51
|
Ansari AW, Khan MA, Schmidt RE, Broering DC. Harnessing the immunotherapeutic potential of T-lymphocyte co-signaling molecules in transplantation. Immunol Lett 2017; 183:8-16. [PMID: 28119073 DOI: 10.1016/j.imlet.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Alloantigen-specific T-cell triggered immunopathological events are responsible for rapid allograft rejection. The co-signaling pathways orchestrated by co-stimulatory and co-inhibitory molecules are critical for optimal T-cell effector function. Therefore, selective blockade of pathways that control T-cell immunity may offer an attractive therapeutic strategy to manipulate cell mediated allogenic responses. For example, CD28, CTLA-4 and CD154 receptor blockade have proven beneficial in maintaining T-cell tolerance against transplanted organs in experimental animal models as well as in clinical trials. Conversely, induction of co-inhibitory molecules may result in suppressed effector function. There are several other potential molecules that are known to induce immune tolerance are currently under consideration for clinical studies. In this review, we provide a comprehensive and updated analysis of co-stimulatory and co-inhibitory molecules, their therapeutic potential to prevent graft rejection, and to further improve their long-term survival.
Collapse
Affiliation(s)
- Abdul W Ansari
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| | - Mohammad A Khan
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Reinhold E Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg Str.1, D-30625 Hannover, Germany
| | - Dieter C Broering
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
52
|
Kishimoto W, Nishikori M, Arima H, Miyoshi H, Sasaki Y, Kitawaki T, Shirakawa K, Kato T, Imaizumi Y, Ishikawa T, Ohno H, Haga H, Ohshima K, Takaori-Kondo A. Expression of Tim-1 in primary CNS lymphoma. Cancer Med 2016; 5:3235-3245. [PMID: 27709813 PMCID: PMC5119979 DOI: 10.1002/cam4.930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 11/16/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a distinct subtype of extranodal lymphoma with aggressive clinical course and poor outcome. As increased IL‐10/IL‐6 ratio is recognized in the cerebrospinal fluid (CSF) of PCNSL patients, we hypothesized that PCNSL might originate from a population of B cells with high IL‐10‐producing capacity, an equivalent of “regulatory B cells” in mice. We intended in this study to clarify whether Tim‐1, a molecule known as a marker for regulatory B cells in mice, is expressed in PCNSL. By immunohistochemical analysis, Tim‐1 was shown to be positive in as high as 54.2% of PCNSL (26 of 58 samples), while it was positive in 19.1% of systemic diffuse large B‐cell lymphoma (DLBCL) samples (17 of 89 samples; P < 0.001). Tim‐1 expression positively correlated with IL‐10 expression in PCNSL (Cramer's V = 0.55, P < 0.001), and forced expression of Tim‐1 in a PCNSL cell line resulted in increased IL‐10 secretion, suggesting that Tim‐1 is functionally linked with IL‐10 production in PCNSL. Moreover, soluble Tim‐1 was detectable in the CSF of PCNSL patients, and was suggested to parallel disease activity. In summary, PCNSL is characterized by frequent Tim‐1 expression, and its soluble form in CSF may become a useful biomarker for PCNSL.
Collapse
Affiliation(s)
- Wataru Kishimoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Arima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Asahimachi, Kurume, Fukuoka, Japan
| | - Yuya Sasaki
- Department of Pathology, Kurume University School of Medicine, Asahimachi, Kurume, Fukuoka, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Sakamoto, Nagasaki, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Nagasaki University Hospital, Sakamoto, Nagasaki, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Hitoshi Ohno
- Department of Hematology, Tenri Hospital, Mishima-cho, Tenri, Nara, Japan
| | - Hironori Haga
- Department of Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Asahimachi, Kurume, Fukuoka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
53
|
Abstract
Over the last decade it has become evident that in addition to producing antibody, B cells activate the immune system by producing cytokines and via antigen presentation. In addition, B cells also exhibit immunosuppressive functions via diverse regulatory mechanisms. This subset of B cells, known as regulatory B cells (Bregs), contributes to the maintenance of tolerance, primarily via the production of IL-10. Studies in experimental animal models, as well as in patients with autoimmune diseases, have identified multiple Breg subsets exhibiting diverse mechanisms of immune suppression. In this review, we describe the different Breg subsets identified in mice and humans, and their diverse mechanisms of suppression in different disease settings.
Collapse
Affiliation(s)
- Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Madhvi Menon
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
54
|
A TIM-3/Gal-9 Autocrine Stimulatory Loop Drives Self-Renewal of Human Myeloid Leukemia Stem Cells and Leukemic Progression. Cell Stem Cell 2015; 17:341-52. [PMID: 26279267 DOI: 10.1016/j.stem.2015.07.011] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/17/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
Signaling mechanisms underlying self-renewal of leukemic stem cells (LSCs) are poorly understood, and identifying pathways specifically active in LSCs could provide opportunities for therapeutic intervention. T-cell immunoglobin mucin-3 (TIM-3) is expressed on the surface of LSCs in many types of human acute myeloid leukemia (AML), but not on hematopoietic stem cells (HSCs). Here, we show that TIM-3 and its ligand, galectin-9 (Gal-9), constitute an autocrine loop critical for LSC self-renewal and development of human AML. Serum Gal-9 levels were significantly elevated in AML patients and in mice xenografted with primary human AML samples, and neutralization of Gal-9 inhibited xenogeneic reconstitution of human AML. Gal-9-mediated stimulation of TIM-3 co-activated NF-κB and β-catenin signaling, pathways known to promote LSC self-renewal. These changes were further associated with leukemic transformation of a variety of pre-leukemic disorders and together highlight that targeting the TIM-3/Gal-9 autocrine loop could be a useful strategy for treating myeloid leukemias.
Collapse
|
55
|
Song LJ, Wang X, Wang XP, Li D, Ding F, Liu HX, Yu X, Li XF, Shu Q. Increased Tim-3 expression on peripheral T lymphocyte subsets and association with higher disease activity in systemic lupus erythematosus. Diagn Pathol 2015; 10:71. [PMID: 26076826 PMCID: PMC4469310 DOI: 10.1186/s13000-015-0306-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
Background Both the T cell immunoglobulin domain- and mucin domain-containing molecule-3 (Tim-3) and the death receptor Fas contribute to the pathogenesis of various autoimmune diseases, including systemic lupus erythematosus (SLE). The aim of the present study was to determine whether Tim-3 and Fas are co-expressed on certain peripheral T lymphocyte subsets, and whether this expression is associated with greater disease activity in SLE. Methods Peripheral blood mononuclear cells were isolated from 46 patients newly diagnosed with SLE and 28 age- and sex-matched healthy controls (HCs). Expression of Tim-3 and Fas on T subsets was analyzed by flow cytometry, while mRNA levels of the Tim-3 ligand galectin-9 and Fas ligand FasL were assayed using real-time RT-PCR. Results The proportions of CD3+CD4+ and CD3+CD4- T cells expressing Tim-3+ and Tim+Fas+ were significantly higher in patients than in HCs (p < 0.05), while the proportions of these subtypes expressing Fas were similar for the two groups. Patients with active SLE, as defined by their score on the SLE Disease Activity Index, had lower proportions of CD3+CD4+ T cells and higher proportions of CD3+CD4+Tim-3+ and CD3+CD4+Tim-3+Fas+ T cells than did patients with stable SLE. Serum levels of complement C3 and C4 proteins, considered as a marker of SLE activity, correlated negatively with proportions of CD3+CD4+ and CD3+CD4- T cells expressing Tim-3. Conclusions Expression of Tim-3 and co-expression of Tim-3 and Fas on certain peripheral T subsets are associated with disease activity in SLE patients. Future research should examine whether the same is true of other T subsets implicated in SLE, and should explore the potential role(s) of Tim-3 in the disease pathway. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/1855527845145188
Collapse
Affiliation(s)
- Li-jun Song
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Xiao Wang
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Xu-ping Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| | - Feng Ding
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Hua-xiang Liu
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Xiao Yu
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Xing-fu Li
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, 250012, China.
| |
Collapse
|
56
|
Kristensen B, Hegedüs L, Lundy SK, Brimnes MK, Smith TJ, Nielsen CH. Characterization of Regulatory B Cells in Graves' Disease and Hashimoto's Thyroiditis. PLoS One 2015; 10:e0127949. [PMID: 26016954 PMCID: PMC4446335 DOI: 10.1371/journal.pone.0127949] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 04/21/2015] [Indexed: 12/21/2022] Open
Abstract
A hallmark of regulatory B cells is IL-10 production, hence their designation as IL-10+ B cells. Little is known about the ability of self-antigens to induce IL-10+ B cells in Graves’ disease (GD), Hashimoto’s thyroiditis (HT), or other autoimmune disease. Here we pulsed purified B cells from 12 HT patients, 12 GD patients, and 12 healthy donors with the thyroid self-antigen, thyroglobulin (TG) and added the B cells back to the remaining peripheral blood mononuclear cells (PBMCs). This procedure induced IL-10+ B-cell differentiation in GD. A similar tendency was observed in healthy donors, but not in cells from patients with HT. In GD, B cells primed with TG induced IL-10-producing CD4+ T cells. To assess the maximal frequency of inducible IL-10+ B cells in the three donor groups PBMCs were stimulated with PMA/ionomycin. The resulting IL-10+ B-cell frequency was similar in the three groups and correlated with free T3 levels in GD patients. IL-10+ B cells from both patient groups displayed CD25 or TIM-1 more frequently than did those from healthy donors. B-cell expression of two surface marker combinations previously associated with regulatory B-cell functions, CD24hiCD38hi and CD27+CD43+, did not differ between patients and healthy donors. In conclusion, our findings indicate that autoimmune thyroiditis is not associated with reduced frequency of IL-10+ B cells. These results do not rule out regulatory B-cell dysfunction, however. The observed phenotypic differences between IL-10+ B cells from patients and healthy donors are discussed.
Collapse
Affiliation(s)
- Birte Kristensen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
| | - Laszlo Hegedüs
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
| | - Steven K. Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Marie K. Brimnes
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Claus H. Nielsen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
57
|
Zhang AY, Liu YM, Gong JP. Kupffer cells and liver transplantation. Shijie Huaren Xiaohua Zazhi 2015; 23:1917-1923. [DOI: 10.11569/wcjd.v23.i12.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, liver transplantation is globally considered the most effective treatment for end-stage liver diseases. Ischemia-reperfusion (I/R) injury and immune rejection response (IRR) are the two major imperfections which severely affect the recipients' prognosis and survival rate without satisfactory clinical management strategies. Therefore, exploring effective methods to improve I/R injury and IRR have important clinical significance under circumstances of shortage of donor livers. Kupffer cells (KCs) are the largest population of antigen representing cells (APCs) which settle in the liver. As the first defensive line of the live, KCs exhibit various biological effects. However, the exact mechanisms responsible for the role of KCs in I/R injury and IRR remain elusive. We hereby review the current finding about the role of KCs in I/R injury and IRR.
Collapse
|
58
|
Jung JY, Suh CH. Incomplete clearance of apoptotic cells in systemic lupus erythematosus: pathogenic role and potential biomarker. Int J Rheum Dis 2015; 18:294-303. [PMID: 25884792 DOI: 10.1111/1756-185x.12568] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with repeated inflammation against multiple organs. Although its pathophysiology is not yet unveiled, uncleared apoptotic cells and their accumulation in tissue contribute to the autoimmune disturbance in SLE. Apoptosis is a programmed cell death process, which maintains tissue homeostasis and inhibits the development of any further immune response against apoptotic remnants. Earlier studies revealed that various 'eat-me' signals on apoptotic cells, bridging molecules and their receptors on phagocytes play a role in such a complicated process. Tyro3-Axl-Mer receptors, their bridging molecules, milk fat globulin epidermal growth factor-8, T-cell immunoglobulin mucin domain protein family, scavenger receptors, C1q, and pentraxins were found to be abnormal in SLE. In this review, apoptosis and clearance of its remnants are summarized, and the molecules involved in the incomplete clearance of apoptotic cells in SLE are discussed.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | | |
Collapse
|
59
|
Yeung MY, Ding Q, Brooks CR, Xiao S, Workman CJ, Vignali DA, Ueno T, Padera RF, Kuchroo VK, Najafian N, Rothstein DM. TIM-1 signaling is required for maintenance and induction of regulatory B cells. Am J Transplant 2015; 15:942-53. [PMID: 25645598 PMCID: PMC4530122 DOI: 10.1111/ajt.13087] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/09/2014] [Accepted: 10/28/2014] [Indexed: 01/25/2023]
Abstract
Apart from their role in humoral immunity, B cells can exhibit IL-10-dependent regulatory activity (Bregs). These regulatory subpopulations have been shown to inhibit inflammation and allograft rejection. However, our understanding of Bregs has been hampered by their rarity, lack of a specific marker, and poor insight into their induction and maintenance. We previously demonstrated that T cell immunoglobulin mucin domain-1 (TIM-1) identifies over 70% of IL-10-producing B cells, irrespective of other markers. We now show that TIM-1 is the primary receptor responsible for Breg induction by apoptotic cells (ACs). However, B cells that express a mutant form of TIM-1 lacking the mucin domain (TIM-1(Δmucin) ) exhibit decreased phosphatidylserine binding and are unable to produce IL-10 in response to ACs or by specific ligation with anti-TIM-1. TIM-1(Δmucin) mice also exhibit accelerated allograft rejection, which appears to be due in part to their defect in both baseline and induced IL-10(+) Bregs, since a single transfer of WT TIM-1(+) B cells can restore long-term graft survival. These data suggest that TIM-1 signaling plays a direct role in Breg maintenance and induction both under physiological conditions (in response to ACs) and in response to therapy through TIM-1 ligation. Moreover, they directly demonstrate that the mucin domain regulates TIM-1 signaling.
Collapse
Affiliation(s)
- Melissa Y. Yeung
- Transplantation Research Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Ding
- Thomas E. Starzl Transplantation Institute, Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Craig R. Brooks
- Renal Division, Harvard Medical School, Boston, Massachusetts, USA
| | - Sheng Xiao
- Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dario A.A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Takuya Ueno
- Transplantation Research Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert F. Padera
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vijay K. Kuchroo
- Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Nader Najafian
- Transplantation Research Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Nephrology, Cleveland Clinic Florida, Weston, FL, USA
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute, Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
60
|
Participation of T cell immunoglobulin and mucin domain-3 (TIM-3) and its ligand (galectin-9) in the pathogenesis of active generalized vitiligo. Immunol Res 2015; 62:23-34. [DOI: 10.1007/s12026-015-8632-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
61
|
Xiao S, Brooks CR, Sobel RA, Kuchroo VK. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:1602-8. [PMID: 25582854 DOI: 10.4049/jimmunol.1402632] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cell Ig and mucin domain (Tim)-1 identifies IL-10-producing regulatory B cells (Bregs). Mice on the C57BL/6 background harboring a loss-of-function Tim-1 mutant showed progressive loss of IL-10 production in B cells and with age developed severe multiorgan tissue inflammation. We demonstrate that Tim-1 expression and signaling in Bregs are required for optimal production of IL-10. B cells with Tim-1 defects have impaired IL-10 production but increased proinflammatory cytokine production, including IL-1 and IL-6. Tim-1-deficient B cells promote Th1 and Th17 responses but inhibit the generation of regulatory T cells (Foxp3(+) and IL-10-producing type 1 regulatory T cells) and enhance the severity of experimental autoimmune encephalomyelitis. Mechanistically, Tim-1 on Bregs is required for apoptotic cell (AC) binding to Bregs and for AC-induced IL-10 production in Bregs. Treatment with ACs reduces the severity of experimental autoimmune encephalomyelitis in hosts with wild-type but not Tim-1-deficient Bregs. Collectively, these findings suggest that in addition to serving as a marker for identifying IL-10-producing Bregs, Tim-1 is also critical for maintaining self-tolerance by regulating IL-10 production in Bregs.
Collapse
Affiliation(s)
- Sheng Xiao
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115;
| | - Craig R Brooks
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Raymond A Sobel
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304; and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115;
| |
Collapse
|
62
|
Regulation of T cell trafficking by the T cell immunoglobulin and mucin domain 1 glycoprotein. Trends Mol Med 2014; 20:675-84. [DOI: 10.1016/j.molmed.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022]
|
63
|
Baghdadi M, Takeuchi S, Wada H, Seino KI. Blocking monoclonal antibodies of TIM proteins as orchestrators of anti-tumor immune response. MAbs 2014; 6:1124-32. [PMID: 25517298 DOI: 10.4161/mabs.32107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibody (mAb)-based treatment of cancer has a significant effect on current practice in medical oncology, and is considered now as one of the most successful therapeutic strategies for cancer treatment. MAbs are designed to initiate or enhance anti-tumor immune responses, which can be achieved by either blocking inhibitory immune checkpoint molecules or triggering activating receptors. TIM gene family members are type-I surface molecules expressed in immune cells, and play important roles in the regulation of both innate and adaptive arms of the immune system. Therapeutic strategies based on anti-TIMs mAbs have shown promising results in experimental tumor models, and synergistic combinations of anti-TIMs mAbs with cancer vaccines, adoptive T-cell therapy, radiotherapy and chemotherapy will have great impact on cancer treatment in future clinical development.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- a Division of Immunobiology; Institute for Genetic Medicine ; Hokkaido University ; Sapporo , Japan
| | | | | | | |
Collapse
|
64
|
Galectin-9 induced myeloid suppressor cells expand regulatory T cells in an IL-10-dependent manner in CVB3-induced acute myocarditis. Int J Mol Sci 2014; 15:3356-72. [PMID: 24573249 PMCID: PMC3975342 DOI: 10.3390/ijms15033356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/06/2014] [Accepted: 02/11/2014] [Indexed: 01/24/2023] Open
Abstract
The objective of the study was to explore the effects of galectin-9 on myeloid suppressor cells in Coxsackievirus B3 (CVB3)-induced myocarditis and the possible mechanisms involved. For this purpose, BALB/c male mice were infected with CVB3 on day 0 and then received intraperitoneal (IP) administration of recombinant galectin-9 or phosphate-buffered saline (PBS) daily from day 3 to day 7. The phenotypes and functions of myeloid suppressor cells were evaluated. The role and mechanism of myeloid suppressor cells and subsets in CVB3-induced myocarditis in vitro were explored. We found that galectin-9 remarkably increased the frequencies of CD11b+Gr-1+ cells in the cardiac tissue and spleen with myocarditis. Ly-6G+ cells were decreased and Ly-6C+ cells were increased in galectin-9-treated mice. In addition, CD11b+Gr-1+ cells were highly effective in suppressing CD4+ T cells. Moreover, our data demonstrate that CD11b+Gr-1+ cells are capable of expanding regulatory T cells (Tregs) from a preexisting population of natural Tregs, which depends on IL-10 but not TGF-β. Our results indicate that galectin-9 therapy may represent a useful approach to ameliorate CVB3-induced myocarditis.
Collapse
|
65
|
Li S, Peng D, He Y, Zhang H, Sun H, Shan S, Song Y, Zhang S, Xiao H, Song H, Zhang M. Expression of TIM-3 on CD4+ and CD8+ T cells in the peripheral blood and synovial fluid of rheumatoid arthritis. APMIS 2014; 122:899-904. [PMID: 24689929 DOI: 10.1111/apm.12228] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/08/2013] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by a chronic inflammatory process that targets the synovial lining of diarthrodial joints. TIM-3 plays a key role in the negative regulation of the immune response. In this study, we investigated the expression of TIM-3 on CD4+ and CD8+ T cells from systemic (peripheral blood) and local (synovial fluid) perspectives of RA. Level of TIM-3+ cells from peripheral blood and synovial fluid of patients as well as peripheral blood of healthy controls was measured by flow cytometry. Results showed that TIM-3 expression was significantly increased in both CD4+ and CD8+ T cells in the peripheral blood of RA (p < 0.001 and p < 0.001, respectively). Furthermore, patients revealed even higher expression of TIM-3 in CD4+ and CD8+ T cells in synovial fluid than in peripheral blood. When comparing TIM-3 level with the severity of RA, we identified that the percentage of TIM-3 on both peripheral CD4+ and peripheral CD8+ T cells was negatively correlated with disease activity score 28 (DAS28) of the patients. Similarly, TIM-3 on synovial fluid CD4+ and CD8+ T cells also revealed inverse correlation with DAS28 of the cases. Our data demonstrate a negative correlation between TIM-3 and the disease progression of RA.
Collapse
Affiliation(s)
- Shufeng Li
- Department of Orthopedics, Shandong Qianfoshan Hospital, Shandong University, Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Liu J, Zhan W, Kim CJ, Clayton K, Zhao H, Lee E, Cao JC, Ziegler B, Gregor A, Yue FY, Huibner S, MacParland S, Schwartz J, Song HH, Benko E, Gyenes G, Kovacs C, Kaul R, Ostrowski M. IL-10-producing B cells are induced early in HIV-1 infection and suppress HIV-1-specific T cell responses. PLoS One 2014; 9:e89236. [PMID: 24586620 PMCID: PMC3931714 DOI: 10.1371/journal.pone.0089236] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
A rare subset of IL-10-producing B cells, named regulatory B cells (Bregs), suppresses adaptive immune responses and inflammation in mice. In this study, we examined the role of IL-10-producing B cells in HIV-1 infection. Compared to uninfected controls, IL-10-producing B cell frequencies were elevated in both blood and sigmoid colon during the early and chronic phase of untreated HIV-1 infection. Ex vivo IL-10-producing B cell frequency in early HIV-1 infection directly correlated with viral load. IL-10-producing B cells from HIV-1 infected individuals were enriched in CD19(+)TIM-1(+) B cells and were enriched for specificity to trimeric HIV-1 envelope protein. Anti-retroviral therapy was associated with reduced IL-10-producing B cell frequencies. Treatment of B cells from healthy donors with microbial metabolites and Toll-like receptor (TLR) agonists could induce an IL-10 producing phenotype, suggesting that the elevated bacterial translocation characteristic of HIV-1 infection may promote IL-10-producing B cell development. Similar to regulatory B cells found in mice, IL-10-producing B cells from HIV-1-infected individuals suppressed HIV-1-specific T cell responses in vitro, and this suppression is IL-10-dependent. Also, ex vivo IL-10-producing B cell frequency inversely correlated with contemporaneous ex vivo HIV-1-specific T cell responses. Our findings show that IL-10-producing B cells are induced early in HIV-1 infection, can be HIV-1 specific, and are able to inhibit effective anti-HIV-1 T cell responses. HIV-1 may dysregulate B cells toward Bregs as an immune evasion strategy.
Collapse
Affiliation(s)
- Jun Liu
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Wei Zhan
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Connie J. Kim
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kiera Clayton
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hanqi Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Erika Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jin Chao Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Blake Ziegler
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Gregor
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yun Yue
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Huibner
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Sonya MacParland
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Schwartz
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hai Han Song
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Rupert Kaul
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
67
|
Vega-Carrascal I, Bergin DA, McElvaney OJ, McCarthy C, Banville N, Pohl K, Hirashima M, Kuchroo VK, Reeves EP, McElvaney NG. Galectin-9 signaling through TIM-3 is involved in neutrophil-mediated Gram-negative bacterial killing: an effect abrogated within the cystic fibrosis lung. THE JOURNAL OF IMMUNOLOGY 2014; 192:2418-31. [PMID: 24477913 DOI: 10.4049/jimmunol.1300711] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The T cell Ig and mucin domain-containing molecule (TIM) family of receptors have emerged as potential therapeutic targets to correct abnormal immune function in chronic inflammatory conditions. TIM-3 serves as a functional receptor in structural cells of the airways and via the ligand galectin-9 (Gal-9) can modulate the inflammatory response. The aim of this study was to investigate TIM-3 expression and function in neutrophils, focusing on its potential role in cystic fibrosis (CF) lung disease. Results revealed that TIM-3 mRNA and protein expression values of circulating neutrophils were equal between healthy controls (n = 20) and people with CF (n = 26). TIM-3 was detected on resting neutrophil membranes by FACS analysis, and expression levels significantly increased post IL-8 or TNF-α exposure (p < 0.05). Our data suggest a novel role for TIM-3/Gal-9 signaling involving modulation of cytosolic calcium levels. Via TIM-3 interaction, Gal-9 induced neutrophil degranulation and primed the cell for enhanced NADPH oxidase activity. Killing of Pseudomonas aeruginosa was significantly increased upon bacterial opsonization with Gal-9 (p < 0.05), an effect abrogated by blockade of TIM-3 receptors. This mechanism appeared to be Gram-negative bacteria specific and mediated via Gal-9/ LPS binding. Additionally, we have demonstrated that neutrophil TIM-3/Gal-9 signaling is perturbed in the CF airways due to proteolytic degradation of the receptor. In conclusion, results suggest a novel neutrophil defect potentially contributing to the defective bacterial clearance observed in the CF airways and suggest that manipulation of the TIM-3 signaling pathway may be of therapeutic value in CF, preferably in conjunction with antiprotease treatment.
Collapse
Affiliation(s)
- Isabel Vega-Carrascal
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Canaday DH, Parker KE, Aung H, Chen HE, Nunez-Medina D, Burant CJ. Age-dependent changes in the expression of regulatory cell surface ligands in activated human T-cells. BMC Immunol 2013; 14:45. [PMID: 24083425 PMCID: PMC3850945 DOI: 10.1186/1471-2172-14-45] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/25/2013] [Indexed: 12/04/2022] Open
Abstract
Background The immune system consists of multiple preformed and more specific adaptive immune responses, which are all subject to both positive and negative regulation. Programmed cell death protein 1 (PD-1) is a cell surface ligand implicated in the induction of anergy, Inducible T-cell Costimulator (ICOS) plays a stimulatory role in the development of both CD4+ and CD8+ T-cells, Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) plays a role in inhibitory regulation of T-cell activity, and T cell immunoglobulin and mucin protein 3 (Tim-3) has been described as a negative regulatory molecule in CD4+ helper type 1 cells and CD8+ cytotoxic type 1 cells. Each of these ligands is induced with T-cell activation allowing greater opportunity to have a regulatory role. Results Flow cytometry was used to quantitate the expression of PD-1, ICOS, CTLA-4 and Tim-3 in human T-cells from geriatric and younger subjects both at baseline and after in vitro induction by mitogen. The magnitude of expression of the molecules increased significantly on activated blasts after mitogen stimulation compared to their baseline levels in resting cells. The increase in CTLA-4 expressing CD8+ T-cells was significantly higher after in vitro induction in older persons, while the increase in cells expressing Tim-3 and PD-1 was significantly reduced. In CD4+ T-cells, a greater increase in CTLA-4 expressing cells in older persons was the only difference between the age groups. Conclusions We found several significant changes in the older individuals in regulatory elements of the adaptive immune system that occur particularly after immune activation. These differences could have ramifications to autoimmunity as well as immunology against infection and tumors.
Collapse
Affiliation(s)
- David H Canaday
- Geriatric Research Center Clinical Center (GRECC), Louis Stokes Cleveland VA, 10701 East Blvd,, 44106 Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Abe Y, Kamachi F, Kawamoto T, Makino F, Ito J, Kojima Y, Moustapha AEDH, Usui Y, Yagita H, Takasaki Y, Okumura K, Akiba H. TIM-4 has dual function in the induction and effector phases of murine arthritis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4562-72. [PMID: 24068667 DOI: 10.4049/jimmunol.1203035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell Ig and mucin domain (TIM)-4 is involved in immune regulation. However, the pathological function of TIM-4 has not been understood and remains to be clarified in various disease models. In this study, DBA/1 mice were treated with anti-TIM-4 mAb during the induction or effector phase of collagen-induced arthritis (CIA). Anti-TIM-4 treatment in the induction phase exacerbated the development of CIA. In vitro experiments suggest that CD4 T cells bind to TIM-4 on APCs, which induces inhibitory effect to CD4 T cells. In contrast, therapeutic treatment with anti-TIM-4 mAb just before or after the onset or even at later stage of CIA significantly suppressed the development and progression by reducing proinflammatory cytokines in the ankle joints without affecting T or B cell responses. Consistently, clinical arthritis scores of collagen Ab-induced arthritis, which is not mediated by T or B cells, were significantly reduced in anti-TIM-4-treated mice with a concomitant decrease of proinflammatory cytokines in the joints. In vitro, macrophages secreted proinflammatory cytokines in response to TIM-4-Ig protein and LPS, which were reduced by the anti-TIM-4 mAb. The anti-TIM-4 mAb also inhibited the differentiation and bone-resorbing activity of osteoclasts. These results indicate that TIM-4 has two distinct functions depending on the stage of arthritis. The therapeutic effect of anti-TIM-4 mAb on arthritis is mediated by the inhibition of proinflammatory cytokine production by inflammatory cells, osteoclast differentiation, and bone resorption, suggesting that TIM-4 might be an appropriate target for the therapeutic treatment of arthritis.
Collapse
Affiliation(s)
- Yoshiyuki Abe
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Hansen JA, Hanash SM, Tabellini L, Baik C, Lawler RL, Grogan BM, Storer B, Chin A, Johnson M, Wong CH, Zhang Q, Martin PJ, McDonald GB. A novel soluble form of Tim-3 associated with severe graft-versus-host disease. Biol Blood Marrow Transplant 2013; 19:1323-30. [PMID: 23791624 PMCID: PMC3966623 DOI: 10.1016/j.bbmt.2013.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
The T cell Ig and mucin domain 3 (Tim-3) receptor has been implicated as a negative regulator of adaptive immune responses. We have utilized a proteomic strategy to identify novel proteins associated with graft versus host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT). Mass spectrometry analysis of plasma from subjects with mid-gut and upper-gut GVHD compared with those without GVHD identified increased levels of a protein identified with high confidence as Tim-3. A follow-up validation study using an immunoassay to measure Tim-3 levels in individual plasma samples from 127 patients demonstrated significantly higher plasma Tim-3 concentrations in patients with the more severe mid-gut GVHD, compared with those with upper-gut GVHD (P = .005), patients without GVHD (P = .002), and normal controls (P < .0001). Surface expression of Tim-3 was increased on CD8(+) T cells from patients with grade 2 to 4 acute GVHD (P = .01). Mass spectrometry-based profiling of plasma from multiple subjects diagnosed with common diseases provided evidence for restricted release of soluble Tim-3 in the context of GVHD. These findings have mechanistic implications for the development of novel strategies for targeting the Tim-3 immune regulatory pathway as an approach to improving control of GVHD.
Collapse
Affiliation(s)
- John A Hansen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Reduced numbers of regulatory B cells are negatively correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Rheumatol 2013; 33:187-95. [DOI: 10.1007/s10067-013-2359-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/29/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
|
72
|
Kono K, Mimura K, Kiessling R. Immunogenic tumor cell death induced by chemoradiotherapy: molecular mechanisms and a clinical translation. Cell Death Dis 2013; 4:e688. [PMID: 23788045 PMCID: PMC3702303 DOI: 10.1038/cddis.2013.207] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemoradiotherapy can induce immunogenic cell death, triggering danger signals such as high-mobility group box 1 protein, and resulting in T-cell immunity. This concept can potentially be harnessed for clinical therapy to enhance tumor-specific immunity. There is however limited information to translate this theory directly in a clinical setting. In this review, we will discuss and summarize molecular and cellular mechanisms underlying immunogenic tumor cell death induced by chemoradiotherapy, with emphasis on a clinical translation.
Collapse
Affiliation(s)
- K Kono
- Department of Surgery, National University of Singapore, Singapore.
| | | | | |
Collapse
|
73
|
Shang Y, Li Z, Li H, Xia H, Lin Z. TIM-3 expression in human osteosarcoma: Correlation with the expression of epithelial-mesenchymal transition-specific biomarkers. Oncol Lett 2013; 6:490-494. [PMID: 24137353 PMCID: PMC3789023 DOI: 10.3892/ol.2013.1410] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/07/2013] [Indexed: 01/22/2023] Open
Abstract
Signals from the T cell Ig- and mucin-domain-containing molecules (TIMs) have been demonstrated to be actively involved in regulating the progression of carcinomas. However, the expression and distribution of these molecules in osteosarcoma, the most common primary bone malignancy with poor prognosis, have not been investigated. In this study, the expression of TIMs was examined in nine invasive human osteosarcomas using immunohistochemistry, and the phenotypes were detected by dual immunofluorescence staining. Using immunohistochemistry, it was observed that only TIM-3, rather than TIM-1 or TIM-4, was expressed in these tumor specimens, where it was localized in the cytoplasm and plasma membrane of tumor cells. Dual immunofluorescence staining revealed that the expression of TIM-3 was observed in all cell types investigated, including CD68+ macrophages, CD31+ endothelial cells, CK-18+ epithelial cells and PCNA+ tumor cells. Notably, in sarcoma cells, TIM-3 was co-expressed with certain biomarkers of epithelial-mesenchymal transition (EMT), including vimentin, Slug, Snail and Smad. These combined results suggest that TIM-3 triggers tumor cells to acquire features of aggressive EMT and may be involved in the pathogenesis of this malignancy.
Collapse
Affiliation(s)
- Yongjun Shang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, Jilin 133002; ; Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000
| | | | | | | | | |
Collapse
|
74
|
Memory T cells and their exhaustive differentiation in allograft tolerance and rejection. Curr Opin Organ Transplant 2013; 17:15-9. [PMID: 22186090 DOI: 10.1097/mot.0b013e32834ee443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Memory T cells have emerged as a major threat to transplant survival; they are well equipped and well positioned to respond to antigens in an accelerated fashion. They participate in transplant rejection and resist interventions that usually contain naïve T cells. Thus, the means to prevent memory T cells from attacking allotransplants are an important issue in transplantation. RECENT FINDINGS Recent studies in other models suggest that effector T cells, which include both freshly activated T cells and memory T cells, can acquire 'an exhausted phenotype' in that they progressively lose their effector activities. This response is highly regulated, antigen specific, and driven primarily by antigen persistence. This exhausted phenotype has not been carefully explored in transplant models, and its role in transplant survival remains largely unknown. SUMMARY Studies of T-cell exhaustion may reveal additional facets of the fundamental mechanisms of transplant survival. T-cell exhaustion may be an alternative way of preventing memory development. Future studies are needed to further improve our understanding of T-cell exhaustion in transplantation.
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW Achieving allograft tolerance is the holy grail of transplantation. However, tolerance and rejection are two extreme ends of a scale that can be tipped in either direction. We review the novel effector and regulatory mechanisms involved and factors that tip the balance in favor of rejection or regulation. RECENT FINDINGS It is increasingly recognized that established T-cell phenotypes could change their commitments. New data point to the plasticity of Th17 cells in vivo with a reciprocal balance of Th17 cells and regulatory T cells (Tregs) driven by the local cytokine environment. Treg-cell profiles have been linked to acute and chronic allograft outcomes, and emerging data also indicate a novel role of a regulatory B-cell population. Current research efforts are looking into factors that tip the balance toward allograft tolerance by targeting cytokines, novel costimulatory pathways such as T-cell immunoglobulin mucin molecules, and components of innate immunity, particularly dendritic cells. SUMMARY The balance of effector and regulatory mechanisms contributing to allograft outcome is very complex. It is likely that targeting multiple pathways will be required to achieve tolerance. Further studies are warranted to define this balance and identify optimal combination of therapeutic interventions.
Collapse
|
76
|
Larsson M, Shankar EM, Che KF, Saeidi A, Ellegård R, Barathan M, Velu V, Kamarulzaman A. Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 2013; 10:31. [PMID: 23514593 PMCID: PMC3610157 DOI: 10.1186/1742-4690-10-31] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023] Open
Abstract
Cellular immune responses play a crucial role in the control of viral replication in HIV-infected individuals. However, the virus succeeds in exploiting the immune system to its advantage and therefore, the host ultimately fails to control the virus leading to development of terminal AIDS. The virus adopts numerous evasion mechanisms to hijack the host immune system. We and others recently described the expression of inhibitory molecules on T cells as a contributing factor for suboptimal T-cell responses in HIV infection both in vitro and in vivo. The expression of these molecules that negatively impacts the normal functions of the host immune armory and the underlying signaling pathways associated with their enhanced expression need to be discussed. Targets to restrain the expression of these molecular markers of immune inhibition is likely to contribute to development of therapeutic interventions that augment the functionality of host immune cells leading to improved immune control of HIV infection. In this review, we focus on the functions of inhibitory molecules that are expressed or secreted following HIV infection such as BTLA, CTLA-4, CD160, IDO, KLRG1, LAG-3, LILRB1, PD-1, TRAIL, TIM-3, and regulatory cytokines, and highlight their significance in immune inhibition. We also highlight the ensemble of transcriptional factors such as BATF, BLIMP-1/PRDM1, FoxP3, DTX1 and molecular pathways that facilitate the recruitment and differentiation of suppressor T cells in response to HIV infection.
Collapse
Affiliation(s)
- Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 58 185, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Bakdash G, Sittig SP, van Dijk T, Figdor CG, de Vries IJM. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front Immunol 2013; 4:53. [PMID: 23450201 PMCID: PMC3584294 DOI: 10.3389/fimmu.2013.00053] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/11/2013] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are central in maintaining the intricate balance between immunity and tolerance by orchestrating adaptive immune responses. Being the most potent antigen presenting cells, DCs are capable of educating naïve T cells into a wide variety of effector cells ranging from immunogenic CD4+ T helper cells and cytotoxic CD8+ T cells to tolerogenic regulatory T cells. This education is based on three fundamental signals. Signal I, which is mediated by antigen/major histocompatibility complexes binding to antigen-specific T cell receptors, guarantees antigen specificity. The co-stimulatory signal II, mediated by B7 family molecules, is crucial for the expansion of the antigen-specific T cells. The final step is T cell polarization by signal III, which is conveyed by DC-derived cytokines and determines the effector functions of the emerging T cell. Although co-stimulation is widely recognized to result from the engagement of T cell-derived CD28 with DC-expressed B7 molecules (CD80/CD86), other co-stimulatory pathways have been identified. These pathways can be divided into two groups based on their impact on primed T cells. Whereas pathways delivering activatory signals to T cells are termed co-stimulatory pathways, pathways delivering tolerogenic signals to T cells are termed co-inhibitory pathways. In this review, we discuss how the nature of DC-derived signal II determines the quality of ensuing T cell responses and eventually promoting either immunity or tolerance. A thorough understanding of this process is instrumental in determining the underlying mechanism of disorders demonstrating distorted immunity/tolerance balance, and would help innovating new therapeutic approaches for such disorders.
Collapse
Affiliation(s)
- Ghaith Bakdash
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
78
|
|
79
|
Gene-expression profiling to identify genes related to spontaneous tumor regression in a canine cancer model. Vet Immunol Immunopathol 2013; 151:207-16. [DOI: 10.1016/j.vetimm.2012.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/15/2012] [Accepted: 11/15/2012] [Indexed: 02/07/2023]
|
80
|
Shi F, Guo X, Jiang X, Zhou P, Xiao Y, Zhou T, Chen G, Zhao Z, Xiao H, Hou C, Li X, Yang X, Wang R, Feng J, Shen B, Li Y, Han G. Dysregulated Tim-3 expression and its correlation with imbalanced CD4 helper T cell function in ulcerative colitis. Clin Immunol 2012; 145:230-40. [DOI: 10.1016/j.clim.2012.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022]
|
81
|
Li X, Zhao YQ, Li CW, Yuan FL. T cell immunoglobulin-3 as a new therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 2012; 16:1145-9. [PMID: 22998573 DOI: 10.1517/14728222.2012.726616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T cell immunoglobulin-3 (Tim-3) is a surface molecule expressed on various cell types of the immune system which plays a central role in immune regulation. Recently, identification of galectin-9 (Gal-9) as a ligand for Tim-3 has established the Tim-3-Gal-9 pathway as an important regulator of Th1 immunity and induction of tolerance. The interaction of Tim-3 with Gal-9 induces cell death; the in vivo blockade of this interaction results in exacerbated autoimmunity and abrogation of tolerance in experimental models, thus establishing Tim-3 as a negative regulatory molecule. A number of previous studies have demonstrated that Tim-3 influences chronic autoimmune diseases, such as multiple sclerosis and systemic lupus erythematosus. In addition, an association between Tim-3 polymorphisms and susceptibility to several autoimmune diseases has been identified in various autoimmune diseases, including rheumatoid arthritis (RA). Recent work has focused on the role of Tim-3 in RA, and the results indicate that Tim-3 may represent a novel target for the treatment of RA. In this article we will discuss the Tim-3 pathway and the therapeutic potential of modulating the Tim-3 pathway in RA.
Collapse
|
82
|
Construction and characterization of bifunctional TIM-3-EGFP fusion proteins. Protein Expr Purif 2012; 86:1-6. [PMID: 22940503 DOI: 10.1016/j.pep.2012.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/05/2012] [Accepted: 08/06/2012] [Indexed: 11/20/2022]
Abstract
T cell immunoglobulin mucin-3 (TIM-3) is the first surface molecule to be found that specifically identifies Th1 cells in both mice and humans, and it negatively regulates Th1 responses. TIM-3 protein is a type I membrane protein. Overexpression of membrane proteins is a major problem to overcome in studies of membrane protein structure and function. In this study, a fusion between the gene encoding human TIM-3 and EGFP was successfully constructed and expressed in Escherichia coli. To our knowledge, this is the first time that human TIM-3 has been overexpressed in E. coli. We showed that the TIM-3-EGFP fusion protein mediates the recognition and binding of apoptotic cells. Furthermore, we demonstrated that the interactions of TIM-3-EGFP with apoptotic cells were blocked by TIM-3-Ig fusion proteins. Taken together, these results suggest that the human TIM-3 protein may act as a receptor for apoptotic cells.
Collapse
|
83
|
Vega-Carrascal I, Reeves EP, McElvaney NG. The role of TIM-containing molecules in airway disease and their potential as therapeutic targets. J Inflamm Res 2012; 5:77-87. [PMID: 22952413 PMCID: PMC3430008 DOI: 10.2147/jir.s34225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T cell immunoglobulin and mucin-domain (TIM)-containing molecules have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. Despite the initial discovery linking TIM-containing molecules and the airway hyperreactivity regulatory locus in mice, there is a paucity of studies on the function of TIM-containing molecules in lung inflammatory disease. Initially, studies were limited to mice models of asthma. More recently however, TIM-containing molecules have been implicated in an ever-expanding list of airway conditions that includes pneumonia, tuberculosis, influenza, sarcoidosis, lung cancer, and cystic fibrosis. This present review discusses the role of TIM-containing molecules and their ligands in the lung, as well as their potential as therapeutic targets in airway disease.
Collapse
Affiliation(s)
- Isabel Vega-Carrascal
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | | |
Collapse
|
84
|
Cho JL, Roche MI, Sandall B, Brass AL, Seed B, Xavier RJ, Medoff BD. Enhanced Tim3 activity improves survival after influenza infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:2879-89. [PMID: 22875804 DOI: 10.4049/jimmunol.1102483] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza is a major cause of morbidity and mortality in the United States. Studies have shown that excessive T cell activity can mediate pneumonitis in the setting of influenza infection, and data from the 2009 H1N1 pandemic indicate that critical illness and respiratory failure postinfection were associated with greater infiltration of the lungs with CD8+ T cells. T cell Ig and mucin domain 3 (Tim3) is a negative regulator of Th1/Tc1-type immune responses. Activation of Tim3 on effector T cells has been shown to downregulate proliferation, cell-mediated cytotoxicity, and IFN-γ production, as well as induce apoptosis. In this article, we demonstrate that deletion of the terminal cytoplasmic domain of the Tim3 gene potentiates its ability to downregulate Tc1 inflammation, and that this enhanced Tim3 activity is associated with decreased phosphorylation of the TCR-CD3ζ-chain. We then show that mice with this Tim3 mutation infected with influenza are protected from morbidity and mortality without impairment in viral clearance or functional heterotypic immunity. This protection is associated with decreased CD8+ T cell proliferation and decreased production of inflammatory cytokines, including IFN-γ. Furthermore, the Tim3 mutation was protective against mortality in a CD8+ T cell-specific model of pneumonitis. These data suggest that Tim3 could be targeted to prevent immunopathology during influenza infection and demonstrate a potentially novel signaling mechanism used by Tim3 to downregulate the Tc1 response.
Collapse
Affiliation(s)
- Josalyn L Cho
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13:832-42. [PMID: 22842346 DOI: 10.1038/ni.2376] [Citation(s) in RCA: 617] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/19/2012] [Indexed: 12/16/2022]
Abstract
The mechanisms by which tumor microenvironments modulate nucleic acid-mediated innate immunity remain unknown. Here we identify the receptor TIM-3 as key in circumventing the stimulatory effects of nucleic acids in tumor immunity. Tumor-associated dendritic cells (DCs) in mouse tumors and patients with cancer had high expression of TIM-3. DC-derived TIM-3 suppressed innate immune responses through the recognition of nucleic acids by Toll-like receptors and cytosolic sensors via a galectin-9-independent mechanism. In contrast, TIM-3 interacted with the alarmin HMGB1 to interfere with the recruitment of nucleic acids into DC endosomes and attenuated the therapeutic efficacy of DNA vaccination and chemotherapy by diminishing the immunogenicity of nucleic acids released from dying tumor cells. Our findings define a mechanism whereby tumor microenvironments suppress antitumor immunity mediated by nucleic acids.
Collapse
Affiliation(s)
- Shigeki Chiba
- Research Center for Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Nakahashi-Oda C, Tahara-Hanaoka S, Shoji M, Okoshi Y, Nakano-Yokomizo T, Ohkohchi N, Yasui T, Kikutani H, Honda SI, Shibuya K, Nagata S, Shibuya A. Apoptotic cells suppress mast cell inflammatory responses via the CD300a immunoreceptor. ACTA ACUST UNITED AC 2012; 209:1493-503. [PMID: 22826299 PMCID: PMC3409498 DOI: 10.1084/jem.20120096] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After cecal ligation and puncture, mice lacking the phosphatidylserine receptor CD300a on mast cells show more neutrophil recruitment to the peritoneal cavity, improved bacterial clearance, and extended survival. When a cell undergoes apoptosis, phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. PS acts as an “eat-me” signal to direct phagocytes expressing PS receptors to engulf the apoptotic cell. We recently reported that the immunoreceptor CD300a, which is expressed on myeloid cells, is a PS receptor. We show that CD300a does not facilitate macrophage phagocytosis of apoptotic cells. Instead, CD300a delivers an inhibitory signal in mast cells to suppress production of LPS-induced inflammatory cytokines and chemokines. After cecal ligation and puncture (CLP), when a large number of cells undergo apoptosis in the peritoneal cavity, CD300a-deficient peritoneal mast cells produced more chemoattractant and recruited more neutrophils than did wild-type (WT) mast cells. As a result, CD300a-deficient mice showed increased neutrophil recruitment and improved bacterial clearance in the peritoneal cavity, and survived longer than WT mice. Antibody blockade of CD300a–PS interactions improved bacterial clearance and extended survival of WT mice subjected to CLP. These results indicated that CD300a is a nonphagocytic PS receptor that regulates mast cell inflammatory responses to microbial infections.
Collapse
Affiliation(s)
- Chigusa Nakahashi-Oda
- Department of Immunology, Division of Biomedical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc Natl Acad Sci U S A 2012; 109:12105-10. [PMID: 22773818 DOI: 10.1073/pnas.1120914109] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tim-1, a type I transmembrane glycoprotein, consists of an IgV domain and a mucin domain. The IgV domain is essential for binding Tim-1 to its ligands, but little is known about the role of the mucin domain, even though genetic association of TIM-1 with atopy/asthma has been linked to the length of mucin domain. We generated a Tim-1-mutant mouse (Tim-1(Δmucin)) in which the mucin domain was deleted genetically. The mutant mice showed a profound defect in IL-10 production from regulatory B cells (Bregs). Associated with the loss of IL-10 production in B cells, older Tim-1(Δmucin) mice developed spontaneous autoimmunity associated with hyperactive T cells, with increased production of IFN-γ and elevated serum levels of Ig and autoantibodies. However, Tim-1(Δmucin) mice did not develop frank systemic autoimmune disease unless they were crossed onto the Fas-mutant lpr mice on a C57BL/6 background. Tim-1(Δmucin)lpr mice developed accelerated and fulminant systemic autoimmunity with accumulation of abnormal double-negative T cells and autoantibodies to a number of lupus-associated autoantigens. Thus, Tim-1 plays a critical role in maintaining suppressive Breg function, and our data also demonstrate an unexpected role of the Tim-1 mucin domain in regulating Breg function and maintaining self-tolerance.
Collapse
|
88
|
Gupta S, Thornley TB, Gao W, Larocca R, Turka LA, Kuchroo VK, Strom TB. Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs. J Clin Invest 2012; 122:2395-404. [PMID: 22684103 DOI: 10.1172/jci45138] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/29/2012] [Indexed: 01/05/2023] Open
Abstract
Tregs play a pivotal role in inducing and maintaining donor-specific transplant tolerance. The T cell immunoglobulin and mucin domain-3 protein (TIM-3) is expressed on many fully activated effector T cells. Along with program death 1 (PD-1), TIM-3 is used as a marker for exhausted effector T cells, and interaction with its ligand, galectin-9, leads to selective death of TIM-3+ cells. We report herein the presence of a galectin-9-sensitive CD4+FoxP3+TIM-3+ population of T cells, which arose from CD4+FoxP3+TIM-3- proliferating T cells in vitro and in vivo and were often PD-1+. These cells became very prominent among graft-infiltrating Tregs during allograft response. The frequency and number of TIM-3+ Tregs peaked at the time of graft rejection and declined thereafter. Moreover, these cells also arise in a tolerance-promoting donor-specific transfusion model, representing a pool of proliferating, donor-specific Tregs. Compared with TIM-3- Tregs, TIM-3+ Tregs, which are often PD-1+ as well, exhibited higher in vitro effector function and more robust expression of CD25, CD39, CD73, CTLA-4, IL-10, and TGF-β but not galectin-9. However, these TIM-3+ Tregs did not flourish when passively transferred to newly transplanted hosts. These data suggest that a heretofore unrecognized graft-infiltrating, short-lived subset of Tregs can restrain rejection.
Collapse
Affiliation(s)
- Shipra Gupta
- Harvard Medical School, Department of Medicine, The Transplant Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
van Golen RF, van Gulik TM, Heger M. The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev 2012; 23:69-84. [PMID: 22609105 DOI: 10.1016/j.cytogfr.2012.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
Hepatic ischemia and reperfusion elicits an immune response that lacks a microbial constituent yet poses a potentially lethal threat to the host. In this sterile setting, the immune system is alarmed by endogenous danger signals that are release by stressed and dying liver cells. The detection of these immunogenic messengers by sentinel leukocyte populations constitutes the proximal trigger for a self-perpetuating cycle of inflammation, in which consecutive waves of cytokines and chemokines orchestrate the influx of various leukocyte subsets that ultimately confer tissue destruction. This review focuses on the temporal organization of sterile hepatic inflammation, using surgery-induced trauma as a template disease state.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
90
|
Yuan J, Tang ZL, Yang S, Cao JY, Li K. Molecular characteristics of the porcine TIMD4 gene and its association analysis. Biochem Genet 2012; 50:538-48. [PMID: 22354463 DOI: 10.1007/s10528-012-9498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
Abstract
As a member of the T cell immunoglobulin domain and mucin domain (TIM) gene family, TIMD4 plays an important role in the immune response. To understand its function more precisely, we isolated it and analyzed its subcellular localization, expression pattern, and associations. The porcine TIMD4 gene included nine exons and eight introns with an open reading frame of 1086 bp encoding 361 amino acids. It had relatively high levels in liver, lymph, and spleen. The fusion protein was localized mainly in the cytoplasm of pig kidney cells (PK15). The promoter region contained a TATA box and GATA3 consensus sites. A single nucleotide polymorphism was identified in intron 3 of the porcine TIMD4 gene, and analysis indicated that it had significant associations with the 17-day red blood cell count (p = 0.0106), hemoglobin (p = 0.0149), and hematocrit (p = 0.0063) and with 32-day hemoglobin (p = 0.0140).
Collapse
Affiliation(s)
- Jing Yuan
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | | | | | | | | |
Collapse
|
91
|
Xu J, Yang Y, Liu X, Wang Y. Genetic variation and significant association of polymorphism rs7700944 G>A of TIM-4 gene with rheumatoid arthritis susceptibility in Chinese Han and Hui populations. Int J Immunogenet 2012; 39:409-13. [DOI: 10.1111/j.1744-313x.2012.01103.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
92
|
Martinez O, Leung LW, Basler CF. The role of antigen-presenting cells in filoviral hemorrhagic fever: gaps in current knowledge. Antiviral Res 2012; 93:416-28. [PMID: 22333482 PMCID: PMC3299938 DOI: 10.1016/j.antiviral.2012.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/01/2022]
Abstract
The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), are highly lethal zoonotic agents of concern as emerging pathogens and potential bioweapons. Antigen-presenting cells (APCs), particularly macrophages and dendritic cells, are targets of filovirus infection in vivo. Infection of these cell types has been proposed to contribute to the inflammation, activation of coagulation cascades and ineffective immune responses characteristic of filovirus hemorrhagic fever. However, many aspects of filovirus–APC interactions remain to be clarified. Among the unanswered questions: What determines the ability of filoviruses to replicate in different APC subsets? What are the cellular signaling pathways that sense infection and lead to production of copious quantities of cytokines, chemokines and tissue factor? What are the mechanisms by which innate antiviral responses are disabled by these viruses, and how may these mechanisms contribute to inadequate adaptive immunity? A better understanding of these issues will clarify the pathogenesis of filoviral hemorrhagic fever and provide new avenues for development of therapeutics.
Collapse
Affiliation(s)
- Osvaldo Martinez
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
93
|
T cell immunoglobulin and mucin protein-3 (Tim-3)/Galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses. Proc Natl Acad Sci U S A 2011; 108:19001-6. [PMID: 22052881 DOI: 10.1073/pnas.1107087108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactions to pathogens are usually tuned to effect immunity and limit tissue damage. Several host counterinflammatory mechanisms inhibit tissue damage but these may also act to constrain the effectiveness of immunity to acute infections, as we demonstrate in mice acutely infected with influenza A virus (IAV). We show that compared with wild type (WT), galectin-9 knockout (G9KO) mice mounted a more robust acute phase virus-specific CD8 T-cell response as well as higher and more rapid virus-specific serum IgM, IgG, and IgA responses and also cleared virus more rapidly than did WT mice. Blocking galectin-9 signals to Tim-3-expressing cells using a Tim-3 fusion protein resulted in improved immune responses in WT mice. When IAV immune mice were challenged with a heterologous IAV, the secondary IAV-specific CD8 T-cell responses were four- to fivefold higher in G9KO compared with WT mice. Our results indicate that manipulating galectin signals may represent a convenient approach to improve immune responses to some vaccines.
Collapse
|
94
|
Reddy PBJ, Sehrawat S, Suryawanshi A, Rajasagi NK, Mulik S, Hirashima M, Rouse BT. Influence of galectin-9/Tim-3 interaction on herpes simplex virus-1 latency. THE JOURNAL OF IMMUNOLOGY 2011; 187:5745-55. [PMID: 22021615 DOI: 10.4049/jimmunol.1102105] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After HSV-1 infection, CD8(+) T cells accumulate in the trigeminal ganglion (TG) and participate in the maintenance of latency. However, the mechanisms underlying intermittent virus reactivation are poorly understood. In this study, we demonstrate the role of an inhibitory interaction between T cell Ig and mucin domain-containing molecule 3 (Tim-3)-expressing CD8(+) T cells and galectin 9 (Gal-9) that could influence HSV-1 latency and reactivation. Accordingly, we show that most K(b)-gB tetramer-specific CD8(+) T cells in the TG of HSV-1-infected mice express Tim-3, a molecule that delivers negative signals to CD8(+) T cells upon engagement of its ligand Gal-9. Gal-9 was also upregulated in the TG when replicating virus was present as well during latency. This could set the stage for Gal-9/Tim-3 interaction, and this inhibitory interaction was responsible for reduced CD8(+) T cell effector function in wild-type mice. Additionally, TG cell cultures exposed to recombinant Gal-9 in the latent phase caused apoptosis of most CD8(+) T cells. Furthermore, Gal-9 knockout TG cultures showed delayed and reduced viral reactivation as compared with wild-type cultures, demonstrating the greater efficiency of CD8(+) T cells to inhibit virus reactivation in the absence of Gal-9. Moreover, the addition of recombinant Gal-9 to ex vivo TG cultures induced enhanced viral reactivation compared with untreated controls. Our results demonstrate that the host homeostatic mechanism mediated by Gal-9/Tim-3 interaction on CD8(+) T cells can influence the outcome of HSV-1 latent infection, and manipulating Gal-9 signals might represent therapeutic means to inhibit HSV-1 reactivation from latency.
Collapse
Affiliation(s)
- Pradeep B J Reddy
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 2011; 12:114. [PMID: 21867534 PMCID: PMC3179723 DOI: 10.1186/1465-9921-12-114] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/25/2011] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Collapse
Affiliation(s)
- Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
96
|
Abstract
Semaphorins belong to a family of membrane-bound and secreted molecules that regulate the functional activity of axons in the nervous system. Sema4A and Sema4D were the first semaphorins also found to be expressed in immune cells and were, therefore, termed "immune semaphorins". It is known that Sema4A has three functional receptors, namely Plexin D1, Plexin B1, and Tim-2, whereas Sema4D binds to Plexin B1 and CD72. Recent studies suggest that immune semaphorins play critical roles in many physiological and pathological processes and such. In this review, we summarize the current knowledge on the biology of neuroimmune semaphorins and their corresponding receptors, their distribution in organs and tissues, function in the immune response, and critical regulatory roles in various diseases.
Collapse
|
97
|
Ding Q, Yeung M, Camirand G, Zeng Q, Akiba H, Yagita H, Chalasani G, Sayegh MH, Najafian N, Rothstein DM. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J Clin Invest 2011; 121:3645-56. [PMID: 21821911 PMCID: PMC3163958 DOI: 10.1172/jci46274] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 06/15/2011] [Indexed: 12/12/2022] Open
Abstract
T cell Ig domain and mucin domain protein 1 (TIM-1) is a costimulatory molecule that regulates immune responses by modulating CD4+ T cell effector differentiation. However, the function of TIM-1 on other immune cell populations is unknown. Here, we show that in vivo in mice, TIM-1 is predominantly expressed on B rather than T cells. Importantly, TIM-1 was expressed by a large majority of IL-10-expressing regulatory B cells in all major B cell subpopulations, including transitional, marginal zone, and follicular B cells, as well as the B cell population characterized as CD1d(hi)CD5+. A low-affinity TIM-1-specific antibody that normally promotes tolerance in mice, actually accelerated (T cell-mediated) immune responsiveness in the absence of B cells. TIM-1+ B cells were highly enriched for IL-4 and IL-10 expression, promoted Th2 responses, and could directly transfer allograft tolerance. Both cytokine expression and number of TIM-1+ regulatory B cells (Bregs) were induced by TIM-1-specific antibody, and this was dependent on IL-4 signaling. Thus, TIM-1 is an inclusive marker for IL-10+ Bregs that can be induced by TIM-1 ligation. These findings suggest that TIM-1 may be a novel therapeutic target for modulating the immune response and provide insight into the signals involved in the generation and induction of Bregs.
Collapse
Affiliation(s)
- Qing Ding
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Di Mitri D, Azevedo RI, Henson SM, Libri V, Riddell NE, Macaulay R, Kipling D, Soares MVD, Battistini L, Akbar AN. Reversible Senescence in Human CD4+CD45RA+CD27− Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2093-100. [DOI: 10.4049/jimmunol.1100978] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
99
|
Zhang Y, Ma CJ, Wang JM, Ji XJ, Wu XY, Jia ZS, Moorman JP, Yao ZQ. Tim-3 negatively regulates IL-12 expression by monocytes in HCV infection. PLoS One 2011; 6:e19664. [PMID: 21637332 PMCID: PMC3102652 DOI: 10.1371/journal.pone.0019664] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/01/2011] [Indexed: 12/19/2022] Open
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection.
Collapse
Affiliation(s)
- Ying Zhang
- Division of Infectious Diseases, Department of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng J. Ma
- Division of Infectious Diseases, Department of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jia M. Wang
- Division of Infectious Diseases, Department of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Xiao J. Ji
- Division of Infectious Diseases, Department of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Xiao Y. Wu
- Division of Infectious Diseases, Department of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Zhan S. Jia
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jonathan P. Moorman
- Medical Service, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Zhi Q. Yao
- Medical Service, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
- * E-mail:
| |
Collapse
|
100
|
Xiao S, Zhu B, Jin H, Zhu C, Umetsu DT, DeKruyff RH, Kuchroo VK. Tim-1 stimulation of dendritic cells regulates the balance between effector and regulatory T cells. Eur J Immunol 2011; 41:1539-49. [PMID: 21469101 DOI: 10.1002/eji.201040993] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/17/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
We show that the T-cell immunoglobalin mucin, Tim-1, initially reported to be expressed on CD4(+) T cells, is constitutively expressed on dendritic cells (DCs) and that its expression further increases after DC maturation. Tim-1 signaling into DCs upregulates costimulatory molecule expression and proinflammatory cytokine production, thereby promoting effector T-cell responses, while inhibiting Foxp3(+) Treg responses. By contrast, Tim-1 signaling in T cells only regulates Th2 responses. Using a high-avidity/agonistic anti-Tim-1 antibody as a co-adjuvant enhances the immunogenic function of DCs, decreases the suppressive function of Tregs, and substantially increases proinflammatory Th17 responses in vivo. The treatment with high- but not low-avidity anti-Tim-1 not only worsens experimental autoimmune encephalomyelitis (EAE) in susceptible mice but also breaks tolerance and induces EAE in a genetically resistant strain of mice. These findings indicate that Tim-1 has an important role in regulating DC function and thus shifts the balance between effector and regulatory T cells towards an enhanced immune response. By understanding the mechanisms by which Tim-1 regulates DC and T-cell responses, we may clarify the potential utility of Tim-1 as a target of therapy against autoimmunity, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Sheng Xiao
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|