51
|
Shen Z, Xie G, Tian W, Shao K, Yang G, Tang X. Effects of wind-wave disturbance and nutrient addition on aquatic bacterial diversity, community composition, and co-occurrence patterns: A mesocosm study. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100168. [DOI: 10.1016/j.crmicr.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
52
|
Liu M, Lei X, Zhou Y, Gao J, Zhou Y, Wang L, Zhu J, Mao XZ. Save reservoirs of humid subtropical cities from eutrophication threat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:949-962. [PMID: 34342825 DOI: 10.1007/s11356-021-15560-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Reservoir water is the most important freshwater resource for many cities, especially in densely populated humid subtropical areas. Economic growth, population increase, and urbanization have been putting reservoir water of Shenzhen (China), a humid subtropical city, under severe threat of eutrophication and water supply shortage. In this study, we focused on an upstream reservoir of Shenzhen and established a 3-dimensional hydrodynamic-ecological model to investigate the water dynamics and nutrient budget. Tributaries to the reservoir were identified as the greatest contributors to nitrogen and phosphorus loads. Zones with weak flows and high nutrient concentration have high risks of causing blooms. Several mitigation measures were proposed, including improving flow by adding additional water exit locations in the reservoir, reducing nutrients in tributaries, and enhancing algal predation, and were evaluated with the established model. The strategies combining hydrodynamic improvement and phosphorus reduction were suggested to decision makers and government managers for short-term management. However, for future water safety, excessive nitrogen is a potential danger. This study provides a modeling framework that can be applied to anthropogenic-influenced reservoirs elsewhere.
Collapse
Affiliation(s)
- Meijie Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoyu Lei
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanyan Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingsi Gao
- Shenzhen Polytechnic, Shenzhen, 518055, China.
| | - Yun Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Linlin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jia Zhu
- Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xian-Zhong Mao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
53
|
Peng MY, Zhang XJ, Huang T, Zhong XZ, Chai LJ, Lu ZM, Shi JS, Xu ZH. Komagataeibacter europaeus improves community stability and function in solid-state cereal vinegar fermentation ecosystem: Non-abundant species plays important role. Food Res Int 2021; 150:110815. [PMID: 34863491 DOI: 10.1016/j.foodres.2021.110815] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023]
Abstract
Solid-state fermentation of Chinese traditional cereal vinegar is a complex and retractable ecosystem with multi-species involved, including few abundant and many non-abundant species. However, the roles of non-abundant species in vinegar fermentation remain unknown. Here, we studied the assembly and co-occurrence patterns for abundant and non-abundant bacterial sub-communities using Zhenjiang aromatic vinegar fermentation as a model system. Our results showed that the change of reducing sugar and total titratable acid were the main driving forces for the assembly of abundant and non-abundant sub-communities, respectively. The non-abundant sub-community was more sensitive to the environmental variation of acetic acid fermentation (AAF) process. Integrated co-occurrence network revealed that non-abundant sub-communities occupied most of the nodes in the network, which play fundamental roles in network stability. Importantly, non-abundant species-Komagataeibacter europaeus, showed the highest value of degree in the co-occurrence network, implying its importance for the metabolic function and resilience of the microbial community. Bioaugmentation of K. europaeus JNP1 verified that it can effectively modulate bacterial composition and improve the robustness of co-occurrence network in situ, accompanied by (i) increased acetic acid content (14.78%) and decreased reducing sugar content (40.38%); and (ii) increased the gene numbers of phosphogluconate dehydratase (212.24%) and aldehyde dehydrogenase (192.31%). Overall, the results showed that non-abundant bacteria could be used to regulate the desired metabolic function of the community, and might play an important ecological significance in traditional fermented foods.
Collapse
Affiliation(s)
- Ming-Ye Peng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| | - Ting Huang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Zhong Zhong
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| |
Collapse
|
54
|
Xu S, Jiang Y, Liu Y, Zhang J. Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118057. [PMID: 34467883 DOI: 10.1016/j.envpol.2021.118057] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics can stimulate the growth of model cyanobacterial species under pure culture conditions, but their influence on cyanobacterial blooms in natural aquatic ecosystems remains unclear. In this study, three commonly detected antibiotics (sulfamethoxazole, tetracycline, and ciprofloxacin) and their ternary mixture were proved to selectively stimulate (p < 0.05) the growth and photosynthetic activity of cyanobacteria in an aquatic microcosm at an environmentally relevant exposure dose of 300 ng/L under both oligotrophic and eutrophic conditions. Under the eutrophic condition, cyanobacteria reached a bloom density of 1.61 × 106 cells/mL in 15 days without antibiotics, while the cyanobacteria exposed to tetracycline, sulfamethoxazole, ciprofloxacin, and their ternary mixture exceeded this bloom density within only 10, 8, 7, and 6 days, respectively. Principal coordinate analysis indicated that the antibiotic contaminants accelerated the prokaryotic community succession towards the formation of a cyanobacterial bloom by promoting the dominance of Microcystis, Synechococcus, and Oscillatoria under the eutrophic condition. After 15 days of culture, the antibiotic exposure increased the density of cyanobacteria by 1.38-2.31-fold and 2.28-3.94-fold under eutrophic and oligotrophic conditions, respectively. Antibiotic exposure generated higher stimulatory effects on cyanobacterial growth under the oligotrophic condition, but the antibiotic(s)-treated cyanobacteria did not form a bloom due to nutrient limitation. Redundancy analysis indicated that the three target antibiotics and their ternary mixture affected the prokaryotic community structure in a similar manner, while tetracycline showed some differences compared to sulfamethoxazole, ciprofloxacin, and the ternary antibiotic mixture with regard to the regulation of the eukaryotic community structure. This study demonstrates that antibiotic contaminants accelerate the formation of cyanobacterial blooms in eutrophic lake water and provides insights into the ecological effects of antibiotics on aquatic microbial communities.
Collapse
Affiliation(s)
- Sijia Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yunhan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
55
|
Tanvir RU, Hu Z, Zhang Y, Lu J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118056. [PMID: 34488165 PMCID: PMC8547520 DOI: 10.1016/j.envpol.2021.118056] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 05/06/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) in freshwater bodies are mainly attributed to excess loading of nutrients [nitrogen (N) and phosphorus (P)]. This study provides a comprehensive review of how the existing nutrient (i.e., N and P) conditions and microbial ecological factors affect cyanobacterial community succession and cyanotoxin production in freshwaters. Different eutrophic scenarios (i.e., hypereutrophic vs. eutrophic conditions) in the presence of (i) high levels of N and P, (ii) a relatively high level of P but a low level of N, and (iii) a relatively high level of N but a low level of P, are discussed in association with cyanobacterial community succession and cyanotoxin production. The seasonal cyanobacterial community succession is mostly regulated by temperature in hypereutrophic freshwaters, where both temperature and nitrogen fixation play a critical role in eutrophic freshwaters. While the early cyanoHAB mitigation strategies focus on reducing P from water bodies, many more studies show that both N and P have a profound contribution to cyanobacterial blooms and toxin production. The availability of N often shapes the structure of the cyanobacterial community (e.g., the relative abundance of N2-fixing and non-N2-fixing cyanobacterial genera) and is positively linked to the levels of microcystin. Ecological aspects of cyanotoxin production and release, related functional genes, and corresponding nutrient and environmental conditions are also elucidated. Research perspectives on cyanoHABs and cyanobacterial community succession are discussed and presented with respect to the following: (i) role of internal nutrients and their species, (ii) P- and N-based control vs. solely P-based control of cyanoHABs, and (iii) molecular investigations and prediction of cyanotoxin production.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency (USEPA), Cincinnati, OH, 45268, USA.
| |
Collapse
|
56
|
Zhang W, Zhu Z, Chen J, Qiu Q, Xiong J. Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny. Front Microbiol 2021; 12:752750. [PMID: 34691004 PMCID: PMC8531273 DOI: 10.3389/fmicb.2021.752750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 02/01/2023] Open
Abstract
Intensive studies have evaluated abiotic factors in shaping host gut microbiota. In contrast, little is known on how and to what extent abiotic (geochemical variables) and biotic (i.e., surrounding microbes, younger shrimp, and age) factors assemble the gut microbiota over shrimp ontogeny. Considering the functional importance of gut microbiota in improving host fitness, this knowledge is fundamental to sustain a desirable gut microbiota for a healthy aquaculture. Here, we characterized the successional rules of both the shrimp gut and rearing water bacterial communities over the entire shrimp farming. Both the gut and rearing water bacterial communities exhibited the time decay of similarity relationship, with significantly lower temporal turnover rate for the gut microbiota, which were primarily governed by shrimp age (days postlarval inoculation) and water pH. Gut commensals were primary sourced (averaged 60.3%) from their younger host, rather than surrounding bacterioplankton (19.1%). A structural equation model revealed that water salinity, pH, total phosphorus, and dissolve oxygen directly governed bacterioplankton communities but not for the gut microbiota. In addition, shrimp gut microbiota did not simply mirror the rearing bacterioplankton communities. The gut microbiota tended to be governed by variable selection over shrimp ontogeny, while the rearing bacterioplankton community was shaped by homogeneous selection. However, the determinism of rare and stochasticity of abundant subcommunities were consistent between shrimp gut and rearing water. These findings highlight the importance of independently interpreting host-associated and free-living communities, as well as their rare and abundant subcommunities for a comprehensive understanding of the ecological processes that govern microbial successions.
Collapse
Affiliation(s)
- Wenqian Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zidong Zhu
- School of Biochemical Engineering, Jingzhou Institute of Technology, Jingzhou, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
57
|
Yun Y, Gui Z, Xie J, Chen Y, Tian X, Li G, Gu JD, Ma T. Stochastic assembly process dominates bacterial succession during a long-term microbial enhanced oil recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148203. [PMID: 34380257 DOI: 10.1016/j.scitotenv.2021.148203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Microbial enhanced oil recovery (MEOR) has been successfully used in oil exploitation to increase oil production. However, the mechanisms of microbial interactions and community assembly related to oil production performance along MEOR process are poorly understood. Here, we investigated the microbiome of an oil reservoir for a period of 5 years under three phases of different treatments with the injection of a mixture of microbes, nutrients, and air at different intensity. During the MEOR process, amplification of functional genes revealed an increase of genes related to hydrocarbon degradation linked to methanogenesis, supported by stable isotope analysis for confirmation of the methanogenesis activity. Meanwhile, a lower contribution of the ubiquitous/common taxa, closer and more positive associations, and lower modularity were observed in bacterial co-occurrence networks, with the rare taxa being the keystone taxa. The null model analysis and structural equation modeling revealed that the contribution of stochastic processes affected by functional groups and co-occurrence patterns to bacterial community increased significantly with the increase of oil production. This provides new insight that stochastic assembly in bacterial community increased along with MEOR process, and it is worthwhile paying attention to the uncertain consequences caused by random evolution since the treatment effect of MEOR is closely related to the in-situ community in oil reservoir.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China.
| |
Collapse
|
58
|
Zeng L, Dai Y, Zhang X, Man Y, Tai Y, Yang Y, Tao R. Keystone Species and Niche Differentiation Promote Microbial N, P, and COD Removal in Pilot Scale Constructed Wetlands Treating Domestic Sewage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12652-12663. [PMID: 34478283 DOI: 10.1021/acs.est.1c03880] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The microbial characteristics related to nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) removal were investigated in three pilot scale constructed wetlands (CWs). Compared to horizontal subsurface flow (HSSF) and surface flow (SF) CWs, the aerobic vertical flow (VF) CW enriched more functional bacteria carrying genes for nitrification (nxrA, amoA), denitrification (nosZ), dephosphorization (phoD), and methane oxidation (mmoX), while the removal of COD, total P, and total N increased by 33.28%, 255.28%, and 299.06%, respectively. The co-occurrence network of functional bacteria in the HSSF CW was complex, with equivalent bacterial cooperation and competition. Both the VF and SF CWs exhibited a simple functional topological structure. The VF CW reduced functional redundancy by forming niche differentiation, which filtered out keystone species that were closely related to each other, thus achieving effective sewage purification. Alternatively, bacterial niche overlap protected a single function in the SF CW. Compared with the construction type, temperature, and plants had less effect on nutrient removal in the CWs from this subtropical region. Partial least-squares path modeling (PLS-PM) suggests that high dissolved oxygen and oxidation-reduction potential promoted a diverse bacterial community and that the nonkeystone bacteria reduced external stress for functional bacteria, thereby indirectly promoting nutrient removal.
Collapse
Affiliation(s)
- Luping Zeng
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yunv Dai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Xiaomeng Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ying Man
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yiping Tai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ran Tao
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
59
|
Abdullah Al M, Xue Y, Xiao P, Chen H, Zhang C, Duan M, Yang J. DNA metabarcoding reveals the significant influence of anthropogenic effects on microeukaryotic communities in urban waterbodies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117336. [PMID: 34052609 DOI: 10.1016/j.envpol.2021.117336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Biological monitoring and assessment are the first and most fundamental steps towards diagnosing ecological or environmental quality. Increasing anthropogenic impact on urban ecosystems has prompted the development of less expensive and more efficient bioassessment approaches. Generally, a morphospecies based approach is effective for plants and large organisms but challenging for the microbial biosphere. To overcome this challenge, we used high-throughput DNA sequencing for predicting anthropogenic effects on microeukaryotic communities in urban waterbodies along a pollution gradient in Wuhan City, central China in summer 2019. Our results indicated that microeukaryotic community structure was distinct between non-urban polluted reservoir and urban polluted waterbodies. The heterogeneity of environmental condition significantly affected the microeukaryotic diversity, community structure, and species interactions. Integrated co-occurring network analysis revealed that the pollution gradient has a significant adverse impact on network complexity and network dissimilarity. These results revealed that the significant variation in anthropogenically-driven environmental condition shaped microeukaryotic communities in urban freshwater ecosystems. Furthermore, we observed that the relative abundance of indicative OTUs were significantly and negatively correlated with pollution level and these indicative OTUs could be used to predict the water quality status with up to 77% success. Thus, our multiple approaches combining 18S rDNA amplicon sequencing, co-occurring network and indicator species analyses suggest that this study gives a novel approach based on microeukaryotic communities to assess and predict the water quality status of urban aquatic environments.
Collapse
Affiliation(s)
- Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Institute of Marine Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Yuanyuan Xue
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China
| | - Peng Xiao
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China
| | - Huihuang Chen
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China
| | - Chaoshuo Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Ming Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China.
| |
Collapse
|
60
|
Liu L, Wang S, Chen J. Anthropogenic activities change the relationship between microbial community taxonomic composition and functional attributes. Environ Microbiol 2021; 23:6663-6675. [PMID: 34347346 DOI: 10.1111/1462-2920.15702] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
Functional redundancy is considered common in microbial systems, but recent studies have challenged this idea. The mechanism for this contradictory result is not clear. However, in this study, we hypothesize that strong environmental filtering which links to the anthropogenic activities is able to weaken microbial functional redundancy. We used metagenome and 16S rRNA gene high-throughput sequencing to investigate planktonic microbial communities in a subtropical river. We found that the weak anthropogenic activities might result in a low selection pressure in the river upstream area. Therefore, the microbial community functional attributes were stable although the community composition changed with the water temperature and NO3 -N in upstream area (this indicates functional redundancy). However, the strong anthropogenic activities in river downstream area selected pollutant-degraded functions (e.g. nitrogen metabolism, toluene, xylenes and ethylbenzene degradation) and potentially pollutant-degraded (tolerant) microbes, and therefore caused the microbial community composition synchronously changed with the variation of community functional attributes. Our results reveal that strong environmental filtering which associates with the anthropogenic activities not only has effects on microbial community composition and community functional attributes but also on their relationships. These results provide a new insight to refine the functional redundancy idea.
Collapse
Affiliation(s)
- Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.,Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China.,Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Shanshan Wang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.,Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China.,Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.,Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China.,Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
61
|
Xue X, Wang L, Xing H, Zhao Y, Li X, Wang G, Wang Z. Characteristics of phytoplankton-zooplankton communities and the roles in the transmission of antibiotic resistance genes under the pressure of river contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146452. [PMID: 33770605 DOI: 10.1016/j.scitotenv.2021.146452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Insight into the distribution of antibiotic resistance genes (ARGs) in phytoplankton-zooplankton communities (PZCs) is essential for the management and control of antibiotic resistance in aquatic ecosystems. This study characterized the profiles of PZCs and their carried ARGs in a typical urban river and ranked the factors (water physicochemical parameters, PZCs, bacterial abundance, and mobile genetic elements) influencing the dynamic of ARG profiles by the partial least squares path modeling. Results showed Cyanobacteria, Bacillariophyta and Chlorophyta were dominant phyla of phytoplankton, and Rotifera was with the highest abundance in zooplankton. River contamination markedly altered the structure of PZCs, increasing the abundance of phytoplankton and zooplankton, decreasing the diversity of phytoplankton while elevating in zooplankton. PZCs harbored large amounts of ARGs with average relative abundance of 2.35 × 10-2/copies nearly an order magnitude higher than the living water and most ARGs exhibited significant accumulation in PZCs with the aggravated environmental pollution. The partial least squares path modeling predicted the water parameters as the most important factor mainly playing indirect effects on ARGs via PZCs and bacterial communities, followed by mobile genetic elements as the most essential direct factor for ARGs profiles. Besides, PZCs were also important drivers for the carried ARGs via direct effects on the ARGs' composition and indirect effects on host bacterial communities of ARGs and their mobile genetic elements. The present study fills the gaps in knowledge about the distribution of ARGs in PZCs and provided a new perspective to decipher the key roles of PZCs in the maintenance and dissemination of ARGs in urban river ecosystems.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoran Xing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
62
|
Omidi A, Pflugmacher S, Kaplan A, Kim YJ, Esterhuizen M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021; 9:1583. [PMID: 34442662 PMCID: PMC8401979 DOI: 10.3390/microorganisms9081583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
Collapse
Affiliation(s)
- Azam Omidi
- Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg., 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada;
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Young Jun Kim
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
| | - Maranda Esterhuizen
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
- Finland and Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
63
|
Liu Q, Wang J, Ren H. Bacterial assembly and succession in the start-up phase of an IFAS metacommunity: The role of AHL-driven quorum sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145870. [PMID: 33689899 DOI: 10.1016/j.scitotenv.2021.145870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 05/06/2023]
Abstract
Quorum sensing (QS) plays an important role in biofilm formation and the start-up of biofilm-based reactors, while its involvement in bacterial assembly throughout biofilm development remains underexplored. We investigated the assembly and succession of the bacterial community in a full-scale integrated fixed-film activated sludge (IFAS) process, with emphasis on N-acylhomoserine lactone (AHL)-driven QS. Biofilm development could be divided into two major periods, (i) young biofilm formation phase and (ii) biofilm maturity and update phase. Mature biofilms exhibited lower levels of AHLs compared with young biofilms (p > 0.05). A structural equation model, constructed to assess the linkages between AHL level and bacterial community composition as well as environmental factors, indicated that pH significantly influenced both bacterial community composition and AHL content. Along with biofilm development, there was a negative correlation between AHL concentration and community composition variation (coefficients of -0.367 and -0.329). Regarding the lower AHL level in mature biofilms, these results were consistent with the phylogenetic molecular ecological networks (pMENs) analysis, indicating that quorum-quenching (QQ) bacteria occur in keystone taxa in mature biofilms. In addition, based on the pMENs results, the proportion of positive interactions increased from 77.64 to 82.39% in mature biofilms compared to young biofilms, indicating that bacterial cooperation was strengthened in mature biofilms. The QS bacteria were predominant in the keystone taxa of pMENs, with proportions being increased to 62% in mature biofilms, which is conducive for biofilm development. Overall, this study improves our understanding of the involvement of AHL-mediated QS in biofilm development.
Collapse
Affiliation(s)
- Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
64
|
Liu J, Su J, Zhang M, Luo Z, Li X, Chai B. Bacterial Community Spacing Is Mainly Shaped by Unique Species in the Subalpine Natural Lakes of China. Front Microbiol 2021; 12:669131. [PMID: 34276600 PMCID: PMC8282455 DOI: 10.3389/fmicb.2021.669131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities have been described as early indicators of both regional and global climatic change and play a critical role in the global biogeochemical cycle. Exploring the mechanisms that determine the diversity patterns of bacterial communities and how they share different habitats along environmental gradients are, therefore, a central theme in microbial ecology research. We characterized the diversity patterns of bacterial communities in Pipahai Lake (PPH), Mayinghai Lake (MYH), and Gonghai Lake (GH), three subalpine natural lakes in Ningwu County, Shanxi, China, and analyzed the distribution of their shared and unique taxa (indicator species). Results showed that the species composition and structure of bacterial communities were significantly different among the three lakes. Both the structure of the entire bacterial community and the unique taxa were significantly influenced by the carbon content (TOC and IC) and space distance; however, the structure of the shared taxa was affected by conductivity (EC), pH, and salinity. The structure of the entire bacterial community and unique taxa were mainly affected by the same factors, suggesting that unique taxa may be important in maintaining the spatial distribution diversity of bacterial communities in subalpine natural freshwater lakes. Our results provide new insights into the diversity maintenance patterns of the bacterial communities in subalpine lakes, and suggest dispersal limitation on bacterial communities between adjacent lakes, even in a small local area. We revealed the importance of unique taxa in maintaining bacterial community structure, and our results are important in understanding how bacterial communities in subalpine lakes respond to environmental change in local habitats.
Collapse
Affiliation(s)
- Jinxian Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China.,Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Shanxi University, Taiyuan, China.,Field Scientific Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Shanxi University, Taiyuan, China
| | - Jiahe Su
- Institute of Loess Plateau, Shanxi University, Taiyuan, China.,Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Shanxi University, Taiyuan, China.,Field Scientific Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Shanxi University, Taiyuan, China
| | - Meiting Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, China.,Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Shanxi University, Taiyuan, China.,Field Scientific Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Shanxi University, Taiyuan, China
| | - Zhengming Luo
- Institute of Loess Plateau, Shanxi University, Taiyuan, China.,Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Shanxi University, Taiyuan, China.,Field Scientific Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Shanxi University, Taiyuan, China.,Department of Geography, Xinzhou Teachers University, Xinzhou, China
| | - Xiaoqi Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, China.,Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Shanxi University, Taiyuan, China.,Field Scientific Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Institute of Loess Plateau, Shanxi University, Taiyuan, China.,Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Shanxi University, Taiyuan, China.,Field Scientific Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Shanxi University, Taiyuan, China
| |
Collapse
|
65
|
Zhu W, Zhang A, Qin C, Guo Y, Pan W, Chen J, Yu G, Li C. Seasonal and spatial variation of protist communities from reef water and open ocean water in patchy coral reef areas of a semi-enclosed bay. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105407. [PMID: 34252862 DOI: 10.1016/j.marenvres.2021.105407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Protists are an important component of the marine ecosystem and play an essential role in material cycle and energy flow, but the distribution of protists in coral reefs have not been fully studied. In this study, high-throughput amplicon sequencing technology was used to study the biodiversity and community structure of protists from coral reefs and open sea areas, with the typical semi-enclosed bay Daya Bay as the research field. There were significant seasonal differences in the dominant phyla of protists, biodiversity index values and βeta diversity (P < 0.05) but no significant differences in the different sampling areas (P > 0.05). The topological parameters of the co-occurrence network showed the protist co-occurrence network in the open sea had more complex interactions and stronger stability than in the coral reef areas because of the hydrodynamics, waves, and relatively poor nutrients. Redundancy analysis and the Mantel test showed that the structure of the protist community was affected by seawater temperature, pH, salinity, and dissolved oxygen. This study analysed the temporal and spatial differences in protists in the coral reef and open sea areas of Daya Bay to provide important information for the study of protist biodiversity and community structure in semi-enclosed bays.
Collapse
Affiliation(s)
- Wentao Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China
| | - Ankai Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China.
| | - Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China
| | - Wanni Pan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China
| | - Jisheng Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Chunhou Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| |
Collapse
|
66
|
Zhao K, Wang L, You Q, Pan Y, Liu T, Zhou Y, Zhang J, Pang W, Wang Q. Influence of cyanobacterial blooms and environmental variation on zooplankton and eukaryotic phytoplankton in a large, shallow, eutrophic lake in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145421. [PMID: 33582356 DOI: 10.1016/j.scitotenv.2021.145421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Harmful cyanobacterial blooms are a widespread destruction to the processes and function of aquatic ecosystems. To study effects of cyanobacterial blooms on plankton diversity and composition, we analyzed data of cyanobacterial, eukaryotic phytoplankton, metazoan zooplankton, and physicochemical samples collected from 24 sites for four seasons in 2017 and 2018 from the large, shallow Lake Taihu. We found that cyanobacterial abundance significantly correlated with phytoplankton biomass, species richness, functional richness and evenness, and zooplankton biomass, Shannon's diversity, Simpson's evenness, and functional evenness and richness. High cyanobacterial abundance during summer did not result in low species and functional diversities for both phytoplankton and zooplankton compared with other seasons. Species and functional diversities of sites with high cyanobacteria abundance were not significantly lower than other sites with relatively low cyanobacteria abundance. Structure equation modeling indicated that cyanobacteria had direct influence on phytoplankton and zooplankton compositions. Physicochemical and temporal-spatial factors had direct influence on phytoplankton and zooplankton, and had indirect influence on phytoplankton and zooplankton through direct influence on cyanobacteria. Variance partitioning analysis quantified that cyanobacteria alone and interactions with physicochemical and spatial-temporal factors explained about 10% of phytoplankton variation and 26% of zooplankton variation. Our results indicate that cyanobacteria have substantial effects on phytoplankton and zooplankton biodiversity and community composition. Physicochemical and spatial-temporal factors could potentially obscure the detection of cyanobacterial effects on plankton in Lake Taihu that has cyanobacterial blooms in all seasons. Our findings may improve the understanding of dynamics and responses of plankton communities to environmental changes and cyanobacterial bloom disturbance and enhance the capability of assessing the effectiveness of eutrophication management and restoration of aquatic ecosystems.
Collapse
Affiliation(s)
- Kun Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Lizhu Wang
- Institute for Fisheries Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qingmin You
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yangdong Pan
- Department of Environmental Science and Management, Portland State University, OR, USA
| | - Tengteng Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yidao Zhou
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Junyi Zhang
- Jiangsu Wuxi Environmental Monitoring Center, Jiangsu, China
| | - Wanting Pang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Quanxi Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
67
|
Xu H, Pang Y, Li Y, Zhang S, Pei H. Using sodium percarbonate to suppress vertically distributed filamentous cyanobacteria while maintaining the stability of microeukaryotic communities in drinking water reservoirs. WATER RESEARCH 2021; 197:117111. [PMID: 33857892 DOI: 10.1016/j.watres.2021.117111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/20/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The increasing frequency and intensity of blooms of toxin- and taste & odour-producing filamentous cyanobacteria in water sources is a growing global issue. Compared to the common spherical Microcystis genus, the removal of filamentous cyanobacteria is more difficult in drinking water treatment plants; hence, abatement and control of the occurrence and proliferation of harmful filamentous cyanobacteria within drinking water sources is important for water supply. In this study, the solid sodium percarbonate (SPC), Na2CO3·1.5H2O2, was used as an algaecide to eliminate the cyanobacteria distributed throughout the water column in the surface and bottom layer of a reservoir serving as a drinking water source. Results showed that although the oxidation capacity of SPC was higher in the surface water due to the higher light intensity than in the bottom water, 3.0 mg/L SPC can still suppress the harmful cyanobacteria in the bottom water after 36 h because the carbonate ion generated by SPC decomposition can act as an activator of H2O2 to generate many reactive oxygen species - including superoxide radicals, carbonate radical anions, and hydroxyl radicals - even in the light-limited environment. The obtained inactivation rates for the main cyanobacteria in this reservoir followed the order: Pseudanabaena limnetica > Raphidiopsis curvata > Cylindrospermopsis raciborskii. 3.0 mg/L SPC has a slight impact on microeukaryotic communities according to the 18S rRNA gene sequencing, while 6.0 mg/L SPC changed the composition of eukaryotic phytoplankton and zooplankton clearly. Eukaryotic co-occurrence networks showed that although the network of eukaryotic plankton in treated surface water was more compact and clustered, stability of microeukaryotes in the treated surface water was lower than for the treated bottom water, owing to the higher oxidation capacity of SPC in the surface water. The results above not only have important implications for full-scale control of harmful cyanobacteria in drinking water sources, especially filamentous cyanobacteria with vertical distributions, but also help to ensure the health and stability of the whole aquatic ecosystem.
Collapse
Affiliation(s)
- Hangzhou Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Yiming Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yizhen Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shasha Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haiyan Pei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| |
Collapse
|
68
|
Wang S, Hou W, Jiang H, Dong H, Huang L, Chen S, Wang B, Chen Y, Lin B, Deng Y. The Lifestyle-Dependent Microbial Interactions Vary Between Upstream and Downstream of the Three Gorges Dam. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dams represent the most significant anthropogenic disturbance to global rivers. Previous studies have shown that free-living and particle-attached microbes exhibited differentially in river and reservoir ecosystems. However, little is known about the dam’s effect on their co-occurrence patterns. Here, a random matrix theory (RMT)-based network approach was used to construct microbial ecological networks for free-living and particle-attached communities in the immediate vicinity of the Three Gorges Dam (TGD), based on a high-throughput sequencing of 16S rRNA gene. Microbial distribution pattern showed that differences caused by lifestyle (free-living vs. particle-attached) were greater than those caused by geographic position (upstream vs. downstream of the TGD). Network analysis revealed higher connectivity and a lower number of modules in the overall downstream networks. Furthermore, considering the lifestyle, the network structures and properties for free-living and particle-attached microbes were different between upstream and downstream of the dam. Specifically, free-living communities located upstream of the dam exhibited a more complex co-occurrence pattern than the particle-attached communities, whereas the opposite was true for those located downstream of the dam. This variation indicated a strong impact of the dam on microbial interactions for microbes with similar lifestyle in the vicinity of the dam. We identified 112 persistent operational taxonomic unit (OTU)-level species that stably coexisted regardless of lifestyle and geographic positions. These persistent species occupied 21.33–25.57% of the total nodes in each network, and together with their first neighbors, they contributed more than 50% of the nodes and edges belonging to each network. Furthermore, we found that taxonomic affiliations for central nodes (with high degree) varied in these persistent species sub-networks. Collectively, our findings expand the current understanding of the dam’s effect on species interaction variation patterns for free-living and particle-attached communities in the vicinity of the dam, which are more complex than traditional alpha and beta microbial diversity.
Collapse
|
69
|
Chen W, Wen D. Archaeal and bacterial communities assembly and co-occurrence networks in subtropical mangrove sediments under Spartina alterniflora invasion. ENVIRONMENTAL MICROBIOME 2021; 16:10. [PMID: 33941277 PMCID: PMC8091715 DOI: 10.1186/s40793-021-00377-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/02/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Mangrove ecosystems are vulnerable due to the exotic Spartina alterniflora (S. alterniflora) invasion in China. However, little is known about mangrove sediment microbial community assembly processes and interactions under S. alterniflora invasion. Here, we investigated the assembly processes and co-occurrence networks of the archaeal and bacterial communities under S. alterniflora invasion along the coastlines of Fujian province, southeast China. RESULTS Assembly of overall archaeal and bacterial communities was driven predominantly by stochastic processes, and the relative role of stochasticity was stronger for bacteria than archaea. Co-occurrence network analyses showed that the network structure of bacteria was more complex than that of the archaea. The keystone taxa often had low relative abundances (conditionally rare taxa), suggesting low abundance taxa may significantly contribute to network stability. Moreover, S. alterniflora invasion increased bacterial and archaeal drift process (part of stochastic processes), and improved archaeal network complexity and stability, but decreased the network complexity and stability of bacteria. This could be attributed to S. alterniflora invasion influenced microbial communities diversity and dispersal ability, as well as soil environmental conditions. CONCLUSIONS This study fills a gap in the community assembly and co-occurrence patterns of both archaea and bacteria in mangrove ecosystem under S. alterniflora invasion. Thereby provides new insights of the plant invasion on mangrove microbial biogeographic distribution and co-occurrence network patterns.
Collapse
Affiliation(s)
- Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
70
|
Nyirabuhoro P, Gao X, Ndayishimiye JC, Xiao P, Mo Y, Ganjidoust H, Yang J. Responses of abundant and rare bacterioplankton to temporal change in a subtropical urban reservoir. FEMS Microbiol Ecol 2021; 97:6184044. [PMID: 33755730 DOI: 10.1093/femsec/fiab036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Investigation of bacterial community dynamics across different time scales is important for understanding how environmental conditions drive community change over time. Bacterioplankton from the surface waters of a subtropical urban reservoir in southeast China were analyzed through high-frequency sampling over 13 months to compare patterns and ecological processes between short (0‒8 weeks), medium (9‒24 weeks) and long (25‒53 weeks) time intervals. We classified the bacterial community into different subcommunities: abundant taxa (AT); conditionally rare taxa (CRT); rare taxa (RT). CRT contributed > 65% of the alpha-diversity, and temporal change of beta-diversities was more pronounced for AT and CRT than RT. The bacterial community exhibited a directional change in the short- and medium-time intervals and a convergent dynamic during the long-time interval due to a seasonal cycle. Cyanobacteria exhibited a strong succession pattern than other phyla. CRT accounted for > 76% of the network nodes in three stations. The bacteria-environment relationship and deterministic processes were stronger for large sample size at station G (n = 116) than small sample size at stations C (n = 12) and L (n = 22). These findings suggest that a high-frequency sampling approach can provide a better understanding on the time scales at which bacterioplankton can change fast between being abundant or rare, thus providing the facts about environmental factors driving microbial community dynamics. Patterns and processes in alpha- and beta-diversities and community assembly of bacterioplankton differ among different time intervals (short-, medium- and long-time intervals) and different subcommunities (abundant, conditionally rare and rare taxa) in a subtropical urban reservoir, demonstrating the importance of temporal scale and high-frequency sampling in microbial community ecology.
Collapse
Affiliation(s)
- Pascaline Nyirabuhoro
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaofei Gao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jean Claude Ndayishimiye
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Environmental Engineering Division, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| |
Collapse
|
71
|
Wang Q, Han Y, Lan S, Hu C. Metagenomic Insight Into Patterns and Mechanism of Nitrogen Cycle During Biocrust Succession. Front Microbiol 2021; 12:633428. [PMID: 33815315 PMCID: PMC8009985 DOI: 10.3389/fmicb.2021.633428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
The successional ecology of nitrogen cycling in biocrusts and the linkages to ecosystem processes remains unclear. To explore this, four successional stages of natural biocrust with five batches of repeated sampling and three developmental stages of simulated biocrust were studied using relative and absolute quantified multi-omics methods. A consistent pattern across all biocrust was found where ammonium assimilation, mineralization, dissimilatory nitrite to ammonium (DNiRA), and assimilatory nitrate to ammonium were abundant, while denitrification medium, N-fixation, and ammonia oxidation were low. Mathematic analysis showed that the nitrogen cycle in natural biocrust was driven by dissolved organic N and NO3–. pH and SO42– were the strongest variables affecting denitrification, while C:(N:P) was the strongest variable affecting N-fixation, DNiRA, nitrite oxidation, and dissimilatory nitrate to nitrite. Furthermore, N-fixation and DNiRA were closely related to elemental stoichiometry and redox balance, while assimilatory nitrite to ammonium (ANiRA) and mineralization were related to hydrological cycles. Together with the absolute quantification and network models, our results suggest that responsive ANiRA and mineralization decreased during biocrust succession; whereas central respiratory DNiRA, the final step of denitrification, and the complexity and interaction of the whole nitrogen cycle network increased. Therefore, our study stresses the changing environmental functions in the biocrust N-cycle, which are succession-dependent.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingchun Han
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
72
|
Li JJ, Chao JJ, McKay RML, Xu RB, Wang T, Xu J, Zhang JL, Chang XX. Antibiotic pollution promotes dominance by harmful cyanobacteria: A case study examining norfloxacin exposure in competition experiments. JOURNAL OF PHYCOLOGY 2021; 57:677-688. [PMID: 33483964 DOI: 10.1111/jpy.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) in freshwater lakes across the globe are often combined with other stressors. Pharmaceutical pollution, especially antibiotics in water bodies, poses a potential hazard in aquatic ecosystems. However, how antibiotics influence the risk of cyanoHABs remains unclear. Here, we investigated the effects of norfloxacin (NOR), one of the most widely used antibiotics globally, to a bloom-forming cyanobacterium (Microcystis aeruginosa) and a common green alga (Scenedesmus quadricauda), under both mono- and coculture conditions. Taxon-specific responses to NOR were evaluated in monoculture. In addition, the growth rate and change in ratio of cyanobacteria to green algae when cocultured with exposure to NOR were determined. In monocultures of Microcystis, exposure to low concentrations of NOR resulted in decreases in biomass, chlorophyll a and soluble protein content, while superoxide anion content and superoxide dismutase activity increased. However, NOR at high concentration only slightly affected Scenedesmus. During the co-culture trials of Microcystis and Scenedesmus, the 5 μg · L-1 NOR treatment increased the ratio of Microcystis to co-cultured Scenedesmus by 47.2%. Meanwhile, although Scenedesmus growth was enhanced by 4.2% under NOR treatment in monoculture, it was conversely inhibited by 63.4% and 38.2% when co-cultured with Microcystis with and without NOR, respectively. Our results indicate that antibiotic pollution has a potential risk to enhance the perniciousness of cyanoHABs by disturbing interspecific interaction between cyanobacteria and green algae. These results reinforce the need for scientists and managers to consider the influence of xenobiotics in shaping the outcome of interactions among multiple species in aquatic ecosystems.
Collapse
Affiliation(s)
- Jing-Jing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jing-Jing Chao
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
| | - Robert Michael Lee McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Run-Bing Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
| | - Tao Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jun Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jin-Long Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
| | - Xue-Xiu Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
73
|
Amorim CA, Moura ADN. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143605. [PMID: 33248793 DOI: 10.1016/j.scitotenv.2020.143605] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms are among the emerging threats to freshwater biodiversity that need to be studied further in the Anthropocene. Here, we studied freshwater plankton communities in ten tropical reservoirs to record the impact of algal blooms, comprising different phytoplankton taxa, on water quality, plankton biodiversity, and ecosystem functioning. We compared water quality parameters (water transparency, mixing depth, pH, electrical conductivity, dissolved inorganic nitrogen, total dissolved phosphorus, total phosphorus, chlorophyll-a, and trophic state), plankton structure (composition and biomass), biodiversity (species richness, diversity, and evenness), and ecosystem functioning (phytoplankton:phosphorus and zooplankton:phytoplankton ratios as a metric of resource use efficiency) through univariate and multivariate analysis of variance, and generalized additive mixed models in five different bloom categories. Most of the bloom events were composed of Cyanobacteria, followed by Dinophyta and Chlorophyta. Mixed blooms were composed of Cyanobacteria plus Bacillariophyta, Chlorophyta, and/or Dinophyta, while non-bloom communities presented phytoplankton biomass below the threshold for bloom development (10 mg L-1, WHO alert level 2). Higher phytoplankton biomasses were recorded during Cyanobacteria blooms (15.87-273.82 mg L-1) followed by Dinophyta blooms (18.86-196.41 mg L-1). An intense deterioration of water quality, including higher pH, eutrophication, stratification, and lower water transparency, was verified during Cyanobacteria and mixed blooms, while Chlorophyta and Dinophyta blooms presented lower pH, eutrophication, stratification, and higher water transparency. All bloom categories significantly impacted phytoplankton and zooplankton structure, changing the composition and dominance patterns. Bloom intensity positively influenced phytoplankton resource use efficiency (R2 = 0.25; p < 0.001), while decreased zooplankton resource acquisition (R2 = 0.51; p < 0.001). Moreover, Cyanobacteria and Chlorophyta blooms negatively impacted zooplankton species richness, while Dinophyta blooms decreased phytoplankton richness. In general, Cyanobacteria blooms presented low water quality and major threats to plankton biodiversity, and ecosystem functioning. Moreover, we demonstrated that biodiversity losses decrease ecosystem functioning, with cascading effects on plankton dynamics.
Collapse
Affiliation(s)
- Cihelio Alves Amorim
- Graduate Program in Botany, Department of Biology, Federal Rural University of Pernambuco - UFRPE, Manoel de Medeiros Avenue, Dois Irmãos, CEP 52171-900 Recife, PE, Brazil.
| | - Ariadne do Nascimento Moura
- Graduate Program in Botany, Department of Biology, Federal Rural University of Pernambuco - UFRPE, Manoel de Medeiros Avenue, Dois Irmãos, CEP 52171-900 Recife, PE, Brazil.
| |
Collapse
|
74
|
Zhang H, Zong R, He H, Liu K, Yan M, Miao Y, Ma B, Huang X. Biogeographic distribution patterns of algal community in different urban lakes in China: Insights into the dynamics and co-existence. J Environ Sci (China) 2021; 100:216-227. [PMID: 33279034 DOI: 10.1016/j.jes.2020.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 06/12/2023]
Abstract
Urban lake ecosystems are significant for social development, but currently we know little about the geographical distribution of algal community in urban lakes at a large-scale. In this study, we investigated the algal community structure in different areas of urban lakes in China and evaluated the influence of water quality parameters and geographical location on the algal community. The results showed that obvious differences in water quality and algal communities were observed among urban lakes in different geographical areas. Chlorophyta was the dominant phylum, followed by cyanobacteria in all areas. The network analysis indicated that algal community composition in urban lakes of the western and southern area showed more variations than the eastern and northern areas, respectively. Redundancy analysis and structural equation model revealed that nutrients and pH were dominant environmental factors that affected the algal community, and they showed higher influence than that of iron, manganese and COD Mn concentration. Importantly, algal community and density exhibited longitude and latitude relationship. In general, these results provided an ecological insight into large-scale geographical distributions of algal community in urban lakes, thereby having potential applications for management of the lakes.
Collapse
Affiliation(s)
- Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Rongrong Zong
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huiyan He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Miaomiao Yan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
75
|
Changes in planktonic and sediment bacterial communities under the highly regulated dam in the mid-part of the Three Gorges Reservoir. Appl Microbiol Biotechnol 2021; 105:839-852. [PMID: 33404832 DOI: 10.1007/s00253-020-11047-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Bacterial communities play an important role in the biogeochemical cycle in reservoir ecosystems. However, the dynamic changes in both planktonic and sediment bacterial communities in a highly regulated dam reservoir remain unclear. This study investigated the temporal distribution patterns of bacterial communities in a transition section of the Three Gorges Reservoir (TGR) using Illumina MiSeq sequencing. Results suggested that in comparison to the planktonic bacteria, sediment bacteria contributed more to the reservoir microbial communities, accounting for 97% of the 7434 OTUs. The Shannon diversity index in the water (3.22~5.68) was generally lower than that in the sediment (6.72~7.56). In the high water level period (January and March), Proteobacteria, Actinobacteria, Cyanobacteria, and Firmicutes were the most abundant phyla, whereas in the low water level period (May, July, and September), the dominant phyla were Proteobacteria, Actinobacteria, and Bacteroidetes. Sediment samples were dominated by Proteobacteria, Chloroflexi, and Acidobacteria. Principal coordinate analysis of the bacterioplankton communities showed greater sensitivity to monthly changes than that of the sediment bacterial communities. Network analysis suggested that in comparison to planktonic bacterial communities, sediment bacterial communities were more complex and stable. The linear relationship between the CH4/CO2 ratio, water level, and relative abundance of methanotrophs highlighted the potential methane-oxidizing process in the mid-part of the TGR. Moreover, the potential impact of dam regulation on the bacterial communities was revealed by the significant relationship between abundant phyla and the inflow of the TGR. KEY POINTS: • Bacterioplankton communities showed great sensitivity to monthly changes. • Potential methane-oxidizing process was revealed in this representative area. • Water inflow regulated by dam has significant effects on dominant bacterioplankton.
Collapse
|
76
|
Gao X, Chen H, Gu B, Jeppesen E, Xue Y, Yang J. Particulate organic matter as causative factor to eutrophication of subtropical deep freshwater: Role of typhoon (tropical cyclone) in the nutrient cycling. WATER RESEARCH 2021; 188:116470. [PMID: 33045638 DOI: 10.1016/j.watres.2020.116470] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Intense storms pose a serious threat to ecosystem functioning and services. However, the effects of typhoons (tropical cyclones) on the biogeochemical processes mediating risk of eutrophication in deep freshwater ecosystems remain unclear. Here, we conducted a three-year study to elucidate linkages between environmental change, stable isotopes and the stoichiometry of particulate organic matter (POM), and nutrient cycling (i.e., carbon, nitrogen and phosphorus) in a subtropical deep reservoir subjected to typhoon events. The typhoons significantly changed the nutrient levels in the deep waters as well as the thermocline position. Increased typhoon-driven organic matter input, algae sinking and heterotrophic decomposition interacted with each other to cause steep and prolonged increases of total nitrogen, ammonium nitrogen and total phosphorus in the bottom waters of the reservoir. Small-sized or pico-sized POM (i.e., 0.2-3 μm) showed a substantial increase in bottom waters, and it exhibited stronger response than large-sized POM (i.e., 3-20, 20-64, 64-200 μm) to the typhoons. Our results also indicated that typhoons boost the nutrient cycling in deep waters mainly through pico-sized POM.
Collapse
Affiliation(s)
- Xiaofei Gao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binhe Gu
- Soil and Water Science Department, University of Florida, 106 Newell Hall, Gainesville, FL 32611, United States
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
77
|
Wang W, Ren K, Chen H, Gao X, Rønn R, Yang J. Seven-year dynamics of testate amoeba communities driven more by stochastic than deterministic processes in two subtropical reservoirs. WATER RESEARCH 2020; 185:116232. [PMID: 32750568 DOI: 10.1016/j.watres.2020.116232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Testate amoebae are widely distributed in natural ecosystems and play an important role in the material cycle and energy flow. However, community assembly of testate amoebae is not well understood, especially with regard to the relative importance of the stochastic and deterministic processes over time. In this study, we used Illumina high-throughput sequencing to explore the community assembly of testate amoebae from surface waters in two reservoirs of subtropical China over a seven-year period. Majority of testate amoebae belonged to the rare taxa because their relative abundances were typically lower than 0.01% of the total eukaryotic plankton community. The testate amoeba community dynamics exhibited a stronger interannual than seasonal variation in both reservoirs. Further, species richness, rather than species turnover, accounted for the majority of community variation. Environmental variables explained less than 20% of the variation in community composition of testate amoebae, and the community assembly appeared to be strongly driven by stochastic processes. Based on the Sloan neutral community model, it was found that neutral processes explained more than 65% of community variation. More importantly, the Stegen null model analysis showed that the stochastic processes (e.g., ecological drift) explained a significantly higher percentage of community assembly than deterministic processes over seven years, although deterministic processes were more influential in certain years. Our results provide new perspectives for understanding the ecological patterns, processes and mechanisms of testate amoeba communities in freshwater ecosystems at temporal scale, and have important implications for monitoring plankton diversity and protecting drinking-water resources.
Collapse
Affiliation(s)
- Wenping Wang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Ren
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofei Gao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Regin Rønn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
78
|
Chen S, Yan M, Huang T, Zhang H, Liu K, Huang X, Li N, Miao Y, Sekar R. Disentangling the drivers of Microcystis decomposition: Metabolic profile and co-occurrence of bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140062. [PMID: 32544693 DOI: 10.1016/j.scitotenv.2020.140062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In aquatic ecosystems, water microbial communities can trigger the outbreak or decline of cyanobacterial blooms. However, the microbiological drivers of Microcystis decomposition in reservoirs remain unclear. Here, we explored the bacterial community metabolic profile and co-occurrence dynamics during Microcystis decomposition. The results showed that the decomposition of Microcystis greatly altered the metabolic characteristics and composition of the water bacterial community. Significant variations in bacterial community composition were observed: the bacterial community was mainly dominated by Proteobacteria, Actinobacteria, Planctomycetes, and Bacteroidetes during Microcystis decomposition. Additionally, members of Exiguobacterium, Rhodobacter, and Stenotrophomonas significantly increased during the terminal stages. Dissolved organic matters (DOM) primarily composed of fulvic-like, humic acid-like, and tryptophan-like components, which varied distinctly during Microcystis decomposition. Additionally, the metabolic activity of the bacterial community showed a continuous decrease during Microcystis decomposition. Functional prediction showed a sharp increase in the cell communication and sensory systems of the bacterial communities from day 12 to day 22. Co-occurrence networks showed that bacteria responded significantly to variations in the dynamics of Microcystis decomposition through close interactions between each other. Redundancy analysis (RDA) indicated that Chlorophyll a, nitrate nitrogen (NO3--N), dissolved oxygen (DO), and dissolved organic carbon (DOC) were crucial drivers for shaping the bacterial community structure. Taken together, these findings highlight the dynamics of the water bacterial community during Microcystis decomposition from the perspective of metabolism and community composition, however, further studies are needed to understand the algal degradation process associated with bacteria.
Collapse
Affiliation(s)
- Shengnan Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Miaomiao Yan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
79
|
Seasonal Water Level Fluctuation and Concomitant Change of Nutrients Shift Microeukaryotic Communities in a Shallow Lake. WATER 2020. [DOI: 10.3390/w12092317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Seasonal water level fluctuations (WLFs) impose dramatic influences on lake ecosystems. The influences of WLFs have been well studied for many lake biotas but the microeukaryotic community remains one of the least-explored features. This study employed high-throughput 18S rRNA gene sequencing to investigate the spatiotemporal patterns of microeukaryotic communities in the dry and wet seasons with concomitant change of nutrients in Poyang Lake, which experiences huge seasonal WLFs. The results showed that the dry season and wet season had distinct microeukaryotic community compositions and structures. In the dry season, Ciliophora (13.86–40.98%) and Cryptomonas (3.69–18.64%) were the dominant taxa, and the relative abundance of these taxa were significant higher in the dry season than wet season. Ochrophyta (6.88–45.67%) and Chlorophyta (6.31–22.10%) was the dominant taxa of microeukaryotic communities in the wet season. The seasonal variation of microeukaryotic communities was strongly correlated to seasonal nutrient variations. Microeukaryotic communities responded significantly to dissolved organic carbon, total nitrogen, nitrate, and soluble reactive phosphorus in the dry season, and correlated to nitrate and total phosphorus in the wet season. The microeukaryotic community showed different modular structures in two seasons, and nutrient variations were the key factors influencing seasonal variations of the modular structures. Moreover, microeukaryotic community networks based on different seasons indicated that the microeukaryotic community co-occurrence patterns were not constant but varied largely associating with the nitrogen and phosphorus variations under the effects of WLFs. Our results are important for understanding how microeukaryotic communities respond to nutrient variation under seasonal water level fluctuation.
Collapse
|
80
|
Zhang H, Sekar R, Visser PM. Editorial: Microbial Ecology in Reservoirs and Lakes. Front Microbiol 2020; 11:1348. [PMID: 32765428 PMCID: PMC7381264 DOI: 10.3389/fmicb.2020.01348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, China.,School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
81
|
Xia P, Yan D, Sun R, Song X, Lin T, Yi Y. Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138398. [PMID: 32335447 DOI: 10.1016/j.scitotenv.2020.138398] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Epiphytic biofilms are complex matrix-enclosed communities comprising large numbers of bacteria and algae, which play an important role in the biogeochemical cycles in aquatic systems. However, little is known about the correlations that occur between these communities or the relative impact of environmental factors on their composition. In this study, epiphytic biofilms on three different aquatic plants were sampled in a typical plateau lake (Caohai, southwest China) in July and November of 2018. Bacterial diversity was assessed using Miseq sequencing approaches and algal communities were assessed using light microscopy. Gammaproteobacteria (54.64%), Bacteroidetes (17.50%) and Firmicutes (13.99%) were the dominant bacterial taxa and Chlorophyta (47.62%), Bacillariophyta (28.57%) and Euglenophyta (19.05%) were the dominant algae. The alpha diversity values of the epiphytic bacterial and algal communities were greater during the macrophyte decline period (November) than during the growth period (July). Microbial community composition was significantly affected by abiotic factors (water temperature, NH4+, pH or TP) and biotic factors (algae or bacteria). Interestingly, in July and November, the epiphytic algal community dissimilarity was stronger than that observed for bacterial community dissimilarity, suggesting that bacterial community dissimilarity may increase more slowly with environmental change than algal community dissimilarity. Furthermore, association network analysis revealed complex correlations between algal biomass and bacteria phylotype, and that 67.83% of correlations were positive and 32.17% were negative. This may indicate that facilitative correlations between algae and bacteria are predominant in epiphytic biofilms. These results provide new information on algal-bacterial correlations as well as the possible mechanisms that drive variations in the microbial community in epiphytic biofilms in freshwater lakes.
Collapse
Affiliation(s)
- Pinhua Xia
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang 550001, PR China
| | - Dingbo Yan
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang 550001, PR China
| | - Rongguo Sun
- College of Chemistry and Material, Guizhou Normal University, Guiyang, PR China
| | - Xu Song
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang 550001, PR China
| | - Tao Lin
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang 550001, PR China
| | - Yin Yi
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang 550001, PR China; The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry and Grassland Administration, Guizhou Normal University, Guiyang, 550001, PR China.
| |
Collapse
|
82
|
Liu C, Shi X, Wu F, Zhang M, Gao G, Wu Q. Temporal patterns in the interaction between photosynthetic picoeukaryotes and their attached fungi in Lake Chaohu. FEMS Microbiol Ecol 2020; 96:5859481. [DOI: 10.1093/femsec/fiaa123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
The combination of flow cytometric sorting and high-throughput sequencing revealed the broad existence of photosynthetic picoeukaryote attached fungi (PPE-attached fungi) in Lake Chaohu. The relative sequence abundance of attached fungi was negatively correlated with that of the photosynthetic picoeukaryotes (PPEs). PPE-attached fungal communities were mainly composed of Basidiomycota, Chytridiomycota and Ascomycota. Temperature, Si and PPE community structure are the most important driving factors for the temporal succession of PPE-attached fungal communities. In particular, PPE-attached fungi can be divided into three groups from high to low temperatures. Phylogenetic molecular ecological network results indicated that the connectivity and the total number of links in the network of the high-temperature group (> 21.82°C) are higher than those in the other two temperature groups (between 9.67 and 21.82°C, and < 9.67°C, respectively). Moreover, the interaction between PPE-attached fungi and the PPEs changed from antagonistic to cooperative, with the decline in temperature. The most abundant operational taxonomic units of PPE-attached fungi were affiliated with the Cladosporium, the most common saprophytic fungus, whereas most fungal hub taxa were Chytridiomycota, the main parasite fungi of phytoplankton.
Collapse
Affiliation(s)
- Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fan Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
83
|
Oxidative Stress and Antioxidant Responses of Phormidium ambiguum and Microcystis aeruginosa Under Diurnally Varying Light Conditions. Microorganisms 2020; 8:microorganisms8060890. [PMID: 32545576 PMCID: PMC7357134 DOI: 10.3390/microorganisms8060890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Two harmful cyanobacteria species (Phormidium ambiguum and Microcystis aeruginosa) were exposed to diurnal light-intensity variation to investigate their favorable and stressed phases during a single day. The photosynthetically active radiation (PAR) started at 0 µmol·m−2·s−1 (06:00 h), increased by ~25 µmol·m−2·s−1 or ~50 µmol·m−2·s−1 every 30 min, peaking at 300 µmol·m−2·s−1 or 600 µmol·m−2·s−1 (12:00 h), and then decreased to 0 µmol·m−2·s−1 (by 18:00 h). The H2O2 and antioxidant activities were paralleled to light intensity. Higher H2O2 and antioxidant levels (guaiacol peroxidase, catalase (CAT), and superoxidase dismutase) were observed at 600 µmol·m−2·s−1 rather than at 300 µmol·m−2·s−1. Changes in antioxidant levels under each light condition differed between the species. Significant correlations were observed between antioxidant activities and H2O2 contents for both species, except for the CAT activity of P. ambiguum at 300 µmol·m−2·s−1. Under each of the conditions, both species responded proportionately to oxidative stress. Even under maximum light intensities (300 µmol·m−2·s−1 or 600 µmol·m−2·s−1 PAR intensity), neither species was stressed. Studies using extended exposure durations are warranted to better understand the growth performance and long-term physiological responses of both species.
Collapse
|
84
|
Liu L, Wang S, Chen J. Hysteretic response of Microbial Eukaryotic Communities to Gradually Decreased Nutrient Concentrations in Eutrophic Water. MICROBIAL ECOLOGY 2020; 79:815-822. [PMID: 31720759 DOI: 10.1007/s00248-019-01457-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
External environments to microbial eukaryotic communities often change gradually with time. However, whether the responses of microbial eukaryotic communities to these gradually changed environments are continuous or hysteretic and the mechanisms underlying these responses are largely unknown. Here, we used a microcosm to investigate the temporal variation of microbial eukaryotic communities with the gradually decreased nutrient concentrations (nitrogen and phosphorus). We found the differences of microbial eukaryotic community composition and species richness between the control and treatment groups were low during the days 0 to 12, although the nutrient concentrations decreased rapidly during this period in treatment group. However, these differences were clear during the days 14 to 18, although the nutrient concentrations decreased slowly during this period in treatment group. The mechanisms for these results are that the strong homogenous selection (perhaps due to the biotic factors) during the days 8 to 10 in treatment group might enhance the stability of microbial eukaryotic communities. However, the continuously decreased nutrient concentrations weakened the homogenous selection and promoted the strength of environmental filtering, and therefore resulted in the distinct change of microbial eukaryotic communities during the days 14 to 18 in treatment group. Fungi, Chlorophyta and Chrysophyta which associated with the nutrient removal played important roles in this hysteretic change of microbial eukaryotic communities. Overall, our findings suggest that disentangling the non-linear response of communities to gradual environmental changes is essential for understanding ecosystem restoration and degradation in future.
Collapse
Affiliation(s)
- Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China.
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China.
| | - Shanshan Wang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China.
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
85
|
Liu L, Wang S, Ji J, Xie Y, Shi X, Chen J. Characteristics of microbial eukaryotic community recovery in eutrophic water by using ecological floating beds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134551. [PMID: 31812434 DOI: 10.1016/j.scitotenv.2019.134551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Ecological floating beds can rapidly remove nutrients (nitrogen and phosphorus) from eutrophic water, but we still know little about whether this process can simultaneously recover microbial eukaryotic communities. To fill this gap, planktonic microbial eukaryotic communities were investigated using 18S rRNA high-throughput gene sequencing during nutrient removal by floating beds of Canna indica L. We found that nutrient concentrations were high in both the control and treatment groups during period 1 (days 0-5) but rapidly decreased in the treatment group during period 2 (days 6-9) and period 3 (days 10-18). However, the microbial eukaryotic species richness and community compositions were similar between the control and treatment groups during periods 1 and 2 but showed small differences during period 3. The microbial eukaryotic co-occurrence networks between the control and treatment groups also showed similar degree centrality and interconnected eukaryotic members. We found that some abundant fungi species significantly responded to nutrient variations, but a large number of abundant ciliates were insensitive to nutrient removal. Our findings suggest that ecological floating beds can rapidly remove nutrients in eutrophic waters but that it is difficult to quickly and simultaneously improve microbial eukaryotic communities. This result reveals the critical influence of nutrient pollution on aquatic ecosystems and therefore on long-term and comprehensive aquatic habitat restoration, as aquatic macrophyte recoveries should be conducted after nutrient controls have been implemented.
Collapse
Affiliation(s)
- Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China.
| | - Shanshan Wang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Jiannan Ji
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Youping Xie
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Xinguo Shi
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
86
|
Peng F, Guo Y, Isabwe A, Chen H, Wang Y, Zhang Y, Zhu Z, Yang J. Urbanization drives riverine bacterial antibiotic resistome more than taxonomic community at watershed scale. ENVIRONMENT INTERNATIONAL 2020; 137:105524. [PMID: 32036121 DOI: 10.1016/j.envint.2020.105524] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/26/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Although the occurrence and distribution of antibiotic resistance genes (ARGs) in various aquatic ecosystems are well explored, understanding of the ecological processes and mechanisms governing the composition and dynamics of bacterial ARGs still remains limited across space and time. Here, we used high-throughput approaches to detect spatial patterns of bacterial ARGs and operational taxonomic units (OTUs) in an urbanizing subtropical watershed, Xiamen, southeast China over a five-year period. At watershed scale, the OTU profiles were undergoing a directional change, but the ARG profiles showed a high stability or stochastic change over time. Compared with the upstream and midstream, the richness, absolute abundance, normalized abundance and diversity of ARGs were significantly higher in the downstream waters. Our results revealed a clear rural-urban disparity in ARG and OTU profiles which were mainly governed by deterministic and stochastic assembly processes, respectively. With the increase of urban building area along the river, the ecological processes of ARG profiles shifted from stochastic to deterministic. In downstream waters, the bacterial ARG profiles were much more stable than bacterial OTUs. Further, our results indicated that both human-dominated environment (e.g., land use) and mobile genetic elements (MGEs) played an important role in shaping the ARG profiles and dynamics. Overall, this was a response to spatially extensive human-landscape interactions that included urban development in the river downstream region, which were common across subtropical coastal cities of China and can alter the ARG profile dynamics along rural-urban gradient. Therefore, watershed management actions aiming at reducing threats posed by ARGs in urbanizing watershed should first consider the surrounding urbanization level and the mode and intensity of human activity. Our findings also imply that due to the decoupling of bacterial function and taxonomy, both aspects should be studied separately.
Collapse
Affiliation(s)
- Feng Peng
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyan Guo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alain Isabwe
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yongming Wang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanping Zhang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhenxiang Zhu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
87
|
Chun SJ, Cui Y, Lee JJ, Choi IC, Oh HM, Ahn CY. Network analysis reveals succession of Microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. WATER RESEARCH 2020; 170:115326. [PMID: 31838363 DOI: 10.1016/j.watres.2019.115326] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 05/26/2023]
Abstract
Every member of the ecological community is connected via a network of vital and complex relationships, called the web of life. To elucidate the ecological network and interactions among producers, consumers, and decomposers in the Daechung Reservoir, Korea, during cyanobacterial harmful algal blooms (cyanoHAB), especially those involving Microcystis, we investigated the diversity and compositions of the cyanobacterial (16S rRNA gene), including the genotypes of Microcystis (cpcBA-IGS gene), non-cyanobacterial (16S), and eukaryotic (18S) communities through high-throughput sequencing. Microcystis blooms were divided into the Summer Major Bloom and Autumn Minor Bloom with different dominant genotypes of Microcystis. Network analysis demonstrated that the modules involved in the different phases of the Microcystis blooms were categorized into the Pre-Bloom, Bloom, Post-Bloom, and Non-Bloom Groups at all sampling stations. In addition, the non-cyanobacterial components of each Group were classified, while the same Group showed similarity across all stations, suggesting that Microcystis and other microbes were highly interdependent and organized into cyanoHAB-related module units. Importantly, the Microcystis genotype-based sub-network uncovered that Pirellula, Pseudanabaena, and Vampirovibrionales preferred to interact with specific Microcystis genotypes in the Summer Major Bloom than with other genotypes in the Autumn Minor Bloom, while the copepod Skistodiaptomus exhibited the opposite pattern. In conclusion, the transition patterns of cyanoHAB-related modules and their key components could be crucial in the succession of Microcystis genotypes and to enhance the understanding of microbial ecology in an aquatic environment.
Collapse
Affiliation(s)
- Seong-Jun Chun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yingshun Cui
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jay Jung Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea
| | - In-Chan Choi
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology - Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
88
|
Wang K, Razzano M, Mou X. Cyanobacterial blooms alter the relative importance of neutral and selective processes in assembling freshwater bacterioplankton community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135724. [PMID: 31806344 DOI: 10.1016/j.scitotenv.2019.135724] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
CyanoHABs have substantial impacts on the functioning and sustainability of freshwater ecosystems by restricting light penetration, depleting dissolved oxygen, and producing various toxins. This study combined physicochemical variable measurements, 16S rRNA gene sequencing and microscopy observations to examine mechanisms that govern the assembly of bacterioplankton communities following the progress of cyanobacterial blooms in a freshwater reservoir. Throughout the sampling season, bacterioplankton distribution patterns were well predicted by a neutral model, which assumes passive dispersal and ecological drift as the predominate mechanisms for community assembly. The neutral model consistently explained the distribution of over 67% of bacterioplankton OTUs and its fit was weaker during the cyanobacterial blooms (R2 = 0.322) than the before- (R2 = 0.549) and after-bloom stages (R2 = 0.535). Variations of environmental factors, acting as selective pressures, explained shifts of non-neutral OTUs (above/under neutral prediction) (63.9%) better than neutral OTUs (34.5%). Co-occurrence network analysis organized microbial communities into modules and revealed strong positive correlations between bacterioplankton and cyanobacteria than with planktonic algae and zooplankton. Overall, our results suggest that neutral processes play significant roles in assembling bacterioplankton communities over a cyanobacterial bloom succession and its relative importance may be weakened by biotic pressures (interspecific interactions) during the bloom period. Our results also indicate that among biotic factors, cyanobacteria had greater impacts on bacterioplankton community assembly than planktonic algae and zooplankton.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Mandy Razzano
- Division of Surface Water, Ohio Environmental Protection Agency, Twinsburg, OH 44087, USA
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
89
|
Tai X, Li R, Zhang B, Yu H, Kong X, Bai Z, Deng Y, Jia L, Jin D. Pollution Gradients Altered the Bacterial Community Composition and Stochastic Process of Rural Polluted Ponds. Microorganisms 2020; 8:microorganisms8020311. [PMID: 32102406 PMCID: PMC7074964 DOI: 10.3390/microorganisms8020311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 11/29/2022] Open
Abstract
Understanding the effects of pollution on ecological communities and the underlying mechanisms that drive them will helpful for selecting a method to mediate polluted ecosystems. Quantifying the relative importance of deterministic and stochastic processes is a very important issue in ecology. However, little is known about their effects on the succession of microbial communities in different pollution levels rural ponds. Also, the processes that govern bacterial communities in polluted ponds are poorly understood. In this study, the microbial communities in water and sediment from the ponds were investigated by using the 16S rRNA gene high-throughput sequencing technology. Meanwhile, we used null model analyses based on a taxonomic and phylogenetic metrics approach to test the microbial community assembly processes. Pollution levels were found to significantly alter the community composition and diversity of bacteria. In the sediment samples, the bacterial diversity indices decreased with increasing pollutant levels. Between-community analysis revealed that community assembly processes among water and sediment samples stochastic ratio both gradually decreased with the increased pollution levels, indicating a potential deterministic environmental filtering that is elicited by pollution. Our results identified assemblage drivers of bacterial community is important for improving the efficacies of ecological evaluation and remediation for contaminated freshwater systems.
Collapse
Affiliation(s)
- Xin Tai
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
| | - Rui Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hao Yu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- Correspondence: (H.Y.); (D.J.); Tel.: +86-183-4184-9989 (H.Y.); +86-152-1009-8966 (D.J.)
| | - Xiao Kong
- School of Health and Public, Qingdao University, Qingdao 266071, China;
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Jia
- Research Institute of Mineral Resources Development and Utilization Technology and Equipment, Liaoning Technical University, Fuxin 123000, China;
| | - Decai Jin
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.Y.); (D.J.); Tel.: +86-183-4184-9989 (H.Y.); +86-152-1009-8966 (D.J.)
| |
Collapse
|
90
|
Yan M, Chen S, Huang T, Li B, Li N, Liu K, Zong R, Miao Y, Huang X. Community Compositions of Phytoplankton and Eukaryotes during the Mixing Periods of a Drinking Water Reservoir: Dynamics and Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1128. [PMID: 32053903 PMCID: PMC7068298 DOI: 10.3390/ijerph17041128] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022]
Abstract
In deep drinking water reservoir ecosystems, the dynamics and interactions of community compositions of phytoplankton and eukaryotes during the mixing periods are still unclear. Here, morphological characteristics combined with high-throughput DNA sequencing (HTS) were used to investigate the variations of phytoplankton and the eukaryotic community in a large canyon-shaped, stratified reservoir located at the Heihe River in Shaanxi Province for three months. The results showed that Bacillariophyta and Chlorophyta were the dominant taxa of the phytoplankton community, accounting for more than 97% of total phytoplankton abundance, which mainly consisted of Melosira sp., Cyclotella sp., and Chlorella sp., respectively. Illumina Miseq sequencing suggested that the biodiversity of eukaryotes increased over time and thatspecies distribution was more even. Arthropoda (6.63% to 79.19%), Ochrophyta (5.60% to 35.16%), Ciliophora (1.81% to 10.93%) and Cryptomonadales (0.25% to 11.48%) were the keystone taxa in common, contributing over 50% of the total eukaryotic community. Cryptomycota as a unique fungus was observed to possess significant synchronization with algal density, reaching a maximum of 10.70% in December (when the algal density distinctly decreased) and suggesting that it might affect the growth of algae through parasitism. Co-occurrence network patterns revealed the complicated and diverse interactions between eukaryotes and phytoplankton, suggesting that eukaryotes respond to variations in dynamic structure of the phytoplankton community, although there might be antagonistic or mutualistic interactions between them. Redundancy analysis (RDA) results showed that environmental variables collectively explained a 96.7% variance of phytoplankton and 96.3% variance of eukaryotic microorganisms, indicating that the temporal variations of phytoplankton and eukaryotic microorganisms were significantly affected by environmental conditions. This study shows that potential interactions exist between phytoplankton and eukaryotic microorganism communities, andcould improve our understanding of the ecological roles of phytoplankton and eukaryotic microorganisms in changing aquatic ecosystems. However, long-term investigations are necessary in order to obtain comprehensive understandings of their complicated associations.
Collapse
Affiliation(s)
- Miaomiao Yan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (M.Y.); (T.H.); (N.L.); (K.L.); (R.Z.); (Y.M.); (X.H.)
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (M.Y.); (T.H.); (N.L.); (K.L.); (R.Z.); (Y.M.); (X.H.)
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (M.Y.); (T.H.); (N.L.); (K.L.); (R.Z.); (Y.M.); (X.H.)
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China;
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (M.Y.); (T.H.); (N.L.); (K.L.); (R.Z.); (Y.M.); (X.H.)
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (M.Y.); (T.H.); (N.L.); (K.L.); (R.Z.); (Y.M.); (X.H.)
| | - Rongrong Zong
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (M.Y.); (T.H.); (N.L.); (K.L.); (R.Z.); (Y.M.); (X.H.)
| | - Yutian Miao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (M.Y.); (T.H.); (N.L.); (K.L.); (R.Z.); (Y.M.); (X.H.)
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China; (M.Y.); (T.H.); (N.L.); (K.L.); (R.Z.); (Y.M.); (X.H.)
| |
Collapse
|
91
|
Chen S, He H, Zong R, Liu K, Miao Y, Yan M, Xu L. Geographical Patterns of Algal Communities Associated with Different Urban Lakes in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1009. [PMID: 32033450 PMCID: PMC7037785 DOI: 10.3390/ijerph17031009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
Urban lakes play an important role in drainage and water storage, regulating urban microclimate conditions, supplying groundwater, and meeting citizens' recreational needs. However, geographical patterns of algal communities associated with urban lakes from a large scale are still unclear. In the present work, the geographical variation of algal communities and water quality parameters in different urban lakes in China were determined. The water quality parameters were examined in the samples collected from north, central, south, and coastal economic zones in China. The results suggested that significant differences in water quality were observed among different geographical distribution of urban lakes. The highest total phosphorus (TP)(0.21 mg/L) and total nitrogen (TN) (3.84 mg/L) concentrations were found in XinHaiHu (XHH) lake, it also showed highest the nitrate nitrogen (NO3--N) (0.39 mg/L),total organic carbon(TOC) (9.77 mg/L), and COD Mn (9.01 mg/L) concentrations among all samples. Environmental and geographic factors also cause large differences in algal cell concentration in different urban lakes, which ranged from 4,700×104 to 247,800 ×104cell/L. Through light microscopy, 6 phyla were identified, which includes Chlorophyta, Bacillariophyta, Cyanophyta, Dinophyta, Euglenophyta, and Cryptophyta. Meanwhile, the heat map with the total 63 algal community composition at the genus level profile different urban lakes community structures are clearly distinguishable. Further analyses showed that the dominant genera were Limnothrixsp., Synedra sp., Cyclotella sp., Nephrocytium sp., Melosirasp., and Scenedesmussp. among all samples. The integrated network analysis indicated that the highly connected taxa (hub) were Fragilariasp.,Scenedesmus sp., and Stephanodiscus sp. The water quality parameters of NO3--N and NH4+-N had significant impacts on the structural composition of the algal community. Additionally, RDA further revealed distinct algal communities in the different urban lakes, and were influenced by NO2--N, Fe, and algal cell concentrations. In summary, these results demonstrate that the pattern of algal communities are highly correlated with geographic location and water quality on a large scale, and these results also give us further understanding of the complex algal communities and effectively managing eutrophication of urban lakes.
Collapse
Affiliation(s)
- Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (H.H.); (R.Z.); (K.L.); (Y.M.); (M.Y.); (L.X.)
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Huiyan He
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (H.H.); (R.Z.); (K.L.); (Y.M.); (M.Y.); (L.X.)
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Rongrong Zong
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (H.H.); (R.Z.); (K.L.); (Y.M.); (M.Y.); (L.X.)
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (H.H.); (R.Z.); (K.L.); (Y.M.); (M.Y.); (L.X.)
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yutian Miao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (H.H.); (R.Z.); (K.L.); (Y.M.); (M.Y.); (L.X.)
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Miaomiao Yan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (H.H.); (R.Z.); (K.L.); (Y.M.); (M.Y.); (L.X.)
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Lei Xu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (H.H.); (R.Z.); (K.L.); (Y.M.); (M.Y.); (L.X.)
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China
| |
Collapse
|
92
|
Dynamics of Cyanobacteria and Related Environmental Drivers in Freshwater Bodies Affected by Mitten Crab Culturing: A Study of Lake Guchenghu, China. WATER 2019. [DOI: 10.3390/w11122468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitten crab aquaculture is prevalent in China, however, knowledge about the threat of cyanobacteria in mitten crab aquaculture-impacted water bodies is limited. Here, seasonal variations of cyanobacteria and their relationships with environmental factors were investigated for Lake Guchenghu area. Results suggested the changes of cyanobacteria community in crab ponds distinguished from the adjacent lake. In the lake, cyanobacterial biomass (3.86 mg/L, 34.6% of the total phytoplankton) was the highest in autumn with the dominance of Oscillatoria, Aphanocapsa and Pesudanabaena. By contrast, in crab ponds, cyanobacteria (46.80 mg/L, 97.2% of the total phytoplankton biomass) were the most abundant in summer when Pesudanabaena and Raphidiopsis were the dominant species. Of particular note was that obviously higher abundance of filamentous and potentially harmful species (e.g., Raphidiopsis raciborskii and Dolichospermum circinale) were observed in ponds compared to the lake. Specifically, water depth (WD), permanganate index (CODMn), total phosphorus (TP), N:P ratio, and NO 2 −-N were the key environmental variables affected cyanobacteria composition. For crab ponds, N:P ratio, water temperature (WT) and TP were the potential environmental drivers of cyanobacteria development. This study highlighted the fact that mitten crab culture had non-negligible influences on the cyanobacteria community and additional attention should be paid to the cyanobacteria dynamics in mitten crab culture-impacted water bodies, especially for those potentially harmful species.
Collapse
|
93
|
Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 2019; 85:AEM.01362-19. [PMID: 31420344 DOI: 10.1128/aem.01362-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems.IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated.
Collapse
|
94
|
Escalas A, Catherine A, Maloufi S, Cellamare M, Hamlaoui S, Yéprémian C, Louvard C, Troussellier M, Bernard C. Drivers and ecological consequences of dominance in periurban phytoplankton communities using networks approaches. WATER RESEARCH 2019; 163:114893. [PMID: 31351356 DOI: 10.1016/j.watres.2019.114893] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Evaluating the causes and consequences of dominance by a limited number of taxa in phytoplankton communities is of huge importance in the current context of increasing anthropogenic pressures on natural ecosystems. This is of particular concern in densely populated urban areas where usages and impacts of human populations on water ecosystems are strongly interconnected. Microbial biodiversity is commonly used as a bioindicator of environmental quality and ecosystem functioning, but there are few studies at the regional scale that integrate the drivers of dominance in phytoplankton communities and their consequences on the structure and functioning of these communities. Here, we studied the causes and consequences of phytoplankton dominance in 50 environmentally contrasted waterbodies, sampled over four summer campaigns in the highly-populated Île-de-France region (IDF). Phytoplankton dominance was observed in 32-52% of the communities and most cases were attributed to Chlorophyta (35.5-40.6% of cases) and Cyanobacteria (30.3-36.5%). The best predictors of dominance were identified using multinomial logistic regression and included waterbody features (surface, depth and connection to the hydrological network) and water column characteristics (total N, TN:TP ratio, water temperature and stratification). The consequences of dominance were dependent on the identity of the dominant organisms and included modifications of biological attributes (richness, cohesion) and functioning (biomass, RUE) of phytoplankton communities. We constructed co-occurrence networks using high resolution phytoplankton biomass and demonstrated that networks under dominance by Chlorophyta and Cyanobacteria exhibited significantly different structure compared with networks without dominance. Furthermore, dominance by Cyanobacteria was associated with more profound network modifications (e.g. cohesion, size, density, efficiency and proportion of negative links), suggesting a stronger disruption of the structure and functioning of phytoplankton communities in the conditions in which this group dominates. Finally, we provide a synthesis on the relationships between environmental drivers, dominance status, community attributes and network structure.
Collapse
Affiliation(s)
- Arthur Escalas
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France; UMR 9190 MARBEC, CNRS-Université de Montpellier-IRD-IFREMER, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| | - Arnaud Catherine
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Selma Maloufi
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Maria Cellamare
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France; Phyto-Quality, 15 Rue Pétrarque, 75116, Paris, France
| | - Sahima Hamlaoui
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Claude Yéprémian
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Clarisse Louvard
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Marc Troussellier
- UMR 9190 MARBEC, CNRS-Université de Montpellier-IRD-IFREMER, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Cécile Bernard
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France.
| |
Collapse
|
95
|
Omidi A, Esterhuizen-Londt M, Pflugmacher S. Interspecies interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus SAG 86.81 in a co-cultivation system at various growth phases. ENVIRONMENT INTERNATIONAL 2019; 131:105052. [PMID: 31357091 DOI: 10.1016/j.envint.2019.105052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
In lakes, cyanobacterial blooms are frequently associated with green algae and dominate the phytoplankton community in successive waves. In the present study, the interactions between Microcystis aeruginosa PCC 7806 and Desmodesmus subspicatus were studied to clarify the probable ecological significance of algal secondary metabolites; focusing on the role of cyanotoxin 'microcystin-LR' (MC-LR). A dialysis co-cultivation technique was applied where M. aeruginosa was grown inside and D. subspicatus was cultured outside of the dialysis tubing. The concentration of the intra- and extracellular MC-LR and the growth of two species were measured at different time points over a period of one month. Additionally, the growth of the two species in the culture filtrate of one another and the effect of the purified MC-LR on the growth of the green alga were studied. The results indicated that the co-existing species could affect each other depending on the growth phases. Despite the early dominance of D. subspicatus during the logarithmic phase, M. aeruginosa suppressed the growth of the green alga at the stationary phase, which coincided with increased MC production and release. However, the inhibitory effects of Microcystis might be related to its other extracellular metabolites rather than, or possibly in addition to, MC.
Collapse
Affiliation(s)
- Azam Omidi
- Technische Universität Berlin, Chair Ecological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Maranda Esterhuizen-Londt
- University of Helsinki, Aquatic Ecotoxicology in an Urban Environment, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland; Korean Institute of Science and Technology Europe (KIST), Joint laboratory of Applied Ecotoxicology, Campus E7 1, 66123 Saarbrücken, Germany; Helsinki Institute of Sustainability (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland.
| | - Stephan Pflugmacher
- University of Helsinki, Aquatic Ecotoxicology in an Urban Environment, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland; Korean Institute of Science and Technology Europe (KIST), Joint laboratory of Applied Ecotoxicology, Campus E7 1, 66123 Saarbrücken, Germany; Helsinki Institute of Sustainability (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland.
| |
Collapse
|