decades, yet disparities in MM care remain across different countries, age groups, and genders. It is crucial to establish local objectives aimed at enhancing MM care and closing the gap in health care inequality.
Collapse
Affiliation(s)
- Jiawei Geng
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Global Health, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Fan
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zecheng Zhu
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuchen Zhang
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingshuang Zhu
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yichi Yang
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Liying Xu
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Kejia Hu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Igor Rudan
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Peige Song
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Xifeng Wu
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
73
|
Hagos YB, Lecat CS, Patel D, Mikolajczak A, Castillo SP, Lyon EJ, Foster K, Tran TA, Lee LS, Rodriguez-Justo M, Yong KL, Yuan Y. Deep Learning Enables Spatial Mapping of the Mosaic Microenvironment of Myeloma Bone Marrow Trephine Biopsies. Cancer Res 2024; 84:493-508. [PMID: 37963212 PMCID: PMC10831337 DOI: 10.1158/0008-5472.can-22-2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Bone marrow trephine biopsy is crucial for the diagnosis of multiple myeloma. However, the complexity of bone marrow cellular, morphologic, and spatial architecture preserved in trephine samples hinders comprehensive evaluation. To dissect the diverse cellular communities and mosaic tissue habitats, we developed a superpixel-inspired deep learning method (MoSaicNet) that adapts to complex tissue architectures and a cell imbalance aware deep learning pipeline (AwareNet) to enable accurate detection and classification of rare cell types in multiplex immunohistochemistry images. MoSaicNet and AwareNet achieved an AUC of >0.98 for tissue and cellular classification on separate test datasets. Application of MoSaicNet and AwareNet enabled investigation of bone heterogeneity and thickness as well as spatial histology analysis of bone marrow trephine samples from monoclonal gammopathies of undetermined significance (MGUS) and from paired newly diagnosed and posttreatment multiple myeloma. The most significant difference between MGUS and newly diagnosed multiple myeloma (NDMM) samples was not related to cell density but to spatial heterogeneity, with reduced spatial proximity of BLIMP1+ tumor cells to CD8+ cells in MGUS compared with NDMM samples. Following treatment of patients with multiple myeloma, there was a reduction in the density of BLIMP1+ tumor cells, effector CD8+ T cells, and regulatory T cells, indicative of an altered immune microenvironment. Finally, bone heterogeneity decreased following treatment of patients with multiple myeloma. In summary, deep learning-based spatial mapping of bone marrow trephine biopsies can provide insights into the cellular topography of the myeloma marrow microenvironment and complement aspirate-based techniques. SIGNIFICANCE Spatial analysis of bone marrow trephine biopsies using histology, deep learning, and tailored algorithms reveals the bone marrow architectural heterogeneity and evolution during myeloma progression and treatment.
Collapse
Affiliation(s)
- Yeman Brhane Hagos
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Catherine S.Y. Lecat
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Dominic Patel
- Research Department of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Anna Mikolajczak
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Simon P. Castillo
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Emma J. Lyon
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Kane Foster
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Thien-An Tran
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lydia S.H. Lee
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Research Department of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Kwee L. Yong
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Yinyin Yuan
- Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Centre for Molecular Pathology, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
74
|
Kadkhoda D, Nikoonezhad M, Bonakchi H, Mehdizadeh M, Hajifathali A, Baghestani AR, Jabarinanva L, Khadem Maboudi AA. Investigating the effect of pre-transplant thrombocytopenia and anemia on the engraftment and long-term survival in multiple myeloma patients. Transpl Immunol 2024; 82:101991. [PMID: 38199269 DOI: 10.1016/j.trim.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Autologous stem cell transplantation (ASCT) following high-dose melphalan is the standard treatment for Multiple Myeloma (MM). Despite new treatments, further investigation is needed to identify prognostic factors of ASCT. This study evaluated the impact of thrombocytopenia and anemia on the engraftment of MM patients after ASCT. MATERIALS AND METHODS This retrospective study involved 123 MM patients who underwent ASCT with high-dose Melphalan. Successful engraftment is achieved when both platelets (Plt) and white blood cells (WBC) engraft successfully. We examined the statistically significant cut-offs for the prognostic factors on the admission day. Ultimately, the association of risk factors with the Plt and WBC engraftment and long-term survival were analyzed as the outcomes of interest. RESULTS Spearman's correlation coefficient between Plt and WBC engraftment was 0.396 (p < 0.001). The engraftment in the patients with Plt < 140,000/μL was 17.4% slower (p = 0.036) and the odds of long-term survival was 72% lower (p = 0.016) than in patients with higher Plt. Patients with Hb < 11 g/dL were 12.7% slower in engraftment. Age over 47 was a significant factor in slower engraftment (p = 0.036) which decelerated the engraftment by 15.2%. CONCLUSION Thrombocytopenia and anemia before transplantation are related to slower Plt/WBC engraftment and as prognostic factors might predict the long-term survival of MM patients following ASCT.
Collapse
Affiliation(s)
- Dariush Kadkhoda
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nikoonezhad
- Department of Immunology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Hossein Bonakchi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Baghestani
- Physiotherapy Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Jabarinanva
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Khadem Maboudi
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
75
|
Ho M, Zanwar S, Paludo J. Chimeric antigen receptor T-cell therapy in hematologic malignancies: Successes, challenges, and opportunities. Eur J Haematol 2024; 112:197-210. [PMID: 37545132 DOI: 10.1111/ejh.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies has realized a longstanding effort toward harnessing the immune system to fight cancer in a truly personalized fashion. Second generation chimeric antigen receptors (CAR) incorporating co-stimulatory molecules like 4-1BB or CD28 were able to overcome some of the hindrances with initial CAR constructs resulting in efficacious products. Many second-generation CAR-T products have been approved in the treatment of relapsed/refractory hematologic malignancies including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and acute lymphoblastic leukemia. However, challenges remain in optimizing the manufacturing, timely access, limiting the toxicity from CAR-T infusions and improving sustainability of responses derived with CAR-T therapy. Here, we summarize the clinical trial data leading to approval CAR-T therapies in MM and NHL, discuss the limitations with current CAR-T therapy strategies and review emerging strategies for overcoming these limitations.
Collapse
Affiliation(s)
- Matthew Ho
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonas Paludo
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
76
|
Miglierina E, Ordanoska D, Le Noir S, Laffleur B. RNA processing mechanisms contribute to genome organization and stability in B cells. Oncogene 2024; 43:615-623. [PMID: 38287115 PMCID: PMC10890934 DOI: 10.1038/s41388-024-02952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
RNA processing includes post-transcriptional mechanisms controlling RNA quality and quantity to ensure cellular homeostasis. Noncoding (nc) RNAs that are regulated by these dynamic processes may themselves fulfill effector and/or regulatory functions, and recent studies demonstrated the critical role of RNAs in organizing both chromatin and genome architectures. Furthermore, RNAs can threaten genome integrity when accumulating as DNA:RNA hybrids, but could also facilitate DNA repair depending on the molecular context. Therefore, by qualitatively and quantitatively fine-tuning RNAs, RNA processing contributes directly or indirectly to chromatin states, genome organization, and genome stability. B lymphocytes represent a unique model to study these interconnected mechanisms as they express ncRNAs transcribed from key specific sequences before undergoing physiological genetic remodeling processes, including V(D)J recombination, somatic hypermutation, and class switch recombination. RNA processing actors ensure the regulation and degradation of these ncRNAs for efficient DNA repair and immunoglobulin gene remodeling while failure leads to B cell development alterations, aberrant DNA repair, and pathological translocations. This review highlights how RNA processing mechanisms contribute to genome architecture and stability, with emphasis on their critical roles during B cell development, enabling physiological DNA remodeling while preventing lymphomagenesis.
Collapse
Affiliation(s)
- Emma Miglierina
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France
| | - Delfina Ordanoska
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France
| | - Sandrine Le Noir
- UMR CNRS 7276, Inserm 1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B cell Nuclear Architecture, Immunoglobulin genes and Oncogenes, Limoges, France
| | - Brice Laffleur
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France.
| |
Collapse
|
77
|
Al Hariri M, Munder M, Pfeiffer N, Wasielica-Poslednik J. Does Systemic Hematological Therapy Influence the Course of Paraproteinemic Keratopathy? J Clin Med 2024; 13:565. [PMID: 38256698 PMCID: PMC10817037 DOI: 10.3390/jcm13020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The purpose of this article is to evaluate the course of paraproteinemic keratopathy (PPK) in patients undergoing systemic therapy for the underlying hematological disease. Baseline and follow-up examinations included hematological work-up, best-corrected visual acuity, slit-lamp biomicroscopy, and in vivo confocal laser scanning microscopy (IVCM). We included 22 patients with bilateral PPK (aged 68 ± 10.4 years, 11 males). Ten patients with multiple myeloma (MM) underwent on-label systemic therapy. During follow-up, we observed a regression of corneal opacities in three patients under slit-lamp examination and under IVCM, while PPK remained unchanged in seven patients. In three patients with monoclonal gammopathy of ocular significance (MGOS), systemic therapy was initiated off-label to reduce the serum paraprotein load before penetrating keratoplasty (PKP). These patients showed no signs of PPK recurrence for up to 24 months after PKP. In one patient without systemic therapy, a recurrence in corneal grafts occurred within 12 months of PKP. In eight patients without systemic therapy, PPK remained stable. In conclusion, systemic therapy for MM patients reduced corneal opacity in 30% of treated patients. Furthermore, systemic therapy performed before PKP in patients without conventional systemic therapy indication (MGOS) likely postpones PPK recurrence in the corneal graft.
Collapse
Affiliation(s)
- Mohammad Al Hariri
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.P.); (J.W.-P.)
| | - Markus Munder
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.P.); (J.W.-P.)
| | - Joanna Wasielica-Poslednik
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.P.); (J.W.-P.)
| |
Collapse
|
78
|
Dong S, Hu K, Shi Y, Wang G, Yu D, Zhao Y, Zhang H, Wang Y, Sun H, Xu Z, Jia Q, Li Y, Li Y, Li B, Shi J, Zhu W. Design and synthesis of cantharidin derivative DCZ5418 as a TRIP13 inhibitor with anti-multiple myeloma activity in vitro and in vivo. Bioorg Med Chem Lett 2024; 98:129590. [PMID: 38092072 DOI: 10.1016/j.bmcl.2023.129590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Natural product cantharidin can inhibit multiple myeloma cell growth in vitro, while serious adverse effects limited its clinical application. Therefore, the structural modification of cantharidin is needed. Herein, inspired by the structural similarity of the aliphatic endocyclic moiety in cantharidin and TRIP13 inhibitor DCZ0415, we designed and synthesized DCZ5418 and its nineteen derivatives. The molecular docking study indicated that DCZ5418 had a similar binding mode to TRIP13 protein as DCZ0415 while with a stronger docking score. Moreover, the bioassay studies of the MM-cells viability inhibition, TRIP13 protein binding affinity and enzyme inhibiting activity showed that DCZ5418 had good anti-MM activity in vitro and definite interaction with TRIP13 protein. The acute toxicity test of DCZ5418 showed less toxicity in vivo than cantharidin. Furthermore, DCZ5418 showed good anti-MM effects in vivo with a lower dose administration than DCZ0415 (15 mg/kg vs 25 mg/kg) on the tumor xenograft models. Thus, we obtained a new TRIP13 inhibitor DCZ5418 with improved safety and good activity in vivo, which provides a new example of lead optimization by using the structural fragments of natural products.
Collapse
Affiliation(s)
- Sanfeng Dong
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yulong Shi
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Guanli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yitian Zhao
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Haiguo Sun
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yiming Li
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yingxia Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No.38 Xue Yuan Road, Haidian District, Beijing 100191, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
79
|
Gordan LN, Tan CR, Vescio R, Ye JC, Schinke C, Medhekar R, Fu AZ, Lafeuille MH, Thompson-Leduc P, Khare V, Reitan J, Milkovich G, Kaila S, Davies F, Usmani SZ. Progression-Free Survival of Daratumumab Versus Bortezomib Triplet Combination With Lenalidomide and Dexamethasone in Transplant Ineligible Patients With Newly Diagnosed Multiple Myeloma: TAURUS Chart Review Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:55-63. [PMID: 37838502 DOI: 10.1016/j.clml.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Daratumumab, lenalidomide and dexamethasone (DRd) and bortezomib, lenalidomide and dexamethasone (VRd) are preferred regimens for transplant ineligible (TIE) patients with newly diagnosed multiple myeloma (NDMM). Both DRd and VRd demonstrated superior efficacy versus Rd in the MAIA and SWOG S0777 trials, respectively, but there is no head-to-head (H2H) clinical trial comparing their efficacy. Differing populations in the MAIA and S0777 trials make an unadjusted comparison of outcomes challenging and biased. The current TAURUS study is the first real-world H2H study comparing progression-free survival (PFS) among TIE NDMM patients treated with DRd or VRd as first-line (1L) in similar clinical settings. MATERIALS AND METHODS A multicenter chart review study was conducted at nine sites across the United States. All TIE patients treated with DRd and a randomly selected population of VRd patients were included. TIE NDMM patients aged ≥65 were included if they initiated 1L DRd/VRd between January 2019 and September 2021. PFS was defined as the time from DRd/VRd initiation until disease progression or death. A doubly-robust multivariable Cox regression model combined with inverse probability of treatment weighting (IPTW) methodology was used to compare PFS between cohorts. RESULTS Weighted cohorts comprised 91 DRd and 87 VRd patients. Thirteen DRd and 24 VRd patients experienced progression/death. Patients treated with DRd had a lower risk of progression/death versus VRd (adjusted hazard ratio: 0.35, 95% confidence interval: [0.17; 0.73]). CONCLUSION DRd is associated with a significantly lower risk of disease progression or death compared to VRd as 1L treatment for TIE NDMM patients.
Collapse
Affiliation(s)
| | - Carlyn Rose Tan
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Robert Vescio
- Samuel Oschin Cancer Center, Cedars-Sinai, Los Angeles, CA, USA
| | | | | | | | - Alex Z Fu
- Janssen Scientific Affairs, LLC, Titusville, NJ, USA; Georgetown University Medical Center, Washington, DC, USA
| | | | | | - Vipin Khare
- Janssen Scientific Affairs, LLC, Horsham, PA, USA
| | | | | | | | - Faith Davies
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
80
|
Abstract
Natural Killer T (NKT) cells are distinct innate lymphocytes that recognize lipid antigens in the context of nonpolymorphic molecule CD1d. Multiple myeloma (MM) is a hematologic malignancy wherein malignant plasma cells express CD1d and are sensitive to lysis by NKT cells. Progressive malignancy in MM is characterized by NKT cell dysfunction. Several studies have tried to harness the anti-tumor properties of NKT cells in MM to mediate tumor regression. NKT cells are also attractive targets for approaches at immune redirection in MM with chimeric-antigen receptor NKT (CAR-NKT) and bispecific antibodies. In addition to the commonly studied invariant-NKT (iNKT) cells, MM patients often also exhibit alterations in type-II NKT cells and their ligands. In patients and mouse models with Gaucher disease (GD), an inherited lipid-storage disorder with markedly increased risk for MM, distinct type-II NKT cells exhibit a T-follicular helper (NKT-TFH) phenotype and provide help to lipid-specific B cells. Chronic immune activation in this setting eventually sets the stage for malignancy, which can be targeted in both mouse models and GD patients by reducing the underlying antigen. NKT cells are thus integrally linked to MM pathogenesis and an attractive target for MM immunotherapy.
Collapse
|
81
|
Saijpaul R, Khurana V, Verma R, Kaushik S. Single monoclonal spike characterized as double monoclonal gammopathy in a patient with multiple myeloma: A rare finding. INDIAN J PATHOL MICR 2024; 67:192-194. [PMID: 38358220 DOI: 10.4103/ijpm.ijpm_904_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Multiple myeloma (MM) is associated with the secretion of a unique monoclonal protein (M-protein) due to overproduction of immunoglobulin (Ig) by a clone of abnormally proliferating plasma cells. However, in 4% of the cases more than one M-protein can be found. This category of gammopathies is called "double monoclonal gammopathies." Here, we present a rare case of MM with double monoclonal gammopathy, where the presence of both M-proteins was observed in the single sharp peak on capillary zone electrophoresis (CZE). Further the interference of Hook effect is also discussed. Double monoclonal gammopathies need to be identified to increase diagnostic accuracy and reliability, and to get a better understanding of the disease pathogenesis and progression.
Collapse
Affiliation(s)
- Rajni Saijpaul
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Vatsala Khurana
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Rashmi Verma
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Smita Kaushik
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
82
|
Kreiniz N, Eiza N, Tadmor T, Levy Yurkovski I, Matarasso Greenfeld S, Sabag A, Mubariki R, Suriu C, Votinov E, Toubi E, Vadasz Z. The Involvement of LAG-3 positive Plasma Cells in the Development of Multiple Myeloma. Int J Mol Sci 2023; 25:549. [PMID: 38203720 PMCID: PMC10778841 DOI: 10.3390/ijms25010549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The Lymphocyte-Activation Protein 3 (LAG-3) inhibitory receptor is expressed on regulatory plasma cells (PCs). Micro-environmental cells that express LAG-3 were found to be increased during the progression of smoldering multiple myeloma (SMM). To assess the possible role of LAG-3 expression on regulatory PCs in patients with plasma cell dyscrasia. Purified Cluster of Differentiation 138 (CD138+) PCs from patients with premalignant conditions, active multiple myeloma (MM), and controls were analyzed for the expression of LAG-3 by flow cytometry. Autologous CD8+T cells were incubated with sorted LAG-3pos or LAG-3neg PCs for 24 h. The expression of granzyme (Grz) in CD8+T cells was assessed by flow cytometry. LAG-3 expression on PCs in active MM (newly diagnosed and relapse refractory MM) was significantly increased compared to monoclonal gammopathy of undetermined significance (MGUS)/ SMM. Grz expression was significantly decreased in CD8+T cells incubated with CD138+LAG-3pos PCs, compared to CD138+LAG-3neg PCs in patients with plasma cell dyscrasia, n = 31, p = 0.0041. LAG-3 expression on malignant PCs can be involved in the development of MM from MGUS by decreasing the expression of Grz in CD8+T cells.
Collapse
Affiliation(s)
- Natalia Kreiniz
- The Division of Hematology, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3339419, Israel; (N.K.); (T.T.); (I.L.Y.); (S.M.G.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 3525433, Israel
| | - Nasren Eiza
- The Proteomic Unit, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3104802, Israel; (N.E.); (A.S.); (R.M.); (E.T.)
| | - Tamar Tadmor
- The Division of Hematology, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3339419, Israel; (N.K.); (T.T.); (I.L.Y.); (S.M.G.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 3525433, Israel
| | - Ilana Levy Yurkovski
- The Division of Hematology, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3339419, Israel; (N.K.); (T.T.); (I.L.Y.); (S.M.G.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 3525433, Israel
| | - Sarah Matarasso Greenfeld
- The Division of Hematology, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3339419, Israel; (N.K.); (T.T.); (I.L.Y.); (S.M.G.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 3525433, Israel
| | - Adi Sabag
- The Proteomic Unit, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3104802, Israel; (N.E.); (A.S.); (R.M.); (E.T.)
| | - Raeda Mubariki
- The Proteomic Unit, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3104802, Israel; (N.E.); (A.S.); (R.M.); (E.T.)
| | - Celia Suriu
- The Division of Hematology, Galilee Medical Center, Nahariya-Cabri 89, Nahariyya 221001, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St 8, Safed 1311502, Israel
| | - Ekaterina Votinov
- The Division of Hematology, Kaplan Medical Center, Derech Pasternak 1, Rehovot 7610001, Israel;
| | - Elias Toubi
- The Proteomic Unit, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3104802, Israel; (N.E.); (A.S.); (R.M.); (E.T.)
| | - Zahava Vadasz
- The Proteomic Unit, Bnai Zion Medical Center, Sderot Eliyahu Golomb 47, Haifa 3104802, Israel; (N.E.); (A.S.); (R.M.); (E.T.)
| |
Collapse
|
83
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
84
|
Mouhieddine TH, Nzerem C, Redd R, Dunford A, Leventhal M, Sklavenitis-Pistofidis R, Tahri S, El-Khoury H, Steensma DP, Ebert BL, Soiffer RJ, Keats JJ, Mehr S, Auclair D, Ghobrial IM, Sperling AS, Stewart C, Getz G. Clinical Outcomes and Evolution of Clonal Hematopoiesis in Patients with Newly Diagnosed Multiple Myeloma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2560-2571. [PMID: 38019104 PMCID: PMC10730502 DOI: 10.1158/2767-9764.crc-23-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Clonal hematopoiesis (CH) at time of autologous stem cell transplant (ASCT) has been shown to be associated with decreased overall survival (OS) and progression-free survival (PFS) in patients with multiple myeloma not receiving immunomodulatory drugs (IMiD). However, the significance of CH in newly diagnosed patients, including transplant ineligible patients, and its effect on clonal evolution during multiple myeloma therapy in the era of novel agents, has not been well studied. Using our new algorithm to differentiate tumor and germline mutations from CH, we detected CH in approximately 10% of 986 patients with multiple myeloma from the Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) cohort (40/529 transplanted and 59/457 non-transplanted patients). CH was associated with increased age, risk of recurrent bacterial infections and cardiovascular disease. CH at time of multiple myeloma diagnosis was not associated with inferior OS or PFS regardless of undergoing ASCT, and all patients benefited from IMiD-based therapies, irrespective of the presence of CH. Serial sampling of 52 patients revealed the emergence of CH over a median of 3 years of treatment, increasing its prevalence to 25%, mostly with DNMT3A mutations. SIGNIFICANCE Using our algorithm to differentiate tumor and germline mutations from CH mutations, we detected CH in approximately 10% of patients with newly diagnosed myeloma, including both transplant eligible and ineligible patients. Receiving IMiDs improved outcomes irrespective of CH status, but the prevalence of CH significantly rose throughout myeloma-directed therapy.
Collapse
Affiliation(s)
- Tarek H. Mouhieddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chidimma Nzerem
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Robert Redd
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew Dunford
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Romanos Sklavenitis-Pistofidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sabrin Tahri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Hematology, Erasmus MC Cancer Centre, Rotterdam, the Netherlands
| | - Habib El-Khoury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David P. Steensma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jonathan J. Keats
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Shaadi Mehr
- Multiple Myeloma Research Foundation, Norwalk, Connecticut
| | - Daniel Auclair
- Multiple Myeloma Research Foundation, Norwalk, Connecticut
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Adam S. Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Gad Getz
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
85
|
Yan H, Gao S, Xu A, Zuo L, Zhang J, Zhao Y, Cheng Q, Yin X, Sun C, Hu Y. MALAT1 regulates network of microRNA-15a/16-VEGFA to promote tumorigenesis and angiogenesis in multiple myeloma. Carcinogenesis 2023; 44:760-772. [PMID: 37549238 DOI: 10.1093/carcin/bgad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
MALAT1 is one of the most hopeful members implicated in angiogenesis in a variety of non-malignant diseases. In multiple myeloma (MM), MALAT1 is recognized as the most highly expressed long non-coding RNA. However, the functional roles of MALAT1 in angiogenesis and the responsible mechanisms have not yet been explored. Herein, we discovered a novel regulatory network dependent on MALAT1 in relation to MM tumorigenesis and angiogenesis. We observed that MALAT1 was upregulated in MM and significantly associated with poor overall survival. MALAT1 knockdown suppressed MM cell proliferation and promoted apoptosis, while restricting endothelial cells angiogenesis. Moreover, MALAT1 directly targeted microRNA-15a/16, and microRNA-15a/16 suppression partly reverted the effects of MALAT1 deletion on MM cells in vitro as well as tumor growth and angiogenesis in vivo. In addition, further study indicated that MALAT1 functioned as a competing endogenous RNA for microRNA-15a/16 to regulate vascular endothelial growth factor A (VEGFA) expression. Our results suggest that MALAT1 plays an important role in the regulatory axis of microRNA-15a/16-VEGFA to promote tumorigenicity and angiogenesis in MM. Consequently, MALAT1 could serve as a novel promising biomarker and a potential antiangiogenic target against MM.
Collapse
Affiliation(s)
- Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Gao
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liping Zuo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiasi Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhong Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianwen Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
86
|
Manco L, Albano D, Urso L, Arnaboldi M, Castellani M, Florimonte L, Guidi G, Turra A, Castello A, Panareo S. Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art. J Clin Med 2023; 12:7669. [PMID: 38137738 PMCID: PMC10743775 DOI: 10.3390/jcm12247669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple myeloma (MM) is a heterogeneous neoplasm accounting for the second most prevalent hematologic disorder. The identification of noninvasive, valuable biomarkers is of utmost importance for the best patient treatment selection, especially in heterogeneous diseases like MM. Despite molecular imaging with positron emission tomography (PET) has achieved a primary role in the characterization of MM, it is not free from shortcomings. In recent years, radiomics and artificial intelligence (AI), which includes machine learning (ML) and deep learning (DL) algorithms, have played an important role in mining additional information from medical images beyond human eyes' resolving power. Our review provides a summary of the current status of radiomics and AI in different clinical contexts of MM. A systematic search of PubMed, Web of Science, and Scopus was conducted, including all the articles published in English that explored radiomics and AI analyses of PET/CT images in MM. The initial results have highlighted the potential role of such new features in order to improve the clinical stratification of MM patients, as well as to increase their clinical benefits. However, more studies are warranted before these approaches can be implemented in clinical routines.
Collapse
Affiliation(s)
- Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 45100 Ferrara, Italy; (L.M.); (A.T.)
| | - Domenico Albano
- Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Mattia Arnaboldi
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.C.); (L.F.)
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.C.); (L.F.)
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.C.); (L.F.)
| | - Gabriele Guidi
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy;
| | - Alessandro Turra
- Medical Physics Unit, Azienda USL of Ferrara, 45100 Ferrara, Italy; (L.M.); (A.T.)
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.C.); (L.F.)
| | - Stefano Panareo
- Nuclear Medicine Unit, Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy;
| |
Collapse
|
87
|
Dutta D, Liu J, Wen K, Kurata K, Fulciniti M, Gulla A, Hideshima T, Anderson KC. BCMA-targeted bortezomib nanotherapy improves therapeutic efficacy, overcomes resistance, and modulates the immune microenvironment in multiple myeloma. Blood Cancer J 2023; 13:184. [PMID: 38072962 PMCID: PMC10711001 DOI: 10.1038/s41408-023-00955-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Bortezomib (BTZ) is a standard-of-care treatment in multiple myeloma (MM); however, adverse side effects and development of resistance limit its long term benefit. To improve target specificity, therapeutic efficacy, and overcome resistance, we designed nanoparticles that encapsulate BTZ and are surface-functionalized with BCMA antibodies (BCMA-BTZ-NPs). We confirmed efficient cellular internalization of the BCMA-BTZ-NPs only in BCMA-expressing MM cells, but not in BCMA-knockout (KO) cells. In addition, BCMA-BTZ-NPs showed target-specific cytotoxicity against MM cell lines and primary tumor cells from MM patients. The BCMA-BTZ-NPs entered the cell through receptor-mediated uptake, which escapes a mechanism of BTZ resistance based on upregulating P-glycoprotein. Furthermore, BCMA-BTZ-NPs induced cell death more efficiently than non-targeted nanoparticles or free BTZ, triggering potent mitochondrial depolarization followed by apoptosis. In BTZ-resistant cells, BCMA-BTZ-NPs inhibited proteasome activity more effectively than free BTZ or non-targeted nanoparticles. Additionally, BCMA-BTZ-NPs enhanced immunogenic cell death and activated the autophagic pathway more than free BTZ. Finally, we found that BCMA-BTZ-NPs selectively accumulated at the tumor site in a murine xenograft model, enhanced tumor reduction, and prolonged host survival. These results suggest BCMA-BTZ-NPs provide a promising therapeutic strategy for enhancing the efficacy of BTZ and establish a framework for their evaluation in a clinical setting.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jiye Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keiji Kurata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Annamaria Gulla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
88
|
Charalampous C, Goel U, Kapoor P, Binder M, Buadi FK, Cook J, Dingli D, Dispenzieri A, Fonder AL, Gertz MA, Gonsalves W, Hayman SR, Hobbs MA, Hwa YL, Kourelis T, Lacy MQ, Leung N, Lin Y, Warsame R, Kyle RA, Rajkumar SV, Kumar SK. Comparison of daratumumab-based regimens as second-line therapy in relapsed/refractory multiple myeloma. Blood Cancer J 2023; 13:183. [PMID: 38072941 PMCID: PMC10711005 DOI: 10.1038/s41408-023-00957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
| | - Utkarsh Goel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Prashant Kapoor
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Moritz Binder
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Francis K Buadi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joselle Cook
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Dingli
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Angela Dispenzieri
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amie L Fonder
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Morie A Gertz
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Wilson Gonsalves
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Suzanne R Hayman
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Miriam A Hobbs
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yi L Hwa
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Taxiarchis Kourelis
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Martha Q Lacy
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nelson Leung
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yi Lin
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rahma Warsame
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robert A Kyle
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - S Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shaji K Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
89
|
Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol 2023; 11:1323678. [PMID: 38111850 PMCID: PMC10725964 DOI: 10.3389/fcell.2023.1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs. In this review, we provide a comprehensive summary of the senescence characteristics of MSCs and examine the different features of cellular microenvironments studied thus far. Additionally, we discuss the mechanisms by which cellular microenvironments regulate the senescence process of MSCs, offering insights into preserving their functionality and enhancing their effectiveness.
Collapse
Affiliation(s)
| | | | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
90
|
Thai H, Koiwai K, Shitara Y, Kazama H, Fau J, Semiond D, Veyrat‐Follet C. Model-based simulation to support the approval of isatuximab alone or with dexamethasone for the treatment of relapsed/refractory multiple myeloma in Japanese patients. CPT Pharmacometrics Syst Pharmacol 2023; 12:1846-1858. [PMID: 37002644 PMCID: PMC10725271 DOI: 10.1002/psp4.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 04/03/2023] Open
Abstract
This study aimed to support dosing regimen selection for isatuximab as a single agent or in combination with dexamethasone for Japanese patients with relapsed/refractory multiple myeloma (RRMM). A joint model characterizing the dynamics of serum M-protein kinetics and its association with progression-free survival (PFS) was developed using data from 201 evaluable Japanese and non-Japanese patients with RRMM enrolled in two monotherapy phase I/II trials, where Japanese patients (n = 31) received isatuximab at 10 or 20 mg/kg once weekly (qw) for 4 weeks then every 2 weeks (q2w) in subsequent cycles (10 or 20 mg/kg qw-q2w). Among non-Japanese patients, 38 received isatuximab 20 mg/kg qw-q2w in combination with dexamethasone. Trial simulations were then performed to evaluate the effect of the isatuximab dosing regimens on both serum M-protein and PFS with and without dexamethasone. The model identified instantaneous changes in serum M-protein as the best on-treatment predictor for PFS. Trial simulations demonstrated that 20 mg/kg qw-q2w induced a greater decrease (30% vs. 22%) of serum M-protein at week 8 and prolonged median PFS by 2.4 weeks compared with 10 mg/kg qw-q2w. Although Japanese patients did not receive isatuximab plus dexamethasone in the phase I/II trial, simulations predicted that isatuximab 20 mg/kg qw-q2w plus dexamethasone would induce a greater decrease (67% vs. 43%) of serum M-protein and a prolonged median PFS by 7.2 weeks compared with isatuximab alone. Trial simulations support the approved isatuximab 20 mg/kg qw-q2w regimen when administered as a single agent and in combination with dexamethasone in Japanese patients.
Collapse
Affiliation(s)
- Hoai‐Thu Thai
- Sanofi R&D, Data and Data ScienceTranslational Disease ModelingChilly‐MazarinFrance
| | - Kimiko Koiwai
- Translational Medicine and Early Development, SanofiChilly‐MazarinFrance
| | | | | | - Jean‐Baptiste Fau
- Translational Medicine and Early Development, SanofiChilly‐MazarinFrance
| | - Dorothée Semiond
- Translational Medicine and Early Development, SanofiCambridgeMassachusettsUSA
| | | |
Collapse
|
91
|
Nooka AK, Cohen AD, Lee HC, Badros A, Suvannasankha A, Callander N, Abdallah AO, Trudel S, Chari A, Libby EN, Chaudhry M, Hultcrantz M, Martin Kortüm K, Popat R, Sborov D, Hakim S, Lewis E, Gorsh B, Bhushan B, McKeown A, Gupta I, Opalinska J, Richardson PG, Lonial S. Single-agent belantamab mafodotin in patients with relapsed/refractory multiple myeloma: Final analysis of the DREAMM-2 trial. Cancer 2023; 129:3746-3760. [PMID: 37622738 PMCID: PMC11055177 DOI: 10.1002/cncr.34987] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Patients with relapsed/refractory multiple myeloma (RRMM) have a high unmet treatment need. Belantamab mafodotin (belamaf), a first-in-class, B-cell maturation antigen-binding antibody-drug conjugate, eliminates myeloma cells through direct cell killing and an anti-myeloma immune response. METHODS DREAMM-2 (NCT03525678) was a phase 2, two-arm, open-label trial in patients with heavily pretreated RRMM who had three or more prior therapies, were refractory to an immunomodulatory agent and a proteasome inhibitor, and refractory or intolerant to an anti-CD38 monoclonal antibody. Belamaf was given at 2.5 or 3.4 mg/kg every 3 weeks. The primary end point was overall response rate (ORR); secondary end points included progression-free survival (PFS), overall survival (OS), safety, ocular symptoms, and health-related quality of life (HRQOL). RESULTS This final analysis (cutoff date, March 31, 2022), N = 223, with median follow-up of 12.5 and 13.8 months, demonstrated an ORR of 32% and 35%, median PFS of 2.8 and 3.9 months, and median OS of 15.3 and 14.0 months in the 2.5 mg/kg and 3.4 mg/kg cohorts, respectively. Median duration of response was 12.5 and 6.2 months. No new safety signals were observed; the most common Grade 3 and 4 adverse events were keratopathy (29% vs. 25%), thrombocytopenia (22% vs. 29%), and anemia (21% vs. 28%). HRQOL outcomes suggest that overall global health status/quality of life, physical and role functioning, and overall disease symptoms were maintained or improved during treatment. CONCLUSIONS This final analysis of DREAMM-2 confirms that in patients with triple-class refractory RRMM, single-agent belamaf results in durable and clinically meaningful responses with a manageable safety profile.
Collapse
Affiliation(s)
- Ajay K. Nooka
- Winship Cancer Institute, Emory University Hospital, Atlanta, Georgia, USA
| | - Adam D. Cohen
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hans C. Lee
- MD Anderson Cancer Center, Houston, Texas, USA
| | - Ashraf Badros
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Attaya Suvannasankha
- Indiana University Simon Cancer Center and Roudebush VAMC, Indianapolis, Indiana, USA
| | - Natalie Callander
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Suzanne Trudel
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ajai Chari
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - K. Martin Kortüm
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Rakesh Popat
- University College London Hospitals, NHS Foundation Trust, London, UK
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Eric Lewis
- GSK, Research Triangle Park, North Carolina, USA
| | | | | | | | - Ira Gupta
- GSK, Research Triangle Park, North Carolina, USA
| | | | | | - Sagar Lonial
- Winship Cancer Institute, Emory University Hospital, Atlanta, Georgia, USA
| |
Collapse
|
92
|
Bartman CR, Faubert B, Rabinowitz JD, DeBerardinis RJ. Metabolic pathway analysis using stable isotopes in patients with cancer. Nat Rev Cancer 2023; 23:863-878. [PMID: 37907620 PMCID: PMC11161207 DOI: 10.1038/s41568-023-00632-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/02/2023]
Abstract
Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Brandon Faubert
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
93
|
Makris A, Pagkali A, Nikolousis E, Filippatos TD, Agouridis AP. High-density lipoprotein cholesterol and multiple myeloma: A systematic review and meta-analysis. ATHEROSCLEROSIS PLUS 2023; 54:7-13. [PMID: 37780686 PMCID: PMC10539640 DOI: 10.1016/j.athplu.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Background and aims To systematically investigate all relevant evidence on the association between high-density lipoprotein cholesterol (HDL-C) and multiple myeloma (MM). Methods We searched PubMed and Cochrane library databases (up to 20 September 2022) for studies with evidence on HDL-C in patients with MM. A qualitative synthesis of published prospective and retrospective studies for the role of HDL-C and other lipid profile parameters in MM was performed. Additionally, a meta-analysis on HDL-C mean differences (MD) between MM cases and controls was performed. Results Fourteen studies (3 prospective, 11 retrospective) including 895 MM patients were eligible for this systematic review. Ten studies compared HDL-C levels in MM patients with healthy controls. In these 10 studies (n = 17,213), pooled analyses showed that MM patients had significantly lower HDL-C levels compared to healthy controls (MD: -13.07 mg/dl, 95% CI: -17.83, -8.32, p < 0.00001). Regarding secondary endpoints, total cholesterol (TC) (MD: -22.19 mg/dl, 95% CI: -39.08, -5.30) and apolipoprotein A-I (apoA-I) (-40.20 mg/dl, 95% CI: -55.00, -25.39) demonstrated significant decreases, while differences in low-density lipoprotein cholesterol (LDL-C) (MD: -11.33 mg/dl, 95% CI: -36.95, 14.30) and triglycerides (MD: 9.93 mg/dl, 95% CI: -3.40, 23.26) were not shown to be significant. Conclusions HDL-C, as well as TC and apoA-I, levels are significantly decreased in MM. Hence, lipid profile parameters should be taken into account when assessing such patients.
Collapse
Affiliation(s)
- Anastasios Makris
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Antonia Pagkali
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | | | | | - Aris P. Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Internal Medicine, German Oncology Center, Limassol, Cyprus
| |
Collapse
|
94
|
Beltrán-Visiedo M, Jiménez-Alduán N, Díez R, Cuenca M, Benedi A, Serrano-Del Valle A, Azaceta G, Palomera L, Peperzak V, Anel A, Naval J, Marzo I. Dinaciclib synergizes with BH3 mimetics targeting BCL-2 and BCL-X L in multiple myeloma cell lines partially dependent on MCL-1 and in plasma cells from patients. Mol Oncol 2023; 17:2507-2525. [PMID: 37704591 DOI: 10.1002/1878-0261.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
A better understanding of multiple myeloma (MM) biology has led to the development of novel therapies. However, MM is still an incurable disease and new pharmacological strategies are needed. Dinaciclib, a multiple cyclin-dependent kinase (CDK) inhibitor, which inhibits CDK1, 2, 5 and 9, displays significant antimyeloma activity as found in phase II clinical trials. In this study, we have explored the mechanism of dinaciclib-induced death and evaluated its enhancement by different BH3 mimetics in MM cell lines as well as in plasma cells from MM patients. Our results indicate a synergistic effect of dinaciclib-based combinations with B-cell lymphoma 2 or B-cell lymphoma extra-large inhibitors, especially in MM cell lines with partial dependence on myeloid cell leukemia sequence 1 (MCL-1). Simultaneous treatment with dinaciclib and BH3 mimetics ABT-199 or A-1155463 additionally showed a synergistic effect in plasma cells from MM patients, ex vivo. Altered MM cytogenetics did not affect dinaciclib response ex vivo, alone or in combined treatment, suggesting that these combinations could be a suitable therapeutic option for patients bearing cytogenetic alterations and poor prognosis. This work also opens the possibility to explore cyclin-dependent kinase 9 inhibition as a targeted therapy in MM patients overexpressing or with high dependence on MCL-1.
Collapse
Affiliation(s)
| | | | - Rosana Díez
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
- Hematology Service, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Marta Cuenca
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Andrea Benedi
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | | | - Gemma Azaceta
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Luis Palomera
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| |
Collapse
|
95
|
Wang Y, Dong S, Hu K, Xu L, Feng Q, Li B, Wang G, Chen G, Zhang B, Jia X, Xu Z, Gao X, Zhang H, Xie Y, Lu M, Chang S, Song D, Wu X, Jia Q, Zhu H, Zhou J, Zhu W, Shi J. The novel norcantharidin derivative DCZ5417 suppresses multiple myeloma progression by targeting the TRIP13-MAPK-YWHAE signaling pathway. J Transl Med 2023; 21:858. [PMID: 38012658 PMCID: PMC10680230 DOI: 10.1186/s12967-023-04739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM), an incurable disease owing to drug resistance, requires safe and effective therapies. Norcantharidin (NCTD), an active ingredient in traditional Chinese medicines, possesses activity against different cancers. However, its toxicity and narrow treatment window limit its clinical application. In this study, we synthesized a series of derivatives of NCTD to address this. Among these compounds, DCZ5417 demonstrated the greatest anti-MM effect and fewest side effects. Its anti-myeloma effects and the mechanism were further tested. METHODS Molecular docking, pull-down, surface plasmon resonance-binding, cellular thermal shift, and ATPase assays were used to study the targets of DCZ5417. Bioinformatic, genetic, and pharmacological approaches were used to elucidate the mechanisms associated with DCZ5417 activity. RESULTS We confirmed a highly potent interaction between DCZ5417 and TRIP13. DCZ5417 inhibited the ATPase activity of TRIP13, and its anti-MM activity was found to depend on TRIP13. A mechanistic study verified that DCZ5417 suppressed cell proliferation by targeting TRIP13, disturbing the TRIP13/YWHAE complex and inhibiting the ERK/MAPK signaling axis. DCZ5417 also showed a combined lethal effect with traditional anti-MM drugs. Furthermore, the tumor growth-inhibitory effect of DCZ5417 was demonstrated using in vivo tumor xenograft models. CONCLUSIONS DCZ5417 suppresses MM progression in vitro, in vivo, and in primary cells from drug-resistant patients, affecting cell proliferation by targeting TRIP13, destroying the TRIP13/YWHAE complex, and inhibiting ERK/MAPK signaling. These results imply a new and effective therapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Yingcong Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Sanfeng Dong
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Xu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guangli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Gege Chen
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bibo Zhang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yongsheng Xie
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Meiling Lu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinfeng Zhou
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
96
|
Thomas C, Ailawadhi S, Popat R, Kleinman D, Ross MM, Gorsh B, Mulnick S, O’Neill A, Paka P, Hanna M, Krucien N, Molinari A, Gelhorn HL, Perera S. Treatment preferences of patients with relapsed or refractory multiple myeloma in the United States, United Kingdom, Italy, Germany, France, and Spain: results from a discrete choice experiment. Front Med (Lausanne) 2023; 10:1271657. [PMID: 38076274 PMCID: PMC10702501 DOI: 10.3389/fmed.2023.1271657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 09/03/2024] Open
Abstract
INTRODUCTION Newer treatment options for relapsed/refractory multiple myeloma (RRMM) with efficacy and safety profiles that differ from traditional therapies have facilitated personalized management strategies to optimize patient outcomes. In the context of such personalized management, understanding how treatment characteristics influence patients' preferences is essential. This study assessed patients' preferences for RRMM treatment attributes and determined trade-offs between potential benefits, administration procedures, and adverse effects. METHODS Patients' preferences were evaluated using a discrete choice experiment (DCE). Patients with RRMM who reported failing two lines of anti-myeloma treatment (immunomodulatory agent and a proteasome inhibitor [PI]) or ≥ 3 lines (including ≥1 PI, immunomodulatory agent, or anti-CD38 monoclonal antibody), were recruited across the US, UK, Italy, Germany, France, and Spain. DCE attributes and levels were identified using a targeted literature review, a review of clinical data for relevant RRMM treatments, qualitative patient interviews, and input from clinical and myeloma patient experts. The DCE was administered within an online survey from February-June 2022. Preference data were analyzed using an error-component logit model and willingness to make trade-offs for potential benefits, and relative attribute importance scores were calculated. RESULTS Overall, 296 patients from the US (n = 100), UK (n = 49), Italy (n = 45), Germany (n = 43), France (n = 39), and Spain (n = 20) participated in the DCE. Mean (standard deviation) age was 63.8 (8.0) years, 84% had a caregiver, and patients had a median of 3 (range: 2-8) prior lines of therapy. Efficacy attributes most influenced patients' preferences, with increasing overall response rate (25-85%) and overall survival (6 months to 2 years) contributing to ~50% of treatment decision-making. Administration procedures were also considered important to patients. Avoiding individual side effects was considered relatively less important, with patients willing to tolerate increases in side effects for gains in efficacy. Patient characteristics such as rate of disease progression, sociodemographics, or clinical characteristics also influenced treatment preferences. CONCLUSION Patients with RRMM were willing to tolerate increased risk of side effects for higher efficacy. Preferences and risk tolerance varied between patients, with preference patterns differing by certain patient characteristics. This highlights the importance of shared decision-making for optimal treatment selection and patient outcomes.
Collapse
Affiliation(s)
- Caitlin Thomas
- Patient-Centered Research, Evidera, London, United Kingdom
| | - Sikander Ailawadhi
- Divisions of Hematology-Oncology and Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Rakesh Popat
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - David Kleinman
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Melissa M. Ross
- Patient-Centered Research, Evidera, Bethesda, MD, United States
| | | | - Sarah Mulnick
- Patient-Centered Research, Evidera, Bethesda, MD, United States
| | | | | | - Maya Hanna
- GSK, Upper Providence, PA, United States
| | | | - Alexa Molinari
- GSK, Upper Providence, PA, United States
- Rutgers Center for Health Outcomes, Policy, and Economics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | | | | |
Collapse
|
97
|
Wang Y, Yang K, Yu Z, Huang Y, He T, Xiong J, Zhao J. The clinical value of monoclonal protein in ANCA-associated vasculitis with renal involvement. Int Urol Nephrol 2023; 55:2925-2933. [PMID: 37010735 DOI: 10.1007/s11255-023-03579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/25/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE The value of monoclonal protein (M-protein) in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) patients with renal involvement has not been investigated. METHODS We analyzed AAV patients with renal involvement from 2013 to 2019 in our center. Patients with immunofixation electrophoresis were divided into M-protein positive group and M-protein negative group. The clinicopathological features and outcomes of the two groups were compared. RESULTS Ninety-one AAV patients with renal involvement were enrolled for analysis, and 16 patients (17.6%) had a positive test for M-protein. Compared with M-protein negative patients, M-protein positive patients had lower hemoglobin (77.6 vs 88.4 g/L, p = 0.016), mean corpuscular hemoglobin concentration (313 vs 323 g/L, p = 0.002),serum albumin (29.4 vs 32.5 g/L, p = 0.026) and complement 3 (C3) (0.66 vs 0.81 g/L, p = 0.047), while higher platelets (252 vs 201 109/L, p = 0.048) and incidence of pulmonary infection (62.5% vs 33.3%, p = 0.029). However, renal pathological features between the two groups had no significant difference. In addition, during a median follow-up of 33 months, Kaplan-Meier survival analysis showed that, compared with M-protein negative patients, M-protein positive patients had a higher risk of all-cause mortality (log-rank test, p = 0.028), especially for patients who were not dialysis-dependent at the time of admission (log-rank test, p = 0.012). CONCLUSION Our results indicate that M-protein is associated with different clinicopathological features and increased all-cause mortality in AAV patients with renal involvement. Testing M-protein and rigorous diagnosing of the significance of the presence of M-protein may be helpful for assessing the survival of AAV patients with renal involvement.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400037, China
| | - Ke Yang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400037, China
| | - Zhikai Yu
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400037, China
| | - Yinghui Huang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400037, China
| | - Ting He
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400037, China
| | - Jiachuan Xiong
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400037, China.
| | - Jinghong Zhao
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
98
|
Ferro A, Pantazaka E, Athanassopoulos CM, Cuendet M. Histone deacetylase-based dual targeted inhibition in multiple myeloma. Med Res Rev 2023; 43:2177-2236. [PMID: 37191917 DOI: 10.1002/med.21972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Despite enormous advances in terms of therapeutic strategies, multiple myeloma (MM) still remains an incurable disease with MM patients often becoming resistant to standard treatments. To date, multiple combined and targeted therapies have proven to be more beneficial compared to monotherapy approaches, leading to a decrease in drug resistance and an improvement in median overall survival in patients. Moreover, recent breakthroughs highlighted the relevant role of histone deacetylases (HDACs) in cancer treatment, including MM. Thus, the simultaneous use of HDAC inhibitors with other conventional regimens, such as proteasome inhibitors, is of interest in the field. In this review, we provide a general overview of HDAC-based combination treatments in MM, through a critical presentation of publications from the past few decades related to in vitro and in vivo studies, as well as clinical trials. Furthermore, we discuss the recent introduction of dual-inhibitor entities that could have the same beneficial effects as drug combinations with the advantage of having two or more pharmacophores in one molecular structure. These findings could represent a starting-point for both reducing therapeutic doses and lowering the risk of developing drug resistance.
Collapse
Affiliation(s)
- Angelica Ferro
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras, Greece
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology, and Development, Department of Biology, University of Patras, Patras, Greece
| | | | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
99
|
Teuwen JTJ, Ritzen LFL, Knapen-Portz YM, Ludwiczek PK, Damoiseaux JGMC, van Beers JJBC, de Boer D. Identifying therapeutic monoclonal antibodies using target protein collision electrophoresis reflex assay to separate the wheat from the chaff. J Immunol Methods 2023; 522:113552. [PMID: 37652294 DOI: 10.1016/j.jim.2023.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Monoclonal gammopathies are characterized by the presence of monoclonal immunoglobulins, also known as M-proteins. Therapeutic monoclonal antibodies (t-mAbs) can interfere in laboratory assays used to monitor the state of disease, such as serum protein electrophoresis (SPE) and immunofixation electrophoresis (IFE). To establish a correct interpretation of IFE, Target protein-Collision Immunofixation Electrophoresis Reflex Assay (T-CIERA) was developed to identify t-mAbs in IFE. Here we demonstrate that T-CIERA is applicable to a wide variety of t-mAbs for which the target protein is commercially available. Moreover, the shift observed was characteristic for each t-mAb, and T-CIERA enabled the identification of multiple t-mAbs sharing a common target protein. Additionally, the lower limit of detection (LLOD) was determined objectively, and T-CIERA demonstrated an adequate LLOD for all tested t-mAbs. Furthermore, T-CIERA was also successfully applied to serum samples obtained from patients receiving daratumumab, isatuximab, elotuzumab, and durvalumab treatment. In conclusion, T-CIERA is a suitable reflex assay for identifying a wide variety of t-mAbs, including those for which no commercial assay is available to deal with their interference. Moreover, CD38-CIERA could serve as an alternative or complementary test to the commercially available Hydrashift assay kits. T-CIERA would enable laboratories without mass spectrometry equipment and expertise in this area to distinguish between drug and disease to improve clinical response monitoring and diagnosis of monoclonal gammopathies.
Collapse
Affiliation(s)
- Jules T J Teuwen
- Central Diagnostic Laboratory, section Protein Chemistry, Maastricht University Medical Center+, PO Box 5800, 6202 AZ Maastricht, the Netherlands.
| | - Lucas F L Ritzen
- Central Diagnostic Laboratory, section Protein Chemistry, Maastricht University Medical Center+, PO Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Yvon M Knapen-Portz
- Central Diagnostic Laboratory, section Protein Chemistry, Maastricht University Medical Center+, PO Box 5800, 6202 AZ Maastricht, the Netherlands.
| | - Patricia K Ludwiczek
- Central Diagnostic Laboratory, section Protein Chemistry, Maastricht University Medical Center+, PO Box 5800, 6202 AZ Maastricht, the Netherlands.
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, section Protein Chemistry, Maastricht University Medical Center+, PO Box 5800, 6202 AZ Maastricht, the Netherlands.
| | - Joyce J B C van Beers
- Central Diagnostic Laboratory, section Protein Chemistry, Maastricht University Medical Center+, PO Box 5800, 6202 AZ Maastricht, the Netherlands.
| | - Douwe de Boer
- Central Diagnostic Laboratory, section Protein Chemistry, Maastricht University Medical Center+, PO Box 5800, 6202 AZ Maastricht, the Netherlands.
| |
Collapse
|
100
|
Tilmont R, Yakoub-Agha I, Eikema DJ, Zinger N, Haenel M, Schaap N, Arroyo CH, Schuermans C, Besemer B, Engelhardt M, Kuball J, Michieli M, Schub N, Wilson KMO, Bourhis JH, Mateos MV, Rabin N, Jost E, Kröger N, Moraleda JM, Za T, Hayden PJ, Beksac M, Mclornan D, Schönland S, Manier S. Carfilzomib, lenalidomide and dexamethasone followed by a second ASCT is an effective strategy in first relapse multiple myeloma: a study on behalf of the Chronic malignancies working party of the EBMT. Bone Marrow Transplant 2023; 58:1182-1188. [PMID: 37543712 PMCID: PMC10622318 DOI: 10.1038/s41409-023-02048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
In the setting of a first relapse of multiple myeloma (MM), a second autologous stem cell transplant (ASCT) following carfilzomib-lenalidomide-dexamethasone (KRd) is an option, although there is scarce data concerning this approach. We performed a retrospective study involving 22 EBMT-affiliated centers. Eligible MM patients had received a second-line treatment with KRd induction followed by a second ASCT between 2016 and 2018. Primary objective was to estimate progression-free survival (PFS) and overall survival (OS). Secondary objectives were to assess the response rate and identify significant variables affecting PFS and OS. Fifty-one patients were identified, with a median age of 62 years. Median PFS after ASCT was 29.5 months while 24- and 36-months OS rates were 92.1% and 84.5%, respectively. Variables affecting PFS were an interval over four years between transplants and the achievement of a very good partial response (VGPR) or better before the relapse ASCT. Our study suggests that a relapse treatment with ASCT after KRd induction is an effective strategy for patients with a lenalidomide-sensitive first relapse. Patients with at least four years of remission after a frontline ASCT and who achieved at least a VGPR after KRd induction appear to benefit the most from this approach.
Collapse
Affiliation(s)
- Rémi Tilmont
- Hematologie Clinique, CHU de Lille, Lille, France
| | - Ibrahim Yakoub-Agha
- Hematologie Clinique, CHU de Lille, Lille, France
- CHU de Lille, Univ Lille, INSERM U1286, Infinite, Lille, France
| | | | | | | | - Nicolaas Schaap
- Radboud University, Medical Centre Nijmegen, Nijmegen, Netherlands
| | | | | | | | | | | | | | - Natalie Schub
- University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | - Neil Rabin
- University College London Hospital, London, UK
| | - Edgar Jost
- University Hospital Aachen, Aachen, Germany
| | | | | | - Tommaso Za
- Section of Hematology, Catholic University, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrick J Hayden
- Department of Haematology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Meral Beksac
- Ankara University Faculty of Medicine, Ankara, Turkey
| | - Donal Mclornan
- University College London Hospitals NHS Trust, Heidelberg, Germany
| | - Stefan Schönland
- Medizinische Klinik u. Poliklinik V, University of Heidelberg, Heidelberg, Germany
| | - Salomon Manier
- Hematologie Clinique, CHU de Lille, Lille, France.
- Univ Lille, Canther, INSERM UMR-S1277 CNRS UMR9020, Lille, France.
| |
Collapse
|