51
|
Shoubridge AP, Choo JM, Martin AM, Keating DJ, Wong ML, Licinio J, Rogers GB. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry 2022; 27:1908-1919. [PMID: 35236957 DOI: 10.1038/s41380-022-01479-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
The gut microbiome exerts a considerable influence on human neurophysiology and mental health. Interactions between intestinal microbiology and host regulatory systems have now been implicated both in the development of psychiatric conditions and in the efficacy of many common therapies. With the growing acceptance of the role played by the gut microbiome in mental health outcomes, the focus of research is now beginning to shift from identifying relationships between intestinal microbiology and pathophysiology, and towards using this newfound insight to improve clinical outcomes. Here, we review recent advances in our understanding of gut microbiome-brain interactions, the mechanistic underpinnings of these relationships, and the ongoing challenge of distinguishing association and causation. We set out an overarching model of the evolution of microbiome-CNS interaction and examine how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner.
Collapse
Affiliation(s)
- Andrew P Shoubridge
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alyce M Martin
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Damien J Keating
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.,Department of Psychiatry, Flinders University College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
52
|
Chang L, Wei Y, Hashimoto K. Brain Research Bulletin: Special Issue: Brain–body communication in health and diseases, Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res Bull 2022; 182:44-56. [DOI: 10.1016/j.brainresbull.2022.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022]
|
53
|
Liu P, Gao M, Liu Z, Zhang Y, Tu H, Lei L, Wu P, Zhang A, Yang C, Li G, Sun N, Zhang K. Gut Microbiome Composition Linked to Inflammatory Factors and Cognitive Functions in First-Episode, Drug-Naive Major Depressive Disorder Patients. Front Neurosci 2022; 15:800764. [PMID: 35153660 PMCID: PMC8831735 DOI: 10.3389/fnins.2021.800764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/30/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The microbiota-gut-brain axis, especially the inflammatory pathway, may play a critical role in the pathogenesis of cognitive impairment in major depressive disorder (MDD). However, studies on the microbiota-inflammatory-cognitive function axis in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and explore the correlation between gut microbiota and inflammatory factors, cognitive function in MDD patients. METHOD Study participants included 66 first-episode, drug naïve MDD patients as well as 43 healthy subjects (HCs). The composition of fecal microbiota was evaluated using16S rRNA sequencing and bioinformatics analysis. The cytokines such as hs-CRP, IL-1β, IL-6, IL-10, and TNF-α in peripheral blood were detected via enzyme linked immunosorbent assay (ELISA); assessment of cognitive functions was performed using the Color Trail Test (CTT), The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Stroop Color-Word Test (SCWT). RESULTS We found that compared with HCs, MDD patients had cognitive impairments and showed different α-diversity and β-diversity of gut microbiota composition. LDA effect size (LEfSe) analysis found MDD have higher Deinococcaceae and lower Bacteroidaceae, Turicibacteraceae, Clostridiaceae and Barnesiellaceae at family level. Deinococcus and Odoribacter was higher in the MDD group, however, Bacteroides, Alistipes, Turicibacter, Clostridium, Roseburia, and Enterobacter were lower at genus level. Furthermore, In MDD patients, the Bacteroidaceae and Bacteroides were both positively correlated with hsCRP, CCT1, CCT2. Alistipes was positively correlated with IL-6, Word time, Color time, Word-Color time, Color-Word time and negatively correlated with Delayed Memory, Total score and Standardized score. Turicibacteraceae and Turicibacter were both negatively correlated with IL-1β and IL-6. CONCLUSION The present findings confirm that the gut microbiota in MDD patients have altered gut microbes that are closely associated with inflammatory factors and cognitive function in MDD patients.
Collapse
Affiliation(s)
- Penghong Liu
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Mingxue Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Tu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Lei
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Peiyi Wu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaizhi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
54
|
Zhang Y, Huang J, Xiong Y, Zhang X, Lin Y, Liu Z. Jasmine Tea Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-like Behavior in Rats via the Gut-Brain Axis. Nutrients 2021; 14:nu14010099. [PMID: 35010973 PMCID: PMC8746588 DOI: 10.3390/nu14010099] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The number of depressed people has increased worldwide. Dysfunction of the gut microbiota has been closely related to depression. The mechanism by which jasmine tea ameliorates depression via the brain-gut-microbiome (BGM) axis remains unclear. Here, the effects of jasmine tea on rats with depressive-like symptoms via the gut microbiome were investigated. We first established a chronic unpredictable mild stress (CUMS) rat model to induce depressive symptoms and measured the changes in depression-related indicators. Simultaneously, the changes in gut microbiota were investigated by 16S rRNA sequencing. Jasmine tea treatment improved depressive-like behaviors and neurotransmitters in CUMS rats. Jasmine tea increased the gut microbiota diversity and richness of depressed rats induced by CUMS. Spearman’s analysis showed correlations between the differential microbiota (Patescibacteria, Firmicutes, Bacteroidetes, Spirochaetes, Elusimicrobia, and Proteobacteria) and depressive-related indicators (BDNF, GLP-1, and 5-HT in the hippocampus and cerebral cortex). Combined with the correlation analysis of gut microbiota, the result indicated that jasmine tea could attenuate depression in rats via the brain- gut-microbiome axis.
Collapse
Affiliation(s)
- Yangbo Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yifan Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
| | - Xiangna Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Correspondence: ; Tel.: +86-0731-84635304
| |
Collapse
|
55
|
Guo Q, Lin H, Chen P, Tan S, Wen Z, Lin L, He J, Wen J, Lu S. Dynamic changes of intestinal flora in patients with irritable bowel syndrome combined with anxiety and depression after oral administration of enterobacteria capsules. Bioengineered 2021; 12:11885-11897. [PMID: 34923901 PMCID: PMC8810103 DOI: 10.1080/21655979.2021.1999374] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study investigated the clinical characteristics and dynamic changes of intestinal bacterial community to evaluate the curative effect of fecal microbiota transplantation (FMT) on irritable bowel syndrome with predominant diarrhea (IBS-D) comorbid with anxiety and depression. Total two treatments were designed in randomize-controlled trial includes oral FMT capsules with 1 week (A1), 8 weeks (A2), and 12 weeks (A3), as well as oral empty capsules with 1 week (B1), 8 weeks (B2), and 12 weeks (B3) as control for comparison. The positive therapeutic effects occurred in FMT colonized patient with IBS-D comorbid psychological disorder, demonstrated at alleviated IBS-D severity (IBS-SSS score from 291.11 reduced to 144.44), altered stool type (from 6 changed to 4), reduced anxiety and depression scores (from 18.33 to 8.39 and from 22.33 to 17.78) after FMT-treated 12 weeks. The FMT therapy improved bacterial alpha diversity and the majority bacterial community predominant by Bacteroidetes and Firmicutes, and the relative abundance (RA) was higher after FMT-treated 12 weeks (50.61% and 45.52%) than control (47.62% and 38.96%). In short, FMT therapy has great potential for IBS-D patients combined with anxiety and depression by alleviated clinical symptoms and restore the intestinal micro-ecology.
Collapse
Affiliation(s)
- Qingqing Guo
- Department of Intensive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hao Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China.,Department of Gastroenterology, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Pengcheng Chen
- Department of Health Management, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| | - Songlin Tan
- Department of Gastroenterology, Affiliated Ping Xiang Hospital, Southern Medical University, Pingxiang, Jiangxi, China
| | - Zhiyong Wen
- Department of Gastroenterology, Affiliated Ping Xiang Hospital, Southern Medical University, Pingxiang, Jiangxi, China
| | - Lijian Lin
- Department of Emergency, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianquan He
- School of Medicine, Xiamen University, Xiamen, China
| | - Jianbo Wen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Gastroenterology, Affiliated Ping Xiang Hospital, Southern Medical University, Pingxiang, Jiangxi, China
| | - Shiyun Lu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China.,Department of Gastroenterology, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| |
Collapse
|
56
|
Deng D, Su H, Song Y, Chen T, Sun Q, Jiang H, Zhao M. Altered Fecal Microbiota Correlated With Systemic Inflammation in Male Subjects With Methamphetamine Use Disorder. Front Cell Infect Microbiol 2021; 11:783917. [PMID: 34869080 PMCID: PMC8637621 DOI: 10.3389/fcimb.2021.783917] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Methamphetamine use disorder (MUD) is a major public health problem worldwide with limited effective treatment options. Previous studies have reported methamphetamine-associated alterations in gut microbiota. A potential role of gut microbiota in regulating methamphetamine-induced brain dysfunction through interactions with the host immune system has been proposed, but evidence for this hypothesis is limited. The present study aimed to investigate the alterations in the fecal microbiota and explore its relationship with systemic inflammation in MUD. Fecal samples were obtained from 26 male subjects with MUD and 17 sex- and age- matched healthy controls. Fecal microbial profiles were analyzed by 16S rRNA sequencing. Plasma inflammatory markers were measured using enzyme-linked immunosorbent assay. Associations between fecal microbiota, systemic inflammatory markers and clinical characteristics were examined by Spearman partial correlation analysis while controlling for possible confounders. Compared with healthy controls, individuals with MUD showed no difference in fecal microbial diversity, but exhibited differences in the relative abundance of several microbial taxa. At the genus level, a higher abundance of Collinsella, Odoribacter and Megasphaera and lower levels of Faecalibacterium, Blautia, Dorea and Streptococcus were detected in subjects with MUD. More importantly, altered fecal microbiota was found to be correlated with plasma levels of CRP, IL-2, IL-6 and IL-10. The order Lactobacillales, exhibiting lower abundance in participants with MUD, was positively related to the duration of methamphetamine abstinence and the plasma level of anti-inflammatory cytokine IL-10. This study is the first to provide evidence for a link between altered fecal microbiota and systemic inflammation in MUD. Further elucidation of interactions between gut microbiota and the host immune system may be beneficial for the development of novel therapeutic approaches for MUD.
Collapse
Affiliation(s)
- Di Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehong Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
57
|
Wang H, Tian X, Wang X, Wang Y. Evolution and Emerging Trends in Depression Research From 2004 to 2019: A Literature Visualization Analysis. Front Psychiatry 2021; 12:705749. [PMID: 34777037 PMCID: PMC8585938 DOI: 10.3389/fpsyt.2021.705749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
Depression has become a major threat to human health, and researchers around the world are actively engaged in research on depression. In order to promote closer research, the study of the global depression knowledge map is significant. This study aims to map the knowledge map of depression research and show the current research distribution, hotspots, frontiers, and trends in the field of depression research, providing researchers with worthwhile information and ideas. Based on the Web of Science core collection of depression research from 2004 to 2019, this study systematically analyzed the country, journal, category, author, institution, cited article, and keyword aspects using bibliometric and data visualization methods. A relationship network of depression research was established, highlighting the highly influential countries, journals, categories, authors, institutions, cited articles, and keywords in this research field. The study identifies great research potential in the field of depression, provides scientific guidance for researchers to find potential collaborations through collaboration networks and coexistence networks, and systematically and accurately presents the hotspots, frontiers, and shortcomings of depression research through the knowledge map of global research on depression with the help of information analysis and fusion methods, which provides valuable information for researchers and institutions to determine meaningful research directions.
Collapse
Affiliation(s)
- Hui Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuemei Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xianrui Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
58
|
Canbeyli R. Sensory Stimulation Via the Visual, Auditory, Olfactory and Gustatory Systems Can Modulate Mood and Depression. Eur J Neurosci 2021; 55:244-263. [PMID: 34708453 DOI: 10.1111/ejn.15507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2021] [Indexed: 11/28/2022]
Abstract
Depression is one of the most common mental disorders, predicted to be the leading cause of disease burden by the next decade. There is great deal of emphasis on the central origin and potential therapeutics of depression whereby the symptomatology of depression has been interpreted and treated as brain generated dysfunctions filtering down to the periphery. This top-down approach has found strong support from clinical work and basic neuroscientific research. Nevertheless, despite great advances in our knowledge of the etiology and therapeutics of depression, success in treatment is still by no means assured.. As a consequence, a wide net has been cast by both clinicians and researchers in search of more efficient therapies for mood disorders. As a complementary view, the present integrative review advocates approaching mood and depression from the opposite perspective: a bottom-up view that starts from the periphery. Specifically, evidence is provided to show that sensory stimulation via the visual, auditory, olfactory and gustatory systems can modulate depression. The review shows how -depending on several parameters- unisensory stimulation via these modalities can ameliorate or aggravate depressive symptoms. Moreover, the review emphasizes the bidirectional relationship between sensory stimulation and depression. Just as peripheral stimulation can modulate depression, depression in turn affects-and in most cases impairs-sensory reception. Furthermore, the review suggests that combined use of multisensory stimulation may have synergistic ameliorative effects on depressive symptoms over and above what has so far been documented for unisensory stimulation.
Collapse
Affiliation(s)
- Resit Canbeyli
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University
| |
Collapse
|
59
|
Chronic Rhinosinusitis and Alzheimer's Disease-A Possible Role for the Nasal Microbiome in Causing Neurodegeneration in the Elderly. Int J Mol Sci 2021; 22:ijms222011207. [PMID: 34681867 PMCID: PMC8541405 DOI: 10.3390/ijms222011207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Among millions of sufferers of chronic rhinosinusitis (CRS), the challenge is not only constantly coping with CRS-related symptoms, such as congested nose, sinus pain, and headaches, but also various complications, such as attention difficulties and possible depression. These complications suggest that neural activity in the central nervous system may be altered in those patients, leading to unexpected conditions, such as neurodegeneration in elderly patients. Recently, some studies linked the presence of CRS and cognitive impairments that could further develop into Alzheimer’s disease (AD). AD is the leading cause of dementia in the elderly and is characterised by progressive memory loss, cognitive behavioural deficits, and significant personality changes. The microbiome, especially those in the gut, has been recognised as a human organ and plays an important role in the development of various conditions, including AD. However, less attention has been paid to the microbiome in the nasal cavity. Increased nasal inflammatory responses due to CRS may be an initial event that changes local microbiome homeostasis, which may further affect neuronal integrity in the central nervous system resulting in AD. Evidence suggests a potential of β-amyloid deposition starting in olfactory neurons, which is then expanded from the nasal cavity to the central nervous system. In this paper, we reviewed currently available evidence that suggests this potential mechanism to advise the need to investigate the link between these two conditions.
Collapse
|
60
|
Takahashi E, Ono E. Differential effects of different diets on depressive-like phenotypes in C57BL/JJmsSLc mice. Physiol Behav 2021; 243:113623. [PMID: 34653499 DOI: 10.1016/j.physbeh.2021.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Identical mouse models tested using the same protocols in different laboratories can produce inconsistent results. Indeed, little information is available regarding suitable diets for mouse models of disease in the field of neuroscience. Thus, neuroscientists often select experimental diets based on personal judgment. Recent studies have reported a strong interaction between depression and gut microbiota. Furthermore, diets can impact the composition of the microbiota. To confirm whether diet influences the phenotype and gut microbiota of depressive mice, we examined the effects of two widely used commercial diets, non-purified (CRF-1) and semi-purified (AIN-93 G) commercial diets on behavior, plasma levels of corticosterone, and cecum microbiota at 1 and 5 weeks after restraint in repeatedly restrained mice. Exposure to repeated stress induced similar depression-like phenotypes 1 week after stress in CRF-1 and AIN-93 G fed mice. However, mice fed the AIN-93 G diet showed greater vulnerability than the others 5 weeks after restraint. The Firmicutes to Bacteroidetes ratio and α-diversity were lower in the cecum at 5 weeks after stress in mice fed the AIN-93 G diet compared to 1 week after stress in mice fed the AIN-93 G diet. These data suggest that diet type affects stress sensitivity via different gut microbiota and that diet selection is important in neuroscience research and data reproducibility.
Collapse
Affiliation(s)
- Eiki Takahashi
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
61
|
Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021; 109:3930-3953. [PMID: 34653349 DOI: 10.1016/j.neuron.2021.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Changes in the microbiota are associated with alterations in nervous system structure-function and behavior and have been implicated in the etiology of neuropsychiatric and neurodegenerative disorders. Most of these studies have centered on mammalian models due to their phylogenetic proximity to humans. Indeed, the germ-free mouse has been a particularly useful model organism for investigating microbiota-brain interactions. However, microbiota-brain axis research on simpler genetic model organisms with a vast and diverse scientific toolkit (zebrafish, Drosophila melanogaster, and Caenorhabditis elegans) is now also coming of age. In this review, we summarize the current state of microbiota-brain axis research in rodents and humans, and then we elaborate and discuss recent research on the neurobiological and behavioral effects of the microbiota in the model systems of fish, flies, and worms. We propose that a cross-species, holistic and mechanistic approach to unravel the microbiota-brain communication is an essential step toward rational microbiota-based therapeutics to combat brain disorders.
Collapse
|
62
|
Chen Y, Meng P, Cheng S, Jia Y, Wen Y, Yang X, Yao Y, Pan C, Li C, Zhang H, Zhang J, Zhang Z, Zhang F. Assessing the effect of interaction between C-reactive protein and gut microbiome on the risks of anxiety and depression. Mol Brain 2021; 14:133. [PMID: 34481527 PMCID: PMC8418706 DOI: 10.1186/s13041-021-00843-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Cumulative evidence shows that gut microbiome can influence brain function and behavior via the inflammatory processes. However, the role of interaction between gut dysbiosis and C-reactive protein (CRP) in the development of anxiety and depression remains to be elucidated. In this study, a total of 3321 independent single nucleotide polymorphism (SNP) loci associated with gut microbiome were driven from genome-wide association study (GWAS). Using individual level genotype data from UK Biobank, we then calculated the polygenetic risk scoring (PRS) of 114 gut microbiome related traits. Moreover, regression analysis was conducted to evaluate the possible effect of interaction between gut microbiome and CRP on the risks of Patient Health Questionnaire-9 (PHQ-9) (N = 113,693) and Generalized Anxiety Disorder-7 (GAD-7) (N = 114,219). At last, 11 candidate CRP × gut microbiome interaction with suggestive significance was detected for PHQ-9 score, such as F_Ruminococcaceae (β = - 0.009, P = 2.2 × 10-3), G_Akkermansia (β = - 0.008, P = 7.60 × 10-3), F_Acidaminococcaceae (β = 0.008, P = 1.22 × 10-2), G_Holdemanella (β = - 0.007, P = 1.39 × 10-2) and O_Lactobacillales (β = 0.006, P = 1.79× 10-2). 16 candidate CRP × gut microbiome interaction with suggestive significance was detected for GAD-7 score, such as O_Bacteroidales (β = 0.010, P = 4.00× 10-4), O_Selenomonadales (β = - 0.010, P = 1.20 × 10-3), O_Clostridiales (β = 0.009, P = 2.70 × 10-3) and G_Holdemanella (β = - 0.008, P = 4.20 × 10-3). Our results support the significant effect of interaction between CRP and gut microbiome on the risks of anxiety and depression, and identified several candidate gut microbiomes for them.
Collapse
Affiliation(s)
- Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China.
| |
Collapse
|
63
|
Acharya M, Kim T, Li C. Broad-Spectrum Antibiotic Use and Disease Progression in Early-Stage Melanoma Patients: A Retrospective Cohort Study. Cancers (Basel) 2021; 13:4367. [PMID: 34503177 PMCID: PMC8431240 DOI: 10.3390/cancers13174367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Animal studies and a few clinical studies have reported mixed findings on the association between antibiotics and cancer incidence. Antibiotics may inhibit tumor cell growth, but could also alter the gut-microbiome-modulated immune system and increase the risk of cancer. Studies that assess how antibiotics affect the progression of cancer are limited. We evaluated the association between broad-spectrum antibiotic use and melanoma progression. We conducted a retrospective cohort study using IQVIA PharMetrics® Plus data (2008-2018). We identified patients with malignant melanoma who underwent wide local excision or Mohs micrographic surgery within 90 days of first diagnosis. Surgery date was the index date. Patients were excluded if they had any other cancer diagnosis or autoimmune disorders in 1 year before the index date ("baseline"). Exposure to broad-spectrum antibiotics was identified in three time windows using three cohorts: 3 months prior to the index date, 1 month after the index date, and 3 months after the index date. The covariates were patients' demographic and clinical characteristics identified in the 1-year baseline period. The patients were followed from the index date until cancer progression, loss of enrollment, or the end of 2 years after the index date. Progression was defined as: (i) any hospice care after surgery, (ii) a new round of treatment for melanoma (surgery, chemotherapy, immunotherapy, targeted therapy, or radiotherapy) 180 days after prior treatment, or (iii) a metastasis diagnosis or a diagnosis of a new nonmelanoma primary cancer at least 180 days after first melanoma diagnosis or prior treatment. A high-dimensional propensity score approach with inverse weighting was used to adjust for the patients' baseline differences. Cox proportional hazard regression was used for estimating the association. The final samples included 3930, 3831, and 3587 patients (mean age: 56 years). Exposure to antibiotics was 16% in the prior-3-months, 22% in the post-1-month, and 22% in the post-3-months. In the pre-3-months analysis, 9% of the exposed group and 9% of the unexposed group had progressed. Antibiotic use was not associated with melanoma progression (HR: 0.81; 95% CI: 0.57-1.14). However, antibiotic use in subsequent 1 month and subsequent 3 months was associated with 31% reduction (HR: 0.69; 95% CI: 0.51-0.92) and 32% reduction (HR: 0.68; 95% CI: 0.51-0.91) in progression, respectively. In this cohort of patients with likely early-stage melanoma cancer, antibiotic use in 1 month and 3 months after melanoma surgery was associated with a lower risk of melanoma progression. Future studies are warranted to validate the findings.
Collapse
Affiliation(s)
- Mahip Acharya
- Division of Pharmaceutical Evaluation and Policy, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, AR 72205, USA;
| | - Thomas Kim
- Department of Radiation Oncology, Rush University Medical College, Chicago, IL 60612, USA;
| | - Chenghui Li
- Division of Pharmaceutical Evaluation and Policy, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, AR 72205, USA;
| |
Collapse
|
64
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 274] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
65
|
Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110258. [PMID: 33497754 DOI: 10.1016/j.pnpbp.2021.110258] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The micro-organisms residing within the gastrointestinal tract, namely gut microbiota, form a dynamic population proper of each individual, mostly composed by bacteria which co-evolved symbiotically with human species. The advances of culture-independent techniques allowed the understanding of the multiple functions of the gut microbiota in human physiology and disease, the latter often recognising a predisposing condition in an imbalanced intestinal microbial ecosystem (dysbiosis). A complex mutual interconnection between the central nervous system (CNS), the intestine and the gut microbiota, known as "microbiota-gut-brain axis", has been hypothesized to play a pivotal role in maintaining central and peripheral functions, as well as mental health. Thus, dysbiosis with specific microbiota imbalances seems to be strongly associated with the onset psychiatric disorders by altering neurodevelopment, enhancing neurodegeneration, affecting behaviour and mood. Fecal microbiota transplantation (FMT) consists of transferring the fecal matter from a donor into the gastrointestinal tract of a recipient, and it is used to quickly modulate the gut microbiota. This review focuses on the uses of FMT in psychiatric disorders. FMT has been used to induce dysbiosis and to study the disease development, or to heal dysbiosis-related mental disorders. Overall, FMT of impaired microbiota resulted effective in enhancing psychiatric-like disturbances (mainly depression and anxiety) in recipient animals, plausibly by impairing immune system, inflammatory and metabolic pathways, neurochemical processes and neuro-transmission. On the other side, preclinical and clinical data suggest that reversing or mitigating dysbiosis seems a promising strategy to restore behavioural impairments or to obtain psychiatric symptom relief. However, current evidence is limited by the lack of procedural standardization, the paucity of human studies in the vastity of psychiatric conditions and the need of a microbiota-targeted donor-recipient matching.
Collapse
|
66
|
Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules 2021; 11:biom11071000. [PMID: 34356624 PMCID: PMC8301955 DOI: 10.3390/biom11071000] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
The brain–gut–microbiome axis is a bidirectional communication pathway between the gut microbiota and the central nervous system. The growing interest in the gut microbiota and mechanisms of its interaction with the brain has contributed to the considerable attention given to the potential use of probiotics, prebiotics and postbiotics in the prevention and treatment of depressive disorders. This review discusses the up-to-date findings in preclinical and clinical trials regarding the use of pro-, pre- and postbiotics in depressive disorders. Studies in rodent models of depression show that some of them inhibit inflammation, decrease corticosterone level and change the level of neurometabolites, which consequently lead to mitigation of the symptoms of depression. Moreover, certain clinical studies have indicated improvement in mood as well as changes in biochemical parameters in patients suffering from depressive disorders.
Collapse
|
67
|
Rhee SJ, Kim H, Lee Y, Lee HJ, Park CHK, Yang J, Kim YK, Ahn YM. The association between serum microbial DNA composition and symptoms of depression and anxiety in mood disorders. Sci Rep 2021; 11:13987. [PMID: 34234173 PMCID: PMC8263754 DOI: 10.1038/s41598-021-93112-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence supporting the association between gut microbiome composition and mood disorders; however, studies on the circulating microbiome are scarce. This study aimed to analyze the association of the serum microbial DNA composition with depressive and anxiety symptoms in patients with mood disorders. The sera of 69 patients with mood disorders, aged from 19 to 60, were analyzed. Bacterial DNA was isolated from extracellular membrane vesicles and, subsequently, amplified and quantified with specific primers for the V3-V4 hypervariable region of the 16S rDNA gene. Sequence reads were clustered into Operational Taxonomic Units and classified using the SILVA database. There were no significant associations between alpha diversity measures and the total Hamilton depression rating scale (HAM-D) or Beck anxiety inventory (BAI) scores. Only the weighted UniFrac distance was associated with the total HAM-D score (F = 1.57, p = 0.045). The Bacteroidaceae family and Bacteroides genus were negatively associated with the total HAM-D score (β = - 0.016, p < 0.001, q = 0.08 and β = - 0.016, p < 0.001, q = 0.15, respectively). The Desulfovibrionaceae family and Clostridiales Family XIII were positively associated with the total BAI score (β = 1.8 × 10-3, p < 0.001, q = 0.04 and β = 1.3 × 10-3, p < 0.001, q = 0.24, respectively). Further studies with larger sample sizes and longitudinal designs are warranted.
Collapse
Affiliation(s)
- Sang Jin Rhee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeyoung Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Inha University Hospital, Incheon, Republic of Korea
| | - Yunna Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Hyun Jeong Lee
- Department of Psychiatry, National Cancer Center; Division of Cancer Management Policy, National Cancer Center, Goyang, Republic of Korea
| | - C Hyung Keun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Asan Medical Center, Seoul, Republic of Korea
| | - Jinho Yang
- MD Healthcare Inc., Seoul, Republic of Korea
| | | | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
68
|
Wilkowska A, Szałach ŁP, Cubała WJ. Gut Microbiota in Depression: A Focus on Ketamine. Front Behav Neurosci 2021; 15:693362. [PMID: 34248517 PMCID: PMC8261217 DOI: 10.3389/fnbeh.2021.693362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
According to the WHO, major depressive disorder is the leading cause of disability worldwide, and it is a major contributor to the overall global burden of disease. The pathophysiology of this common and chronic disease is still not completely understood. The gut microbiome is an increasingly recognized environmental factor that can have a role in depression, acting through the gut-microbiota-brain axis. The available treatment for depression is still insufficient since 30% of patients are treatment-resistant. There is an unquestionable need for novel strategies. Ketamine is an effective antidepressant in treatment-resistant patients. It is suggested that the antidepressant effect of ketamine may be partially mediated by the modification of gut microbiota. In this study, we presented a review of data on gut microbiota in depression with special attention to the effect of ketamine on the microbiome in animal models of depression. Earlier reports are preliminary and are still insufficient to draw firm conclusion, but further studies in this field might help to understand the role of the gut-brain axis in the treatment of depression and might be the ground for developing new effective treatment strategies.
Collapse
|
69
|
Liu X, Zhang J, Sang Y, Liu K, Zhu Y, Yang L, Wang S, Sheng J, Wang Q, Zhang D, Cao H, Tao F. Antibiotic exposure and potential risk of depression in the Chinese elderly: a biomonitoring-based population study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26794-26806. [PMID: 33501576 DOI: 10.1007/s11356-021-12560-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To examine the associations between urinary antibiotics from various sources and depression in the elderly using the biomonitoring method. METHODS In the current study, we investigated 990 elderly individuals (≥ 60 years old) from a community-based elderly cohort in West Anhui, China. The participants were interviewed by the Geriatric Depression Scale and self-developed questionnaires. A total of 45 antibiotics belonging to nine categories were screened in urine samples by the developed liquid chromatography electrospray tandem mass spectrometry method. Creatinine-corrected concentrations of antibiotics in urines were used to assess their exposure. Logistic regression analysis was employed to test the relationships between exposure to antibiotics and depression. RESULTS Compared to the control group, the multinomial logistic regression analyses showed the elderly exposed to higher concentrations of azithromycin (OR = 1.81, 95% CI: 1.09-3.00) and sulfaclozine (OR = 1.54, 95% CI: 1.05-2.28) had increased risks of depression, respectively. After categorizing the detected antibiotics, tetracyclines (OR = 1.48, 95% CI: 1.02-2.16) and veterinary antibiotics (VAs) (OR = 1.53, 95% CI: 1.06-2.20) were positively correlated with increased risks of depression. After stratified by sex, the VAs (OR = 2.04, 95% CI: 1.13-3.71) at higher concentrations were associated with elevated risks of depression in males, while the associations between depression and antibiotic exposures were observed in tetracyclines (OR = 1.74, 95% CI: 1.04-2.85) and all antibiotics (OR = 2.24, 95% CI: 1.01-2.94) at higher levels in females, respectively. Notably, after the stratification by age, the significant associations were mainly present in the subjects under the age of 70. CONCLUSIONS Our findings reveal that azithromycin, sulfaclozine, tetracyclines, and the VAs were significantly associated with elevated risks of depression in the elderly. Importantly, sex- and age-specific differences were observed in the associations between antibiotic exposures and depression.
Collapse
Affiliation(s)
- Xinji Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Health Management Center, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230000, Anhui, China
| | - Jingjing Zhang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yanru Sang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yitian Zhu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, Hefei, 230032, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| |
Collapse
|
70
|
Abstract
Research to date has convincingly demonstrated that nutrition impacts depression. Population-based studies have shown that diet, food types, dietary supplements, gut bacteria, endocrine systems and obesity all play a role in depression. While nutrition could provide an important therapeutic opportunity in depression, clinical trials have not shown clinically meaningful results, and it appears unlikely that nutrition is a central determinant of depression. Conversely, however, prior research is inconclusive to inferring that nutrition does not have a clinically significant effect. This would require elucidating precisely when nutrition affects depression which necessitates an alternative, more granular, model for the nutrition–depression interaction. The network theory of mental disorders, which studies how mental disorders arise from a causally related network of symptoms and external factors, is proposed as an alternative model for understanding the complexity of the nutrition–depression link. This approach would uncover which relationships, between aspects of nutrition and depression symptoms, warrant further study at a population and laboratory level. Furthermore, from within nutrition science, is a movement dubbed ‘New Nutrition Science’ (NNS) that aims to integrate biological, social and environmental determinants of nutrition. NNS is important to nutrition–depression research which has yet to reveal how social factors impact the nutrition–depression interaction. Network theory methodology is fully compatible with the network modelling already used in NNS. Embracing both network theory and NNS in future research will develop a full and complex understanding of nutrition in depression.
Collapse
|
71
|
Huang J, Cai Y, Su Y, Zhang M, Shi Y, Zhu N, Jin F, Peng D, Fang Y. Gastrointestinal Symptoms During Depressive Episodes in 3256 Patients with Major Depressive Disorders: Findings from the NSSD. J Affect Disord 2021; 286:27-32. [PMID: 33667753 DOI: 10.1016/j.jad.2021.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Little is known how often depressive episodes are accompanied by gastrointestinal symptoms in major depressive disorders (MDD). The authors sought to determine the frequency and clinical correlates of gastrointestinal symptoms during episodes of depressive disorder. METHODS 3,256 MDD patients from the National Survey on Symptomatology of Depression (NSSD), which was designed to investigate the magnitude of symptoms of current major depressive episodes in China, were enrolled and assessed for gastrointestinal symptoms in this study. Illness characteristics were compared in patients with a different frequency of gastrointestinal symptoms. Pearson correlation analysis and multiple linear regression analysis were employed to investigate the associations between gastrointestinal symptoms and psychological characteristics in the patients. RESULTS More than 70% of the subjects with depressive episodes had concomitant gastrointestinal symptoms. A higher frequency of gastrointestinal symptoms was associated with an increased risk of suicide ideation, suicide attempts, anxious mood, depressed mood, insomnia, feeling a failure, poor concentration, body pain, hopelessness, anger, and irritability. Pearson correlation analysis indicated moderate but significant associations between gastrointestinal symptoms and psychological characteristics (p<0.001). Multiple linear regression analysis showed that suicide ideation (β=0.161, p<0.001), anxiety mood (β=0.166, p = 0.006), insomnia (β =0.262, p<0.001), anger (β=0.144, p<0.001), feeling a failure (β =0.365, p<0.001), and body pain (β=0.581 p<0.001) were independently associated with gastrointestinal symptoms in MDD patients. CONCLUSION Gastrointestinal symptoms were one of the most prevalent clinical presentations of MDD. The associations between gastrointestinal symptoms and psychological characteristics may prove useful in expanding our understanding of how gastrointestinal symptoms contributes to MDD.
Collapse
Affiliation(s)
- Jia Huang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yiyun Cai
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yousong Su
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Min Zhang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yifan Shi
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Na Zhu
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200122, China
| | - Feng Jin
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yiru Fang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
72
|
Eitan S, Madison CA, Kuempel J. The self-serving benefits of being a good host: A role for our micro-inhabitants in shaping opioids' function. Neurosci Biobehav Rev 2021; 127:284-295. [PMID: 33894242 DOI: 10.1016/j.neubiorev.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Opioids are highly efficacious in their ability to relieve pain, but they are liable for abuse, dependence, and addiction. Risk factors to develop opioid use disorders (OUD) include chronic stress, socio-environment, and preexisting major depressive disorders (MDD) and posttraumatic stress disorders (PTSD). Additionally, opioids reduce gut motility, induce loss of gut barrier function, and alter the composition of the trillions of microbes hosted in the gastrointestinal tract, known as the gut microbiota. The microbiota are significant contributors to the reciprocal communication between the central nervous system (CNS) and the gut, termed the gut-brain axis. They have strong influences on their host behaviors, including the ability to cope with stress, sociability, affect, mood, and anxiety. Thus, they are implicated in the etiology of MDD and PTSD. Here we review the latest studies demonstrating that intestinal flora can, directly and indirectly, by affecting sociability levels, responses to stress, and mental state, alter the responses to opioids. It suggests that microbiota can potentially be used to increase the resilience to develop analgesic tolerance and OUD.
Collapse
Affiliation(s)
- Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA.
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| | - Jacob Kuempel
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
73
|
Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome. Cells 2021; 10:cells10040938. [PMID: 33920695 PMCID: PMC8072750 DOI: 10.3390/cells10040938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Evidence suggesting the triangulation of the endocannabinoid system, exercise, and neurological health is emerging. In addition to the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the expanded endocannabinoid system, known as the endocannabinoidome (eCBome), appears to be an important player in this relationship. The eCBome includes several endocannabinoid-like mediators such as N-acylethanolamines and 2-monoacylglycerols, the enzymes involved in their biosynthesis and degradation, and the receptors they affect. This review aims to relate the functional interactions between aerobic exercise, and the molecular and cellular pathways related to endocannabinoids, in the hypothalamus, hippocampus, and the periphery, with special attention given to associations with emotional state, cognition, and mental health. Given the well-documented roles of many eCBome members in regulating stress and neurological processes, we posit that the eCBome is an important effector of exercise-induced central and peripheral adaptive mechanisms that benefit mental health. Gut microbiota imbalance, affecting the gut-brain axis and metabolism, also influences certain eCBome-modulated inflammation pathways. The integrity of the gut microbiota could thus be crucial in the onset of neuroinflammation and mental conditions. Further studies on how the modulation by exercise of the peripheral eCBome affects brain functions could reveal to be key elements in the prevention and treatment of neuropsychological disorders.
Collapse
|
74
|
Yang F, Zou Q. DisBalance: a platform to automatically build balance-based disease prediction models and discover microbial biomarkers from microbiome data. Brief Bioinform 2021; 22:6217721. [PMID: 33834198 DOI: 10.1093/bib/bbab094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
How best to utilize the microbial taxonomic abundances in regard to the prediction and explanation of human diseases remains appealing and challenging, and the relative nature of microbiome data necessitates a proper feature selection method to resolve the compositional problem. In this study, we developed an all-in-one platform to address a series of issues in microbiome-based human disease prediction and taxonomic biomarkers discovery. We prioritize the interpretation, runtime and classification accuracy of the distal discriminative balances analysis (DBA-distal) method in selecting a set of distal discriminative balances, and develop DisBalance, a comprehensive platform, to integrate and streamline the workflows of disease model building, disease risk prediction and disease-related biomarker discovery for microbiome-based binary classifications. DisBalance allows the de novo model-building and disease risk prediction in a very fast and convenient way. To facilitate the model-driven and knowledge-driven discoveries, DisBalance dedicates multiple strategies for the mining of microbial biomarkers. The independent validation of the models constructed by the DisBalance pipeline is performed on seven microbiome datasets from the original article of DBA-distal. The implementation of the DisBalance platform is demonstrated by a complete analysis of a shotgun metagenomic dataset of Ulcerative Colitis (UC). As a free and open-source, DisBlance can be accessed at http://lab.malab.cn/soft/DisBalance. The source code and demo data for Disbalance are available at https://github.com/yangfenglong/DisBalance.
Collapse
Affiliation(s)
- Fenglong Yang
- University of Electronic Science and Technology of China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
| |
Collapse
|
75
|
Łoniewski I, Misera A, Skonieczna-Żydecka K, Kaczmarczyk M, Kaźmierczak-Siedlecka K, Misiak B, Marlicz W, Samochowiec J. Major Depressive Disorder and gut microbiota - Association not causation. A scoping review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110111. [PMID: 32976952 DOI: 10.1016/j.pnpbp.2020.110111] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
One very promising hypothesis of Major Depressive Disorder (MDD) pathogenesis is the gut-brain axis (GBA) dysfunction, which can lead to subclinical inflammation, hypothalamic-pituitary (HPA) axis dysregulation, and altered neural, metabolic and endocrine pathways. One of the most important parts of GBA is gut microbiota, which was shown to regulate different functions in the central nervous system (CNS). The purpose of this scoping review was to present the current state of research on the relationship between MDD and gut microbiota and extract causal relationships. Further, we presented the relationship between the use of probiotics and antidepressants, and the microbiota changes. We evaluated the data from 27 studies aimed to investigate microbial fingerprints associated with depression phenotype. We abstracted data from 16 and 11 observational and clinical studies, respectively; the latter was divided into trials evaluating the effects of psychiatric treatment (n = 3) and probiotic intervention (n = 9) on the microbiome composition and function. In total, the data of 1187 individuals from observational studies were assessed. In clinical studies, there were 490 individuals analysed. In probiotic studies, 220 and 218 patients with MDD received the intervention and non-active study comparator, respectively. It was concluded that in MDD, the microbiota is altered. Although the mechanism of this relationship is unknown, we hypothesise that the taxonomic changes observed in patients with MDD are associated with bacterial proinflammatory activity, reduced Schort Chain Fatty Acids (SCFAs) production, impaired intestinal barrier integrity and neurotransmitter production, impaired carbohydrates, tryptophane and glutamate metabolic pathways. However, only in few publications this effect was confirmed by metagenomic, metabolomic analysis, or by assessment of immunological parameters or intestinal permeability markers. Future research requires standardisation process starting from patient selection, material collection, DNA sequencing, and bioinformatic analysis. We did not observe whether antidepressive medications influence on gut microbiota, but the use of psychobiotics in patients with MDD has great prospects; however, this procedure requires also standardisation and thorough mechanistic research. The microbiota should be treated as an environmental element, which considers the aetiopathogenesis of the disease and provides new possibilities for monitoring and treating patients with MDD.
Collapse
Affiliation(s)
- Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24 Street, 71-460 Szczecin, Poland.
| | - Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24 Street, 71-460 Szczecin, Poland.
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | | | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland.
| |
Collapse
|
76
|
Fan L, Peng Y, Wang J, Ma P, Zhao L, Li X. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors: bidirectional interaction of the phytochemicals and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153471. [PMID: 33636477 DOI: 10.1016/j.phymed.2021.153471] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND As the most frequently used kidney-yang tonifying herb in traditional Chinese medicine, dried succulent stems of Cistanche tubulosa (Schenk) Wight (CT) have been shown to be effective in the treatment of depression. However, the antidepressant components and their underlying mechanism remain unclear. PURPOSE To explore the active components of CT against depression, as well as the potential mechanisms. STUDY DESIGN AND METHODS Behavioral despair tests were used to assess the antidepressant activities of polysaccharides, oligosaccharides and different glycoside-enriched fractions separated from CT, as well as the typical gut microbiota metabolites including 3-hydroxyphenylpropionic acid (3-HPP) and hydroxytyrosol (HT). Furthermore, the effects of bioactive fractions and metabolites on chronic unpredictable mild stress (CUMS) model were explored with multiple pharmacodynamics and biochemical analyses. Changes in colonic histology and the intestinal barrier were observed by staining and immunohistochemical analysis. Gut microbial features and tryptophan-kynurenine metabolism were explored using 16S rRNA sequencing and western-blotting, respectively. RESULTS Total glycosides (TG) dramatically alleviated depression-like behaviors compared to different separated fractions, reflecting in the synergistic effects of phenylethanoid and iridoid glycosides on the hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, severe neuro- and peripheral inflammation, and deficiencies in 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor in the hippocampus. Moreover, TG mitigated low-grade inflammation in the colon and intestinal barrier disruption, and the abundances of several bacterial genera highly correlated with the HPA axis and inflammation in CUMS rats. Consistently, the expression of indoleamine 2, 3-dioxygenase 1 (IDO1) in the colon was significantly reduced after TG administration, accompanied by the suppression of tryptophan-kynurenine metabolism. On the other hand, HT also exerted a marked antidepressant effect by ameliorating HPA axis function, pro-inflammatory cytokine release, and tryptophan-kynurenine metabolism, while it was unable to largely adjust the disordered gut microbiota in the same manner as TG. Surprisingly, superior to fluoxetine, TG and HT could further improve dysfunction of the hypothalamic-pituitary-gonadal axis and abnormal cyclic nucleotide metabolism. CONCLUSION TG are primarily responsible for the antidepressant activity of CT; its effect might be achieved through the bidirectional interaction of the phytochemicals and gut microbiota, and reflect the advantage of CT in the treatment of depression.
Collapse
Affiliation(s)
- Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jingwen Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lijuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
77
|
Liu Y, Wang T, Si B, Du H, Liu Y, Waqas A, Huang S, Zhao G, Chen S, Xu A. Intratracheally instillated diesel PM 2.5 significantly altered the structure and composition of indigenous murine gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111903. [PMID: 33429322 DOI: 10.1016/j.ecoenv.2021.111903] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
A diverse and large community of gut microbiota reside in the intestinal tract of various organisms and play important roles in metabolism and immune homeostasis of its host. The disorders of microbiota-host interaction have been closely associated with numerous chronic inflammatory and metabolic diseases, including inflammatory bowel disease and type 2 diabetes. The accumulating evidence has shown that fine particulate matter (PM2.5) exposure contributes to the diabetes, atherosclerosis and inflammatory bowel diseases; however, few studies have explored the impact of inhaled diesel PM2.5 on gut microbiota in vivo. In this study, C57BL/6J mice were exposed to diesel PM2.5 for 14 days via intratracheal instillation, and colon tissues and feces were harvested for microbiota analysis. Using high-throughput sequencing technology, we observed that intratracheally instillated diesel PM2.5 significantly altered the gut microbiota diversity and community. At the phylum and genus levels, principal coordinate analysis (PCoA) and principal component analysis (PCA) indicated pronounced segregation of microbiota compositions, which were further confirmed by β diversity analysis. As the most affected phylum, Bacteroidetes was greatly diminished by diesel PM2.5. On the genus level, Escherichia, Parabacteroides, Akkermansia, and Oscillibacter were significantly elevated by diesel PM2.5 exposure. Our findings provided clear evidence that exposure to diesel PM2.5 via intratracheal instillation deteriorated the gastrointestinal (GI) tract and significantly altered the structure and composition of gut microbiota, which might subsequently contribute to the developmental abnormalities of inflammation, immunity and metabolism.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tong Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bo Si
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Ahmed Waqas
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Shengwei Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
78
|
Goldstein Ferber S, Weller A, Yadid G, Friedman A. Discovering the Lost Reward: Critical Locations for Endocannabinoid Modulation of the Cortico-Striatal Loop That Are Implicated in Major Depression. Int J Mol Sci 2021; 22:1867. [PMID: 33668515 PMCID: PMC7918043 DOI: 10.3390/ijms22041867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Depression, the most prevalent psychiatric disorder in the Western world, is characterized by increased negative affect (i.e., depressed mood, cost value increase) and reduced positive affect (i.e., anhedonia, reward value decrease), fatigue, loss of appetite, and reduced psychomotor activity except for cases of agitative depression. Some forms, such as post-partum depression, have a high risk for suicidal attempts. Recent studies in humans and in animal models relate major depression occurrence and reoccurrence to alterations in dopaminergic activity, in addition to other neurotransmitter systems. Imaging studies detected decreased activity in the brain reward circuits in major depression. Therefore, the location of dopamine receptors in these circuits is relevant for understanding major depression. Interestingly, in cortico-striatal-dopaminergic pathways within the reward and cost circuits, the expression of dopamine and its contribution to reward are modulated by endocannabinoid receptors. These receptors are enriched in the striosomal compartment of striatum that selectively projects to dopaminergic neurons of substantia nigra compacta and is vulnerable to stress. This review aims to show the crosstalk between endocannabinoid and dopamine receptors and their vulnerability to stress in the reward circuits, especially in corticostriatal regions. The implications for novel treatments of major depression are discussed.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Aron Weller
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Alexander Friedman
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
79
|
Abildgaard A, Kern T, Pedersen O, Hansen T, Lund S, Wegener G. A diet-induced gut microbiota component and related plasma metabolites are associated with depressive-like behaviour in rats. Eur Neuropsychopharmacol 2021; 43:10-21. [PMID: 32933808 DOI: 10.1016/j.euroneuro.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
It is well-established in preclinical studies that various probiotics may improve behaviours related to psychiatric disease. We have previously shown that probiotics protected against high-fat diet (HFD)-induced depressive-like behaviour in Flinders Sensitive Line (FSL) rats, whereas FSL rats on control (CON) diet were unaffected. Therefore, we hypothesised that a dysmetabolic component of depression may exist that involves the gut microbiota and that such component may be reflected in the plasma metabolome. The aims of the present study post hoc analyses were 1) to study the effect of probiotics on gut microbiota composition and its association with depressive-like behaviour in FSL rats, and 2) to identify plasma metabolites associated with gut microbiota and depressive-like behaviour. Forty-six FSL rats were fed CON or HFD and treated with multi-species probiotics (nine Bifidobacterium, Lactococcus and Lactobacillus species) for 12 weeks. Faecal samples were collected for 16S rRNA (VR4) gene amplicon sequencing (Illumina MiSeq), and an untargeted plasma metabolomics was performed. We found that probiotics increased the relative faecal abundance of the Bifidobacterium, Lactococcus and Lactobacillus genera in HFD-fed rats only. Also, a HFD-induced microbiota component associated with depressive-like behaviour was identified, and probiotics improved the component score. Finally, the plasma levels of 44 metabolites correlated with the depression-related microbiota component, and three such metabolites had good predictive ability for depressive-like behaviour. Potentially, our findings imply that a subtype of depression characterised by a diet-induced, pro-depressant gut microbiota may exist and that analysis of related plasma metabolites may reveal aberrant microbiota functioning related to depression.
Collapse
Affiliation(s)
- Anders Abildgaard
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, Risskov, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark.
| | - Timo Kern
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sten Lund
- Steno Diabetes Centre, Aarhus University Hospital, Hedeager 3, Aarhus N, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
80
|
Xu HM, Huang HL, Zhou YL, Zhao HL, Xu J, Shou DW, Liu YD, Zhou YJ, Nie YQ. Fecal Microbiota Transplantation: A New Therapeutic Attempt from the Gut to the Brain. Gastroenterol Res Pract 2021; 2021:6699268. [PMID: 33510784 PMCID: PMC7826222 DOI: 10.1155/2021/6699268] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gut dysbacteriosis is closely related to various intestinal and extraintestinal diseases. Fecal microbiota transplantation (FMT) is a biological therapy that entails transferring the gut microbiota from healthy individuals to patients in order to reconstruct the intestinal microflora in the latter. It has been proved to be an effective treatment for recurrent Clostridium difficile infection. Studies show that the gut microbiota plays an important role in the pathophysiology of neurological and psychiatric disorders through the microbiota-gut-brain axis. Therefore, reconstruction of the healthy gut microbiota is a promising new strategy for treating cerebral diseases. We have reviewed the latest research on the role of gut microbiota in different nervous system diseases as well as FMT in the context of its application in neurological, psychiatric, and other nervous system-related diseases (Parkinson's disease, Alzheimer's disease, multiple sclerosis, epilepsy, autism spectrum disorder, bipolar disorder, hepatic encephalopathy, neuropathic pain, etc.).
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hai-Lan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Di-Wen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yan-Di Liu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
81
|
Desai V, Kozyrskyj AL, Lau S, Sanni O, Dennett L, Walter J, Ospina MB. Effectiveness of Probiotic, Prebiotic, and Synbiotic Supplementation to Improve Perinatal Mental Health in Mothers: A Systematic Review and Meta-Analysis. Front Psychiatry 2021; 12:622181. [PMID: 33967849 PMCID: PMC8100186 DOI: 10.3389/fpsyt.2021.622181] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: There is an emerging interest in modulating the gut microbiota to target the gut-brain axis and improve maternal mental health in the perinatal period. This systematic review evaluated the effectiveness of prebiotics, probiotics, and synbiotics supplementation during pregnancy to reduce the risk of maternal mental health problems in the perinatal period. Methods: Electronic biomedical databases and clinical trial registries were searched from database inception through August 2020 to identify randomized controlled clinical trials (RCTs) evaluating the effect of probiotic, prebiotic, or synbiotic supplements administered to women during pregnancy on measures of perinatal depression, anxiety, and other mental health outcomes. Study selection, risk of bias appraisal, and data extraction were independently performed by two reviewers. Pooled mean differences (MD) and odds ratios (pOR) with 95% confidence intervals (CI) were calculated in random-effects meta-analyses for the outcomes of interest in the review. Results: From 3,868 studies identified through the search strategy, three RCTs of low risk of bias involving 713 participants were included, all three testing probiotics. There were no differences between probiotics and control groups in the mean depression scores (MD -0.46; 95% CI -2.16, 1.25) at end of follow-up. Although statistical significance was not achieved, probiotics showed an advantage in the proportion of participants scoring below an established cut-off for depression (pOR 0.68; 95% CI 0.43, 1.07). Compared to placebo, probiotics in pregnancy reduced anxiety symptoms (MD -0.99; 95% CI -1.80, -0.18); however, this advantage was not translated in a reduction in the proportion of participants scoring above an established cut-off for anxiety (pOR 0.65; 95% CI 0.23, 1.85). There were no differences between probiotics and control groups in global mental health scores at end of follow-up (MD 1.09; 95% CI -2.04, 4.22). Conclusion: There is limited but promising evidence about the effectiveness of probiotics during pregnancy to reduce anxiety symptoms and reduce the proportion of women scoring ABOVE a cut-off depression score. There is a lack of RCT evidence supporting prebiotics and synbiotics supplementation for similar purposes in the perinatal period. More research is needed before prebiotics, probiotics, and synbiotics are recommended to support maternal mental health and well-being in the perinatal period. Systematic Review Registration: PROSPERO, CRD42019137158.
Collapse
Affiliation(s)
- Vidhi Desai
- Department of Obstetrics & Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anita L Kozyrskyj
- Department of Obstetrics & Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Stuart Lau
- Faculty of Science, McGill University, Montreal, QC, Canada
| | - Omolara Sanni
- Department of Obstetrics & Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Liz Dennett
- John W. Scott Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Jens Walter
- Department of Medicine, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.,APC Microbiome Institute Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Maria B Ospina
- Department of Obstetrics & Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
82
|
Scassellati C, Marizzoni M, Cattane N, Lopizzo N, Mombelli E, Riva MA, Cattaneo A. The Complex Molecular Picture of Gut and Oral Microbiota-Brain-Depression System: What We Know and What We Need to Know. Front Psychiatry 2021; 12:722335. [PMID: 34819883 PMCID: PMC8607517 DOI: 10.3389/fpsyt.2021.722335] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a complex mental disorder where the neurochemical, neuroendocrine, immune, and metabolic systems are impaired. The microbiota-gut-brain axis is a bidirectional network where the central and enteric nervous systems are linked through the same endocrine, immune, neural, and metabolic routes dysregulated in MDD. Thus, gut-brain axis abnormalities in MDD patients may, at least in part, account for the symptomatic features associated with MDD. Recent investigations have suggested that the oral microbiome also plays a key role in this complex molecular picture of relationships. As on one hand there is a lot of what we know and on the other hand little of what we still need to know, we structured this review focusing, in the first place, on putting all pieces of this complex puzzle together, underlying the endocrine, immune, oxidative stress, neural, microbial neurotransmitters, and metabolites molecular interactions and systems lying at the base of gut microbiota (GM)-brain-depression interphase. Then, we focused on promising but still under-explored areas of research strictly linked to the GM and potentially involved in MDD development: (i) the interconnection of GM with oral microbiome that can influence the neuroinflammation-related processes and (ii) gut phageome (bacteria-infecting viruses). As conclusions and future directions, we discussed potentiality but also pitfalls, roadblocks, and the gaps to be bridged in this exciting field of research. By the development of a broader knowledge of the biology associated with MDD, with the inclusion of the gut/oral microbiome, we can accelerate the growth toward a better global health based on precision medicine.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Moira Marizzoni
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Laboratory of Alzheimer's Neuroimaging and Epidemiology, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
83
|
Wang X, Hou Y, Ai X, Sun J, Xu B, Meng X, Zhang Y, Zhang S. Potential applications of microfluidics based blood brain barrier (BBB)-on-chips for in vitro drug development. Biomed Pharmacother 2020; 132:110822. [PMID: 33059264 DOI: 10.1016/j.biopha.2020.110822] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
The human blood-brain barrier (BBB) is a complex multi-dimensional reticular barrier system composed of cerebral microvascular endothelial cells, pericytes, astrocytes and a variety of neurons. The conventional in vitro cell culture model fails to truly present the dynamic hemodynamics of BBB and the interaction between neurons. And it is even more impossible to explore brain-related multi-organ diseases, which brings huge obstacles to explore diseases of the central nervous system and the interaction between brain-related multi-organs, and evaluate drug efficacy. Miniaturized microfluidics based BBB chips are being commonly used to co-culture a variety of cells on a small-sized chip to construct a three-dimensional (3D) BBB or BBB-related organ disease models. By combining with other electrophysiological, biochemical sensors or equipment and imaging systems, it can in real time and quickly screen disease-related markers and evaluate drug efficacy. This review systematically summarized the research progress of in vitro BBB and BBB-related organ chips, and analyzed the obstacles of BBB models in depth. Parallelly combined with the current research trends and hot spots, we give the further improvement measures of microfluidic BBB chips.
Collapse
Affiliation(s)
- Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaopeng Ai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Binjie Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
84
|
Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Chen H, Huang S, Xiao T, Shang D, Wen Y. Bibliometric and Visual Analysis of Research on the Links Between the Gut Microbiota and Depression From 1999 to 2019. Front Psychiatry 2020; 11:587670. [PMID: 33488420 PMCID: PMC7819979 DOI: 10.3389/fpsyt.2020.587670] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: There is a crucial link between the gut microbiota and the host central nervous system, and the communication between them occurs via a bidirectional pathway termed the "microbiota-gut-brain axis." The gut microbiome in the modern environment has markedly changed in response to environmental factors. These changes may affect a broad range of host psychiatric disorders, such as depression, by interacting with the host through metabolic, immune, neural, and endocrine pathways. Nevertheless, the general aspects of the links between the gut microbiota and depression have not been systematically investigated through bibliometric analysis. Aim: This study aimed to analyze the current status and developing trends in gut microbiota research in the depression field through bibliometric and visual analysis. Methods: A total of 1,962 publications published between 1999 and 2019 were retrieved from the Web of Science Core Collection. CiteSpace (5.6 R5) was used to perform collaboration network analysis, co-citation analysis, co-occurrence analysis, and citation burst detection. Results: The number of publications has been rapidly growing since 2010. The collaboration network analysis revealed that the USA, University College Cork, and John F. Cryan were the most influential country, institute, and scholar, respectively. The most productive and co-cited journals were Brain Behavior and Immunity and Proceedings of the National Academy of Sciences of the United States of America, respectively. The co-citation analysis of references revealed that the most recent research focus was in the largest theme cluster, "cytokines," thus reflecting the important research foundation in this field. The co-occurrence analysis of keywords revealed that "fecal microbiota" and "microbiome" have become the top two research hotspots since 2013. The citation burst detection for keywords identified several keywords, including "Parkinson's disease," "microbiota-gut-brain axis," "microbiome," "dysbiosis," "bipolar disorder," "impact," "C reactive protein," and "immune system," as new research frontiers, which have currently ongoing bursts. Conclusions: These results provide an instructive perspective on the current research and future directions in the study of the links between the gut microbiota and depression, which may help researchers choose suitable cooperators or journals, and promote their research illustrating the underlying molecular mechanisms of depression, including its etiology, prevention, and treatment.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Hongzhen Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|