51
|
Zhang T, Tai Z, Miao F, Zhao Y, Wang W, Zhu Q, Chen Z. Bioinspired nanovesicles derived from macrophage accelerate wound healing by promoting angiogenesis and collagen deposition. J Mater Chem B 2024. [PMID: 39480489 DOI: 10.1039/d3tb02158k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Macrophages play a crucial role in the process of wound healing. In order to effectively inhibit excessive inflammation and facilitate skin wound healing, it is necessary to transform overactive M1 macrophages in injured tissues into the M2 type. In this study, we have successfully generated bioinspired nanovesicles (referred to as M2BNVs) from M2 type macrophages. These nanovesicles not only possess physical and biological properties that closely resemble exosomes, but also offer a simpler preparation process and more abundant yield. Owing to their distinctive endogenous cargo, M2BNVs have the ability to re-educate M1 macrophages, shifting their phenotype towards the M2 type which is known to promote healing and possess anti-inflammatory properties. Consequently, M2BNVs effectively improve the prevailing pro-inflammatory microenvironment within the wound. Furthermore, M2BNVs also facilitate wound tissue regeneration and angiogenesis. Collectively, our findings demonstrate the potential of M2BNVs in promoting wound healing in mice.
Collapse
Affiliation(s)
- Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Yingchao Zhao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Weifan Wang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, 1278 Baode Road, Shanghai 200443, P. R. China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
52
|
Couty N, Estienne A, Le Lay S, Rame C, Chevaleyre C, Allard-Vannier E, Péchoux C, Guerif F, Vasseur C, Aboulouard S, Salzet M, Dupont J, Froment P. Human ovarian extracellular vesicles proteome from polycystic ovary syndrome patients associate with follicular development alterations. FASEB J 2024; 38:e70113. [PMID: 39436214 DOI: 10.1096/fj.202400521rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The development of the ovarian follicle requires the presence of several factors that come from the blood and follicular cells. Among these factors, extracellular vesicles (EVs) represent an original communication pathway inside the ovarian follicle. Recently, EVs have been shown to play potential roles in follicular development and reproduction-related disorders, including the polycystic ovary syndrome (PCOS). The proteomic analysis of sEVs isolated from FF in comparison to sEVs purified from plasma has shown a specific pattern of proteins secreted by ovarian steroidogenic cells such as granulosa cells. Thus, a human granulosa cell line exposed to sEVs from FF of normal patients increased their progesterone, estradiol, and testosterone secretion. However, if the sEVs were derived from FF of PCOS patients, the activity of stimulating progesterone production was lost. Stimulation of steroidogenesis by sEVs was associated with an increase in the expression of the StAR gene. In addition, sEVs from FF increased cell proliferation and migration of granulosa cells, and this phenomenon was amplified if sEVs were derived from PCOS patients. Interestingly, STAT3 is a protein overexpressed in sEVs from PCOS patients interacting with most of the cluster of proteins involved in the phenotype observed (cell proliferation, migration, and steroid production) in granulosa cells. In conclusion, this study has demonstrated that sEVs derived from FF could regulate directly the granulosa cell activity. The protein content in sEVs from FF is different in the case of PCOS syndrome and could perturb the granulosa cell functions, including inflammation, steroidogenesis, and cytoskeleton architecture.
Collapse
Affiliation(s)
- Noemie Couty
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | | | - Soazig Le Lay
- L'Institut du Thorax, CNRS, INSERM, Nantes Université, Nantes, France
- Université Angers, SFR ICAT, Angers, France
| | | | | | | | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Claudine Vasseur
- Centre de fertilité, Pôle Santé Léonard de Vinci, Chambray-lès-Tours, France
| | - Soulaimane Aboulouard
- INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université Lille 1, Villeneuve d'Ascq, France
| | - Michel Salzet
- INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université Lille 1, Villeneuve d'Ascq, France
| | - Joelle Dupont
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | | |
Collapse
|
53
|
Zhang Y, Tian L. Advances and challenges in the use of liquid biopsy in gynaecological oncology. Heliyon 2024; 10:e39148. [PMID: 39492906 PMCID: PMC11530831 DOI: 10.1016/j.heliyon.2024.e39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ovarian cancer, endometrial cancer, and cervical cancer are the three primary gynaecological cancers that pose a significant threat to women's health on a global scale. Enhancing global cancer survival rates necessitates advancements in illness detection and monitoring, with the goal of improving early diagnosis and prognostication of disease recurrence. Conventional methods for identifying and tracking malignancies rely primarily on imaging techniques and, when possible, protein biomarkers found in blood, many of which lack specificity. The process of collecting tumour samples necessitates intrusive treatments that are not suitable for specific purposes, such as screening, predicting, or evaluating the effectiveness of treatment, monitoring the presence of remaining illness, and promptly detecting relapse. Advancements in treatment are being made by the detection of genetic abnormalities in tumours, both inherited and acquired. Newly designed therapeutic approaches can specifically address some of these abnormalities. Liquid biopsy is an innovative technique for collecting samples that examine specific cancer components that are discharged into the bloodstream, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs), and exosomes. Mounting data indicates that liquid biopsy has the potential to improve the clinical management of gynaecological cancers through enhanced early diagnosis, prognosis prediction, recurrence detection, and therapy response monitoring. Understanding the distinct genetic composition of tumours can also inform therapy choices and the identification of suitable targeted treatments. The main benefits of liquid biopsy are its non-invasive characteristics and practicality, enabling the collection of several samples and the continuous monitoring of tumour changes over time. This review aims to provide an overview of the data supporting the therapeutic usefulness of each component of liquid biopsy. Additionally, it will assess the benefits and existing constraints associated with the use of liquid biopsy in the management of gynaecological malignancies. In addition, we emphasise future prospects in light of the existing difficulties and investigate areas where further research is necessary to clarify its rising clinical capabilities.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Libi Tian
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
54
|
Valero P, Silva K, Valenzuela-Hinrichsen A, Vásquez A, Espinoza F, Lira F, Cornejo M, Fuentes G, González D, Moore-Carrasco R, van der Beek EM, Hillebrands JL, van Goor H, Grismaldo A, Sobrevia L. Shortcomings, limitations and gaps in physiological roles of extracellular vesicles in obesity. J Physiol 2024. [PMID: 39470472 DOI: 10.1113/jp286955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in mediating communication between cells across species and kingdoms. The intercellular communication facilitated by EVs through autocrine and paracrine signalling mechanisms is essential for cell survival, maintaining normal metabolic functions and ensuring overall bodily homeostasis and health. Extracellular vesicles are present in various bodily fluids, such as pleural effusions, plasma, breast milk, amniotic fluid, semen and saliva. Additionally, the generation and release of EVs contribute to the removal of cellular waste. Patients with obesity exhibit a higher release and amount of circulating EVs than individuals with normal weight. This increased EV release in obesity might contribute to the inflammatory state characteristic of this metabolic condition, because higher levels of pro-inflammatory molecules are found within their cargo. However, interpreting results related to EV abundance, cargo and biological actions can be complicated by several factors; these include variations in cell sources, a wide age range (from children to the elderly), a mix of females and males, medication use and health status, a range of body weights (from normal weight to morbid obesity) and differences between in vitro assays using cell lines versus primary cultures. This article addresses the shortcomings, limitations and gaps in knowledge, providing a framework for enhancing our understanding of the physiological effects of EVs on obesity.
Collapse
Affiliation(s)
- Paola Valero
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Katherin Silva
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Valenzuela-Hinrichsen
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Vásquez
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Espinoza
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Lira
- Faculty of Medicine, Universidad de Antofagasta, Antofagasta, Chile
| | - Marcelo Cornejo
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Fuentes
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Daniel González
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | | | - Eline M van der Beek
- Department of Pediatrics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Nestlé Institute for Health Sciences, Nestlé Research, Societé des Produits de Nestlé, Lausanne, Switzerland
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Adriana Grismaldo
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- **Faculty of Excellence program, School of Medicine and Health Sciences, The Institute for Obesity Research (IOR), Eutra, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Luis Sobrevia
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- **Faculty of Excellence program, School of Medicine and Health Sciences, The Institute for Obesity Research (IOR), Eutra, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
55
|
Tam NW, Becker A, Mangiarotti A, Cipitria A, Dimova R. Extracellular Vesicle Mobility in Collagen I Hydrogels Is Influenced by Matrix-Binding Integrins. ACS NANO 2024; 18:29585-29601. [PMID: 39400273 PMCID: PMC11526431 DOI: 10.1021/acsnano.4c07186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are a diverse population of membrane structures produced and released by cells into the extracellular space for the intercellular trafficking of cargo molecules. They are implicated in various biological processes, including angiogenesis, immunomodulation, and cancer cell signaling. While much research has focused on their biogenesis or their effects on recipient cells, less is understood about how EVs are capable of traversing diverse tissue environments and crossing biological barriers. Their interactions with extracellular matrix components are of particular interest, as such interactions govern diffusivity and mobility, providing a potential basis for organotropism. To start to untangle how EV-matrix interactions affect diffusivity, we use high speed epifluorescence microscopy, single particle tracking, and confocal reflectance microscopy to analyze particle mobility and localization in extracellular matrix-mimicking hydrogels composed of collagen I. EVs are compared with synthetic liposomes and extruded plasma membrane vesicles to better understand the importance of membrane composition on these interactions. By treating EVs with trypsin to digest surface proteins, we determine that proteins are primarily responsible for EV immobilization in collagen I hydrogels. We next use a synthetic peptide competitive inhibitor to narrow down the identity of the proteins involved to argynylglycylaspartic acid (RGD) motif-binding integrins, which interact with unincorporated or denatured nonfibrillar collagen. Moreover, the effect of integrin inhibition with RGD peptides has strong implications for the use of RGD-peptide-based drugs to treat certain cancers, as integrin inhibition appears to increase EV mobility, improving their ability to infiltrate tissue-like environments.
Collapse
Affiliation(s)
- Nicky W. Tam
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | | | - Agustín Mangiarotti
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | - Amaia Cipitria
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
- Group
of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research
Institute, San Sebastián 20014, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Rumiana Dimova
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| |
Collapse
|
56
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
57
|
Seo Y, Kang H, Park J. Shear stress-induced influx of extracellular calcium ions: a pivotal trigger amplifying the production of mesenchymal stem cell-derived extracellular vesicles. NANOSCALE 2024. [PMID: 39466346 DOI: 10.1039/d4nr01215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) have drawn attention as promising therapeutic agents whose characteristics resemble their parent cells. However, their practical utility is limited by low EV yields. Cell culture under fluidic flow to enhance EV secretion has been proposed to address this challenge. However, the precise mechanism of increased EV production in response to flow conditions has not been studied thoroughly. We investigated the mechanism of higher release of EVs from mesenchymal stem cells under flow conditions, focusing on the correlation between intracellular calcium ions and EV production. Shear stress was applied to cells through shaking cultures, and stimulated cells showed increased EV production. Results suggested that the stimulation of EV secretion was promoted by an increasing intracellular concentration of calcium ions, primarily due to their transport through calcium ion channels in the plasma membrane, which was induced by shear stress. Furthermore, we confirmed that the essential characteristics of the EVs released under shear stress remained intact by analyzing individual EVs and assessing their regeneration efficacy in a model of kidney injury in vitro. Unveiling the reason for the high production of EVs under shear stress is expected to contribute to the development of EV-application research by increasing the reliability of EV utilization.
Collapse
Affiliation(s)
- Youngju Seo
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea.
| | - Hyejin Kang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea.
| | - Jaesung Park
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
- Center for Wireless Integrated MicroSensing and System (WIMS2), U. Michigan, Ann Arbor, MI 48109, USA
- Global Research Institute for Exosome (GRIE), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
58
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
59
|
Itzel CG, Eduardo MM, Velia RA, Mireya CV, Alfredo HM, Pilar RGMD, Gabriela AS. Salivary Extracellular Vesicles Separation: Analysis of Ultracentrifugation-Based Protocols. Oral Dis 2024. [PMID: 39462790 DOI: 10.1111/odi.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION The clinical potential of extracellular vesicles (EVs) is widely acknowledged, yet the standardization and reproducibility of its separation remain challenging. This study compares three protocols: ultracentrifugation (UC), UC with purification step (UC + PS), and a combined protocol using polymer-based precipitation and UC (PBP + UC). METHODS Salivary samples were collected from healthy donors. EVs were separated (UC, UC + PS, and PBP + UC) and characterized using transmission electron microscopy, nanoparticle tracking analysis, EV purity, RNA concentration, and Western blotting. miRNA expression was evaluated by quantitative RT-PCR. Statistical analyses comparing groups were performed using ANOVA. RESULTS All methods successfully separated CD9+ and CD63+ EVs from saliva. The UC + PS and PBP + UC protocols yielded the highest concentrations of EVs, enriched in < 200 nm vesicles. EV purity and RNA recovery were comparable among all methods. Expression of miR-16, miR-27a, and miR-99a was successfully detected using all methods. CONCLUSIONS The UC + PS and PBP + UC protocols demonstrate comparable efficiency in separating salivary EVs. However, the combined PBP + UC protocol, with its simplified processing capability, offers a significant advantage, particularly in the initial phase of EV separation. This finding suggests its potential application in clinical settings where time-sensitive simple processing is critical. Further validation is needed to confirm its effectiveness for transcriptomic and proteomic analyses.
Collapse
Affiliation(s)
- Castillejos-García Itzel
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Martínez-Martínez Eduardo
- Laboratorio de Vesículas Extracelulares y Comunicación Celular, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Ramírez-Amador Velia
- Posgrado en Patología y Medicina Oral, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | | | - Hidalgo-Miranda Alfredo
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | - Anaya-Saavedra Gabriela
- Posgrado en Patología y Medicina Oral, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| |
Collapse
|
60
|
Gutierrez-Riquelme T, Karkossa I, Schubert K, Liebscher G, Packeiser EM, Nolte I, von Bergen M, Murua Escobar H, Aguilera-Rojas M, Einspanier R, Stein T. Proteomic analysis of extracellular vesicles derived from canine mammary tumour cell lines identifies protein signatures specific for disease state. BMC Vet Res 2024; 20:488. [PMID: 39462388 PMCID: PMC11515202 DOI: 10.1186/s12917-024-04331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Canine mammary tumours (CMT) are among the most common types of tumours in female dogs. Diagnosis currently requires invasive tissue biopsies and histological analysis. Tumour cells shed extracellular vesicles (EVs) containing RNAs and proteins with potential for liquid biopsy diagnostics. We aimed to identify CMT subtype-specific proteome profiles by comparing the proteomes of EVs isolated from epithelial cell lines derived from morphologically normal canine mammary tissue, adenomas, and carcinomas. METHODS Whole-cell protein lysates (WCLs) and EV-lysates were obtained from five canine mammary cell lines: MTH53A (non-neoplastic); ZMTH3 (adenoma); MTH52C (simple carcinoma); 1305, DT1406TB (complex carcinoma); and their proteins identified by LC-MS/MS analyses. Gene Ontology analysis was performed on differentially abundant proteins from each group to identify up- and down-regulated biological processes. To establish CMT subtype-specific proteomic profiles, weighted gene correlation network analysis (WGCNA) was carried out. RESULTS WCL and EVs displayed distinct protein abundance signatures while still showing the same increase in adhesion, migration, and motility-related proteins in carcinoma-derived cell lines, and of RNA processing and RNA splicing factors in the adenoma cell line. WGCNA identified CMT stage-specific co-abundant EV proteins, allowing the identification of adenoma and carcinoma EV signatures not seen in WCLs. CONCLUSIONS EVs from CMT cell lines exhibit distinct protein profiles reflecting malignancy state, allowing us to identify potential biomarkers for canine mammary carcinomas, such as biglycan. Our dataset could therefore potentially serve as a basis for the development of a less invasive clinical diagnostic tool for the characterisation of CMT.
Collapse
Affiliation(s)
- Tania Gutierrez-Riquelme
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Gudrun Liebscher
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Hugo Murua Escobar
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | | | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Torsten Stein
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
61
|
Wang FD, Ding Y, Zhou JH, Zhou E, Zhang TT, Fan YQ, He Q, Zhang ZQ, Mao CY, Zhang JF, Zhou J. Gamma-aminobutyric acid enhances miR-21-5p loading into adipose-derived stem cell extracellular vesicles to alleviate myocardial ischemia-reperfusion injury via TXNIP regulation. World J Stem Cells 2024; 16:873-895. [PMID: 39493825 PMCID: PMC11525649 DOI: 10.4252/wjsc.v16.i10.873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) poses a prevalent challenge in current reperfusion therapies, with an absence of efficacious interventions to address the underlying causes. AIM To investigate whether the extracellular vesicles (EVs) secreted by adipose mesenchymal stem cells (ADSCs) derived from subcutaneous inguinal adipose tissue (IAT) under γ-aminobutyric acid (GABA) induction (GABA-EVsIAT) demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms. METHODS We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA. We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays. The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds. To explore the functional RNA diversity between EVsIAT and GABA-EVsIAT, we employed microRNA (miR) sequencing. Through a dual-luciferase reporter assay, we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein (TXNIP). Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction. RESULTS Our study demonstrates that, under the influence of GABA, ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs. Consequently, this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention, ultimately resulting in myocardial protection. On a molecular mechanism level, EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes. CONCLUSION Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs, thereby regulating the expression of TXNIP. The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.
Collapse
Affiliation(s)
- Feng-Dan Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yi Ding
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Hong Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - En Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tian-Tian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu-Qi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zong-Qi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Cheng-Yu Mao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun-Feng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jing Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
62
|
Hang Y, Huang J, Ding M, Shen Y, Zhou Y, Cai W. Extracellular vesicles reshape the tumor microenvironment to improve cancer immunotherapy: Current knowledge and future prospects. Int Immunopharmacol 2024; 140:112820. [PMID: 39096874 DOI: 10.1016/j.intimp.2024.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor immunotherapy has revolutionized cancer treatment, but limitations remain, including low response rates and immune complications. Extracellular vesicles (EVs) are emerging as a new class of therapeutic agents for various diseases. Recent research shows that changes in the amount and composition of EVs can reshape the tumor microenvironment (TME), potentially improving the effectiveness of immunotherapy. This exciting discovery has sparked clinical interest in using EVs to enhance the immune system's response to cancer. In this Review, we delve into the world of EVs, exploring their origins, how they're generated, and their complex interactions within the TME. We also discuss the crucial role EVs play in reshaping the TME during tumor development. Specifically, we examine how their cargo, including molecules like PD-1 and non-coding RNA, influences the behavior of key immune cells within the TME. Additionally, we explore the current applications of EVs in various cancer therapies, the latest advancements in engineering EVs for improved immunotherapy, and the challenges faced in translating this research into clinical practice. By gaining a deeper understanding of how EVs impact the TME, we can potentially uncover new therapeutic vulnerabilities and significantly enhance the effectiveness of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Yu Hang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JingYi Huang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Ding
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhua Shen
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YaoZhong Zhou
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China.
| | - Wan Cai
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
63
|
Yu J, Gao Y, Liu F, Zhang Y, Li J, Ding L, Ren S, Yang J, Jiao J, Feng G, Chen Z, Sun W, Wu J. m6A-modified exosome-derived circHIF1α binding to KH domain of IGF2BP3 mediates DNA damage and arrests G1/S transition phase to resists bacterial infection in bacteremia. J Nanobiotechnology 2024; 22:654. [PMID: 39443946 PMCID: PMC11515445 DOI: 10.1186/s12951-024-02932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Animal and human health are seriously threatened by bacterial infections, which can lead to bacteremia and extremely high rates of morbidity and mortality. Recently, there have been reports indicating the involvement of exosomal circular RNAs (circRNAs) in a range of human disorders and tumor types. However, the role of exosomal circRNAs in bacterial infection remains elusive. METHODS We extracted and identified exosomes from the culture medium of PIEC cells infected with or without Glaesserella parasuis. RNA sequencing analysis was performed on the exosomes to screen and identify circRNAs (circHIF1α) associated with Glaesserella parasuis infection. PIEC cells were infected with Staphylococcus aureus or Streptococcus suis 2 to further determine whether exosome-derived circHIF1α was the crucial circHIF1α associated with bacterial infections. The transmission process of exosomes and their circHIF1α between cells was clarified via exosome tracing and co-culture assay. Moreover, the mechanism of circHIF1α being packaged into exosomes was explored, and the effects of exosomes and their circHIF1α on cell proliferation, DNA damage and cell cycle were analyzed. In addition, the binding mode and site of interacting proteins with circHIF1α were further determined. In vivo and in vitro, the role of exosomes and their circHIF1α in host resistance to bacterial infection was confirmed. RESULTS We first discovered a new circHIF1α that was very stable and detectable, encapsulated into exosomes by hnRNPA2B1, and whose expression in exosomes of bacterially infected PIEC cells significantly decreased. Additionally, exosomal circHIF1α reduced bacterial infection both in vitro and in vivo and suppressed the growth of reception cells. Mechanistically, the circHIF1α interacted with the KH domain of IGF2BP3 in an m6A-modified manner, which mediated DNA damage to arrest the cells at the G1/S phase through the interaction between the regulator of Chromosome Condensation 2 (RCC2) and γ-H2AX protein. Exosomal circHIF1α is a unique therapeutic target for bacterial infection since this work highlights its critical function in fighting bacterial infection.
Collapse
Affiliation(s)
- Jiang Yu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Yidan Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fei Liu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yuyu Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jianda Li
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Luogang Ding
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Sufang Ren
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jie Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jian Jiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Gong Feng
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Zhi Chen
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Wenbo Sun
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jiaqiang Wu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Instihte of Animal Science and veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
64
|
Gu X, He L, Zhang J, Xu H, Shen H, Huang R, Li Z. Recent Advances in Wash-Free Detection Methods of Extracellular Vesicles: A Mini Review. ACS Sens 2024. [PMID: 39446112 DOI: 10.1021/acssensors.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are emerging biomarkers in liquid biopsy that have gained increasing attention in disease diagnosis and prognosis monitoring. Most reported detection methods require the isolation of EVs from complex body liquids, often involving multiple washing steps to remove excess reagents and eliminate background interference. Nonetheless, these methods not only cause the loss of EVs but also result in poor repeatability and prolonged detection duration. The focus on wash-free detection methods is increasing due to the specific ability to avoid the removal of surplus reagents and, in some cases, even the isolation and purification of EVs. Viewing from different methodological perspectives, this review summarizes the recent advances in wash-free detection of EVs, containing aggregation induction, proximity sensing, allosteric probes, phase separation, Roman spectroscopy, field-effect transistor and microcantilever. The pros and cons of each detection strategy are impartially evaluated and this review concludes the prospects for future developments in this field.
Collapse
Affiliation(s)
- Xinrui Gu
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Lei He
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Jinsong Zhang
- Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Hongpan Xu
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Han Shen
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Rongrong Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, South Puzhu Road 30, Nanjing, Jiangsu Province 211816, China
| | - Zhiyang Li
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| |
Collapse
|
65
|
Li Q, Li Z, Chen B, Zhao J, Yu H, Hu J, Lai H, Zhang H, Li Y, Meng Z, Hu Z, Huang S. RNA splicing junction landscape reveals abundant tumor-specific transcripts in human cancer. Cell Rep 2024; 43:114893. [PMID: 39446586 DOI: 10.1016/j.celrep.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
RNA splicing is a critical process governing gene expression and transcriptomic diversity. Despite its importance, a detailed examination of transcript variation at the splicing junction level remains scarce. Here, we perform a thorough analysis of RNA splicing junctions in 34,775 samples across multiple sample types. We identified 29,051 tumor-specific transcripts (TSTs) in pan-cancer, with a majority of these TSTs being unannotated. Our findings show that TSTs are positively correlated with tumor stemness and linked to unfavorable outcomes in cancer patients. Additionally, TSTs display mutual exclusivity with somatic mutations and are overrepresented in transposable-element-derived transcripts possessing oncogenic functions. Importantly, TSTs can generate putative neoantigens for immunotherapy. Moreover, TSTs can be detected in blood extracellular vesicles from cancer patients. Our results shed light on the intricacies of RNA splicing and offer promising avenues for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qin Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, and Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bing Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingjing Zhao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwu Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
66
|
Zhang L, Wang Y, Cai X, Mao X, Sun H. Deciphering the CNS-glioma dialogue: Advanced insights into CNS-glioma communication pathways and their therapeutic potential. J Cent Nerv Syst Dis 2024; 16:11795735241292188. [PMID: 39493257 PMCID: PMC11528668 DOI: 10.1177/11795735241292188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
The field of cancer neuroscience has rapidly evolved, shedding light on the complex interplay between the nervous system and cancer, with a particular focus on the relationship between the central nervous system (CNS) and gliomas. Recent advancements have underscored the critical influence of CNS activity on glioma progression, emphasizing the roles of neurons and neuroglial cells in both the onset and evolution of gliomas. This review meticulously explores the primary communication pathways between the CNS and gliomas, encompassing neuro-glioma synapses, paracrine mechanisms, extracellular vesicles, tunneling nanotubes, and the integrative CNS-immune-glioma axis. It also evaluates current and emerging therapeutic interventions aimed at these pathways and proposes forward-looking perspectives for research in this domain.
Collapse
Affiliation(s)
- Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
67
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
68
|
Chen YY, Sullivan J, Hanley S, Price J, Tariq MA, McIlvenna LC, Whitham M, Sharma-Oates A, Harrison P, Lord JM, Hazeldine J. Impact of Senescent Cell-Derived Extracellular Vesicles on Innate Immune Cell Function. Adv Biol (Weinh) 2024:e2400265. [PMID: 39441562 DOI: 10.1002/adbi.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are components of the senescence-associated secretory phenotype (SASP) that influence cellular functions via their cargo. Here, the interaction between EVs derived from senescent (SEVs) and non-senescent (N-SEVs) fibroblasts and the immune system is investigated. Via endocytosis, SEVs are phagocytosed by monocytes, neutrophils, and B cells. Studies with the monocytic THP-1 cell line find that pretreatment with SEVs results in a 32% (p < 0.0001) and 66% (p < 0.0001) increase in lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) production when compared to vehicle control or N-SEVs respectively. Interestingly, relative to vehicle control, THP-1 cells exposed to N-SEVs exhibit a 20% decrease in TNF-α secretion (p < 0.05). RNA sequencing reveals significant differences in gene expression in THP-1 cells treated with SEVs or N-SEVs, with vesicle-mediated transport and cell cycle regulation pathways featuring predominantly with N-SEV treatment, while pathways relating to SLITS/ROBO signaling, cell metabolism, and cell cycle regulation are enriched in THP-1 cells treated with SEVs. Proteomic analysis also reveals significant differences between SEV and N-SEV cargo. These results demonstrate that phagocytes and B cells uptake SEVs and drive monocytes toward a more proinflammatory phenotype upon LPS stimulation. SEVs may therefore contribute to the more proinflammatory immune response seen with aging.
Collapse
Affiliation(s)
- Yung-Yi Chen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jack Sullivan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| | - Shaun Hanley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad A Tariq
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke C McIlvenna
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, B15 2TH, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| |
Collapse
|
69
|
Lee SJ, Jung DK, Im S, You C, Kim JE, Bae JS, Kim MS, Yea K, Park EK. Ank-mediated pyrophosphate regulates shear stress-induced small extracellular vesicle production in 3D-cultured osteocytes. Anim Cells Syst (Seoul) 2024; 28:495-505. [PMID: 39445097 PMCID: PMC11497576 DOI: 10.1080/19768354.2024.2409460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Osteocytes are located in the lacunae of fluid-filled bone and communicate with neighboring or distant cells by secreting small extracellular vesicles (sEVs) and growth factors as well as via dendrite-dendrite direct connections. However, the mechanism regulating sEV production in osteocytes is yet to be elucidated. In this study, we investigated sEV production and its underlying mechanism in osteocytes cultured on a three dimensional (3D) scaffold. We employed a perfusion system to apply shear stress stimulation to MLO-Y4 cells cultured on a 3D biphasic calcium phosphate (BCP) scaffold and analyzed sEV production and gene expression using RNA sequencing. We found that the expression of genes associated with sEV biogenesis and the secretory pathway were enhanced by fluid shear stress in MLO-Y4 cells cultured on a 3D BCP scaffold. In particular, fluid shear stress induced the expression of Ank, a pyrophosphate transporter, in 3D-cultured MLO-Y4 cells. The role of Ank in sEV production was further examined. Probenecid, an Ank inhibitor, significantly suppressed shear stress-induced sEV production, whereas Ank cDNA overexpression stimulated it. The inhibition of shear stress-induced sEV production by probenecid was recovered by the exogenous addition of pyrophosphate to MLO-Y4 cells. These findings suggest that shear stress-mediated sEV production in 3D-cultured osteocytes is regulated by extracellular pyrophosphate transported by Ank.
Collapse
Affiliation(s)
- Su Jeong Lee
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Deuk Kju Jung
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Soomin Im
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Changkook You
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute (CMRI), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mee-seon Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
70
|
Forero A, Pipicelli F, Moser S, Baumann N, Grätz C, Gonzalez Pisfil M, Pfaffl MW, Pütz B, Kielkowski P, Cernilogar FM, Maccarrone G, Di Giaimo R, Cappello S. Extracellular vesicle-mediated trafficking of molecular cues during human brain development. Cell Rep 2024; 43:114755. [PMID: 39302835 DOI: 10.1016/j.celrep.2024.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Cellular crosstalk is an essential process influenced by numerous factors, including secreted vesicles that transfer nucleic acids, lipids, and proteins between cells. Extracellular vesicles (EVs) have been the center of many studies focusing on neurodegenerative disorders, but whether EVs display cell-type-specific features for cellular crosstalk during neurodevelopment is unknown. Here, using human-induced pluripotent stem cell-derived cerebral organoids, neural progenitors, neurons, and astrocytes, we identify heterogeneity in EV protein content and dynamics in a cell-type-specific and time-dependent manner. Our results support the trafficking of key molecules via EVs in neurodevelopment, such as the transcription factor YAP1, and their localization to differing cell compartments depending on the EV recipient cell type. This study sheds new light on the biology of EVs during human brain development.
Collapse
Affiliation(s)
- Andrea Forero
- Max Planck Institute of Psychiatry, Munich, Germany; Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Sylvain Moser
- Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Grätz
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig Maximilian University, Munich, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Ludwig Maximilian University, Munich, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University, Munich, Germany; Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | | | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany; Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Munich, Germany; Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
71
|
Xiong J, Wang Y, Wang H, Luo J, Chen T, Sun J, Xi Q, Zhang Y. GHRH-stimulated pituitary small extracellular vesicles inhibit hepatocyte proliferation and IGF-1 expression by its cargo miR-375-3p. J Nanobiotechnology 2024; 22:649. [PMID: 39438882 PMCID: PMC11494759 DOI: 10.1186/s12951-024-02857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Small extracellular vesicles (sEV) have emerged as a novel mode of intercellular material transport and information transmission. It has been suggested hormones may regulate the production and function of sEV. However, the specific impact of growth hormone-releasing hormone (GHRH) on pituitary sEV production and the role of sEV in the regulation of the GHRH-GH-IGF axis has not been previously reported. The results of the present study demonstrated that GHRH increased the production of pituitary sEV by promoting the expression of Rab27a. More importantly, GHRH induced alterations in protein and miRNA levels within GH3-sEV components. Notably, GH3-sEV with GHRH treatment exhibited the enhanced ability to impede BRL 3A cell proliferation and the expression of IGF-1. Conclusively, for the first time, we corroborate the influence of GHRH on pituitary sEV, thereby presenting novel evidence for how sEV participates in the balance of the GHRH-GH-IGF axis. Importantly, this study provides new insight into a novel balance mechanism mediated by sEV within the endocrine system.
Collapse
Affiliation(s)
- Jiali Xiong
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hailong Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
72
|
Reddy D, Lin Z, Ramanathan S, Luo X, Pande R, Tian Y, Side C, Barker JM, Sacan A, Blendy JA, Ajit SK. Morphine-induced hyperalgesia impacts small extracellular vesicle miRNA composition and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.617815. [PMID: 39484599 PMCID: PMC11526852 DOI: 10.1101/2024.10.17.617815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Morphine and other synthetic opioids are widely prescribed to treat pain. Prolonged morphine exposure can paradoxically enhance pain sensitivity in humans and nociceptive behavior in rodents. To better understand the molecular mechanisms underlying opioid-induced hyperalgesia, we investigated changes in miRNA composition of small extracellular vesicles (sEVs) from the serum of mice after a morphine treatment paradigm that induces hyperalgesia. We observed significant differential expression of 18 miRNAs in sEVs from morphine-treated mice of both sexes compared to controls. Several of these miRNAs were bioinformatically predicted to regulate cyclic AMP response element binding protein (CREB), a well-characterized transcription factor implicated in pain and drug addiction. We confirmed the binding and repression of Creb mRNA by miR-155 and miR-10a. We tested if serum-derived sEVs from morphine-treated mice could elicit nociceptive behavior in naïve recipient mice. Intrathecal injection of 1 μg sEVs did not significantly impact basal mechanical and thermal threshold in naïve recipient mice. However, prophylactic 1 μg sEV administration in recipient mice resulted in faster resolution of complete Freund's adjuvant-induced mechanical and thermal inflammatory hypersensitivity. Other behaviors assayed following administration of these sEVs were not impacted including sEV conditioned place preference and locomotor sensitization. These results indicate that morphine regulation of serum sEV composition can contribute to analgesia and suggest a potential for sEVs to be a non-opioid therapeutic intervention strategy to treat pain.
Collapse
Affiliation(s)
- Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Equal contributions
| | - Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Equal contributions
| | - Sujay Ramanathan
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Equal contributions
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Christine Side
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Jacqueline M. Barker
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, USA
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
73
|
Luo Y, Ou X, Liu D, Shi H, Liao J, Yu R, Song L, Zhu J. A novel exosome-like nanovesicles from Cordyceps militaris potentiate immunomodulatory and anti-tumor effect by reprogramming macrophages. Life Sci 2024; 358:123163. [PMID: 39442867 DOI: 10.1016/j.lfs.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
AIMS Fungi-derived exosome-like nanovesicles (ENs) are emerging as a highly promising class of nanoparticles, particularly noted for their cost-effective production. However, their impact on immune regulation and their potential as anti-tumor agents need further exploration. Our study specifically focused on the investigation of the immunomodulatory and anti-tumor properties of ENs derived from Cordyceps militaris, an edible fungus that had achieved large-scale commercial production, referred to as CMDENs. MAIN METHODS The ENs of C. militaris were collected through ultra-high-speed centrifugation, followed by characterization of their physicochemical properties and contents. Subsequently, the biological distribution of these vesicles was investigated using in vivo fluorescence imaging experiments. Finally, the immune activation and polarization of macrophages were examined through both in vitro and in vivo experiments. KEY FINDINGS Herein, we presented the discovery of CMDENs that were rich in proteins, lipids, flavonoids and alkaloids. Immunomodulatory experiments conducted in vivo demonstrated that CMDENs exhibited protective effects against cyclophosphamide-induced immunosuppression in mice by significantly enhancing macrophage phagocytosis and peripheral blood immune cell counts. Moreover, CMDENs effectively induced the polarization of M0- and M2-like macrophages toward M1-like phenotype by activating MAPKs signaling pathway. Notably, CMDENs exhibited remarkable capabilities in inhibiting tumor growth by reprogramming tumor-associated macrophages and activating tumor-infiltrating T lymphocytes, without any observed toxicity in mice bearing tumors. SIGNIFICANCE Our research suggested that CMDENs possessed the potential to be explored as a nano-immunomodulatory agent for cancer.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China; Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaozheng Ou
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China
| | - De Liu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China
| | - Hui Shi
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiapei Liao
- Department of Natural Product Chemistry, Jinan University, Guangzhou 511443, China
| | - Rongmin Yu
- Department of Natural Product Chemistry, Jinan University, Guangzhou 511443, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
74
|
Han T, Hao Q, Chao T, Sun Q, Chen Y, Gao B, Guan L, Ren W, Zhou X. Extracellular vesicles in cancer: golden goose or Trojan horse. J Mol Cell Biol 2024; 16:mjae025. [PMID: 38796692 PMCID: PMC11540518 DOI: 10.1093/jmcb/mjae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 05/28/2024] Open
Abstract
Intercellular communication can be mediated by direct cell-to-cell contact and indirect interactions through secretion of soluble chemokines, cytokines, and growth factors. Extracellular vesicles (EVs) have emerged as important mediators of cell-to-cell and cell-to-environment communications. EVs from tumor cells, immune cells, and stromal cells can remodel the tumor microenvironment and promote cancer cell survival, proliferation, metastasis, immune evasion, and therapeutic resistance. Most importantly, EVs as natural nanoparticles can be manipulated to serve as a potent delivery system for targeted cancer therapy. EVs can be engineered or modified to improve their ability to target tumors and deliver therapeutic substances, such as chemotherapeutic drugs, nucleic acids, and proteins, for the treatment of cancer. This review provides an overview of the biogenesis and recycling of EVs, discusses their roles in cancer development, and highlights their potential as a delivery system for targeted cancer therapy.
Collapse
Affiliation(s)
- Tao Han
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinggang Sun
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yitian Chen
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Bo Gao
- Umibio Co. Ltd, Shanghai 201210, China
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
75
|
Ferrucci L, Guerra F, Bucci C, Marzetti E, Picca A. Mitochondria break free: Mitochondria-derived vesicles in aging and associated conditions. Ageing Res Rev 2024; 102:102549. [PMID: 39427885 DOI: 10.1016/j.arr.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Mitophagy is the intracellular recycling system that disposes damaged/inefficient mitochondria and allows biogenesis of new organelles to ensure mitochondrial quality is optimized. Dysfunctional mitophagy has been implicated in human aging and diseases. Multiple evolutionarily selected, redundant mechanisms of mitophagy have been identified, but their specific roles in human health and their potential exploitation as therapeutic targets are unclear. Recently, the characterization of the endosomal-lysosomal system has revealed additional mechanisms of mitophagy and mitochondrial quality control that operate via the production of mitochondria-derived vesicles (MDVs). Circulating MDVs can be isolated and characterized to provide an unprecedented opportunity to study this type of mitochondrial recycling in vivo and to relate it to human physiology and pathology. Defining the role of MDVs in human physiology, pathology, and aging is hampered by the lack of standardized methods to isolate, validate, and characterize these vesicles. Hence, some basic questions about MDVs remain unanswered. While MDVs are generated directly through the extrusion of mitochondrial membranes within the cell, a set of circulating extracellular vesicles leaking from the endosomal-lysosomal system and containing mitochondrial portions have also been identified and warrant investigation. Preliminary research indicates that MDV generation serves multiple biological roles and contributes to restoring cell homeostasis. However, studies have shown that MDVs may also be involved in pathological conditions. Therefore, further research is warranted to establish when/whether MDVs are supporting disease progression and/or are extracting damaged mitochondrial components to alleviate cellular oxidative burden and restore redox homeoastasis. This information will be relevant for exploiting these vesicles for therapeutic purpose. Herein, we provide an overview of preclinical and clinical studies on MDVs in aging and associated conditions and discuss the interplay between MDVs and some of the hallmarks of aging (mitophagy, inflammation, and proteostasis). We also outline open questions on MDV research that should be prioritized by future investigations.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Experimental Medicine, Università del Salento, Lecce, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
76
|
Joshi M, Sharma S, Onteru SK, Singh D. Comprehensive proteomic analysis of buffalo milk extracellular vesicles. Int J Biol Macromol 2024; 282:136735. [PMID: 39433188 DOI: 10.1016/j.ijbiomac.2024.136735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Extracellular vesicles are secretory vesicles involved in cell-to-cell communication via their encapsulated cargo of proteins, lipids, and nucleic acids. Bovine milk provides a rich source of extracellular vesicles (mEVs) that have been studied as therapeutics and drug delivery systems. Therefore, insight into the mEV cargo, such as its proteome, may help in understanding the molecular mechanism underlying the potential health benefits attributed to the mEVs. Hence, mEVs were isolated from healthy buffalo milk after screening the milk somatic cell count. The total proteins of mEVs were analyzed using LC-MS, and 331 proteins were found commonly present among three buffalo milk samples. These proteins were primarily derived from extracellular regions and lysosomes. The major biological roles associated with the proteins were immune response, metabolism, and cell cycle regulation. The molecular functions of the proteins were transporter activity, catalytic activity, and GTPase activity. Further, comparative analysis with the previously available bovine mEVs proteome data showed 114 proteins to be newly identified in the buffalo mEVs. The biological pathways associated with these proteins may play a major role in muscle development. These findings shed a light on the potential health benefits of buffalo mEVs as therapeutics as well as drug delivery vehicles.
Collapse
Affiliation(s)
- Mansi Joshi
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sanjay Sharma
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
77
|
Feng Y, Wang Y, Li L, Yang Y, Tan X, Chen T. Exosomes Induce Crosstalk Between Multiple Types of Cells and Cardiac Fibroblasts: Therapeutic Potential for Remodeling After Myocardial Infarction. Int J Nanomedicine 2024; 19:10605-10621. [PMID: 39445157 PMCID: PMC11498042 DOI: 10.2147/ijn.s476995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Recanalization therapy can significantly improve the prognosis of patients with acute myocardial infarction (AMI). However, infarction or reperfusion-induced cardiomyocyte death, immune cell infiltration, fibroblast proliferation, and scarring formation lead to cardiac remodeling and gradually progress to heart failure or arrhythmia, resulting in a high mortality rate. Due to the inability of cardiomyocytes to regenerate, the healing of infarcted myocardium mainly relies on the formation of scars. Cardiac fibroblasts, as the main effector cells involved in repair and scar formation, play a crucial role in maintaining the structural integrity of the heart after MI. Recent studies have revealed that exosome-mediated intercellular communication plays a huge role in myocardial repair and signaling transduction after myocardial infarction (MI). Exosomes can regulate the biological behavior of fibroblasts by activating or inhibiting the intracellular signaling pathways through their contents, which are derived from cardiomyocytes, immune cells, endothelial cells, mesenchymal cells, and others. Understanding the interactions between fibroblasts and other cell types during cardiac remodeling will be the key to breakthrough therapies. This review examines the role of exosomes from different sources in the repair process after MI injury, especially the impacts on fibroblasts during myocardial remodeling, and explores the use of exosomes in the treatment of myocardial remodeling after MI.
Collapse
Affiliation(s)
- Yijuan Feng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Li Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
78
|
Liu C, Wang X, Cao X. IL-10: A Key Regulator and potential therapeutic target in uveitis. Cell Immunol 2024; 405-406:104885. [PMID: 39447525 DOI: 10.1016/j.cellimm.2024.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Uveitis is a prevalent inflammatory eye disease that primarily affects working-age individuals and can lead to blindness if untreated. Interleukin-10 (IL-10) is a multifunctional cytokine with broad immunosuppressive properties and plays a significant role in various pathological and physiological processes. However, its specific role and underlying mechanisms in uveitis remain incompletely understood. This review aims to shed light on the biological characteristics of IL-10, its involvement in the uveitis pathophysiology, and its potential as a novel therapeutic target. By examining existing literature, the review analyzes IL-10 expression levels and regulatory mechanisms in different types of uveitis, discussing its role in immune regulation. Despite IL-10 being expressed variably across various forms of autoimmune uveitis, studies consistently highlight its protective role, prompting research into ways to enhance its bioavailability in the eye. IL-10 is often upregulated in infectious uveitis, contributing to pathogen immune evasion. Furthermore, primary intraocular lymphoma (PIOL), which shares clinical similarities with uveitis, also shows upregulated IL-10 levels, whereas IL-6 is more commonly elevated in uveitis. This differential expression suggests that IL-6 and IL-10 could be diagnostic markers to distinguish between PIOL and uveitis. Future research should continue to focus on elucidating the molecular mechanisms of IL-10 in uveitis, exploring its potential therapeutic applications, and developing targeted treatments that leverage the immunomodulatory effects of IL-10 to prevent and manage this sight-threatening condition.
Collapse
Affiliation(s)
- Chengzhi Liu
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinyu Wang
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xusheng Cao
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
79
|
Wang J, Zhang Y, Wang S, Wang X, Jing Y, Su J. Bone aging and extracellular vesicles. Sci Bull (Beijing) 2024:S2095-9273(24)00752-7. [PMID: 39455324 DOI: 10.1016/j.scib.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
80
|
Ambattu LA, Del Rosal B, Conn CE, Yeo LY. High-frequency MHz-order vibration enables cell membrane remodeling and lipid microdomain manipulation. Biophys J 2024:S0006-3495(24)00679-9. [PMID: 39415451 DOI: 10.1016/j.bpj.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
We elucidate the mechanism underpinning a recently discovered phenomenon in which cells respond to MHz-order mechanostimuli. Deformations induced along the plasma membrane under these external mechanical cues are observed to decrease the membrane tension, which, in turn, drives transient and reversible remodeling of its lipid structure. In particular, the increase and consequent coalescence of ordered lipid microdomains leads to closer proximity to mechanosensitive ion channels-Piezo1, in particular-that, due to crowding, results in their activation to mobilize influx of calcium (Ca2+) ions into the cell. It is the modulation of this second messenger that is responsible for the downstream signaling and cell fates that ensue. In addition, we show that such spatiotemporal control over the membrane microdomains in cells-without necessitating biochemical factors-facilitates aggregation and association of intrinsically disordered tau proteins in neuroblastoma cells, and their transformation to pathological conditions implicated in neurodegenerative diseases, thereby paving the way for the development of therapeutic intervention strategies.
Collapse
Affiliation(s)
- Lizebona A Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | | | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
81
|
Suvarnapathaki S, Serrano-Farias A, Dudley JC, Bettegowda C, Rincon-Torroella J. Unlocking the Potential of Circulating miRNAs as Biomarkers in Glioblastoma. Life (Basel) 2024; 14:1312. [PMID: 39459612 PMCID: PMC11509808 DOI: 10.3390/life14101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Using microRNAs (miRNAs) as potential circulating biomarkers in diagnosing and treating glioblastoma (GBM) has garnered a lot of scientific and clinical impetus in the past decade. As an aggressive primary brain tumor, GBM poses challenges in early detection and effective treatment with significant current diagnostic constraints and limited therapeutic strategies. MiRNA dysregulation is present in GBM. The intricate involvement of miRNAs in altering cell proliferation, invasion, and immune escape makes them prospective candidates for identifying and monitoring GBM diagnosis and response to treatment. These miRNAs could play a dual role, acting as both potential diagnostic markers and targets for therapy. By modulating the activity of various oncogenic and tumor-suppressive proteins, miRNAs create opportunities for precision medicine and targeted therapies in GBM. This review centers on the critical role and function of circulating miRNA biomarkers in GBM diagnosis and treatment. It highlights their significance in providing insights into disease progression, aiding in early diagnosis, and potential use as targets for novel therapeutic interventions. Ultimately, the study of miRNA would contribute to improving patient outcomes in the challenging landscape of GBM management.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Antolin Serrano-Farias
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jonathan C. Dudley
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| |
Collapse
|
82
|
Gurrieri E, Carradori G, Roccuzzo M, Pancher M, Peroni D, Belli R, Trevisan C, Notarangelo M, Huang WQ, Carreira ASA, Quattrone A, Jenster G, Hagen TLMT, D'Agostino VG. CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells. J Biomed Sci 2024; 31:92. [PMID: 39402557 PMCID: PMC11475557 DOI: 10.1186/s12929-024-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications. METHODS In this work, we selected the popular EV marker CD81 as a transmembrane guide for fusion proteins with a C-terminal GFP reporter encompassing or not Trastuzumab light chains targeting the HER2 receptor. We performed high-content imaging analyses to track EV-cell interactions, including isogenic breast cancer cells with manipulated HER2 expression. We validated the functional cargo delivery of recombinant EVs carrying doxorubicin upon EV-donor cell treatment. Then, we performed an in vivo study using JIMT-1 cells commonly used as HER2-refractory, trastuzumab-resistant model to detect a more than 2000 nt length recombinant mRNA in engrafted tumors. RESULTS Fusion proteins participated in vesicular trafficking dynamics and accumulated on secreted EVs according to their expression levels in HEK293T cells. Despite the presence of GFP, secreted EV populations retained a HER2 receptor-binding capacity and were used to track EV-cell interactions. In time-frames where the global EV distribution did not change between HER2-positive (SK-BR-3) or -negative (MDA-MB-231) breast cancer cell lines, the HER2 exposure in isogenic cells remarkably affected the tropism of heterologous EVs, demonstrating the specificity of antiHER2 EVs representing about 20% of secreted bulk vesicles. The specific interaction strongly correlated with improved cell-killing activity of doxorubicin-EVs in MDA-MB-231 ectopically expressing HER2 and reduced toxicity in SK-BR-3 with a knocked-out HER2 receptor, overcoming the effects of the free drug. Interestingly, the fusion protein-corresponding transcripts present as full-length mRNAs in recombinant EVs could reach orthotopic breast tumors in JIMT-1-xenografted mice, improving our sensitivity in detecting penetrant cargoes in tissue biopsies. CONCLUSIONS This study highlights the quantitative aspects underlying the creation of a platform for secreted heterologous EVs and shows the limits of single receptor-ligand interactions behind EV-cell engagement mechanisms, which now become the pivotal step to predict functional tropism and design new generations of EV-based nanovehicles.
Collapse
Affiliation(s)
- Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giulia Carradori
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Roccuzzo
- Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michael Pancher
- High Throughput Screening and High Content Analysis Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Daniele Peroni
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Romina Belli
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Caterina Trevisan
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Michela Notarangelo
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Wen-Qiu Huang
- Precision Medicine in Oncology (PrMiO), Department of Pathology, and Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| | - Agata S A Carreira
- Laboratory of Genomic Screening, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Guido Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, and Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
83
|
Zhang J, Gao Z, Xiao W, Jin N, Zeng J, Wang F, Jin X, Dong L, Lin J, Gu J, Wang C. A simplified and efficient extracellular vesicle-based proteomics strategy for early diagnosis of colorectal cancer. Chem Sci 2024:d4sc05518g. [PMID: 39421202 PMCID: PMC11480824 DOI: 10.1039/d4sc05518g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related death worldwide and an effective screening strategy for diagnosis of early-stage CRC is highly desired. Although extracellular vesicles (EVs) are expected to become some of the most promising tools for liquid biopsy of early disease diagnosis, the existing EV-based proteomics methods for practical application in clinical samples are limited by technical challenges in high-throughput isolation and detection of EVs. In the current study, we have developed a simplified and efficient EV-based proteomics strategy for early diagnosis of CRC. DSPE-functionalized beads were specifically designed that enabled direct capture of EVs from plasma samples in 10 minutes with good reproducibility and comprehensive proteome coverage. The single-pot, solid-phase-enhanced sample-preparation (SP3) technology was then combined with data-independent acquisition mass spectrometry (DIA-MS) for in-depth analysis and quantification of EV proteomes. From a cohort with 30 individuals including 11 healthy controls, 8 patients with adenomatous polyp and 11 patients with early-stage CRC, our streamlined workflow reproducibly quantified over 800 proteins from their plasma-derived EV samples, from which dysregulated protein signatures for molecular diagnosis of CRC were revealed. We selected a panel of 10 protein markers to train a machine learning (ML) model, which resulted in accurate prediction of polyp and early-stage CRC in an independent and single-blind validation cohort with excellent diagnostic ability of 89.3% accuracy. Our simplified and efficient clinical proteomic strategy will serve as a valuable tool for fast, accurate, and cost-effective diagnosis of CRC that can be easily extended to other disease samples for discovery of unique EV-based biomarkers.
Collapse
Affiliation(s)
- Jin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital Beijing China
- Center for Precision Diagnosis and Treatment of Colorectal Cancer and Inflammatory Disease, Peking University Health Science Center Beijing China
| | - Weidi Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies Chengdu China
| | - Ningxin Jin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Jiaming Zeng
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies Chengdu China
| | - Fengzhang Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Xiaowei Jin
- Department of Gastroenterology, Peking University Shougang Hospital Beijing China
| | - Liguang Dong
- Center for Health Care Management, Peking University Shougang Hospital Beijing China
| | - Jian Lin
- Department of Pharmacy, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Peking University Third Hospital Cancer Center, Peking University Third Hospital Beijing China
- Synthetic and Functional Biomolecules Center, Peking University Beijing China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital Beijing China
- Center for Precision Diagnosis and Treatment of Colorectal Cancer and Inflammatory Disease, Peking University Health Science Center Beijing China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute Beijing China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing China
| | - Chu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies Chengdu China
- Synthetic and Functional Biomolecules Center, Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing China
| |
Collapse
|
84
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G, Qian K. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res 2024; 12:123. [PMID: 39402599 PMCID: PMC11476736 DOI: 10.1186/s40364-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate their biological functions. In this review, we summarized and discussed EV-DNA research advances with an emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide potential directions or guidance for future EV-DNA investigations.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Wang
- Center for Disease Control and Prevention of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center, Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
85
|
Ahmed W, Mushtaq A, Ali S, Khan N, Liang Y, Duan L. Engineering Approaches for Exosome Cargo Loading and Targeted Delivery: Biological versus Chemical Perspectives. ACS Biomater Sci Eng 2024; 10:5960-5976. [PMID: 38940421 DOI: 10.1021/acsbiomaterials.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Exosomes are nanoscale membrane bound vesicles secreted by almost all types of cells. Their unique attributes, such as minimal immunogenicity and compatibility with biological systems, make them novel carriers for drug delivery. These native exosomes harbor proteins, nucleic acids, small molecule compounds, and fluorogenic agents. Moreover, through a combination of chemical and bioengineering methodologies, exosomes are tailored to transport precise therapeutic payloads to designated cells or tissues. In this review, we summarize the strategies for exosome modification and drug loading modalities in engineered exosomes. In addition, we provide an overview of the advances in the use of engineered exosomes for targeted drug delivery. Lastly, we discuss the merits and limitations of chemically engineered versus bioengineered exosome-mediated target therapies. These insights offer additional options for refining engineered exosomes in pharmaceutical development and hold promise for expediting the successful translation of engineered exosomes from the bench to the bedside.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
- Medical School, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Asim Mushtaq
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland 4300, Australia
| | - Shahzad Ali
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
- Medical School, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
- Medical School, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Institute of Mental Health, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, Guangdong, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| |
Collapse
|
86
|
Jasim SA, Ahmed AT, Kubaev A, Kyada A, Alshahrani MY, Sharma S, Al-Hetty HRAK, Vashishth R, Chauhan AS, Abosaoda MK. Exosomal microRNA as a key regulator of PI3K/AKT pathways in human tumors. Med Oncol 2024; 41:265. [PMID: 39400677 DOI: 10.1007/s12032-024-02529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
MicroRNAs (miRNAs) are conserved non-protein-coding RNAs that are naturally present in organisms and can control gene expression by suppressing the translation of mRNA or causing the degradation of mRNA. MicroRNAs are highly concentrated in the PI3K/AKT pathway, and abnormal activation of the PI3K/AKT pathway plays a role in cancer progression. The AKT/PI3K pathway is critical for cellular functions and can be stimulated by cytokines and in normal situations. It is involved in regulating various intracellular signal transduction, including development, differentiation, transcriptional regulation, protein, and synthesis. There is a growing body of evidence indicating that miRNAs, which are abundant in exosomes released by different cells, can control cellular biological activities via modulating the PI3K/AKT pathway, hence influencing cancer progression and drug resistance. This article provides an overview of the latest research progress regarding the function and medical use of the PI3K/AKT pathway and exosomal miRNA/AKT/PI3K axis in the behaviors of cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, AL-Anbar Governorate, Ramadi, Iraq.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Mohammad Y Alshahrani
- King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | | | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
87
|
Tan S, Yang J, Hu S, Lei W. Cell-cell interactions in the heart: advanced cardiac models and omics technologies. Stem Cell Res Ther 2024; 15:362. [PMID: 39396018 PMCID: PMC11470663 DOI: 10.1186/s13287-024-03982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
A healthy heart comprises various cell types, including cardiomyocytes, endothelial cells, fibroblasts, immune cells, and among others, which work together to maintain optimal cardiac function. These cells engage in complex communication networks, known as cell-cell interactions (CCIs), which are essential for homeostasis, cardiac structure, and efficient function. However, in the context of cardiac diseases, the heart undergoes damage, leading to alterations in the cellular composition. Such pathological conditions trigger significant changes in CCIs, causing cell rearrangement and the transition between cell types. Studying these interactions can provide valuable insights into cardiac biology and disease mechanisms, enabling the development of new therapeutic strategies. While the development of cardiac organoids and advanced 3D co-culture technologies has revolutionized in vitro studies of CCIs, recent advancements in single-cell and spatial multi-omics technologies provide researchers with powerful and convenient tools to investigate CCIs at unprecedented resolution. This article provides a concise overview of CCIs observed in both normal and injured heart, with an emphasis on the cutting-edge methods used to study these interactions. It highlights recent advancements such as 3D co-culture systems, single-cell and spatial omics technologies, that have enhanced the understanding of CCIs. Additionally, it summarizes the practical applications of CCI research in advancing cardiovascular therapies, offering potential solutions for treating heart disease by targeting intercellular communication.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
88
|
Li J, Yuan Y, Fu Q, Chen M, Liang H, Chen X, Long X, Zhang B, Zhao J, Chen Q. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12:119. [PMID: 39396032 PMCID: PMC11470730 DOI: 10.1186/s40364-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Liver fibrosis, a chronic and long-term disease, can develop into hepatocellular carcinoma (HCC) and ultimately lead to liver failure. Early diagnosis and effective treatment still face significant challenges. Liver inflammation leads to liver fibrosis through continuous activation of hepatic stellate cells (HSCs) and the accumulation of immune cells. Intracellular communication among various immune cells is important for mediating the inflammatory response during fibrogenesis. Extracellular vesicles (EVs), which are lipid bilayer membrane-enclosed particles naturally secreted by cells, make great contributions to cell-cell communication and the transport of bioactive molecules. Nearly all the cells that participate in liver fibrosis release EVs loaded with lipids, proteins, and nucleic acids. EVs from hepatocytes, immune cells and stem cells are involved in mediating the inflammatory microenvironment of liver fibrosis. Recently, an increasing number of extracellular vesicle-based clinical applications have emerged, providing promising cell-free diagnostic and therapeutic tools for liver fibrosis because of their crucial role in immunomodulation during pathogenesis. The advantages of extracellular vesicle-based therapies include stability, biocompatibility, low cytotoxicity, and minimal immunogenicity, which highlight their great potential for drug delivery and specific treatments for liver fibrosis. In this review, we summarize the complex biological functions of EVs in the inflammatory response in the pathogenesis of liver fibrosis and evaluate the potential of EVs in the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
89
|
Li Y, Shen Q, Feng L, Zhang C, Jiang X, Liu F, Pang B. A nanoscale natural drug delivery system for targeted drug delivery against ovarian cancer: action mechanism, application enlightenment and future potential. Front Immunol 2024; 15:1427573. [PMID: 39464892 PMCID: PMC11502327 DOI: 10.3389/fimmu.2024.1427573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/22/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies in the world and is the leading cause of cancer-related death in women. The complexity and difficult-to-treat nature of OC pose a huge challenge to the treatment of the disease, Therefore, it is critical to find green and sustainable drug treatment options. Natural drugs have wide sources, many targets, and high safety, and are currently recognized as ideal drugs for tumor treatment, has previously been found to have a good effect on controlling tumor progression and reducing the burden of metastasis. However, its clinical transformation is often hindered by structural stability, bioavailability, and bioactivity. Emerging technologies for the treatment of OC, such as photodynamic therapy, immunotherapy, targeted therapy, gene therapy, molecular therapy, and nanotherapy, are developing rapidly, particularly, nanotechnology can play a bridging role between different therapies, synergistically drive the complementary role of differentiated treatment schemes, and has a wide range of clinical application prospects. In this review, nanoscale natural drug delivery systems (NNDDS) for targeted drug delivery against OC were extensively explored. We reviewed the mechanism of action of natural drugs against OC, reviewed the morphological composition and delivery potential of drug nanocarriers based on the application of nanotechnology in the treatment of OC, and discussed the limitations of current NNDDS research. After elucidating these problems, it will provide a theoretical basis for future exploration of novel NNDDS for anti-OC therapy.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
90
|
Gurriaran-Rodriguez U, De Repentigny Y, Kothary R, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography. Skelet Muscle 2024; 14:22. [PMID: 39394606 PMCID: PMC11468478 DOI: 10.1186/s13395-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain.
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
91
|
Wilczyński B, Dąbrowska A, Kulbacka J, Baczyńska D. Chemoresistance and the tumor microenvironment: the critical role of cell-cell communication. Cell Commun Signal 2024; 22:486. [PMID: 39390572 PMCID: PMC11468187 DOI: 10.1186/s12964-024-01857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Resistance of cancer cells to anticancer drugs remains a major challenge in modern medicine. Understanding the mechanisms behind the development of chemoresistance is key to developing appropriate therapies to counteract it. Nowadays, with advances in technology, we are paying more and more attention to the role of the tumor microenvironment (TME) and intercellular interactions in this process. We also know that important elements of the TME are not only the tumor cells themselves but also other cell types, such as mesenchymal stem cells, cancer-associated fibroblasts, stromal cells, and macrophages. TME elements can communicate with each other indirectly (via cytokines, chemokines, growth factors, and extracellular vesicles [EVs]) and directly (via gap junctions, ligand-receptor pairs, cell adhesion, and tunnel nanotubes). This communication appears to be critical for the development of chemoresistance. EVs seem to be particularly interesting structures in this regard. Within these structures, lipids, proteins, and nucleic acids can be transported, acting as signaling molecules that interact with numerous biochemical pathways, thereby contributing to chemoresistance. Moreover, drug efflux pumps, which are responsible for removing drugs from cancer cells, can also be transported via EVs.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, Vilnius, LT-08406, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland
| |
Collapse
|
92
|
Shemshadi S, Shekari F, Eslaminejad MB, Taghiyar L. Extracellular vesicles derived from Msh homeobox 1 (Msx1)-overexpressing mesenchymal stem cells improve digit tip regeneration in an amputee mice model. Sci Rep 2024; 14:23538. [PMID: 39384602 PMCID: PMC11464676 DOI: 10.1038/s41598-024-72647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
In adult mammals, limb regeneration is limited by the absence of blastemal cells (BCs) and the lack of the regenerative signaling cascade. The utilization of transgenic cells circumvents the limitations associated with the absence of BCs. In a previous investigation, we successfully regenerated mouse phalanx amputations using blastema-like cells (BlCs) generated from bone marrow-derived mesenchymal stem cells (mBMSCs) overexpressing Msx1 and Msx2 genes. Recently, extracellular vesicles (EVs) have emerged as potent biological tools, offering a promising alternative to manipulated cells for clinical applications. This research focuses on utilizing BlCs-derived extracellular vesicles (BlCs-EVs) for regenerating mouse digit tips. The BlCs were cultured and expanded, and then EVs were isolated via ultracentrifugation. The size, morphology, and CD81 marker expression of the EVs were confirmed through Dynamic Light Scattering (DLS), Scanning Electron Microscope (SEM), and Western Blot (WB) analyses. Additionally, WB analysis demonstrated the presence of MSX1, MSX2, FGF8, and BMP4 proteins. The uptake of EVs by mBMSCs was shown through immunostaining. Effects on cell proliferation, migration, and osteogenic activity post-treatment with BlCs-EVs were assessed through MTT assay, scratch assay, and Real-time PCR. The regenerative potential of BlCs-EVs was evaluated in a mouse digit tip amputation model using histological assessments. Results indicated that BlCs-EVs enhanced several abilities of mBMSCs, such as migration, proliferation, and osteogenesis in vitro. Notably, BlCs-EVs significantly improved digit tip regeneration in mice, promoting the formation of new bone and nails, which was absent in control groups. In summary, BlCs-EVs are promising tools for digit tip regeneration, avoiding the ethical concerns associated with using genetically modified cells.
Collapse
Affiliation(s)
- Sahar Shemshadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
93
|
Manzoor T, Farooq N, Sharma A, Shiekh PA, Hassan A, Dar LA, Nazir J, Godha M, Sheikh FA, Gugjoo MB, Saleem S, Ahmad SM. Exosomes in nanomedicine: a promising cell-free therapeutic intervention in burn wounds. Stem Cell Res Ther 2024; 15:355. [PMID: 39385310 PMCID: PMC11462792 DOI: 10.1186/s13287-024-03970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Burn injuries are serious injuries that have a big impact on a person's health and can even cause death. Incurring severe burns can incite an immune response and inflammation within the body, alongside metabolic changes. It is of utmost importance to grasp the fact that the effects of the burn injury extend beyond the body, affecting the mind and overall well-being. Burn injuries cause long-lasting changes that need to be taken care of in order to improve their quality of life. The intricate process of skin regeneration at the site of a burn wound involves a complex and dynamic interplay among diverse cells, growth factors, nerves, and blood vessels. Exciting opportunities have arisen in the field of stem cells and regenerative medicine, allowing us to explore the development of cell-free-based alternatives that can aid in the treatment of burn injuries. These cell-free-based therapies have emerged as a promising facet within regenerative medicine. Exosomes, also referred to as naturally occurring nanoparticles, are small endosome-derived vesicles that facilitate the delivery of molecular cargo between the cells, thus allowing intercellular communication. The knowledge gained in this field has continued to support their therapeutic potential, particularly in the domains of wound healing and tissue regeneration. Notably, exosomes derived from mesenchymal stem cells (MSCs) can be safely administered in the system, which is then adeptly uptaken and internalized by fibroblasts/epithelial cells, subsequently accelerating essential processes such as migration, proliferation, and collagen synthesis. Furthermore, exosomes released by immune cells, specifically macrophages, possess the capability to modulate inflammation and effectively diminish it in adjacent cells. Exosomes also act as carriers when integrated with a scaffold, leading to scarless healing of cutaneous wounds. This comprehensive review examines the role of exosomes in burn wound healing and their potential utility in regeneration and repair.
Collapse
Affiliation(s)
- Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
- School of Life and Basic Sciences, Jaipur National University, Jagatpura, Jaipur, India
| | - Nida Farooq
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Arushi Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Parvaiz A Shiekh
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Amreena Hassan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Lateef Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Meena Godha
- School of Life and Basic Sciences, Jaipur National University, Jagatpura, Jaipur, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Srinagar, Kashmir, India
| | - Mudasir Bashir Gugjoo
- Veterinary Clinical Services Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST- Srinagar, Kashmir, India
| | - Sahar Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
94
|
Wang J, Deng S, Cheng D, Gu J, Qin L, Mao F, Xue Y, Jiang Z, Chen M, Zou F, Huang N, Cao Y, Cai K. Engineered microparticles modulate arginine metabolism to repolarize tumor-associated macrophages for refractory colorectal cancer treatment. J Transl Med 2024; 22:908. [PMID: 39375706 PMCID: PMC11457421 DOI: 10.1186/s12967-024-05652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Arginase is abundantly expressed in colorectal cancer and disrupts arginine metabolism, promoting the formation of an immunosuppressive tumor microenvironment. This significant factor contributes to the insensitivity of colorectal cancer to immunotherapy. Tumor-associated macrophages (TAMs) are major immune cells in this environment, and aberrant arginine metabolism in tumor tissues induces TAM polarization toward M2-like macrophages. The natural compound piceatannol 3'-O-glucoside inhibits arginase activity and activates nitric oxide synthase, thereby reducing M2-like macrophages while promoting M1-like macrophage polarization. METHODS The natural compounds piceatannol 3'-O-glucoside and indocyanine green were encapsulated within microparticles derived from tumor cells, termed PG/ICG@MPs. The enhanced cancer therapeutic effect of PG/ICG@MP was assessed both in vitro and in vivo. RESULTS PG/ICG@MP precisely targets the tumor site, with piceatannol 3'-O-glucoside concurrently inhibiting arginase activity and activating nitric oxide synthase. This process promotes increased endogenous nitric oxide production through arginine metabolism. The combined actions of nitric oxide and piceatannol 3'-O-glucoside facilitate the repolarization of tumor-associated macrophages toward the M1 phenotype. Furthermore, the increase in endogenous nitric oxide levels, in conjunction with the photodynamic effect induced by indocyanine green, increases the quantity of reactive oxygen species. This dual effect not only enhances tumor immunity but also exerts remarkable inhibitory effects on tumors. CONCLUSION Our research results demonstrate the excellent tumor-targeting effect of PG/ICG@MPs. By modulating arginine metabolism to improve the tumor immune microenvironment, we provide an effective approach with clinical translational significance for combined cancer therapy.
Collapse
Affiliation(s)
- Jun Wang
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Denglong Cheng
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junnan Gu
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le Qin
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fuwei Mao
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifan Xue
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxin Jiang
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mian Chen
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Falong Zou
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ning Huang
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Kailin Cai
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
95
|
Bhullar AS, Jin K, Shi H, Jones A, Hironaka D, Xiong G, Xu R, Guo P, Binzel DW, Shu D. Engineered extracellular vesicles for combinatorial TNBC therapy: SR-SIM-guided design achieves substantial drug dosage reduction. Mol Ther 2024:S1525-0016(24)00658-0. [PMID: 39369270 DOI: 10.1016/j.ymthe.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has no therapeutic targets, relies on chemotherapeutics for treatment, and is in dire need of novel therapeutic approaches for improved patient outcomes. Extracellular vesicles (EVs) serve as intercellular communicators and have been proposed as ideal drug delivery vehicles. Here, EVs were engineered with RNA nanotechnology to develop TNBC tumor inhibitors. Using super resolved-structured illumination microscopy, EVs were optimized for precise Survivin small interfering RNA (siRNA) conjugated to chemotherapeutics loading and CD44 aptamer ligand decoration, thereby enhancing specificity toward TNBC cells. Conventional treatments typically employ chemotherapy drugs gemcitabine (GEM) and paclitaxel (PTX) at dosages on the order of mg/kg respectively, per injection (intravenous) in mice. In contrast, engineered EVs encapsulating these drugs saw functional tumor growth inhibition at significantly reduced concentrations: 2.2 μg/kg for GEM or 5.6 μg/kg for PTX, in combination with 21.5 μg/kg survivin-siRNA in mice. The result is a substantial decrease in the chemotherapeutic dose required, by orders of magnitude, compared with standard regimens. In vivo and in vitro evaluations in a TNBC orthotopic xenograft mouse model demonstrated the efficacy of this decreased dosage strategy, indicating the potential for decreased chemotherapy-associated toxicity.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA
| | - Haizhu Shi
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Austen Jones
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dalton Hironaka
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
96
|
Rocher C, Vernale A, Fierro-Constaín L, Séjourné N, Chenesseau S, Marschal C, Issartel J, Le Goff E, Stroebel D, Jouvion J, Dutilleul M, Matthews C, Marschal F, Brouilly N, Massey-Harroche D, Schenkelaars Q, Ereskovsky A, Le Bivic A, Renard E, Borchiellini C. The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024. [PMID: 39364688 DOI: 10.1002/jez.b.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years. Here, we report a new step forward by inducing, producing, and maintaining in vitro thousands of clonal buds that now make possible various downstream applications. This study provides a full description of bud morphology, physiology, cells and tissues, from their formation to their development into juveniles, using adapted cell staining protocols. In addition, we show that buds have outstanding capabilities of regeneration after being injured and of re-epithelization after complete cell dissociation. Altogether, Oscarella buds constitute a relevant all-in-one sponge model to access a large set of biological processes, including somatic morphogenesis, epithelial morphogenesis, cell fate, body axes formation, nutrition, contraction, ciliary beating, and respiration.
Collapse
Grants
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE;
- AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR).
- The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments.
- The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
Collapse
Affiliation(s)
- Caroline Rocher
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | - Amélie Vernale
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
- Aix Marseille University, Marseille, France
| | | | - Nina Séjourné
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | | | | | - Julien Issartel
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | - Emilie Le Goff
- ISEM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Stroebel
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Julie Jouvion
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Morgan Dutilleul
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | | | - Florent Marschal
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
| | | | | | | | | | | | - Emmanuelle Renard
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon Univ, Marseille, France
- Aix Marseille University, Marseille, France
| | | |
Collapse
|
97
|
Prajapati M, Chiu L, Zhang JZ, Chong GS, DaSilva NA, Bartnikas TB. Bile from the hemojuvelin-deficient mouse model of iron excess is enriched in iron and ferritin. Metallomics 2024; 16:mfae043. [PMID: 39313333 PMCID: PMC11459263 DOI: 10.1093/mtomcs/mfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Iron is an essential nutrient but is toxic in excess. Iron deficiency is the most prevalent nutritional deficiency and typically linked to inadequate intake. Iron excess is also common and usually due to genetic defects that perturb expression of hepcidin, a hormone that inhibits dietary iron absorption. Our understanding of iron absorption far exceeds that of iron excretion, which is believed to contribute minimally to iron homeostasis. Prior to the discovery of hepcidin, multiple studies showed that excess iron undergoes biliary excretion. We recently reported that wild-type mice raised on an iron-rich diet have increased bile levels of iron and ferritin, a multi-subunit iron storage protein. Given that genetic defects leading to excessive iron absorption are much more common causes of iron excess than dietary loading, we set out to determine if an inherited form of iron excess known as hereditary hemochromatosis also results in bile iron loading. We employed mice deficient in hemojuvelin, a protein essential for hepcidin expression. Mutant mice developed bile iron and ferritin excess. While lysosomal exocytosis has been implicated in ferritin export into bile, knockdown of Tfeb, a regulator of lysosomal biogenesis and function, did not impact bile iron or ferritin levels. Bile proteomes differed between female and male mice for wild-type and hemojuvelin-deficient mice, suggesting sex and iron excess impact bile protein content. Overall, our findings support the notion that excess iron undergoes biliary excretion in genetically determined iron excess.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jared Z Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Grace S Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nicholas A DaSilva
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
98
|
Resch U, Hackl H, Pereyra D, Santol J, Brunnthaler L, Probst J, Jankoschek AS, Aiad M, Nolte H, Krueger M, Starlinger P, Assinger A. SILAC-Based Characterization of Plasma-Derived Extracellular Vesicles in Patients Undergoing Partial Hepatectomy. Int J Mol Sci 2024; 25:10685. [PMID: 39409015 PMCID: PMC11476990 DOI: 10.3390/ijms251910685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Post-hepatectomy liver failure (PHLF) remains a significant risk for patients undergoing partial hepatectomy (PHx). Reliable prognostic markers and treatments to enhance liver regeneration are lacking. Plasma nanoparticles, including lipoproteins, exosomes, and extracellular vesicles (EVs), can reflect systemic and tissue-wide proteostasis and stress, potentially aiding liver regeneration. However, their role in PHLF is still unknown. METHODS Our study included nine patients with hepatocellular carcinoma (HCC) undergoing PHx: three patients with PHLF, three patients undergoing the associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure, and three matched controls without complications after PHx. Patient plasma was collected before PHx as well as 1 and 5 days after. EVs were isolated by ultracentrifugation, and extracted proteins were subjected to quantitative mass spectrometry using a super-SILAC mix prepared from primary and cancer cell lines. RESULTS We identified 2625 and quantified 2570 proteins in the EVs of PHx patients. Among these, 53 proteins were significantly upregulated and 32 were downregulated in patients with PHLF compared to those without PHLF. Furthermore, 110 proteins were upregulated and 78 were downregulated in PHLF patients compared to those undergoing ALPPS. The EV proteomic signature in PHLF indicates significant disruptions in protein translation, proteostasis, and intracellular vesicle biogenesis, as well as alterations in proteins involved in extracellular matrix (ECM) remodelling and the metabolic and cell cycle pathways, already present before PHx. CONCLUSIONS Longitudinal proteomic analysis of the EVs circulating in the plasma of human patients undergoing PHx uncovers proteomic signatures associated with PHLF, which reflect dying hepatocytes and endothelial cells and were already present before PHx.
Collapse
Affiliation(s)
- Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
- Cluster of Excellence/Cellular Stress Responses in Aging/Associated Diseases (CECAD), Proteomics Core Facilities, University of Cologne, Joseph-Stelzmann Strasse 26, D-50931 Cologne, Germany
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020 Innsbruck, Austria
| | - David Pereyra
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Jonas Santol
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Joel Probst
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Anna Sofie Jankoschek
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Monika Aiad
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Hendrik Nolte
- Cluster of Excellence/Cellular Stress Responses in Aging/Associated Diseases (CECAD), Proteomics Core Facilities, University of Cologne, Joseph-Stelzmann Strasse 26, D-50931 Cologne, Germany
| | - Marcus Krueger
- Cluster of Excellence/Cellular Stress Responses in Aging/Associated Diseases (CECAD), Proteomics Core Facilities, University of Cologne, Joseph-Stelzmann Strasse 26, D-50931 Cologne, Germany
| | - Patrick Starlinger
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020 Innsbruck, Austria
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
99
|
Garza AP, Wider-Eberspächer E, Morton L, van Ham M, Pállinger É, Buzás EI, Jänsch L, Dunay IR. Proteomic analysis of plasma-derived extracellular vesicles: pre- and postprandial comparisons. Sci Rep 2024; 14:23032. [PMID: 39363010 PMCID: PMC11450010 DOI: 10.1038/s41598-024-74228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Extracellular vesicles (EVs) are key in intercellular communication, carrying biomolecules like nucleic acids, lipids, and proteins. This study investigated postprandial characteristics and proteomic profiles of blood-derived EVs in healthy individuals. Twelve participants fasted overnight before baseline assessments. After consuming a controlled isocaloric meal, EVs were isolated for proteomic and flow cytometric analysis. Plasma triacylglyceride levels confirmed fasting completion, while protein concentrations in plasma and EVs were monitored for postprandial stability. Proteomic analysis identified upregulated proteins related to transport mechanisms and epithelial/endothelial functions postprandially, indicating potential roles in physiological responses to nutritional intake. Enrichment analyses revealed vesicle-related pathways and immune system processes. Flow cytometry showed increased expression of CD324 on CD9+CD63+CD81+ large extracellular vesicles postprandially, suggesting an epithelial origin. These findings offer valuable insights into postprandial EV dynamics and their potential physiological significance, highlighting the need for stringent fasting guidelines in EV studies to account for postprandial effects on EV composition and function.
Collapse
Affiliation(s)
- Alejandra P Garza
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Elisa Wider-Eberspächer
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM SU Extracellular Vesicle Research Group, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
100
|
Yu N, Chang X, Hu J, Li J, Ma J, Huang L. mRNA expression profiles in muscle-derived extracellular vesicles of Large White and wild boar piglets reveal their potential roles in immunity and muscle phenotype. Front Vet Sci 2024; 11:1452704. [PMID: 39421829 PMCID: PMC11484452 DOI: 10.3389/fvets.2024.1452704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Extracellular vesicles (EVs) known for their pivotal role in intercellular communication through RNA delivery, hold paramount implications for understanding muscle phenotypic variations in diverse pig breeds. Methods In this study, we compared the mRNA expression profiles of longissimus dorsi muscles and muscle-derived extracellular vesicles (M-EVs), and also examined the diversity of enriched genes in M-EVs between weaned wild boars and commercial Large White pigs with respect to their numbers and biological functions. Results The results of the study showed that the variation in the expression profiles of mRNAs between muscles and M-EVs was much greater than the variability between the respective breeds. Meanwhile, the enrichment trend of low-expressed genes (ranked <1,000) was significantly (p-value ≤ 0.05) powerful in M-EVs compared to highly expressed genes in muscles. In addition, M-EVs carried a smaller proportion of coding sequences and a larger proportion of untranslated region sequences compared to muscles. There were 2,110 genes enriched in M-EVs (MEGs) in Large White pigs and 2,322 MEGs in wild boars, with 1,490 MEGs shared interbreeds including cyclin D2 (CCND2), which inhibits myogenic differentiation. Of the 89 KEGG pathways that were significantly enriched (p-value ≤ 0.05) for these MEGs, 13 unique to Large White pigs were mainly related to immunity, 27 unique to wild boars were functionally diverse but included cell fate regulation such as the Notch signaling pathway and the TGF-beta signaling pathway, and 49 were common to both breeds were also functionally complex but partially related to innate immunity, such as the Complement and coagulation cascades and the Fc gamma R-mediated phagocytosis. Discussion These findings suggest that mRNAs in M-EVs have the potential to serve as indicators of muscle phenotype differences between the two pig breeds, highlighting the need for further exploration into the role of EV-RNAs in pig phenotype formation.
Collapse
Affiliation(s)
| | | | | | | | - Junwu Ma
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|