51
|
Schrader M. Shared components of mitochondrial and peroxisomal division. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:531-41. [PMID: 16487606 DOI: 10.1016/j.bbamcr.2006.01.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/11/2006] [Accepted: 01/13/2006] [Indexed: 12/15/2022]
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity. Recent studies have led to the surprising finding that both organelles share components of their division machinery, namely the dynamin-related protein DLP1/Drp1 and hFis1, which recruits DLP1/Drp1 to the organelle membranes. This review addresses the current state of knowledge concerning the dynamics and fission of peroxisomes, especially in relation to mitochondrial morphology and division in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert-Koch Str. 6, 35037 Marburg, Germany.
| |
Collapse
|
52
|
Lingelbach K, Przyborski JM. The long and winding road: Protein trafficking mechanisms in the Plasmodium falciparum infected erythrocyte. Mol Biochem Parasitol 2006; 147:1-8. [PMID: 16540187 DOI: 10.1016/j.molbiopara.2006.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/19/2006] [Accepted: 01/31/2006] [Indexed: 11/17/2022]
Abstract
Mature human erythrocytes infected with the human malarial parasite Plasmodium falciparum are extensively modified to provide a more comfortable "home" for their intracellular guests. This process is mediated by parasite-encoded factors that are exported into, and through the host erythrocyte. This intra- yet simultaneously extra-cellular protein trafficking and sorting system has, in the past decades received much attention, also due to its unusual nature. Recent reports have highlighted the importance of a short peptide sequence, referred to individually as Plasmodium export element (PEXEL), vacuolar translocation signal (VTS) or generally as host cell targeting signal (HCT) in the export of both soluble and membrane bound proteins, allowing the partial definition of the parasite's "exportome". Mechanistically however, the discovery of this sequence raises as many questions as it answers. In this article, we comment on current models of protein transport to the host cell, discuss the mechanistic problems highlighted by these signals, and suggest what might be the next important steps in studying the protein export mechanisms of an obligate intracellular parasite that chooses to inhabit a de-nucleated host cell.
Collapse
|
53
|
Mullen RT, McCartney AW, Flynn CR, Smith GS. Peroxisome biogenesis and the formation of multivesicular peroxisomes during tombusvirus infection: a role for ESCRT?This review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes are highly dynamic organelles with regard to their metabolic functions, shapes, distribution, movements, and biogenesis. They are also important as sites for the development of some viral pathogens. It has long been known that certain members of the tombusvirus family recruit peroxisomes for viral RNA replication and that this process is accompanied by dramatic changes in peroxisome morphology, the most remarkable of which is the extensive inward vesiculation of the peroxisomal boundary membrane leading to the formation of a peroxisomal multivesicular body (pMVB). While it is unclear how the internal vesicles of a pMVB form, they appear to serve in effectively concentrating viral membrane-bound replication complexes and protecting nascent viral RNAs from host-cell defences. Here, we review briefly the biogenesis of peroxisomes and pMVBs and discuss recent studies that have begun to shed light on how components of the tombusvirus replicase exploit the molecular mechanisms involved in peroxisome membrane protein sorting. We also address the question of what controls invagination and vesicle formation at the peroxisomal membrane during pMVB biogenesis. We propose that tombusviruses exploit protein constituents of the class E vacuolar protein-sorting pathway referred to as ESCRT (endosomal sorting complex required for transport) in the formation of pMVBs. This new pMVB–ESCRT hypothesis reconciles current paradigms of pMVB biogenesis with the role of ESCRT in endosomal multivesicular body formation and the ability of enveloped RNA viruses, including HIV, to appropriate the ESCRT machinery to execute their budding programme from cells.
Collapse
Affiliation(s)
- Robert T. Mullen
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Andrew W. McCartney
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - C. Robb Flynn
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Graham S.T. Smith
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, Canada
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| |
Collapse
|
54
|
Abstract
Peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity in response to cellular and environmental conditions. Novel proteins and pathways that mediate and control peroxisome formation, growth, and division continue to be discovered, and the cellular machineries that act together to regulate peroxisome number and size are under active investigation. Here, advances in the field of peroxisomal dynamics and proliferation in mammals and yeast are reviewed. The authors address the signals, conditions, and proteins that affect, regulate, and control the number and size of this essential organelle, especially the components involved in the division of peroxisomes. Special emphasis is on the function of dynamin-related proteins (DRPs), on Fis1, a putative adaptor for DRPs, on the role of the Pex11 family of peroxisomal membrane proteins, and the cytoskeleton.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
55
|
Carvalho AF, Costa-Rodrigues J, Correia I, Costa Pessoa J, Faria TQ, Martins CL, Fransen M, Sá-Miranda C, Azevedo JE. The N-terminal half of the peroxisomal cycling receptor Pex5p is a natively unfolded domain. J Mol Biol 2005; 356:864-75. [PMID: 16403517 DOI: 10.1016/j.jmb.2005.12.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/26/2005] [Accepted: 12/01/2005] [Indexed: 11/25/2022]
Abstract
Targeting of most newly synthesised peroxisomal matrix proteins to the organelle requires Pex5p, the so-called PTS1 receptor. According to current models of peroxisomal biogenesis, Pex5p interacts with these proteins in the cytosol, transports them to the peroxisomal membrane and catalyses their translocation across the membrane. Presently, our knowledge on the structural details behind the interaction of Pex5p with the cargo proteins is reasonably complete. In contrast, information regarding the structure of the Pex5p N-terminal half (a region containing its peroxisomal targeting domain) is still limited. We have recently observed that the Stokes radius of this Pex5p domain is anomalously large, suggesting that this portion of the protein is either a structured elongated domain or that it adopts a low compactness conformation. Here, we address this issue using a combination of biophysical and biochemical approaches. Our results indicate that the N-terminal half of Pex5p is best described as a natively unfolded pre-molten globule-like domain. The implications of these findings on the mechanism of protein import into the peroxisome are discussed.
Collapse
Affiliation(s)
- Andreia F Carvalho
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Otzen M, Wang D, Lunenborg MGJ, van der Klei IJ. Hansenula polymorpha Pex20p is an oligomer that binds the peroxisomal targeting signal 2 (PTS2). J Cell Sci 2005; 118:3409-18. [PMID: 16079284 DOI: 10.1242/jcs.02463] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have cloned and characterized the Hansenula polymorpha PEX20 gene. The HpPEX20 gene encodes a protein of 309 amino acids (HpPex20p) with a calculated molecular mass of approximately 35 kDa. In cells of an HpPEX20 disruption strain, PTS2 proteins were mislocalized to the cytosol, whereas PTS1 matrix protein import proceeded normally. Also, the PTS2 proteins amine oxidase and thiolase were normally assembled and active in these cells, suggesting HpPex20p is not involved in oligomerization/activation of these proteins. Localization studies revealed that HpPex20p is predominantly associated with peroxisomes. Using fluorescence correlation spectroscopy we determined the native molecular mass of purified HpPex20p and binding of a synthetic peptide containing a PTS2 sequence. The data revealed that purified HpPex20p forms oligomers, which specifically bind PTS2-containing peptides.
Collapse
Affiliation(s)
- Marleen Otzen
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, NL-9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
57
|
Gunkel K, Veenhuis M, van der Klei IJ. Protein translocation machineries: How organelles bring in matrix proteins. FEMS Yeast Res 2005; 5:1037-45. [PMID: 16269392 DOI: 10.1016/j.femsyr.2005.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 03/16/2005] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells contain several thousands of proteins that have to be accurately partitioned over the components of the cytoplasm (cytosol or any of the known organelles) to allow proper cell function. To this end, various specific topogenic signals have been designed as well as highly selective protein translocation machineries that ensure that each newly synthesized polypeptide reaches its correct subcellular destination or, in case of secretory proteins, is exported to the cell exterior. This contribution gives an overview regarding the principles of the main examples of polypeptide sorting and translocation, with emphasis on the function of cofactor binding in peroxisomal matrix protein import.
Collapse
Affiliation(s)
- Katja Gunkel
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
58
|
Crane DI, Maxwell MA, Paton BC. PEX1mutations in the Zellweger spectrum of the peroxisome biogenesis disorders. Hum Mutat 2005; 26:167-75. [PMID: 16086329 DOI: 10.1002/humu.20211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diseases of the Zellweger spectrum represent a major subgroup of the peroxisome biogenesis disorders, a group of autosomal-recessive diseases that are characterized by widespread tissue pathology, including neurodegeneration. The Zellweger spectrum represents a clinical continuum, with Zellweger syndrome (ZS) having the most severe phenotype, and neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) having progressively milder phenotypes. Mutations in the PEX1 gene, which encodes a 143-kDa AAA ATPase protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The PEX1 mutations identified to date comprise insertions, deletions, nonsense, missense, and splice site mutations. Mutations that produce premature truncation codons (PTCs) are distributed throughout the PEX1 gene, whereas the majority of missense mutations segregate with the two essential AAA domains of the PEX1 protein. Severity at the two ends of the Zellweger spectrum correlates broadly with mutation type and impact (i.e., the severe ZS correlates with PTCs on both alleles, and the milder phenotypes correlate with missense mutations), but exceptions to these general correlations exist. This article provides an overview of the currently known PEX1 mutations, and includes, when necessary, revised mutation nomenclature and genotype-phenotype correlations that may be useful for clinical diagnosis.
Collapse
Affiliation(s)
- Denis I Crane
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Australia.
| | | | | |
Collapse
|
59
|
Erdmann R, Schliebs W. Peroxisomal matrix protein import: the transient pore model. Nat Rev Mol Cell Biol 2005; 6:738-42. [PMID: 16103872 DOI: 10.1038/nrm1710] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxisomes import folded, even oligomeric, proteins, which distinguishes the peroxisomal translocation machinery from the well-characterized translocons of other organelles. How proteins are transported across the peroxisomal membrane is unclear. Here, we propose a mechanistic model that conceptually divides the import process into three consecutive steps: the formation of a translocation pore by the import receptor, the ubiquitylation of the import receptors, and pore disassembly/ receptor recycling.
Collapse
Affiliation(s)
- Ralf Erdmann
- Institute for Physiological Chemistry, Faculty of Medicine, Ruhr-University Bochum, Germany.
| | | |
Collapse
|
60
|
Boeckmann B, Blatter MC, Famiglietti L, Hinz U, Lane L, Roechert B, Bairoch A. Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C R Biol 2005; 328:882-99. [PMID: 16286078 DOI: 10.1016/j.crvi.2005.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 06/01/2005] [Accepted: 06/05/2005] [Indexed: 11/25/2022]
Abstract
We all know that the dogma 'one gene, one protein' is obsolete. A functional protein and, likewise, a protein's ultimate function depend not only on the underlying genetic information but also on the ongoing conditions of the cellular system. Frequently the transcript, like the polypeptide, is processed in multiple ways, but only one or a few out of a multitude of possible variants are produced at a time. An overview on processes that can lead to sequence variety and structural diversity in eukaryotes is given. The UniProtKB/Swiss-Prot protein knowledgebase provides a wealth of information regarding protein variety, function and associated disorders. Examples for such annotation are shown and further ones are available at http://www.expasy.org/sprot/tutorial/examples_CRB.
Collapse
Affiliation(s)
- Brigitte Boeckmann
- Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1, rue Michel-Servet, 1211 Genève 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
61
|
Weller S, Cajigas I, Morrell J, Obie C, Steel G, Gould SJ, Valle D. Alternative splicing suggests extended function of PEX26 in peroxisome biogenesis. Am J Hum Genet 2005; 76:987-1007. [PMID: 15858711 PMCID: PMC1196456 DOI: 10.1086/430637] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 03/29/2005] [Indexed: 12/22/2022] Open
Abstract
Matsumoto and colleagues recently identified PEX26 as the gene responsible for complementation group 8 of the peroxisome biogenesis disorders and showed that it encodes an integral peroxisomal membrane protein with a single C-terminal transmembrane domain and a cytosolic N-terminus that interacts with the PEX1/PEX6 heterodimer through direct binding to the latter. They proposed that PEX26 functions as the peroxisomal docking factor for the PEX1/PEX6 heterodimer. Here, we identify new PEX26 disease alleles, localize the PEX6-binding domain to the N-terminal half of the protein (aa 29-174), and show that, at the cellular level, PEX26 deficiency impairs peroxisomal import of both PTS1- and PTS2-targeted matrix proteins. Also, we find that PEX26 undergoes alternative splicing to produce several splice forms--including one, PEX26- delta ex5, that maintains frame and encodes an isoform lacking the transmembrane domain of full-length PEX26 (PEX26-FL). Despite its cytosolic location, PEX26- delta ex5 rescues peroxisome biogenesis in PEX26-deficient cells as efficiently as does PEX26-FL. To test our observation that a peroxisomal location is not required for PEX26 function, we made a chimeric protein (PEX26-Mito) with PEX26 as its N-terminus and the targeting segment of a mitochondrial outer membrane protein (OMP25) at its C-terminus. We found PEX26-Mito localized to the mitochondria and directed all detectable PEX6 and a fraction of PEX1 to this extraperoxisomal location; yet PEX26-Mito retains the full ability to rescue peroxisome biogenesis in PEX26-deficient cells. On the basis of these observations, we suggest that a peroxisomal localization of PEX26 and PEX6 is not required for their function and that the interaction of PEX6 with PEX1 is dynamic. This model predicts that, once activated in an extraperoxisomal location, PEX1 moves to the peroxisome and completes the function of the PEX1/6 heterodimer.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - Ivelisse Cajigas
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - James Morrell
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - Cassandra Obie
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - Gary Steel
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - Stephen J. Gould
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Summer Internship Program, Department of Biological Chemistry, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
62
|
Schell-Steven A, Stein K, Amoros M, Landgraf C, Volkmer-Engert R, Rottensteiner H, Erdmann R. Identification of a novel, intraperoxisomal pex14-binding site in pex13: association of pex13 with the docking complex is essential for peroxisomal matrix protein import. Mol Cell Biol 2005; 25:3007-18. [PMID: 15798189 PMCID: PMC1069607 DOI: 10.1128/mcb.25.8.3007-3018.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peroxisomal docking complex is a key component of the import machinery for matrix proteins. The core protein of this complex, Pex14, is thought to represent the initial docking site for the import receptors Pex5 and Pex7. Associated with this complex is a fraction of Pex13, another essential component of the import machinery. Here we demonstrate that Pex13 directly binds Pex14 not only via its SH3 domain but also via a novel intraperoxisomal site. Furthermore, we demonstrate that Pex5 also contributes to the association of Pex13 with Pex14. Peroxisome function was affected only mildly by mutations within the novel Pex14 interaction site of Pex13 or by the non-Pex13-interacting mutant Pex5(W204A). However, when these constructs were tested in combination, PTS1-dependent import and growth on oleic acid were severely compromised. When the SH3 domain-mediated interaction of Pex13 with Pex14 was blocked on top of that, PTS2-dependent matrix protein import was completely compromised and Pex13 was no longer copurified with the docking complex. We conclude that the association of Pex13 with Pex14 is an essential step in peroxisomal protein import that is enabled by two direct interactions and by one that is mediated by Pex5, a result which indicates a novel, receptor-independent function of Pex5.
Collapse
Affiliation(s)
- Annette Schell-Steven
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Proteins harbouring a peroxisomal targeting signal of type 1 (PTS1) are recognized by the import receptor Pex5p in the cytosol which directs them to a docking and translocation complex at the peroxisomal membrane. We demonstrate the ubiquitination of Pex5p in cells lacking components of the peroxisomal AAA (ATPases associated with various cellular activities) or Pex4p-Pex22p complexes of the peroxisomal protein import machinery and in cells affected in proteasomal degradation. In cells lacking components of the Pex4p-Pex22p complex, mono-ubiquitinated Pex5p represents the major modification, while in cells lacking components of the AAA complex polyubiquitinated forms are most prominent. Ubiquitination of Pex5p is shown to take place exclusively at the peroxisomal membrane after the docking step, and requires the presence of the RING-finger peroxin Pex10p. Mono- and poly-ubiquitination are demonstrated to depend on the ubiquitin-conjugating enzyme Ubc4p, suggesting that the ubiquitinated forms of Pex5p are targeted for proteasomal degradation. Accumulation of ubiquitinated Pex5p in proteasomal mutants demonstrates that the ubiquitination of Pex5p also takes place in strains which are not affected in peroxisomal biogenesis, indicating that the ubiquitination of Pex5p represents a genuine stage in the Pex5p receptor cycle.
Collapse
Affiliation(s)
- Harald W. Platta
- Institut für Physiologische Chemie, Abteilung für Systembiochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Wolfgang Girzalsky
- Institut für Physiologische Chemie, Abteilung für Systembiochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Institut für Physiologische Chemie, Abteilung für Systembiochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
64
|
Costa-Rodrigues J, Carvalho AF, Fransen M, Hambruch E, Schliebs W, Sá-Miranda C, Azevedo JE. Pex5p, the peroxisomal cycling receptor, is a monomeric non-globular protein. J Biol Chem 2005; 280:24404-11. [PMID: 15866874 DOI: 10.1074/jbc.m501985200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals, targeting of newly synthesized peroxisomal matrix proteins to the organelle requires Pex5p, the peroxisomal cycling receptor. Pex5p is a multidomain protein involved in a complex network of transient protein-protein interactions. Besides interacting directly with most peroxisomal proteins en route to the organelle, Pex5p has also binding domains for several components of the peroxisomal docking/translocation machinery. However, our knowledge of how binding of a cargo protein to Pex5p influences its properties is still rather limited. Here, we describe a protease assay particularly useful for identifying and characterizing protein-protein interactions involving human Pex5p. Binding of a PTS1-containing peptide/protein to Pex5p as well as the interaction of this peroxin with the Src homology domain 3 of Pex13p could be easily demonstrated using this assay. To address the possible effects of these Pex5p-interacting peptides/proteins on the assumed quaternary structure of Pex5p, we have analyzed the hydrodynamic properties of human Pex5p using size exclusion chromatography, sucrose gradient centrifugation, and sedimentation equilibrium centrifugation. Our results show that Pex5p is a monomeric protein with an abnormal shape. The implications of these findings on current models of protein translocation across the peroxisomal membrane are discussed.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
65
|
Genolet R, Kersten S, Braissant O, Mandard S, Tan NS, Bucher P, Desvergne B, Michalik L, Wahli W. Promoter rearrangements cause species-specific hepatic regulation of the glyoxylate reductase/hydroxypyruvate reductase gene by the peroxisome proliferator-activated receptor alpha. J Biol Chem 2005; 280:24143-52. [PMID: 15840574 DOI: 10.1074/jbc.m502649200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.
Collapse
Affiliation(s)
- Raphael Genolet
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
67
|
Costa-Rodrigues J, Carvalho AF, Gouveia AM, Fransen M, Sá-Miranda C, Azevedo JE. The N terminus of the peroxisomal cycling receptor, Pex5p, is required for redirecting the peroxisome-associated peroxin back to the cytosol. J Biol Chem 2004; 279:46573-9. [PMID: 15328363 DOI: 10.1074/jbc.m406399200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most newly synthesized peroxisomal matrix proteins are transported to the organelle by Pex5p, a remarkable multidomain protein involved in an intricate network of transient protein-protein interactions. Presently, our knowledge regarding the structure/function of amino acid residues 118 to the very last residue of mammalian Pex5p is quite vast. Indeed, the cargo-protein receptor domain as well as the binding sites for several peroxins have all been mapped to this region of Pex5p. In contrast, structural/functional data regarding the first 117 amino acid residues of Pex5p are still scarce. Here we show that a truncated Pex5p lacking the first 110 amino acid residues (DeltaN110-Pex5p) displays exactly the peroxisomal import properties of the full-length peroxin implying that this N-terminal domain is involved neither in cargo-protein binding nor in the docking/translocation step of the Pex5p-cargo protein complex at the peroxisomal membrane. However, the ATP-dependent export step of DeltaN110-Pex5p from the peroxisomal membrane is completely blocked, a phenomenon that was also observed for a Pex5p version lacking just the first 17 amino acid residues but not for a truncated protein comprising amino acid residues 1-324 of Pex5p. By exploring the unique properties of DeltaN110-Pex5p, the effect of temperature on the import/export kinetics of Pex5p was characterized. Our data indicate that the export step of Pex5p from the peroxisomal compartment (in contrast with its insertion into the organelle membrane) is highly dependent on the temperature.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Instituto de Ciências Biomédicas de Abel Salazar, Largo do Professor Abel Salazar, 2, 4099-003 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
68
|
Maynard EL, Gatto GJ, Berg JM. Pex5p binding affinities for canonical and noncanonical PTS1 peptides. Proteins 2004; 55:856-61. [PMID: 15146484 DOI: 10.1002/prot.20112] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The majority of proteins targeted to the peroxisomal lumen contain a C-terminal peroxisomal targeting signal-1 (PTS1) that is bound by the peroxin Pex5p. The PTS1 is generally regarded as a C-terminal tripeptide that adheres to the consensus (S/A/C)(K/R/H)(L/M). Previously, we studied the binding affinity of peptides of the form YQX(-3)X(-2)X(-1) to the peptide-binding domain of human Pex5p (referred to as Pex5p-C). Optimal affinity was found for YQSKL, which bound with an affinity of 200 +/- 40 nM. To extend this work, we investigated the properties of a peptide containing the last 9 residues of acyl-CoA oxidase (RHYLKPLQSKL) and discovered that it binds to Pex5p-C with a dissociation constant of 1.4 +/- 0.4 nM, 180 times tighter than YQSKL. Further analysis revealed that the enhanced affinity is primarily due to the presence of leucine in the (-5) position. In addition, a peptide corresponding to the luciferase C-terminus (YKGGKSKL) was found to bind Pex5p-C about 20 times tighter than YQSKL. The majority of this effect results from having lysine in position (-4). Catalase contains a noncanonical PTS1 (-AREKANL). The affinity of YQANL was found to be 3600 +/- 400 nM. This relatively weak binding is consistent with previous unsuccessful attempts to direct chloramphenicol acetyltransferase to the peroxisome by fusing -ANL to its C-terminus (-GGA-ANL). The peptides YKANL, YEKANL, YREKANL, and YAREKANL all bound Pex5p-C with higher affinities than did YQANL, but the affinities are still lower than peptides that correspond to functional targeting signals in other contexts. Because both catalase and Pex5p are tetramers (as opposed to the monomeric Pex5p-C and the peptides used in our studies), multidentate effects on binding affinity between Pex5p and other oligomeric proteins should be considered. Our study provides direct thermodynamic data revealing that peptide binding to Pex5p-C binding is favored by lysine in the (-4) position and leucine in the (-5) position. Our results suggest that peptides or proteins with optimized residues in the (-4) and/or (-5) positions can bind to Pex5p with affinities that are at least two orders of magnitude greater than that of YQSKL, and that this stabilization can compensates for otherwise weakly binding PTS1s.
Collapse
Affiliation(s)
- Ernest L Maynard
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
69
|
Schrader M, Fahimi HD. Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 2004; 122:383-93. [PMID: 15241609 DOI: 10.1007/s00418-004-0673-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 12/22/2022]
Abstract
The central role of peroxisomes in the generation and scavenging of hydrogen peroxide has been well known ever since their discovery almost four decades ago. Recent studies have revealed their involvement in metabolism of oxygen free radicals and nitric oxide that have important functions in intra- and intercellular signaling. The analysis of the role of mammalian peroxisomes in a variety of physiological and pathological processes involving reactive oxygen species (ROS) is the subject of this review. The general characteristics of peroxisomes and their enzymes involved in the metabolism of ROS are briefly reviewed. An expansion of the peroxisomal compartment with proliferation of tubular peroxisomes is observed in cells exposed to UV irradiation and various oxidants and is apparently accompanied by upregulation of PEX genes. Significant reduction of peroxisomes and their enzymes is observed in inflammatory processes including infections, ischemia-reperfusion injury, and allograft rejection and seems to be related to the suppressive effect of tumor necrosis factor-alpha on peroxisome function and peroxisome proliferator activated receptor-alpha. Xenobiotic-induced proliferation of peroxisomes in rodents is accompanied by the formation of hepatic tumors, and evidently the imbalance in generation and decomposition of ROS plays an important role in this process. In PEX5-/- knockout mice lacking functional peroxisomes severe alterations of mitochondria in various organs are observed which seem to be due to a generalized increase in oxidative stress confirming the important role of peroxisomes in homeostasis of ROS and the implications of its disturbances for cell pathology.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Strasse 6, 35037, Marburg, Germany
| | | |
Collapse
|
70
|
Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E, Ding J. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 2004; 279:33946-57. [PMID: 15173171 DOI: 10.1074/jbc.m404298200] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in beta-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1). import of peroxisomal membrane proteins; (2). import of peroxisomal matrix proteins and (3). peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.
Collapse
Affiliation(s)
- Laura-Anne Brown
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
72
|
Wang X, McMahon MA, Shelton SN, Nampaisansuk M, Ballard JL, Goodman JM. Multiple targeting modules on peroxisomal proteins are not redundant: discrete functions of targeting signals within Pmp47 and Pex8p. Mol Biol Cell 2004; 15:1702-10. [PMID: 14742703 PMCID: PMC379268 DOI: 10.1091/mbc.e03-11-0810] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/05/2004] [Accepted: 01/10/2004] [Indexed: 11/11/2022] Open
Abstract
Several peroxisomal proteins have two nonoverlapping targeting signals. These signals have been termed "redundant" because targeting can still occur with only one signal. We now report that separate targeting motifs within both Pmp47 and Pex8 provide complementary function. Pmp47 is an ATP translocator that contains six transmembrane domains (TMDs). We had previously shown that the TMD2 region (termed TMD2R, consisting of TMD2 and a short adjacent segment of cytosolic loop) was required for targeting to proliferated peroxisomes in Saccharomyces cerevisiae. We now report that the analogous TMD4R, which cannot target to proliferated peroxisomes, targets at least as well, or much better (depending on strain and growth conditions) in cells containing only basal (i.e., nonproliferated) peroxisomes. These data suggest differences in the targeting pathway among peroxisome populations. Pex8p, a peripheral protein facing the matrix, contains a typical carboxy terminal targeting sequence (PTS1) that has been shown to be nonessential for targeting, indicating the existence of a second targeting domain (not yet defined in S. cerevisiae); thus, its function was unknown. We show that targeting to basal peroxisomes, but not to proliferated peroxisomes, is more efficient with the PTS1 than without it. Our results indicate that multiple targeting signals within peroxisomal proteins extend coverage among heterogeneous populations of peroxisomes and increase efficiency of targeting in some metabolic states.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
73
|
Fang Y, Morrell JC, Jones JM, Gould SJ. PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. ACTA ACUST UNITED AC 2004; 164:863-75. [PMID: 15007061 PMCID: PMC2172291 DOI: 10.1083/jcb.200311131] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PEX19 is a chaperone and import receptor for newly synthesized, class I peroxisomal membrane proteins (PMPs). PEX19 binds these PMPs in the cytoplasm and delivers them to the peroxisome for subsequent insertion into the peroxisome membrane, indicating that there may be a PEX19 docking factor in the peroxisome membrane. Here we show that PEX3 is required for PEX19 to dock at peroxisomes, interacts specifically with the docking domain of PEX19, and is required for recruitment of the PEX19 docking domain to peroxisomes. PEX3 is also sufficient to dock PEX19 at heterologous organelles and binds PEX19 via a conserved motif that is essential for this docking activity and for PEX3 function in general. Not surprisingly, transient inhibition of PEX3 abrogates class I PMP import but has no effect on class II PMP import or peroxisomal matrix protein import. Taken together, these results suggest that PEX3 plays a selective, essential, and direct role in PMP import as a docking factor for PEX19.
Collapse
Affiliation(s)
- Yi Fang
- Dept. of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
74
|
Abstract
The translocation of proteins across membranes is a central problem in biology. Regardless of the system in question, delivering proteins across a given membrane relies on many of the same basic themes. At the same time, however, each membrane translocation system, be it signal-gated or signal-assembled, makes use of components unique to that system. The latest findings on protein translocation across a variety of biological membranes have been presented in a recent review article.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva 84105, Israel.
| | | |
Collapse
|
75
|
Abstract
Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import.
Collapse
Affiliation(s)
- J H Eckert
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
76
|
Boteva R, Koek A, Visser NV, Visser AJWG, Krieger E, Zlateva T, Veenhuis M, van der Klei I. Fluorescence analysis of the Hansenula polymorpha peroxisomal targeting signal-1 receptor, Pex5p. ACTA ACUST UNITED AC 2003; 270:4332-8. [PMID: 14622298 DOI: 10.1046/j.1432-1033.2003.03827.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Correct sorting of newly synthesized peroxisomal matrix proteins is dependent on a peroxisomal targeting signal (PTS). So far two PTSs are known. PTS1 consists of a tripeptide that is located at the extreme C terminus of matrix proteins and is specifically recognized by the PTS1-receptor Pex5p. We studied Hansenula polymorpha Pex5p (HpPex5p) using fluorescence spectroscopy. The intensity of Trp fluorescence of purified HpPex5p increased by 25% upon shifting the pH from pH 6.0 to pH 7.2. Together with the results of fluorescence quenching by acrylamide, these data suggest that the conformation of HpPex5p differs at these two pH values. Fluorescence anisotropy decay measurements revealed that the pH affected the oligomeric state of HpPex5p, possibly from monomers/dimers at pH 6.0 to larger oligomeric forms at pH 7.2. Addition of dansylated peptides containing a PTS1, caused some shortening of the average fluorescence lifetime of the Trp residues, which was most pronounced at pH 7.2. Our data are discussed in relation to a molecular model of HpPex5p based on the three-dimensional structure of human Pex5p.
Collapse
Affiliation(s)
- Raina Boteva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Hayashi M, Nishimura M. Entering a new era of research on plant peroxisomes. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:577-82. [PMID: 14611956 DOI: 10.1016/j.pbi.2003.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are globular organelles, of approximately 1 microm in diameter, that are found ubiquitously in eukaryotic cells. In higher plants, peroxisomes have been believed to play a pivotal role in three metabolic pathways: lipid breakdown, photorespiration and H2O2-detoxificaton. However, recent progress using Arabidopsis mutants has suggested that peroxisomes have more diverse functions than are known at present. Extensive studies using genetic and post-genomic approaches will renovate our present understanding of the functions of peroxisomes in plants.
Collapse
Affiliation(s)
- Makoto Hayashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
78
|
Wang D, Visser NV, Veenhuis M, van der Klei IJ. Physical interactions of the peroxisomal targeting signal 1 receptor pex5p, studied by fluorescence correlation spectroscopy. J Biol Chem 2003; 278:43340-5. [PMID: 12930827 DOI: 10.1074/jbc.m307789200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied Hansenula polymorpha Pex5p and Pex8p using fluorescence correlation spectroscopy (FCS). Pex5p is the Peroxisomal Targeting Signal 1 (PTS1) receptor and Pex8p is an intraperoxisomal protein. Both proteins are essential for PTS1 protein import and have been shown to physically interact. We used FCS to analyze the molecular role of this interaction. FCS is a very sensitive technique that allows analysis of dynamic processes of fluorescently marked molecules at equilibrium in a very tiny volume. We used this technique to determine the oligomeric state of both peroxins and to analyze binding of Pex5p to PTS1 peptides and Pex8p. HpPex5p and HpPex8p were overproduced in Escherichia coli, purified by affinity chromatography, and, when required, labeled with the fluorescent dye Alexa Fluor 488. FCS measurements revealed that the oligomeric state of HpPex5p varied, ranging from monomers at slightly acidic pH to tetramers at neutral pH. HpPex8p formed monomers at all pH values tested. Using fluorescein-labeled PTS1 peptide and unlabeled HpPex5p, we established that PTS1 peptide only bound to tetrameric HpPex5p. Upon addition of HpPex8p, a heterodimeric complex was formed consisting of one HpPex8p and one HpPex5p molecule. This process was paralleled by dissociation of PTS1 peptide from HpPex5p, indicating that Pex8p may play an important role in cargo release from the PTS1 receptor. Our data show that FCS is a powerful technique to explore dynamic physical interactions that occur between peroxins during peroxisomal matrix protein import.
Collapse
Affiliation(s)
- Dongyuan Wang
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750AA, Haren, The Netherlands
| | | | | | | |
Collapse
|
79
|
Oliveira ME, Gouveia AM, Pinto RA, Sá-Miranda C, Azevedo JE. The energetics of Pex5p-mediated peroxisomal protein import. J Biol Chem 2003; 278:39483-8. [PMID: 12885776 DOI: 10.1074/jbc.m305089200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most newly synthesized peroxisomal matrix proteins are targeted to the organelle by Pex5p, the peroxisomal cycling receptor. According to current models of peroxisomal biogenesis, Pex5p interacts with cargo proteins in the cytosol and transports them to the peroxisomal membrane. After delivering the passenger protein into the peroxisomal matrix, Pex5p returns to the cytosol to catalyze additional rounds of transportation. Obviously, such cyclic pathway must require energy, and indeed, data confirming this need are already available. However, the exact step(s) of this cycle where energy input is necessary remains unclear. Here, we present data suggesting that insertion of Pex5p into the peroxisomal membrane does not require ATP hydrolysis. This observation raises the possibility that at the peroxisomal membrane ATP is needed predominantly (if not exclusively) downstream of the protein translocation step to reset the Pex5p-mediated transport system.
Collapse
|
80
|
Choe J, Moyersoen J, Roach C, Carter TL, Fan E, Michels PAM, Hol WGJ. Analysis of the sequence motifs responsible for the interactions of peroxins 14 and 5, which are involved in glycosome biogenesis in Trypanosoma brucei. Biochemistry 2003; 42:10915-22. [PMID: 12974625 DOI: 10.1021/bi034248n] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosome biogenesis in trypanosomatids occurs via a process that is homologous to peroxisome biogenesis in other eukaryotes. Glycosomal matrix proteins are synthesized in the cytosol and imported posttranslationally. The import process involves a series of protein-protein interactions starting by recognition of glycosomal matrix proteins by a receptor in the cytosol. Most proteins to be imported contain so-called PTS-1 or PTS-2 targeting sequences recognized by, respectively, the receptor proteins PEX5 and PEX7. PEX14, a protein associated with the peroxisomal membrane, has been identified as a component of the docking complex and a point of convergence of the PEX5- and PEX7-dependent import pathways. In this paper, the strength of the interactions between Trypanosoma brucei PEX14 and PEX5 was studied by a fluorescence assay, using (i) a panel of N-terminal regions of TbPEX14 protein variants and (ii) a series of different peptides derived from TbPEX5, each containing one of the three WXXXF/Y motifs present in this receptor protein. On the PEX14 side, the N-terminal region of TbPEX14 including residues 1-84 appeared to be responsible for TbPEX5 binding. The results from PEX14 mutants identified specific residues in the N-terminal region of TbPEX14 involved in PEX5 binding and showed that in particular hydrophobic residues F35 and F52 are critical. On the PEX5 side, 13-mer peptides incorporating the first or the third WXXXF/Y motif bind to PEX14 with an affinity in the nanomolar range. However, the second WXXXF/Y motif peptide did not show any detectable affinity. Studies using variants of second and third motif peptides suggest that the alpha-helical content of the peptides as well as the charge of a residue at position 9 in the motif may be important for PEX14 binding. Assays with 7-, 10-, 13-, and 16-mer third motif peptides showed that 16-mers and 13-mers have comparable binding affinity for PEX14, whereas 10-mers and 7-mers have about 10- and 100-fold lower affinity than the 16-mers, respectively. The low sequence identities of PEX14 and PEX5 between parasite and its human host, and the vital importance of proper glycosome biogenesis to the parasite, render these peroxins highly promising drug targets.
Collapse
Affiliation(s)
- Jungwoo Choe
- Department of Biochemistry, University of Washington, Seattle, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci U S A 2003; 100:11394-9. [PMID: 14504397 PMCID: PMC208768 DOI: 10.1073/pnas.1534710100] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We implement a strategy for aligning two protein-protein interaction networks that combines interaction topology and protein sequence similarity to identify conserved interaction pathways and complexes. Using this approach we show that the protein-protein interaction networks of two distantly related species, Saccharomyces cerevisiae and Helicobacter pylori, harbor a large complement of evolutionarily conserved pathways, and that a large number of pathways appears to have duplicated and specialized within yeast. Analysis of these findings reveals many well characterized interaction pathways as well as many unanticipated pathways, the significance of which is reinforced by their presence in the networks of both species.
Collapse
Affiliation(s)
- Brian P Kelley
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Eckert JH, Johnsson N. Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome. J Cell Sci 2003; 116:3623-34. [PMID: 12876220 DOI: 10.1242/jcs.00678] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein import machinery of the peroxisome consists of many proteins, collectively called the peroxins. By applying the split-ubiquitin technique we systematically tested the pair-wise interactions between the Nub- and Cub-labeled peroxins for the first time in the living cells of the yeast Saccharomyces cerevisiae. We found that Pex10p plays a central role in the protein interaction network by connecting the ubiquitin conjugation enzyme Pex4p to the other members of the protein import machinery. A yeast strain harboring a deletion of PEX3 enabled us to estimate the influence of the peroxisomal membrane on the formation of a subset of the investigated protein-protein interactions.
Collapse
Affiliation(s)
- Jörg H Eckert
- Ruhr-Universität Bochum, Institut für Physiologische Chemie, Medizinische Fakultät, 44780 Bochum, Germany
| | | |
Collapse
|
83
|
Abstract
The peroxisome biogenesis disorders (PBDs) comprise 12 autosomal recessive complementation groups (CGs). The multisystem clinical phenotype varies widely in severity and results from disturbances in both development and metabolic homeostasis. Progress over the last several years has lead to identification of the genes responsible for all of these disorders and to a much improved understanding of the biogenesis and function of the peroxisome. Increasing availability of mouse models for these disorders offers hope for a better understanding of their pathophysiology and for development of therapies that might especially benefit patients at the milder end of the clinical phenotype.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
84
|
Emanuelsson O, Elofsson A, von Heijne G, Cristóbal S. In silico prediction of the peroxisomal proteome in fungi, plants and animals. J Mol Biol 2003; 330:443-56. [PMID: 12823981 DOI: 10.1016/s0022-2836(03)00553-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In an attempt to improve our abilities to predict peroxisomal proteins, we have combined machine-learning techniques for analyzing peroxisomal targeting signals (PTS1) with domain-based cross-species comparisons between eight eukaryotic genomes. Our results indicate that this combined approach has a significantly higher specificity than earlier attempts to predict peroxisomal localization, without a loss in sensitivity. This allowed us to predict 430 peroxisomal proteins that almost completely lack a localization annotation. These proteins can be grouped into 29 families covering most of the known steps in all known peroxisomal pathways. In general, plants have the highest number of predicted peroxisomal proteins, and fungi the smallest number.
Collapse
Affiliation(s)
- Olof Emanuelsson
- Stockholm Bioinformatics Center, AlbaNova University Center, Department of Biochemistry and Biophysics, Stockholm University, S-106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
85
|
Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 2003; 328:581-92. [PMID: 12706718 DOI: 10.1016/s0022-2836(03)00319-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peroxisomal matrix proteins have to be imported into their target organelle post-translationally. The major translocation pathway depends on a C-terminal targeting signal, termed PTS1. Our previous analysis of sequence variability in the PTS1 motif revealed that, in addition to the known C-terminal tripeptide, at least nine residues directly upstream are important for signal recognition in the PTS1-Pex5 receptor complex. The refined PTS1 motif description was implemented in a prediction tool composed of taxon-specific functions (metazoa, fungi, remaining taxa), capable of recognising potential PTS1s in query sequences. The composite score function consists of classical profile terms and additional terms penalising deviations from the derived physical property pattern over sequence segments. The prediction algorithm has been validated with a self-consistency and three different cross-validation tests. Additionally, we tested the tool on a large set of non-peroxisomal negatives, on mutation data, and compared the prediction rate to the PTS1 component of the PSORT2 program. The sensitivity of our predictor in recognising documented PTS1 signal containing proteins is close to 90% for reliable prediction. The predictor distinguishes even SKL-appended non-peroxisomally targeted proteins such as a mouse dihydrofolate reductase-SKL construct. The corresponding rate of false positives is not worse than 0.8%; thus, the tool can be applied for large-scale unsupervised sequence database annotation. A scan of public protein databases uncovered a number of yet uncharacterised proteins for which the PTS1 signal might be critical for biological function. The predicted presence of a PTS1 signal implies peroxisomal localisation in the absence of N-terminal targeting sequences such as the mitochondrial import signal.
Collapse
Affiliation(s)
- Georg Neuberger
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
86
|
Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2003; 27:35-64. [PMID: 12697341 DOI: 10.1016/s0168-6445(03)00017-2] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Peroxisomal fatty acid degradation in the yeast Saccharomyces cerevisiae requires an array of beta-oxidation enzyme activities as well as a set of auxiliary activities to provide the beta-oxidation machinery with the proper substrates. The corresponding classical and auxiliary enzymes of beta-oxidation have been completely characterized, many at the structural level with the identification of catalytic residues. Import of fatty acids from the growth medium involves passive diffusion in combination with an active, protein-mediated component that includes acyl-CoA ligases, illustrating the intimate linkage between fatty acid import and activation. The main factors involved in protein import into peroxisomes are also known, but only one peroxisomal metabolite transporter has been characterized in detail, Ant1p, which exchanges intraperoxisomal AMP with cytosolic ATP. The other known transporter is Pxa1p-Pxa2p, which bears similarity to the human adrenoleukodystrophy protein ALDP. The major players in the regulation of fatty acid-induced gene expression are Pip2p and Oaf1p, which unite to form a transcription factor that binds to oleate response elements in the promoter regions of genes encoding peroxisomal proteins. Adr1p, a transcription factor, binding upstream activating sequence 1, also regulates key genes involved in beta-oxidation. The development of new, postgenomic-era tools allows for the characterization of the entire transcriptome involved in beta-oxidation and will facilitate the identification of novel proteins as well as the characterization of protein families involved in this process.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
87
|
Harper CC, Berg JM, Gould SJ. PEX5 binds the PTS1 independently of Hsp70 and the peroxin PEX12. J Biol Chem 2003; 278:7897-901. [PMID: 12456682 DOI: 10.1074/jbc.m206651200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most peroxisomal enzymes are targeted to peroxisomes by virtue of a type-1 peroxisomal targeting signal (PTS1) at their extreme C terminus. PEX5 binds the PTS1 through its C-terminal 40-kDa tetratricopeptide repeat domain and is essential for import of PTS1-contining proteins into peroxisomes. Here we examined the PTS1-binding activity of purified, recombinant, full-length PEX5 using a fluorescence anisotropy-based assay. Like its C-terminal fragment, full-length tetrameric PEX5 exhibits high intrinsic affinity for the PTS1, with a K(d) of 35 nm for the peptide lissamine-Tyr-Gln-Ser-Lys-Leu-COO(-). The specificity of this interaction was demonstrated by the fact that PEX5 had no detectable affinity for a peptide in which the Lys was replaced with Glu, a substitution that inactivates PTS1 signals in vivo. Hsp70 has been found to regulate the affinity of PEX5 for a PTS1-containing protein, but we found that the kinetics of PEX5-PTS1 binding was unaffected by Hsp70, Hsp70 plus ATP, or Hsp70 plus ADP. In addition, we found that another protein known to interact with the PTS1-binding domain of PEX5, the PEX12 zinc RING domain, also had no discernable effect on PEX5-PTS1 binding kinetics. Taken together, these results suggest that the initial step in peroxisomal protein import, the recognition of enzymes by PEX5, is a relatively simple process and that Hsp70 most probably stimulates this process by catalyzing the folding of newly synthesized peroxisomal enzymes and/or enhancing the accessibility of their PTS1.
Collapse
Affiliation(s)
- Courtney C Harper
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
88
|
Agne B, Meindl NM, Niederhoff K, Einwächter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH. Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 2003; 11:635-46. [PMID: 12667447 DOI: 10.1016/s1097-2765(03)00062-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peroxisomes transport folded and oligomeric proteins across their membrane. Two cytosolic import receptors, Pex5p and Pex7p, along with approximately 12 membrane-bound peroxins participate in this process. While interactions among individual peroxins have been described, their organization into functional units has remained elusive. We have purified and defined two core complexes of the peroxisomal import machinery: the docking complex comprising Pex14p and Pex17p, with the loosely associated Pex13p, and the RING finger complex containing Pex2p, Pex10p, and Pex12p. Association of both complexes into a larger import complex requires Pex8p, an intraperoxisomal protein. We conclude that Pex8p organizes the formation of the larger import complex from the trans side of the peroxisomal membrane and thus might enable functional communication between both sides of the membrane.
Collapse
Affiliation(s)
- Birgit Agne
- Abteilung für Zellbiochemie, Ruhr-Universität Bochum, D-44780, Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Schnell DJ, Hebert DN. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 2003; 112:491-505. [PMID: 12600313 DOI: 10.1016/s0092-8674(03)00110-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Protein translocation systems consist of complex molecular machines whose activities are not limited to unidirectional protein targeting. Protein translocons and their associated receptor systems can be viewed as dynamic modular units whose interactions, and therefore functions, are regulated in response to specific signals. This flexibility allows translocons to interact with multiple signal receptor systems to manage the targeting of topologically distinct classes of proteins, to mediate targeting to different suborganellar compartments, and to respond to stress and developmental cues. Furthermore, the activities of translocons are tightly coordinated with downstream events, thereby providing a direct link between targeting and protein maturation.
Collapse
Affiliation(s)
- Danny J Schnell
- Program in Plant Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
90
|
Gouveia AM, Guimarães CP, Oliveira ME, Sá-Miranda C, Azevedo JE. Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. J Biol Chem 2003; 278:4389-92. [PMID: 12502712 DOI: 10.1074/jbc.c200650200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is now generally accepted that Pex5p, the receptor for most peroxisomal matrix proteins, cycles between the cytosol and the peroxisomal compartment. According to current models of peroxisomal biogenesis, this intracellular trafficking of Pex5p is coupled to the transport of newly synthesized peroxisomal proteins into the organelle matrix. However, direct evidence supporting this hypothesis was never provided. Here, using an in vitro peroxisomal import system, we show that insertion of Pex5p into the peroxisomal membrane requires the presence of cargo proteins. Strikingly the peroxisomal docking/translocation machinery is also able to catalyze the membrane insertion of a Pex5p truncated molecule lacking any known cargo-binding domain. These results suggest that the cytosol/peroxisomal cycle in which Pex5p is involved is directly or indirectly regulated by Pex5p itself and not by the peroxisomal docking/translocation machinery.
Collapse
Affiliation(s)
- Alexandra M Gouveia
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
91
|
Sichting M, Schell-Steven A, Prokisch H, Erdmann R, Rottensteiner H. Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol Biol Cell 2003; 14:810-21. [PMID: 12589072 PMCID: PMC150010 DOI: 10.1091/mbc.e02-08-0539] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recruiting matrix proteins with a peroxisomal targeting signal type 2 (PTS2) to the peroxisomal membrane requires species-specific factors. In Saccharomyces cerevisiae, the PTS2 receptor Pex7p acts in concert with the redundant Pex18p/Pex21p, whereas in Yarrowia lipolytica, Pex20p might unite the function of both S. cerevisiae peroxins. Herein, the genome of the filamentous fungus Neurospora crassa was analyzed for peroxin-encoding genes. We identified a set of 18 peroxins that resembles that of Y. lipolytica rather than that of S. cerevisiae. Interestingly, proteins homologous to both S. cerevisiae Pex7p and Y. lipolytica Pex20p exist in N. crassa. We report on the isolation of these PTS2-specific peroxins and demonstrate that NcPex20p can substitute for S. cerevisiae Pex18p/Pex21p, but not for ScPex7p. Like Pex18p, NcPex20p did not bind PTS2 protein or the docking proteins in the absence of ScPex7p. Rather, NcPex20p was required before docking to form an import-competent complex of cargo-loaded PTS2 receptors. NcPex7p did not functionally replace yeast Pex7p, probably because the N. crassa PTS2 receptor failed to associate with Pex18p/Pex21p. However, once NcPex7p and NcPex20p had been coexpressed, it proved possible to replace yeast Pex7p. Pex20p and Pex18p/Pex21p are therefore true orthologues, both of which are in need of Pex7p for PTS2 protein import.
Collapse
Affiliation(s)
- Martin Sichting
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Thielallee 63, Germany
| | | | | | | | | |
Collapse
|