51
|
Wang X, Ren Y, Li J, Ji Z, Chen F, Wang X. Identification of the 14-3-3 β/α-A protein as a novel maternal peptidoglycan-binding protein that protects embryos of zebrafish against bacterial infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103867. [PMID: 32931839 DOI: 10.1016/j.dci.2020.103867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
14-3-3 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that 14-3-3 β/α-A is a newly identified PGN-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant 14-3-3 β/α-A acts as a pattern recognition receptor capable of identifying the bacterial signature molecule PGN, binding the bacteria, and functions as an antibacterial effector molecule directly killing the bacteria. Importantly, microinjection of r14-3-3 β/α-A into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-14-3-3 β/α-A antibody. Collectively, these results indicate that 14-3-3 β/α-A is a maternal PGN-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role assigned to 14-3-3 β/α-A proteins. This work also provides new insights into 14-3-3 proteins that are widely distributed in various animals.
Collapse
Affiliation(s)
- Xia Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yiqing Ren
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; East China University of Science and Technology, School of Biotechnology, Shanghai, 200237, China
| | - Zhe Ji
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fushan Chen
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiudan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
52
|
Zhu L, Wu X, Xu B, Zhao Z, Yang J, Long J, Su L. The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood. Neurosci Lett 2020; 745:135596. [PMID: 33359735 DOI: 10.1016/j.neulet.2020.135596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) is a highly heritable mental disorder with a substantial disease burden. Machine learning (ML) method can be used to identify individuals with SCZ on the basis of blood gene expression data with high accuracy. METHODS This study aimed to differentiate patients with SCZ from healthy individuals by using the messenger RNA expression level in peripheral blood of 48 patients with SCZ and 50 controls via ML algorithms, namely, artificial neural networks, extreme gradient boosting, support vector machine (SVM), decision tree, and random forest. The expression of six mRNAs was detected using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The relative expression levels of GNAI1 (P < 0.001), PRKCA (P < 0.001), and PRKCB (P = 0.021) increased in the SCZ group, whereas those of FYN (P < 0.001), LYN (P = 0.022), and YWHAZ (P < 0.001) decreased in the SCZ group. We generated models with various combinations of genes based on five ML algorithms. The SVM model with six factors (GNAI1, FYN, PRKCA, YWHAZ, PRKCB, and LYN genes) was the best model for distinguishing patients with SCZ from healthy individuals (AUC = 0.993, sensitivity = 1.000, specificity = 0.895, and Youden index = 0.895). CONCLUSIONS This study suggested that the combination of genes using the ML method is better than the use of a single gene to discriminate patients with SCZ from healthy individuals. The combination of GNAI1, FYN, PRKCA, YWHAZ, PRKCB, and LYN under the SVM model can be used as a diagnostic biomarker for SCZ.
Collapse
Affiliation(s)
- Lulu Zhu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Xulong Wu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Bingyi Xu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi Zhao
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianxiong Long
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China.
| | - Li Su
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
53
|
Papin S, Paganetti P. Emerging Evidences for an Implication of the Neurodegeneration-Associated Protein TAU in Cancer. Brain Sci 2020; 10:brainsci10110862. [PMID: 33207722 PMCID: PMC7696480 DOI: 10.3390/brainsci10110862] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders and cancer may appear unrelated illnesses. Yet, epidemiologic studies indicate an inverse correlation between their respective incidences for specific cancers. Possibly explaining these findings, increasing evidence indicates that common molecular pathways are involved, often in opposite manner, in the pathogenesis of both disease families. Genetic mutations in the MAPT gene encoding for TAU protein cause an inherited form of frontotemporal dementia, a neurodegenerative disorder, but also increase the risk of developing cancer. Assigning TAU at the interface between cancer and neurodegenerative disorders, two major aging-linked disease families, offers a possible clue for the epidemiological observation inversely correlating these human illnesses. In addition, the expression level of TAU is recognized as a prognostic marker for cancer, as well as a modifier of cancer resistance to chemotherapy. Because of its microtubule-binding properties, TAU may interfere with the mechanism of action of taxanes, a class of chemotherapeutic drugs designed to stabilize the microtubule network and impair cell division. Indeed, a low TAU expression is associated to a better response to taxanes. Although TAU main binding partners are microtubules, TAU is able to relocate to subcellular sites devoid of microtubules and is also able to bind to cancer-linked proteins, suggesting a role of TAU in modulating microtubule-independent cellular pathways associated to oncogenesis. This concept is strengthened by experimental evidence linking TAU to P53 signaling, DNA stability and protection, processes that protect against cancer. This review aims at collecting literature data supporting the association between TAU and cancer. We will first summarize the evidence linking neurodegenerative disorders and cancer, then published data supporting a role of TAU as a modifier of the efficacy of chemotherapies and of the oncogenic process. We will finish by addressing from a mechanistic point of view the role of TAU in de-regulating critical cancer pathways, including the interaction of TAU with cancer-associated proteins.
Collapse
Affiliation(s)
- Stéphanie Papin
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
- Faculty of Biomedical Neurosciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
- Correspondence: ; Tel.: +41-91-811-7250
| |
Collapse
|
54
|
Guo K, Zhang X, Hou Y, Liu J, Feng Q, Wang K, Xu L, Zhang Y. A novel PCV2 ORF5-interacting host factor YWHAB inhibits virus replication and alleviates PCV2-induced cellular response. Vet Microbiol 2020; 251:108893. [PMID: 33096469 PMCID: PMC7568206 DOI: 10.1016/j.vetmic.2020.108893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
YWHAB is a PCV2 ORF5-interacting host factor. YWHAB expression is activated by PCV2 infection and ORF5 transfection. YWHAB inhibits PCV2 replication. YWHAB alleviates PCV2 infection induced ERS, autophagy, ROS production and apoptosis.
Porcine circovirus type 2 (PCV2) infection causes porcine circovirus associated diseases (PCVAD) worldwide. Identification of host factors that interact with viral proteins is a fundamental step to understand the pathogenesis of PCV2. Our previous study reported that ORF5, a newly identified PCV2 viral protein supports PCV2 replication and interacts with multiple host factors. Here, we showed that a host factor YWHAB is an ORF5-interacting protein and plays essential roles during PCV2 infection. By using protein-protein interaction assays, we confirmed that YWHAB directly interacts with PCV2-ORF5 protein. We further showed that YWHAB expression was potently induced upon ORF5 overexpression and PCV2 infection. Remarkably, we found that the YWHAB strongly inhibited PCV2 replication, suggesting its role in defending PCV2 infection. By using the ectopic overexpression and gene knockdown approaches, we revealed that YWHAB inhibits PCV2-induced endoplasmic reticulum stress (ERS), autophagy, reactive oxygen species (ROS) production and apoptosis, suggesting its vital role in alleviating PCV2-induced cellular damage. Together, this study demonstrated that an ORF5-interacting host factor YWHAB affects PCV2 infection and PCV2-induced cellular response, which expands the current understanding of YWHAB biological function and might serves as a new therapeutic target to manage PCV2 infection-associated diseases.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
55
|
Cellular Prion Protein (PrPc): Putative Interacting Partners and Consequences of the Interaction. Int J Mol Sci 2020; 21:ijms21197058. [PMID: 32992764 PMCID: PMC7583789 DOI: 10.3390/ijms21197058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular prion protein (PrPc) is a small glycosylphosphatidylinositol (GPI) anchored protein most abundantly found in the outer leaflet of the plasma membrane (PM) in the central nervous system (CNS). PrPc misfolding causes neurodegenerative prion diseases in the CNS. PrPc interacts with a wide range of protein partners because of the intrinsically disordered nature of the protein’s N-terminus. Numerous studies have attempted to decipher the physiological role of the prion protein by searching for proteins which interact with PrPc. Biochemical characteristics and biological functions both appear to be affected by interacting protein partners. The key challenge in identifying a potential interacting partner is to demonstrate that binding to a specific ligand is necessary for cellular physiological function or malfunction. In this review, we have summarized the intracellular and extracellular interacting partners of PrPc and potential consequences of their binding. We also briefly describe prion disease-related mutations at the end of this review.
Collapse
|
56
|
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 2020; 5:213. [PMID: 32968059 PMCID: PMC7511340 DOI: 10.1038/s41392-020-00315-3] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Protein-protein interactions (PPIs) have pivotal roles in life processes. The studies showed that aberrant PPIs are associated with various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Therefore, targeting PPIs is a direction in treating diseases and an essential strategy for the development of new drugs. In the past few decades, the modulation of PPIs has been recognized as one of the most challenging drug discovery tasks. In recent years, some PPIs modulators have entered clinical studies, some of which been approved for marketing, indicating that the modulators targeting PPIs have broad prospects. Here, we summarize the recent advances in PPIs modulators, including small molecules, peptides, and antibodies, hoping to provide some guidance to the design of novel drugs targeting PPIs in the future.
Collapse
Affiliation(s)
- Haiying Lu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Jun He
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Sichuan, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Cheng Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| |
Collapse
|
57
|
The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21165724. [PMID: 32785033 PMCID: PMC7460874 DOI: 10.3390/ijms21165724] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.
Collapse
|
58
|
Kelly K, West AB. Pharmacodynamic Biomarkers for Emerging LRRK2 Therapeutics. Front Neurosci 2020; 14:807. [PMID: 32903744 PMCID: PMC7438883 DOI: 10.3389/fnins.2020.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have identified variants in the LRRK2 gene as important components of Parkinson's disease (PD) pathobiology. Biochemical and emergent biomarker studies have coalesced around LRRK2 hyperactivation in disease. Therapeutics that diminish LRRK2 activity, either with small molecule kinase inhibitors or anti-sense oligonucleotides, have recently advanced to the clinic. Historically, there have been few successes in the development of therapies that might slow or halt the progression of neurodegenerative diseases. Over the past few decades of biomedical research, retrospective analyses suggest the broad integration of informative biomarkers early in development tends to distinguish successful pipelines from those that fail early. Herein, we discuss the biomarker regulatory process, emerging LRRK2 biomarker candidates, assays, underlying biomarker biology, and clinical integration.
Collapse
Affiliation(s)
- Kaela Kelly
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| |
Collapse
|
59
|
Lotlikar N, Damare S, Meena RM, Jayachandran S. Variable protein expression in marine-derived filamentous fungus Penicillium chrysogenum in response to varying copper concentrations and salinity. Metallomics 2020; 12:1083-1093. [PMID: 32301940 DOI: 10.1039/c9mt00316a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is one of the essential trace dietary minerals for all living organisms, but is potentially toxic at higher concentrations, mainly due to the redox reactions in its transition state. Tolerance of microbes towards copper is primarily attributed to chelation and biosorption. In this study, marine-derived filamentous fungi were evaluated for their ability to remove Cu(ii) from a culture medium. Further, the cellular response of a select isolate to salinity stress (0, 35 and 100 PSU) and Cu(ii) stress (0, 100, and 500 ppm) was studied using the peptide mass fingerprinting technique, which revealed expression of 919 proteins, of which 55 proteins were commonly expressed across all conditions. Housekeeping proteins such as citrate synthase, pyruvate carboxylase, ribosomal proteins, ATP synthases, and more were expressed across all conditions. Reactive oxygen species scavenging proteins such as glutaredoxin, mitochondrial peroxiredoxins and thioredoxins were expressed under Cu(ii) and salinity stresses individually as well as in combination. Up-regulation of glutaredoxin under Cu(ii) stress with fold change values of 18.3 and 13.9 under 100 ppm and 500 ppm of Cu(ii) indicated active scavenging of free radicals to combat oxidative damage. The common mechanisms reported were enzymatic scavenging of free radicals, activation of DNA damage and repair proteins and probable intracellular metal chelation. This indicated multiple stress mechanisms employed by the isolate to combat the singular and synergistic effects of Cu(ii) and salinity stress.
Collapse
Affiliation(s)
- Nikita Lotlikar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa - 403004, India.
| | | | | | | |
Collapse
|
60
|
Dysregulation of peripheral expression of the YWHA genes during conversion to psychosis. Sci Rep 2020; 10:9863. [PMID: 32555255 PMCID: PMC7299951 DOI: 10.1038/s41598-020-66901-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/04/2020] [Indexed: 12/01/2022] Open
Abstract
The seven human 14-3-3 proteins are encoded by the YWHA-gene family. They are expressed in the brain where they play multiple roles including the modulation of synaptic plasticity and neuronal development. Previous studies have provided arguments for their involvement in schizophrenia, but their role during disease onset is unknown. We explored the peripheral-blood expression level of the seven YWHA genes in 92 young individuals at ultra-high risk for psychosis (UHR). During the study, 36 participants converted to psychosis (converters) while 56 did not (non-converters). YWHA genes expression was evaluated at baseline and after a mean follow-up of 10.3 months using multiplex quantitative PCR. Compared with non-converters, the converters had a significantly higher baseline expression levels for 5 YWHA family genes, and significantly different longitudinal changes in the expression of YWHAE, YWHAG, YWHAH, YWHAS and YWAHZ. A principal-component analysis also indicated that the YWHA expression was significantly different between converters and non-converters suggesting a dysregulation of the YWHA co-expression network. Although these results were obtained from peripheral blood which indirectly reflects brain chemistry, they indicate that this gene family may play a role in psychosis onset, opening the way to the identification of prognostic biomarkers or new drug targets.
Collapse
|
61
|
Torrico B, Antón-Galindo E, Fernàndez-Castillo N, Rojo-Francàs E, Ghorbani S, Pineda-Cirera L, Hervás A, Rueda I, Moreno E, Fullerton JM, Casadó V, Buitelaar JK, Rommelse N, Franke B, Reif A, Chiocchetti AG, Freitag C, Kleppe R, Haavik J, Toma C, Cormand B. Involvement of the 14-3-3 Gene Family in Autism Spectrum Disorder and Schizophrenia: Genetics, Transcriptomics and Functional Analyses. J Clin Med 2020; 9:E1851. [PMID: 32545830 PMCID: PMC7356291 DOI: 10.3390/jcm9061851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). Here, we explored the contribution of the seven human 14-3-3 family members in ASD and other psychiatric disorders by investigating the: (i) functional impact of the 14-3-3ζ mutation p.L220Ffs*18 by assessing solubility, target binding and dimerization; (ii) contribution of common risk variants in 14-3-3 genes to ASD and additional psychiatric disorders; (iii) burden of rare variants in ASD and schizophrenia; and iv) 14-3-3 gene expression using ASD and schizophrenia transcriptomic data. We found that the mutant 14-3-3ζ protein had decreased solubility and lost its ability to form heterodimers and bind to its target tyrosine hydroxylase. Gene-based analyses using publicly available datasets revealed that common variants in YWHAE contribute to schizophrenia (p = 6.6 × 10-7), whereas ultra-rare variants were found enriched in ASD across the 14-3-3 genes (p = 0.017) and in schizophrenia for YWHAZ (meta-p = 0.017). Furthermore, expression of 14-3-3 genes was altered in post-mortem brains of ASD and schizophrenia patients. Our study supports a role for the 14-3-3 family in ASD and schizophrenia.
Collapse
Affiliation(s)
- Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Eva Rojo-Francàs
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Sadaf Ghorbani
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Amaia Hervás
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
- IGAIN, Global Institute of Integral Attention to Neurodevelopment, 08007 Barcelona, Spain
| | - Isabel Rueda
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
| | - Estefanía Moreno
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vicent Casadó
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Christine Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Rune Kleppe
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Claudio Toma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid/CSIC, C/Nicolás Cabrera, 1, Campus UAM, 28049 Madrid, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
62
|
SWATH-MS analysis of cerebrospinal fluid to generate a robust battery of biomarkers for Alzheimer's disease. Sci Rep 2020; 10:7423. [PMID: 32366888 PMCID: PMC7198522 DOI: 10.1038/s41598-020-64461-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebrospinal fluid (CSF) Aβ42 and tau protein levels are established diagnostic biomarkers of Alzheimer's disease (AD). However, their inadequacy to represent clinical efficacy in drug trials indicates the need for new biomarkers. Sequential window acquisition of all theoretical fragment ion spectra (SWATH)-based mass spectrometry (MS) is an advanced proteomic tool for large-scale, high-quality quantification. In this study, SWATH-MS showed that VGF, chromogranin-A, secretogranin-1, and opioid-binding protein/cell adhesion molecule were significantly decreased in 42 AD patients compared to 39 controls, whereas 14-3-3ζ was increased (FDR < 0.05). In addition, 16 other proteins showed substantial changes (FDR < 0.2). The expressions of the top 21 analytes were closely interconnected, but were poorly correlated with CSF Aβ42, tTau, and pTau181 levels. Logistic regression analysis and data mining were used to establish the best algorithm for AD, which created novel biomarker panels with high diagnostic value (AUC = 0.889 and 0.924) and a strong correlation with clinical severity (all p < 0.001). Targeted proteomics was used to validate their usefulness in a different cohort (n = 36) that included patients with other brain disorders (all p < 0.05). This study provides a list of proteins (and combinations thereof) that could serve as new AD biomarkers.
Collapse
|
63
|
Kang JB, Lee SY, Park DJ, Koh PO. Decrease of 14-3-3 proteins by glutamate exposure in the cerebral cortex of newborn rats. Lab Anim Res 2020; 36:8. [PMID: 32257920 PMCID: PMC7119159 DOI: 10.1186/s42826-020-00041-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/12/2020] [Indexed: 11/10/2022] Open
Abstract
Glutamate is a representative excitatory neurotransmitter. However, excessive glutamate exposure causes neuronal cell damage by generating neuronal excitotoxicity. Excitotoxicity in neonates caused by glutamate treatment induces neurological deficits in adults. The 14-3-3 family proteins are conserved proteins that are expressed ubiquitously in a variety of tissues. These proteins contribute to cellular processes, including signal transduction, protein synthesis, and cell cycle control. We proposed that glutamate induces neuronal cell damage by regulating 14-3-3 protein expression in newborn animals. In this study, we investigated the histopathological changes and 14-3-3 proteins expressions as a result of glutamate exposure in the neonatal cerebral cortex. Rat pups at post-natal day 7 were intraperitoneally administrated with vehicle or glutamate (10 mg/kg). Animals were sacrificed 4 h after treatment, and brain tissues were fixed for histological study. Cerebral cortices were isolated and frozen for proteomic study. We observed serious histopathological damages including shrunken dendrites and atypical neurons in glutamate-treated cerebral cortices. In addition, we identified that 14-3-3 family proteins decreased in glutamate-exposed cerebral cortices using a proteomic approach. Moreover, Western blot analysis provided results that glutamate treatment in neonates decreased 14-3-3 family proteins expressions, including the β/α, ζ/δ, γ, ε, τ, and η isoforms. 14-3-3 proteins are involved in signal transduction, metabolism, and anti-apoptotic functions. Thus, our findings suggest that glutamate induces neonatal neuronal cell damage by modulating 14-3-3 protein expression.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Seung-Yun Lee
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| |
Collapse
|
64
|
Parcerisas A, Pujadas L, Ortega-Gascó A, Perelló-Amorós B, Viais R, Hino K, Figueiro-Silva J, La Torre A, Trullás R, Simó S, Lüders J, Soriano E. NCAM2 Regulates Dendritic and Axonal Differentiation through the Cytoskeletal Proteins MAP2 and 14-3-3. Cereb Cortex 2020; 30:3781-3799. [PMID: 32043120 DOI: 10.1093/cercor/bhz342] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 01/08/2020] [Indexed: 01/13/2023] Open
Abstract
Neural cell adhesion molecule 2 (NCAM2) is involved in the development and plasticity of the olfactory system. Genetic data have implicated the NCAM2 gene in neurodevelopmental disorders including Down syndrome and autism, although its role in cortical development is unknown. Here, we show that while overexpression of NCAM2 in hippocampal neurons leads to minor alterations, its downregulation severely compromises dendritic architecture, leading to an aberrant phenotype including shorter dendritic trees, retraction of dendrites, and emergence of numerous somatic neurites. Further, our data reveal alterations in the axonal tree and deficits in neuronal polarization. In vivo studies confirm the phenotype and reveal an unexpected role for NCAM2 in cortical migration. Proteomic and cell biology experiments show that NCAM2 molecules exert their functions through a protein complex with the cytoskeletal-associated proteins MAP2 and 14-3-3γ and ζ. We provide evidence that NCAM2 depletion results in destabilization of the microtubular network and reduced MAP2 signal. Our results demonstrate a role for NCAM2 in dendritic formation and maintenance, and in neural polarization and migration, through interaction of NCAM2 with microtubule-associated proteins.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - Bartomeu Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | - Joana Figueiro-Silva
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | - Ramón Trullás
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA) Academia, 08010, Barcelona, Spain
| |
Collapse
|
65
|
Differential Subcellular Distribution and Translocation of Seven 14-3-3 Isoforms in Response to EGF and During the Cell Cycle. Int J Mol Sci 2020; 21:ijms21010318. [PMID: 31906564 PMCID: PMC6981507 DOI: 10.3390/ijms21010318] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple isoforms of 14-3-3 proteins exist in different organisms. In mammalian cells, 14-3-3 protein has seven isoforms (α/β, ε, η, γ, σ, θ/τ, and δ/ζ), with α and δ representing the phosphorylated versions of β and ζ, respectively. While the existence of multiple isoforms may represent one more level of regulation in 14-3-3 signaling, our knowledge regarding the isoform-specific functions of 14-3-3 proteins is very limited. Determination of the subcellular localization of the different 14-3-3 isoforms could give us important clues of their specific functions. In this study, by using indirect immunofluorescence, subcellular fractionation, and immunoblotting, we studied the subcellular localization of the total 14-3-3 protein and each of the seven 14-3-3 isoforms; their redistribution throughout the cell cycle; and their translocation in response to EGF in Cos-7 cells. We showed that 14-3-3 proteins are broadly distributed throughout the cell and associated with many subcellular structures/organelles, including the plasma membrane (PM), mitochondria, ER, nucleus, microtubules, and actin fibers. This broad distribution underlines the multiple functions identified for 14-3-3 proteins. The different isoforms of 14-3-3 proteins have distinctive subcellular localizations, which suggest their distinctive cellular functions. Most notably, 14-3-3ƞ is almost exclusively localized to the mitochondria, 14-3-3γ is only localized to the nucleus, and 14-3-3σ strongly and specifically associated with the centrosome during mitosis. We also examined the subcellular localization of the seven 14-3-3 isoforms in other cells, including HEK-293, MDA-MB-231, and MCF-7 cells, which largely confirmed our findings with Cos-7 cells.
Collapse
|
66
|
Barros Ribeiro da Silva V, Porcionatto M, Toledo Ribas V. The Rise of Molecules Able To Regenerate the Central Nervous System. J Med Chem 2019; 63:490-511. [PMID: 31518122 DOI: 10.1021/acs.jmedchem.9b00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Injury to the adult central nervous system (CNS) usually leads to permanent deficits of cognitive, sensory, and/or motor functions. The failure of axonal regeneration in the damaged CNS limits functional recovery. The lack of information concerning the biological mechanism of axonal regeneration and its complexity has delayed the process of drug discovery for many years compared to other drug classes. Starting in the early 2000s, the ability of many molecules to stimulate axonal regrowth was evaluated through automated screening techniques; many hits and some new mechanisms involved in axonal regeneration were identified. In this Perspective, we discuss the rise of the CNS regenerative drugs, the main biological techniques used to test these drug candidates, some of the most important screens performed so far, and the main challenges following the identification of a drug that is able to induce axonal regeneration in vivo.
Collapse
Affiliation(s)
| | - Marimélia Porcionatto
- Universidade Federal de São Paulo , Escola Paulista de Medicina, Laboratório de Neurobiologia Molecular, Departmento de Bioquímica , Rua Pedro de Toledo, 669 - third floor, 04039-032 São Paulo , São Paolo , Brazil
| | - Vinicius Toledo Ribas
- Universidade Federal de Minas Gerais , Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Neurobiologia Av. Antônio Carlos, 6627, room O3-245 , - Campus Pampulha, 31270-901 , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
67
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
68
|
Ugidos N, Mena J, Baquero S, Alloza I, Azkargorta M, Elortza F, Vandenbroeck K. Interactome of the Autoimmune Risk Protein ANKRD55. Front Immunol 2019; 10:2067. [PMID: 31620119 PMCID: PMC6759997 DOI: 10.3389/fimmu.2019.02067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/15/2019] [Indexed: 01/03/2023] Open
Abstract
The ankyrin repeat domain-55 (ANKRD55) gene contains intronic single nucleotide polymorphisms (SNPs) associated with risk to contract multiple sclerosis, rheumatoid arthritis or other autoimmune disorders. Risk alleles of these SNPs are associated with higher levels of ANKRD55 in CD4+ T cells. The biological function of ANKRD55 is unknown, but given that ankyrin repeat domains constitute one of the most common protein-protein interaction platforms in nature, it is likely to function in complex with other proteins. Thus, identification of its protein interactomes may provide clues. We identified ANKRD55 interactomes via recombinant overexpression in HEK293 or HeLa cells and mass spectrometry. One hundred forty-eight specifically interacting proteins were found in total protein extracts and 22 in extracts of sucrose gradient-purified nuclei. Bioinformatic analysis suggested that the ANKRD55-protein partners from total protein extracts were related to nucleotide and ATP binding, enriched in nuclear transport terms and associated with cell cycle and RNA, lipid and amino acid metabolism. The enrichment analysis of the ANKRD55-protein partners from nuclear extracts is related to sumoylation, RNA binding, processes associated with cell cycle, RNA transport, nucleotide and ATP binding. The interaction between overexpressed ANKRD55 isoform 001 and endogenous RPS3, the cohesins SMC1A and SMC3, CLTC, PRKDC, VIM, β-tubulin isoforms, and 14-3-3 isoforms were validated by western blot, reverse immunoprecipitaton and/or confocal microscopy. We also identified three phosphorylation sites in ANKRD55, with S436 exhibiting the highest score as likely 14-3-3 binding phosphosite. Our study suggests that ANKRD55 may exert function(s) in the formation or architecture of multiple protein complexes, and is regulated by (de)phosphorylation reactions. Based on interactome and subcellular localization analysis, ANKRD55 is likely transported into the nucleus by the classical nuclear import pathway and is involved in mitosis, probably via effects associated with mitotic spindle dynamics.
Collapse
Affiliation(s)
- Nerea Ugidos
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jorge Mena
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Sara Baquero
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Iraide Alloza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Derio, Spain
| | - Koen Vandenbroeck
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
69
|
Gu Q, Cuevas E, Raymick J, Kanungo J, Sarkar S. Downregulation of 14-3-3 Proteins in Alzheimer’s Disease. Mol Neurobiol 2019; 57:32-40. [DOI: 10.1007/s12035-019-01754-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023]
|
70
|
14-3-3 signal adaptor and scaffold proteins mediate GPCR trafficking. Sci Rep 2019; 9:11156. [PMID: 31371790 PMCID: PMC6673703 DOI: 10.1038/s41598-019-47478-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
Receptor trafficking is pivotal for the temporal and spatial control of GPCR signaling and is regulated by multiple cellular proteins. We provide evidence that GPCRs interact with 14-3-3 signal adaptor/scaffold proteins and that this interaction regulates receptor trafficking in two ways. We found GPCR/14-3-3 interaction signals can be agonist-induced or agonist-inhibited. Some GPCRs associate with 14-3-3 proteins at the cell membrane and agonist treatments result in disrupted GPCR/14-3-3 interaction signals. The diminished GPCR/14-3-3 interaction signals are temporally correlated with increased GPCR/β-arrestin interaction signals in response to agonist treatment. Other GPCRs showed agonist-induced GPCR/14-3-3 interaction signal increases that occur later than agonist-induced GPCR/β-arrestin interaction signals, indicating that GPCR/14-3-3 interaction occurred after receptor endocytosis. These two types of GPCR/14-3-3 interaction patterns correlate with different receptor trafficking patterns. In addition, the bioinformatic analysis predicts that approximately 90% of GPCRs contain at least one putative 14-3-3 binding motif, suggesting GPCR/14-3-3 association could be a general phenomenon. Based on these results and collective evidence, we propose a working model whereby 14-3-3 serves as a sorting factor to regulate receptor trafficking.
Collapse
|
71
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
72
|
Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M. 14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20143518. [PMID: 31323761 PMCID: PMC6678932 DOI: 10.3390/ijms20143518] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are a family of conserved regulatory adaptor molecules which are expressed in all eukaryotic cells. These proteins participate in a variety of intracellular processes by recognizing specific phosphorylation motifs and interacting with hundreds of target proteins. Also, 14-3-3 proteins act as molecular chaperones, preventing the aggregation of unfolded proteins under conditions of cellular stress. Furthermore, 14-3-3 proteins have been shown to have similar expression patterns in tumors, aging, and neurodegenerative diseases. Therefore, we put forward the idea that the adaptor activity and chaperone-like activity of 14-3-3 proteins might play a substantial role in the above-mentioned conditions. Interestingly, 14-3-3 proteins are considered to be standing at the crossroads of cancer, aging, and age-related neurodegenerative diseases. There are great possibilities to improve the above-mentioned diseases and conditions through intervention in the activity of the 14-3-3 protein family.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lang Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
73
|
Tsai HC, Chen YH, Yen CM, Chung LY, Wann SR, Lee SSJ, Chen YS. Dexamethasone Downregulates Expressions of 14-3-3β and γ-Isoforms in Mice with Eosinophilic Meningitis Caused by Angiostrongylus cantonensis Infection. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:249-256. [PMID: 31284347 PMCID: PMC6616158 DOI: 10.3347/kjp.2019.57.3.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/09/2019] [Indexed: 11/23/2022]
Abstract
Steroids are commonly used in patients with eosinophilic meningitis caused by A. cantonensis infections. The mechanism steroids act on eosinophilic meningitis remains unclear. In this mouse experiments, expressions of 14-3-3 isoform β and γ proteins significantly increased in the CSF 2–3 weeks after the infection, but not increasedin the dexamethasone-treated group. Expression of 14-3-3 β, γ, ɛ, and θ isoforms increased in brain meninges over the 3-week period after infection and decreased due to dexamethasone treatment. In conclusion, administration of dexamethasone in mice with eosinophilic meningitis decreased expressions of 14-3-3 isoform proteins in the CSF and in brain meninges.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.,Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsin Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan
| | - Chuan-Min Yen
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Yu Chung
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shue-Ren Wann
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan
| | - Susan Shin-Jung Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan
| | - Yao-Shen Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
74
|
Khalesi N, Bandehpour M, Bigdeli MR, Niknejad H, Dabbagh A, Kazemi B. 14-3-3ζ protein protects against brain ischemia/reperfusion injury and induces BDNF transcription after MCAO in rat. J Appl Biomed 2019; 17:99-106. [PMID: 34907731 DOI: 10.32725/jab.2019.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/15/2019] [Indexed: 12/27/2022] Open
Abstract
Brain ischemia is a leading cause of death and disability worldwide that occurs when blood supply of the brain is disrupted. Brain-derived neurotrophic factor (BDNF) is a protective factor in neurodegenerative conditions. Nevertheless, there are some problems when exogenous BDNF is to be used in the clinic. 14-3-3ζ is a pro-survival highly-expressed protein in the brain that protects neurons against death. This study evaluates 14-3-3ζ effects on BDNF transcription at early time point after ischemia and its possible protective effects against ischemia damage. Human 14-3-3ζ protein was purified after expression. Rats were assigned into four groups, including sham, ischemia, and two treatment groups. Stereotaxic cannula implantation was carried out in the right cerebral ventricle. After one week, rats underwent middle cerebral artery occlusion (MCAO) surgery and received 14-3-3ζ (produced in our laboratory or standard form as control) in the middle of ischemia time. At 6 h of reperfusion after ischemia, brain parts containing the hippocampus, the cortex, the piriform cortex-amygdala and the striatum were collected for real time PCR analysis. At 24 h of reperfusion after ischemia, neurological function evaluation and infarction volume measurement were performed. The present study showed that 14-3-3ζ could up-regulate BDNF mRNA at early time point after ischemia in the hippocampus, in the cortex and in the piriform cortex-amygdala and could also improve neurological outcome and reduce infarct volume. It seems that 14-3-3ζ could be a candidate factor for increasing endogenous BDNF in the brain and a potential therapeutic factor against brain ischemia.
Collapse
Affiliation(s)
- Naeemeh Khalesi
- Shahid Beheshti University of Medical Sciences, School of Advanced Technologies in Medicine, Biotechnology Department, Tehran, Iran
| | - Mojgan Bandehpour
- Shahid Beheshti University of Medical Sciences, Cellular and Molecular Biology Research Center, Tehran, Iran
| | - Mohammad Reza Bigdeli
- Shahid Beheshti University, Faculty of Life Sciences and Biotechnology, Department of Animal Sciences and Biotechnology, Tehran, Iran.,Shahid Beheshti University, Institute for Cognitive and Brain Science, Tehran, Iran
| | - Hassan Niknejad
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| | - Ali Dabbagh
- Shahid Beheshti University of Medical Sciences, Anesthesiology Research Center, Tehran, Iran
| | - Bahram Kazemi
- Shahid Beheshti University of Medical Sciences, School of Advanced Technologies in Medicine, Biotechnology Department, Tehran, Iran.,Shahid Beheshti University of Medical Sciences, Cellular and Molecular Biology Research Center, Tehran, Iran
| |
Collapse
|
75
|
Cardona C, Benincore E, Pimentel N, Reyes LH, Patarroyo C, Rodríguez-López A, Martin-Rufian M, Barrera LA, Alméciga-Díaz CJ. Identification of the iduronate-2-sulfatase proteome in wild-type mouse brain. Heliyon 2019; 5:e01667. [PMID: 31193135 PMCID: PMC6517578 DOI: 10.1016/j.heliyon.2019.e01667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
Iduronate-2-sulfatase (IDS) is a lysosomal enzyme involved in the metabolism of the glycosaminoglycans heparan (HS) and dermatan (DS) sulfate. Mutations on IDS gene produce mucopolysaccharidosis II (MPS II), characterized by the lysosomal accumulation of HS and DS, leading to severe damage of the central nervous system (CNS) and other tissues. In this study, we used a neurochemistry and proteomic approaches to identify the brain distribution of IDS and its interacting proteins on wild-type mouse brain. IDS immunoreactivity showed a robust staining throughout the entire brain, suggesting an intracellular reactivity in nerve cells and astrocytes. By using affinity purification and mass spectrometry we identified 187 putative IDS partners-proteins, mainly hydrolases, cytoskeletal proteins, transporters, transferases, oxidoreductases, nucleic acid binding proteins, membrane traffic proteins, chaperons and enzyme modulators, among others. The interactions with some of these proteins were predicted by using bioinformatics tools and confirmed by co-immunoprecipitation analysis and Blue Native PAGE. In addition, we identified cytosolic IDS-complexes containing proteins from predicted highly connected nodes (hubs), with molecular functions including catalytic activity, redox balance, binding, transport, receptor activity and structural molecule activity. The proteins identified in this study would provide new insights about IDS physiological role into the CNS and its potential role in the brain-specific protein networks.
Collapse
Affiliation(s)
- Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Benincore
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis H Reyes
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.,Process and Product Design Group (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Camilo Patarroyo
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.,Chemistry Department, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - M Martin-Rufian
- Central Services Research Support, Proteomics Unit, Universidad de Malaga, Spain
| | - Luis Alejandro Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.,Clínica de Errores Innatos del Metabolismo, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
76
|
Smani D, Sarkar S, Raymick J, Kanungo J, Paule MG, Gu Q. Downregulation of 14-3-3 Proteins in a Kainic Acid-Induced Neurotoxicity Model. Mol Neurobiol 2019; 55:122-129. [PMID: 28840498 DOI: 10.1007/s12035-017-0724-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 14-3-3 proteins are among the most abundant proteins expressed in the brain, comprising about 1% of the total amount of soluble brain proteins. Through phosphoserine- and phosphothreonine-binding motifs, 14-3-3 proteins regulate many signaling proteins and cellular processes including cell death. In the present study, we utilized a well-known kainic acid (KA)-induced excitotoxicity rat model and examined the expression of 14-3-3 and its isoforms in the frontal cortex of KA-treated and control animals. Among the different 14-3-3 isoforms, abundant levels of eta and tau were detected in the frontal cortex, followed by sigma, epsilon, and gamma, while the expression levels of alpha/beta and zeta/delta isoforms were low. Compared to the control animals, KA treatment induced a significant downregulation of the overall 14-3-3 protein level as well as the levels of the abundant isoforms eta, tau, epsilon, and gamma. We also investigated two 14-3-3-interacting proteins that are involved in the cell death process: Bcl-2-associated X (BAX) and extracellular signal-regulated kinase (ERK). Both BAX and phosphorylated ERK showed increased levels following KA treatment. Together, these findings demonstrate an abundance of several 14-3-3 isoforms in the frontal cortex and that KA treatment can cause a downregulation of 14-3-3 expression and an upregulation of 14-3-3-interacting proteins BAX and phospho-ERK. Thus, downregulation of 14-3-3 proteins could be one of the early molecular events associated with excitotoxicity. This could lead to subsequent upregulation of 14-3-3-binding proteins such as BAX and phospho-ERK that contribute to further downstream apoptosis processes, eventually leading to cell death. Maintaining sufficient levels of 14-3-3 expression and function may become a target of therapeutic intervention for excitotoxicity-induced neurodegeneration.
Collapse
Affiliation(s)
- Danyal Smani
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - James Raymick
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
77
|
14-3-3/Tau Interaction and Tau Amyloidogenesis. J Mol Neurosci 2019; 68:620-630. [PMID: 31062171 DOI: 10.1007/s12031-019-01325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/22/2019] [Indexed: 01/02/2023]
Abstract
The major function of microtubule-associated protein tau is to promote microtubule assembly in the central nervous system. However, aggregation of abnormally phosphorylated tau is a hallmark of tauopathies. Although the molecular mechanisms of conformational transitions and assembling of tau molecules into amyloid fibril remain largely unknown, several factors have been shown to promote tau aggregation, including mutations, polyanions, phosphorylation, and interactions with other proteins. 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are mainly expressed in the central nervous system. Being a scaffolding protein, 14-3-3 proteins interact with tau and regulate tau phosphorylation by bridging tau with various protein kinases. 14-3-3 proteins also directly regulate tau aggregation via specific and non-specific interactions with tau. In this review, we summarize recent advances in characterization of tau conformation and tau/14-3-3 interaction. We discuss the connection between 14-3-3 binding and tau aggregation with a special emphasis on the regulatory role of 14-3-3 on tau conformation.
Collapse
|
78
|
George G, Valiya Parambath S, Lokappa SB, Varkey J. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes. Gene 2019; 697:67-77. [DOI: 10.1016/j.gene.2019.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/12/2019] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
|
79
|
Weinert M, Millet A, Jonas EA, Alavian KN. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β. FASEB J 2019; 33:8925-8934. [PMID: 31034784 PMCID: PMC6988861 DOI: 10.1096/fj.201802754r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial metabolic plasticity is a key adaptive mechanism in response to changes in cellular metabolic demand. Changes in mitochondrial metabolic efficiency have been linked to pathophysiological conditions, including cancer, neurodegeneration, and obesity. The ubiquitously expressed DJ-1 (Parkinsonism-associated deglycase) is known as a Parkinson's disease gene and an oncogene. The pleiotropic functions of DJ-1 include reactive oxygen species scavenging, RNA binding, chaperone activity, endocytosis, and modulation of major signaling pathways involved in cell survival and metabolism. Nevertheless, how these functions are linked to the role of DJ-1 in mitochondrial plasticity is not fully understood. In this study, we describe an interaction between DJ-1 and 14-3-3β that regulates the localization of DJ-1, in a hypoxia-dependent manner, either to the cytosol or to mitochondria. This interaction acts as a modulator of mitochondrial metabolic efficiency and a switch between glycolysis and oxidative phosphorylation. Modulation of this novel molecular mechanism of mitochondrial metabolic efficiency is potentially involved in the neuroprotective function of DJ-1 as well as its role in proliferation of cancer cells.-Weinert, M., Millet, A., Jonas, E. A., Alavian, K. N. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β.
Collapse
Affiliation(s)
- Maria Weinert
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aurelie Millet
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Elizabeth A Jonas
- Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom.,Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
80
|
Lu YC, Wang P, Wu QG, Zhang RK, Kong A, Li YF, Lee SC. Hsp74/14-3-3σ Complex Mediates Centrosome Amplification by High Glucose, Insulin, and Palmitic Acid. Proteomics 2019; 19:e1800197. [PMID: 30688006 DOI: 10.1002/pmic.201800197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/26/2018] [Indexed: 01/08/2023]
Abstract
It has been reported recently that type 2 diabetes promotes centrosome amplification via 14-3-3σ/ROCK1 complex. In the present study, 14-3-3σ interacting proteins are characterized and their roles in the centrosome amplification by high glucose, insulin, and palmitic acid are investigated. Co-immunoprecipitation in combination with MS analysis identified 134 proteins that interact with 14-3-3σ, which include heat shock 70 kDa protein 4 (Hsp74). Gene ontology analyses reveal that many of them are enriched in binding activity. Kyoto Encyclopedia of Genes and Genomes analysis shows that the top three enriched pathways are ribosome, carbon metabolism, and biosynthesis of amino acids. Molecular and functional investigations show that the high glucose, insulin, and palmitic acid increase the expression and binding of 14-3-3σ and Hsp74 as well as centrosome amplification, all of which are inhibited by knockdown of 14-3-3σ or Hsp74. Moreover, molecular docking analysis shows that the interaction between the 14-3-3σ and the Hsp74 is mainly through hydrophobic contacts and a lesser degree ionic interactions and hydrogen bond by different amino acids residues. In conclusion, the results suggest that the experimental treatment triggers centrosome amplification via upregulations of expression and binding of 14-3-3σ and Hsp74.
Collapse
Affiliation(s)
- Yu Cheng Lu
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China.,Central Laboratory, Linyi People's Hospital, Linyi, Shandong, 276000, P. R. China
| | - Pu Wang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Qi Gui Wu
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Rui Kai Zhang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Alice Kong
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, P. R. China
| | - Yuan Fei Li
- Department of Oncology, First Clinical Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Shao Chin Lee
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China.,School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221010, P. R. China
| |
Collapse
|
81
|
Tsai HC, Chen YH, Yen CM, Lee SSJ, Chen YS. Increased 14-3-3β and γ protein isoform expressions in parasitic eosinophilic meningitis caused by Angiostrongylus cantonensis infection in mice. PLoS One 2019; 14:e0213244. [PMID: 30845271 PMCID: PMC6405114 DOI: 10.1371/journal.pone.0213244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/19/2019] [Indexed: 11/28/2022] Open
Abstract
The 14-3-3 proteins are cerebrospinal fluid (CSF) markers of neuronal damage during infectious meningitis and Creutzfeldt-Jakob disease. Little is known about dynamic changes in the individual isoforms in response to parasitic eosinophilic meningitis. The purposes of this study were to determine the 14-3-3 protein isoform patterns, examine the kinetics and correlate the severity of blood brain barrier (BBB) damage with the expressions of these markers in mice with eosinophilic meningitis. Mice were orally infected with 50 A. cantonensis L3 via an oro-gastric tube and sacrificed every week for 3 consecutive weeks after infection. The Evans blue method and BBB junctional protein expressions were used to measure changes in the BBB. Hematoxylin and eosin staining was used to analyze pathological changes in the mice brains following 1–3 weeks of infection with A. cantonensis. The levels of 14-3-3 protein isoforms in serum/CSF and brain homogenates were analyzed by Western blot, and immunohistochemistry (IHC) was used to explore the different isoform distributions of 14-3-3 proteins and changes in BBB junctional proteins in the mice brain meninges. Dexamethasone was injected intraperitoneally from the seventh day post infection (dpi) until the end of the study (21 dpi) to study the changes in BBB junctional proteins. The amounts of Evans blue, tight junction and 14-3-3 protein isoforms in the different groups of mice were compared using the nonparametric Kruskal-Wallis test. There were significant increases in 14-3-3 protein isoforms β and γ in the CSF in the second and third weeks after infection compared to the controls and first week of infection, which were correlated with the severity of BBB damage in brain histology, and Evans blue extravasation. Using IHC to assess the distribution of 14-3-3 protein isoforms and changes in BBB junctional proteins in the mice brain meninges, the expressions of isoforms β, γ, ε, and θ and junctional proteins occludin and claudin-5 in the brain meninges increased over a 3-week period after infection compared to the controls and 1 week after infection. The administration of dexamethasone decreased the expressions of BBB junctional proteins occludin and claudin-5 in the mice brain meninges. Our findings support that 14-3-3 proteins β and γ can potentially be used as a CSF marker of neuronal damage in parasitic eosinophilic meningitis caused by A. cantonensis.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.
- * E-mail:
| | - Yu-Hsin Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Chuan-Min Yen
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.
| | - Susan Shin-Jung Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Yao-Shen Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| |
Collapse
|
82
|
Elorza-Vidal X, Gaitán-Peñas H, Estévez R. Chloride Channels in Astrocytes: Structure, Roles in Brain Homeostasis and Implications in Disease. Int J Mol Sci 2019; 20:ijms20051034. [PMID: 30818802 PMCID: PMC6429410 DOI: 10.3390/ijms20051034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/29/2022] Open
Abstract
Astrocytes are the most abundant cell type in the CNS (central nervous system). They exert multiple functions during development and in the adult CNS that are essential for brain homeostasis. Both cation and anion channel activities have been identified in astrocytes and it is believed that they play key roles in astrocyte function. Whereas the proteins and the physiological roles assigned to cation channels are becoming very clear, the study of astrocytic chloride channels is in its early stages. In recent years, we have moved from the identification of chloride channel activities present in astrocyte primary culture to the identification of the proteins involved in these activities, the determination of their 3D structure and attempts to gain insights about their physiological role. Here, we review the recent findings related to the main chloride channels identified in astrocytes: the voltage-dependent ClC-2, the calcium-activated bestrophin, the volume-activated VRAC (volume-regulated anion channel) and the stress-activated Maxi-Cl−. We discuss key aspects of channel biophysics and structure with a focus on their role in glial physiology and human disease.
Collapse
Affiliation(s)
- Xabier Elorza-Vidal
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Centro de Investigación en red de enfermedades raras (CIBERER), ISCIII, 08907 Barcelona, Spain.
| | - Héctor Gaitán-Peñas
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Centro de Investigación en red de enfermedades raras (CIBERER), ISCIII, 08907 Barcelona, Spain.
| | - Raúl Estévez
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Centro de Investigación en red de enfermedades raras (CIBERER), ISCIII, 08907 Barcelona, Spain.
| |
Collapse
|
83
|
Cresto N, Gardier C, Gubinelli F, Gaillard MC, Liot G, West AB, Brouillet E. The unlikely partnership between LRRK2 and α-synuclein in Parkinson's disease. Eur J Neurosci 2019; 49:339-363. [PMID: 30269383 PMCID: PMC6391223 DOI: 10.1111/ejn.14182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Our understanding of the mechanisms underlying Parkinson's disease, the once archetypical nongenetic neurogenerative disorder, has dramatically increased with the identification of α-synuclein and LRRK2 pathogenic mutations. While α-synuclein protein composes the aggregates that can spread through much of the brain in disease, LRRK2 encodes a multidomain dual-enzyme distinct from any other protein linked to neurodegeneration. In this review, we discuss emergent datasets from multiple model systems that suggest these unlikely partners do interact in important ways in disease, both within cells that express both LRRK2 and α-synuclein as well as through more indirect pathways that might involve neuroinflammation. Although the link between LRRK2 and disease can be understood in part through LRRK2 kinase activity (phosphotransferase activity), α-synuclein toxicity is multilayered and plausibly interacts with LRRK2 kinase activity in several ways. We discuss common protein interactors like 14-3-3s that may regulate α-synuclein and LRRK2 in disease. Finally, we examine cellular pathways and outcomes common to both mutant α-synuclein expression and LRRK2 activity and points of intersection. Understanding the interplay between these two unlikely partners in disease may provide new therapeutic avenues for PD.
Collapse
Affiliation(s)
- Noémie Cresto
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Camille Gardier
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Géraldine Liot
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Andrew B. West
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States 35294
| | - Emmanuel Brouillet
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
84
|
Region-specific inhibition of 14-3-3 proteins induces psychomotor behaviors in mice. NPJ SCHIZOPHRENIA 2019; 5:1. [PMID: 30643138 PMCID: PMC6386769 DOI: 10.1038/s41537-018-0069-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 01/23/2023]
Abstract
The 14-3-3 family of proteins is genetically linked to several psychiatric disorders, including schizophrenia. Our 14-3-3 functional knockout (FKO) mice, as well as other 14-3-3 knockout models, have been shown to exhibit behavioral endophenotypes related to schizophrenia. While specific forebrain regions, such as the prefrontal cortex (PFC) and hippocampus (HP), have been implicated in schizophrenic pathophysiology, the role of these brain regions in the top-down control of specific schizophrenia-associated behaviors has not been examined. Here, we used an adeno-associated virus (AAV) delivered shRNA to knock down the expression of the 14-3-3-inhibitor transgene, thus selectively restoring the function of 14-3-3 in the forebrain of the 14-3-3 FKO mice, we found that injection of the AAV-shRNA into both the PFC and the HP is necessary to attenuate psychomotor activity of the 14-3-3 FKO mice. Furthermore, we found that acute inhibition of 14-3-3, through the delivery of an AAV expressing the 14-3-3 inhibitor to both the PFC and HP, can trigger psychomotor agitation. Interestingly, when assessing the two brain regions separately, we determined that AAV-mediated expression of the 14-3-3 inhibitor specifically within the HP alone is sufficient to induce several behavioral deficits including hyperactivity, impaired associative learning and memory, and reduced sensorimotor gating. In addition, we show that post-synaptic NMDA receptor levels are regulated by acute 14-3-3 manipulations. Taken together, findings from this study directly link 14-3-3 inhibition in specific forebrain regions to certain schizophrenia-associated endophenotypes.
Collapse
|
85
|
Gigante A, Grad JN, Briels J, Bartel M, Hoffmann D, Ottmann C, Schmuck C. A new class of supramolecular ligands stabilizes 14-3-3 protein-protein interactions by up to two orders of magnitude. Chem Commun (Camb) 2019; 55:111-114. [PMID: 30515494 DOI: 10.1039/c8cc07946c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the first supramolecular stabilizers of the interaction between 14-3-3ζ and two of its effectors, Tau and C-Raf, which are involved in neurodegenerative diseases and proliferative signal transduction, respectively. These supramolecular ligands open up an opportunity to modulate functions of 14-3-3 with these effectors.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry, University of Duisburg Essen, Universitätstr. 7, 45141, Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
86
|
Deng Y, Jiang B, Rankin CL, Toyo-Oka K, Richter ML, Maupin-Furlow JA, Moskovitz J. Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain. Free Radic Biol Med 2018; 129:600-607. [PMID: 30096435 PMCID: PMC6249068 DOI: 10.1016/j.freeradbiomed.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
The methionine sulfoxide reductase (Msr) system is known for its function in reducing protein-methionine sulfoxide to methionine. Recently, we showed that one member of the Msr system, MsrA, is involved in the ubiquitination-like process in Archaea. Here, the mammalian MsrA is demonstrated to mediate the ubiquitination of the 14-3-3 zeta protein and to promote the binding of 14-3-3 proteins to alpha synuclein in brain. MsrA was also found to enhance the ubiquitination and phosphorylation of Ser129 of alpha synuclein in brain. Furthermore, we demonstrate that, similarly to the archaeal MsrA, the mammalian MsrA can compete for capturing ubiquitin using the same active site it contains for methionine sulfoxide binding. Based on our previous observations showing that MsrA knockout mice have elevated expression levels of dopamine and 14-3-3 zeta and our current data, we propose that MsrA-dependent 14-3-3 zeta ubiquitination affects the regulation of alpha synuclein degradation and dopamine synthesis in the brain.
Collapse
Affiliation(s)
- Yue Deng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Beichen Jiang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Carolyn L Rankin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 186, Philadelphia, PA 19129, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Mark L Richter
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Julie A Maupin-Furlow
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 186, Philadelphia, PA 19129, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0700, USA.
| |
Collapse
|
87
|
Activity-dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase Rab11. Proc Natl Acad Sci U S A 2018; 115:E10177-E10186. [PMID: 30301801 PMCID: PMC6205440 DOI: 10.1073/pnas.1809189115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The maintenance of neurotransmission by synaptic vesicle (SV) recycling is critical to brain function. The dominant SV recycling mode during intense activity is activity-dependent bulk endocytosis (ADBE), suggesting it will perform a pivotal role in neurotransmission. However, the role of ADBE is still undetermined, due to the absence of identified molecules specific for this process. The determination of the bulk endosome proteome (a key ADBE organelle) revealed that it has a unique molecular signature and identified a role for Rab11 in presynaptic function. This work provides the molecular inventory of ADBE, a resource that will be of significant value to researchers wishing to modulate neurotransmission during intense neuronal activity in both health and disease. Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle endocytosis during high-frequency stimulation, suggesting it should play key roles in neurotransmission during periods of intense neuronal activity. However, efforts in elucidating the physiological role of ADBE have been hampered by the lack of identified molecules which are unique to this endocytosis mode. To address this, we performed proteomic analysis on purified bulk endosomes, which are a key organelle in ADBE. Bulk endosomes were enriched via two independent approaches, a classical subcellular fractionation method and isolation via magnetic nanoparticles. There was a 77% overlap in proteins identified via the two protocols, and these molecules formed the ADBE core proteome. Bioinformatic analysis revealed a strong enrichment in cell adhesion and cytoskeletal and signaling molecules, in addition to expected synaptic and trafficking proteins. Network analysis identified Rab GTPases as a central hub within the ADBE proteome. Subsequent investigation of a subset of these Rabs revealed that Rab11 both facilitated ADBE and accelerated clathrin-mediated endocytosis. These findings suggest that the ADBE proteome will provide a rich resource for the future study of presynaptic function, and identify Rab11 as a regulator of presynaptic function.
Collapse
|
88
|
Protein-protein interactions reveal key canonical pathways, upstream regulators, interactome domains, and novel targets in ALS. Sci Rep 2018; 8:14732. [PMID: 30283000 PMCID: PMC6170493 DOI: 10.1038/s41598-018-32902-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Developing effective treatment strategies for neurodegenerative diseases require an understanding of the underlying cellular pathways that lead to neuronal vulnerability and progressive degeneration. To date, numerous mutations in 147 distinct genes are identified to be "associated" with, "modifier" or "causative" of amyotrophic lateral sclerosis (ALS). Protein products of these genes and their interactions helped determine the protein landscape of ALS, and revealed upstream modulators, key canonical pathways, interactome domains and novel therapeutic targets. Our analysis originates from known human mutations and circles back to human, revealing increased PPARG and PPARGC1A expression in the Betz cells of sALS patients and patients with TDP43 pathology, and emphasizes the importance of lipid homeostasis. Downregulation of YWHAZ, a 14-3-3 protein, and cytoplasmic accumulation of ZFYVE27 especially in diseased Betz cells of ALS patients reinforce the idea that perturbed protein communications, interactome defects, and altered converging pathways will reveal novel therapeutic targets in ALS.
Collapse
|
89
|
A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. Proc Natl Acad Sci U S A 2018; 115:10458-10463. [PMID: 30254177 DOI: 10.1073/pnas.1810823115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sleep is an evolutionally conserved behavior from vertebrates to invertebrates. The molecular mechanisms that determine daily sleep amounts and the neuronal substrates for homeostatic sleep need remain unknown. Through a large-scale forward genetic screen of sleep behaviors in mice, we previously demonstrated that the Sleepy mutant allele of the Sik3 protein kinase gene markedly increases daily nonrapid-eye movement sleep (NREMS) amounts and sleep need. The Sleepy mutation deletes the in-frame exon 13 encoding a peptide stretch encompassing S551, a known PKA recognition site in SIK3. Here, we demonstrate that single amino acid changes at SIK3 S551 (S551A and S551D) reproduce the hypersomnia phenotype of the Sleepy mutant mice. These mice exhibit increased NREMS amounts and inherently increased sleep need, the latter demonstrated by increased duration of individual NREMS episodes and higher EEG slow-wave activity during NREMS. At the molecular level, deletion or mutation at SIK3 S551 reduces PKA recognition and abolishes 14-3-3 binding. Our results suggest that the evolutionally conserved S551 of SIK3 mediates, together with PKA and 14-3-3, the intracellular signaling crucial for the regulation of daily sleep amounts and sleep need at the organismal level.
Collapse
|
90
|
Mueller KA, Glajch KE, Huizenga MN, Wilson RA, Granucci EJ, Dios AM, Tousley AR, Iuliano M, Weisman E, LaQuaglia MJ, DiFiglia M, Kegel-Gleason K, Vakili K, Sadri-Vakili G. Hippo Signaling Pathway Dysregulation in Human Huntington's Disease Brain and Neuronal Stem Cells. Sci Rep 2018; 8:11355. [PMID: 30054496 PMCID: PMC6063913 DOI: 10.1038/s41598-018-29319-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
The Hippo signaling pathway is involved in organ size regulation and tumor suppression. Although inhibition of Hippo leads to tumorigenesis, activation of Hippo may play a role in neurodegeneration. Specifically, activation of the upstream regulator, mammalian sterile 20 (STE20)-like kinase 1 (MST1), reduces activity of the transcriptional co-activator Yes-Associated Protein (YAP), thereby mediating oxidative stress-induced neuronal death. Here, we investigated the possible role of this pathway in Huntington's disease (HD) pathogenesis. Our results demonstrate a significant increase in phosphorylated MST1, the active form, in post-mortem HD cortex and in the brains of CAG knock-in HdhQ111/Q111 mice. YAP nuclear localization was also decreased in HD post-mortem cortex and in neuronal stem cells derived from HD patients. Moreover, there was a significant increase in phosphorylated YAP, the inactive form, in HD post-mortem cortex and in HdhQ111/Q111 brain. In addition, YAP was found to interact with huntingtin (Htt) and the chaperone 14-3-3, however this interaction was not altered in the presence of mutant Htt. Lastly, YAP/TEAD interactions and expression of Hippo pathway genes were altered in HD. Together, these results demonstrate that activation of MST1 together with a decrease in nuclear YAP could significantly contribute to transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Kaly A Mueller
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Kelly E Glajch
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Megan N Huizenga
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Remi A Wilson
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Eric J Granucci
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Amanda M Dios
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Adelaide R Tousley
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Maria Iuliano
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Elizabeth Weisman
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | | | - Marian DiFiglia
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Kimberly Kegel-Gleason
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | | | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA.
| |
Collapse
|
91
|
Hermann P, Laux M, Glatzel M, Matschke J, Knipper T, Goebel S, Treig J, Schulz-Schaeffer W, Cramm M, Schmitz M, Zerr I. Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance. Neurology 2018; 91:e331-e338. [DOI: 10.1212/wnl.0000000000005860] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
ObjectiveTo validate an amended protocol for clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) including real-time quaking-induced conversion (RT-QuIC) and to observe its use in CJD surveillance.MethodsIn the framework of a prospective epidemiologic study, all neuropathologically confirmed cases with sCJD who received CSF RT-QuIC analysis during diagnostic workup (n = 65) and a control group of individuals without CJD (n = 118) were selected to investigate the accuracy of an amended diagnostic protocol. The patients had been referred to the German National Reference Center for Transmissible Spongiform Encephalopathies. The influence of the amended protocol on incidence figures was evaluated in the context of 3 years of surveillance activity (screened cases using 14-3-3 test n = 18,789, highly suspicious cases of CJD n = 704). Annual incidences were calculated with current criteria and the amended protocol.ResultsThe amended protocol showed a sensitivity of 97% and a specificity of 99%. When it was applied to all suspected cases who were referred to the reference center, the assessed incidence of CJD increased from 1.7 to 2.2 per million in 2016.ConclusionCJD surveillance remains challenging because information from external health care institutions can be limited. RT-QuIC shows excellent diagnostic accuracy when applied in the clinical setting to symptomatic patients. Data for RT-QuIC alone when applied as a general screening test are not available yet. We propose an amended research protocol that improves early and accurate clinical diagnosis of sCJD during surveillance activities. The use of this protocol will probably lead to a significant increase of the incidence rate.Classification of evidenceThis study provides Class III evidence that for patients with suspected sCJD, criteria for clinical diagnosis plus the CSF RT-QuIC accurately identifies patients with sCJD (sensitivity 97%, specificity 99%).
Collapse
|
92
|
Ruland T, Wolbert J, Gottschalk MG, König S, Schulte-Mecklenbeck A, Minnerup J, Meuth SG, Groß CC, Wiendl H, Meyer Zu Hörste G. Cerebrospinal Fluid Concentrations of Neuronal Proteins Are Reduced in Primary Angiitis of the Central Nervous System. Front Neurol 2018; 9:407. [PMID: 29922220 PMCID: PMC5996103 DOI: 10.3389/fneur.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/17/2018] [Indexed: 11/14/2022] Open
Abstract
Primary angiitis of the central nervous system (PACNS) is a rare autoimmune vasculitis limited to the CNS often causing substantial disability. Understanding of this disease is impaired by the lack of available biomaterial. Here, we collected cerebrospinal fluid (CSF) from patients with PACNS and matched controls and performed unbiased proteomics profiling using ion mobility mass spectrometry to identify novel disease mechanisms and candidate biomarkers. We identified 14 candidate proteins, including amyloid-beta A4 protein (APP), with reduced abundance in the CSF of PACNS patients and validated APP by Enzyme-linked Immunosorbent Assay (ELISA) in an extended cohort of patients with PACNS. Subsequent functional annotation surprisingly suggested neuronal pathology rather than immune activation in PACNS. Our study is the first to employ mass spectrometry to local immune reactions in PACNS and it identifies candidates such as APP with pathogenic relevance in PACNS to improve patient care in the future.
Collapse
Affiliation(s)
- Tillmann Ruland
- Department of Neurology, University of Münster, Münster, Germany.,Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Jolien Wolbert
- Department of Neurology, University of Münster, Münster, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | | | - Jens Minnerup
- Department of Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Münster, Germany
| | - Catharina C Groß
- Department of Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | | |
Collapse
|
93
|
Caetano-Anolles K, Kim K, Kwak W, Sung S, Kim H, Choi BH, Lim D. Genome sequencing and protein domain annotations of Korean Hanwoo cattle identify Hanwoo-specific immunity-related and other novel genes. BMC Genet 2018; 19:37. [PMID: 29843617 PMCID: PMC5975384 DOI: 10.1186/s12863-018-0623-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background Identification of genetic mechanisms and idiosyncrasies at the breed-level can provide valuable information for potential use in evolutionary studies, medical applications, and breeding of selective traits. Here, we analyzed genomic data collected from 136 Korean Native cattle, known as Hanwoo, using advanced statistical methods. Results Results revealed Hanwoo-specific protein domains which were largely characterized by immunoglobulin function. Furthermore, domain interactions of novel Hanwoo-specific genes reveal additional links to immunity. Novel Hanwoo-specific genes linked to muscle and other functions were identified, including protein domains with functions related to energy, fat storage, and muscle function that may provide insight into the mechanisms behind Hanwoo cattle’s uniquely high percentage of intramuscular fat and fat marbling. Conclusion The identification of Hanwoo-specific genes linked to immunity are potentially useful for future medical research and selective breeding. The significant genomic variations identified here can crucially identify genetic novelties that are arising from useful adaptations. These results will allow future researchers to compare and classify breeds, identify important genetic markers, and develop breeding strategies to further improve significant traits. Electronic supplementary material The online version of this article (10.1186/s12863-018-0623-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelsey Caetano-Anolles
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Kwondo Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea
| | - Woori Kwak
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea.,CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Samsun Sung
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea.,Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 77 Chuksan-gil, Kwonsun-gu, Suwon, 441-706, Republic of Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 77 Chuksan-gil, Kwonsun-gu, Suwon, 441-706, Republic of Korea.
| |
Collapse
|
94
|
Wakabayashi K, Umahara T, Hirokawa K, Hanyu H, Uchihara T. 14-3-3 protein sigma isoform co-localizes with phosphorylated α-synuclein in Lewy bodies and Lewy neurites in patients with Lewy body disease. Neurosci Lett 2018; 674:171-175. [DOI: 10.1016/j.neulet.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
|
95
|
Liu H, Wang H, Zhu H, Zhang H, Liu S. Preliminary study of protein changes in trisomy 21 fetus by proteomics analysis in amniocyte. Prenat Diagn 2018; 38:435-444. [PMID: 29611199 DOI: 10.1002/pd.5259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/07/2018] [Accepted: 03/26/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Hui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - He Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - Hongmei Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - Haixia Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - Shanling Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| |
Collapse
|
96
|
14-3-3 Proteins in Glutamatergic Synapses. Neural Plast 2018; 2018:8407609. [PMID: 29849571 PMCID: PMC5937437 DOI: 10.1155/2018/8407609] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
The 14-3-3 proteins are a family of proteins that are highly expressed in the brain and particularly enriched at synapses. Evidence accumulated in the last two decades has implicated 14-3-3 proteins as an important regulator of synaptic transmission and plasticity. Here, we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins at glutamatergic synapses. A key challenge for the future is to delineate the 14-3-3-dependent molecular pathways involved in regulating synaptic functions.
Collapse
|
97
|
Kakurina GV, Kolegova ES, Kondakova IV. Adenylyl Cyclase-Associated Protein 1: Structure, Regulation, and Participation in Cellular Processes. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534668 DOI: 10.1134/s0006297918010066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review summarizes information available to date about the structural organization, regulation of functional activity of adenylyl cyclase-associated protein 1 (CAP1), and its participation in cellular processes. Numerous data are generalized on the role of CAP1 in the regulation of actin cytoskeleton and its interactions with many actin-binding proteins. Attention is drawn to the similarity of the structure of CAP1 and its contribution to the remodeling of actin filaments in prokaryotes and eukaryotes, as well as to the difference in the interaction of CAP1 with adenylyl cyclase in these cells. In addition, we discuss the participation of CAP1 in various pathological processes.
Collapse
Affiliation(s)
- G V Kakurina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| | | | | |
Collapse
|
98
|
Cornell B, Wachi T, Zhukarev V, Toyo-Oka K. Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin. Hum Mol Genet 2018; 25:4405-4418. [PMID: 28173130 DOI: 10.1093/hmg/ddw270] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
17p13.3 microduplication syndrome is a newly identified genetic disorder characterized by duplications in the 17p13.3 chromosome locus, resulting in a variety of disorders including autism spectrum disorder (ASD). Importantly, a minimum duplication region has been defined, and this region exclusively contains the gene encoding 14-3-3ε. Furthermore, duplication of this minimum region is strongly associated with the appearance of ASD in human patients, thus implicating the overexpression of 14-3-3ε in ASD. Using in vitro and in vivo techniques, we have found that 14-3-3ε binds to the microtubule binding protein doublecortin preventing its degradation. We also found that 14-3-3ε overexpression disrupts neurite formation by preventing the invasion of microtubules into primitive neurites, which can be rescued by the knockdown of doublecortin. To analyse the function of 14-3-3ε in neurite formation, we used 14-3-3ε flox mice and found that 14-3-3ε deficiency results in an increase in neurite formation. Our findings provide the first evidence of cellular pathology in 17p13.3 microduplication syndrome.
Collapse
Affiliation(s)
- Brett Cornell
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA USA
| | - Tomoka Wachi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA USA
| | - Vladimir Zhukarev
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA USA
| |
Collapse
|
99
|
Ehlers M, Grad JN, Mittal S, Bier D, Mertel M, Ohl L, Bartel M, Briels J, Heimann M, Ottmann C, Sanchez-Garcia E, Hoffmann D, Schmuck C. Rational Design, Binding Studies, and Crystal-Structure Evaluation of the First Ligand Targeting the Dimerization Interface of the 14-3-3ζ Adapter Protein. Chembiochem 2018; 19:591-595. [DOI: 10.1002/cbic.201700588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Martin Ehlers
- Institute of Organic Chemistry; University of Duisburg-Essen (Germany); Universitätsstrasse 7 45141 Essen Germany
| | - Jean-Noël Grad
- Department of Bioinformatics and Computational Biophysics; ZMB/Faculty of Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Sumit Mittal
- Computational Biochemistry; University of Duisburg-Essen; Universitätsstrasse 3 45141 Essen Germany
| | - David Bier
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
| | - Marcel Mertel
- Institute of Organic Chemistry; University of Duisburg-Essen (Germany); Universitätsstrasse 7 45141 Essen Germany
| | - Ludwig Ohl
- Department of Bioinformatics and Computational Biophysics; ZMB/Faculty of Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Maria Bartel
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
- Department of Biomedical Engineering and; Institute for Complex Molecular Systems; Technische Universiteit Eindhoven; P. O. Box 513 5600 MB Eindhoven Netherlands
| | - Jeroen Briels
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
- Department of Biomedical Engineering and; Institute for Complex Molecular Systems; Technische Universiteit Eindhoven; P. O. Box 513 5600 MB Eindhoven Netherlands
| | - Marius Heimann
- Institute of Organic Chemistry; University of Duisburg-Essen (Germany); Universitätsstrasse 7 45141 Essen Germany
| | - Christian Ottmann
- Department of Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45141 Essen Germany
- Department of Biomedical Engineering and; Institute for Complex Molecular Systems; Technische Universiteit Eindhoven; P. O. Box 513 5600 MB Eindhoven Netherlands
| | - Elsa Sanchez-Garcia
- Computational Biochemistry; University of Duisburg-Essen; Universitätsstrasse 3 45141 Essen Germany
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics; ZMB/Faculty of Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Carsten Schmuck
- Institute of Organic Chemistry; University of Duisburg-Essen (Germany); Universitätsstrasse 7 45141 Essen Germany
| |
Collapse
|
100
|
Choe S, Cai M, Jerng UM, Lee JH. The Efficacy and Underlying Mechanism of Moxibustion in Preventing Cognitive Impairment: A Systematic Review of Animal Studies. Exp Neurobiol 2018. [PMID: 29535565 PMCID: PMC5840457 DOI: 10.5607/en.2018.27.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive impairment is age-related and manageable only with early diagnosis and prevention. Moxibustion is widely accepted in East Asia as useful for preventing cognitive impairment. This systematic review of animal studies was conducted to verify the efficacy of moxibustion in preventing cognitive impairment and to elucidate the underlying mechanism. Randomized controlled animal trials that established the efficacy of moxibustion in preventing cognitive impairment were included in the analysis. Results of behavioral tests and the signaling pathways elucidated were extracted and a meta-analysis was conducted with the behavioral test results. The risk of bias was evaluated using 9 items, and reporting quality was evaluated using the ARRIVE (Animal Research: Reporting In Vivo Experiments) Guidelines Checklist. Ten trials involving 410 animals met the inclusion criteria. All studies reported the benefit of moxibustion in preventing cognitive deficits caused by Alzheimer's disease (AD). Among five studies using the Morris water maze test, a significant effect of moxibustion in decreasing the escape time was reported in three studies, increasing the crossing times in four studies, and prolonging the dwelling time in two studies. The effects of moxibustion were demonstrated to be mediated by an increase in the activity of neurotrophins and heat shock protein, modulation of the cell cycle, and suppression of apoptosis and inflammation. However, considering the small number of included studies, the lack of studies investigating entire signaling pathways, and a high risk of bias and low reporting quality, our results need to be confirmed through more detailed studies.
Collapse
Affiliation(s)
- Seon Choe
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Korean Medicine Life Science, University of Science & Technology (UST), Campus of Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Mudan Cai
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Ui Min Jerng
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju 26339, Korea
| | - Jun-Hwan Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Korean Medicine Life Science, University of Science & Technology (UST), Campus of Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| |
Collapse
|