51
|
Regel I, Mayerle J. Nutrient Scavenging From Muscle Cells: A Survival Strategy of Pancreatic Cancer Cells Ends in Cachexia. Gastroenterology 2022; 163:1161-1163. [PMID: 35931104 DOI: 10.1053/j.gastro.2022.07.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Ivonne Regel
- Department of Medicine II, University Hospital LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
52
|
Li H, Zhang C, Zhang Q, Jia J, Wang X. BNIP3 enhances pancreatic cancer cell migration and proliferation via modulating autophagy under hypoxia. Heliyon 2022; 8:e11190. [PMID: 36311367 PMCID: PMC9614569 DOI: 10.1016/j.heliyon.2022.e11190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/25/2022] [Accepted: 10/17/2022] [Indexed: 11/01/2022] Open
Abstract
Chemotherapy and immunotherapy for pancreatic ductal adenocarcinoma (PDAC) have limited success for the intricated surrounding cancer microenvironment. Hypoxic microenvironment in PDAC causes the activation of multiple different molecules and signaling pathways compared with normoxia. We studied the roles of BNIP3 for the migration and proliferation of PDAC and Panc1 cells in vitro. In the present study, we found that BNIP3 expression was elevated and enhanced the migration and proliferation of CFPAC-1 and Panc1 cells under hypoxia. The upregulation of BNIP3 was important for the autophagic activation, while inhibition of autophagy with siRNA targeting Atg5 and Atg7 impaired the hypoxia-induced cell migration and proliferation. Additionally, blocking ERK1/2 mitogen-activated protein kinase (MAPK) signaling with PD98058 significantly down-regulated BNIP3 expression, autophagic activation, as well as the migration and proliferation of CFPAC-1 and Panc1 cells under hypoxia. Collectively, our results here uncover a hitherto unknown hypoxia-BNIP3-autophagy axis in modulating the migration and proliferation and provide a potential intriguing drug target for the therapy of PDAC.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Can Zhang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaojiao Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
53
|
Fei Y, Xu J, Ge L, Chen L, Yu H, Pan L, Chen P. Establishment and validation of individualized clinical prognostic markers for LUAD patients based on autophagy-related genes. Aging (Albany NY) 2022; 14:7328-7347. [PMID: 36178365 PMCID: PMC9550247 DOI: 10.18632/aging.204097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/13/2022] [Indexed: 12/24/2022]
Abstract
There is considerable heterogeneity in the genomic drivers of lung adenocarcinoma, which has a dismal prognosis. Bioinformatics analysis was performed on lung adenocarcinoma (LUAD) datasets to establish a multi-autophagy gene model to predict patient prognosis. LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database as a training set to construct a LUAD prognostic model. According to the risk score, a Kaplan-Meier cumulative curve was plotted to evaluate the prognostic value. Furthermore, a nomogram was established to predict the three-year and five-year survival of patients with LUAD based on their prognostic characteristics. Two genes (ITGB1 and EIF2AK3) were identified in the autophagy-related prognostic model, and the multivariate Cox proportional risk model showed that risk score was an independent predictor of prognosis in LUAD patients (HR=3.3, 95%CI= 2.3 to 4.6, P< 0.0001). The Kaplan-Meier cumulative curve showed that low-risk patients had significantly better overall (P<0.0001). The validation dataset GSE68465 further confirmed the nomogram’s robust ability to assess the prognosis of LUAD patients. A prognosis model of autophagy-related genes based on a LUAD dataset was constructed and exhibited diagnostic value in the prognosis of LUAD patients. Moreover, real-time qPCR confirmed the expression patterns of EIF2AK3 and ITGB1 in LUAD cell lines. Two key autophagy-related genes have been suggested as prognostic markers for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People’s Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Junyi Xu
- Information Center, The First People’s Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Liping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Xuhui, Shanghai, China
| | - Luting Chen
- Department of Integrated Chinese and Western Medicine, The First People’s Hospital of Wenling, Taizhou, Zhejiang, China
| | - Huan Yu
- Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| | - Lei Pan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peifeng Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
54
|
Chemical Constituents of Callistemon subulatus and Their Anti-Pancreatic Cancer Activity against Human PANC-1 Cell Line. PLANTS 2022; 11:plants11192466. [PMID: 36235333 PMCID: PMC9570665 DOI: 10.3390/plants11192466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
An n-hexane extract of Callistemon subulatus was found to exhibit potent cytotoxicity against PANC-1 human pancreatic cancer cells, preferentially under nutrition starvation conditions, with a PC50 value of 6.2 µg/mL. Phytochemical investigation of this bioactive extract resulted in the isolation of fifteen compounds (1–15), including a new compound, subulatone A (–). The structure of compound 1 was elucidated using HRFABMS and NMR spectroscopic analyses. The isolated compounds were tested for their preferential cytotoxicity against the PANC-1 human pancreatic cancer cell line, using an anti-austerity strategy. Among these, myrtucommulone A (2) showed highly potent preferential cytotoxicity, with a PC50 value of 0.28 µM. Myrtucommulone A (2) was found to alter PANC-1 cell morphology, inhibit cell migration, and downregulate the PI3K/Akt/mTOR and autophagy signaling pathways in nutrient-deprived media, leading to cancer cell death. Therefore, myrtucommulone A (2) is a lead compound for anticancer drug development based on an anti-austerity strategy.
Collapse
|
55
|
Kondapuram SK, Coumar MS. Pan-cancer gene expression analysis: Identification of deregulated autophagy genes and drugs to target them. Gene X 2022; 844:146821. [PMID: 35985410 DOI: 10.1016/j.gene.2022.146821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Identifying suitable deregulated targets in autophagy pathway is essential for developing autophagy modulating cancer therapies. With this aim, we systematically analyzed the expression levels of genes that contribute to the execution of autophagy in 21 cancers. Deregulated genes for 21 cancers were analyzed using the level 3 mRNA data from TCGAbiolinks. A total of 574 autophagy genes were mapped to the deregulated genes across 21 cancers. PPI network, cluster analysis, gene enrichment, gene ontology, KEGG pathway, patient survival, protein expression and cMap analysis were performed. Among the autophagy genes, 260 were upregulated, and 43 were downregulated across pan-cancer. The upregulated autophagy genes - CDKN2A and BIRC5 - were the most frequent signatures in cancers and could be universal cancer biomarkers. Significant involvement of autophagy process was found in 8 cancers (CHOL, HNSC, GBM, KICH, KIRC, KIRP, LIHC and SARC). Fifteen autophagy hub genes (ATP6V0C, BIRC5, HDAC1, IL4, ITGB1, ITGB4, MAPK3, mTOR, cMYC, PTK2, SRC, TCIRG1, TP63, TP73 and ULK1) were found to be linked with patients survival and also expressed in cancer patients tissue samples, making them as potential drug targets for these cancers. The deregulated autophagy genes were further used to identify drugs Losartan, BMS-345541, Embelin, Abexinostat, Panobinostat, Vorinostat, PD-184352, PP-1, XMD-1150, Triplotide, Doxorubicin and Ouabain, which could target one or more autophagy hub genes. Overall, our findings shed light on the most frequent cancer-associated autophagy genes, potential autophagy targets and molecules for cancer treatment. These findings can accelerate autophagy modulation in cancer therapy.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India.
| |
Collapse
|
56
|
Zuzčák M, Trnka J. Cellular metabolism in pancreatic cancer as a tool for prognosis and treatment (Review). Int J Oncol 2022; 61:93. [PMID: 35730611 PMCID: PMC9256076 DOI: 10.3892/ijo.2022.5383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Pancreatic cancer (PC) has one of the highest fatality rates and the currently available therapeutic options are not sufficient to improve its overall poor prognosis. In addition to insufficient effectiveness of anticancer treatments, the lack of clear early symptoms and early metastatic spread maintain the PC survival rates at a low level. Metabolic reprogramming is among the hallmarks of cancer and could be exploited for the diagnosis and treatment of PC. PC is characterized by its heterogeneity and, apart from molecular subtypes, the identification of metabolic subtypes in PC could aid in the development of more individualized therapeutic approaches and may lead to improved clinical outcomes. In addition to the deregulated utilization of glucose in aerobic glycolysis, PC cells can use a wide range of substrates, including branched‑chain amino acids, glutamine and lipids to fulfil their energy requirements, as well as biosynthetic needs. The tumor microenvironment in PC supports tumor growth, metastatic spread, treatment resistance and the suppression of the host immune response. Moreover, reciprocal interactions between cancer and stromal cells enhance their metabolic reprogramming. PC stem cells (PCSCs) with an increased resistance and distinct metabolic properties are associated with disease relapses and cancer spread, and represent another significant candidate for therapeutic targeting. The present review discusses the metabolic signatures observed in PC, a disease with a multifaceted and often transient metabolic landscape. In addition, the metabolic pathways utilized by PC cells, as well as stromal cells are discussed, providing examples of how they could present novel targets for therapeutic interventions and elaborating on how interactions between the various cell types affect their metabolism. Furthermore, the importance of PCSCs is discussed, focusing specifically on their metabolic adaptations.
Collapse
Affiliation(s)
- Michal Zuzčák
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
- Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
- Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| |
Collapse
|
57
|
Nishimoto A. Effective combinations of anti-cancer and targeted drugs for pancreatic cancer treatment. World J Gastroenterol 2022; 28:3637-3643. [PMID: 36161054 PMCID: PMC9372808 DOI: 10.3748/wjg.v28.i28.3637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is highly aggressive and lethal. Due to the lack of effective methods for detecting the disease at an early stage, pancreatic cancer is frequently diagnosed late. Gemcitabine has been the standard chemotherapy drug for patients with pancreatic cancer for over 20 years, but its anti-tumor effect is limited. Therefore, FOLFIRINOX (leucovorin, fluorouracil, irinotecan, oxaliplatin) as well as combination therapies using gemcitabine and conventional agents, such as cisplatin and capecitabine, has also been administered; however, these have not resulted in complete remission. Therefore, there is a need to develop novel and effective therapies for pancreatic cancer. Recently, some studies have reported that combinations of gemcitabine and targeted drugs have had significant anti-tumor effects on pancreatic cancer cells. As gemcitabine induced DNA damage response, the proteins related to DNA damage response can be suitable additional targets for novel gemcitabine-based combination therapy. Furthermore, KRAS/ RAF/MEK/ERK signaling triggered by oncogenic mutated KRAS and autophagy are frequently activated in pancreatic cancer. Therefore, these characteristics of pancreatic cancer are potential targets for developing effective novel therapies.
In this minireview, combinations of gemcitabine and targeted drugs to these characteristics, combinations of targeted drugs, combinations of natural products and anti-cancer agents, including gemcitabine, and combinations among natural products are discussed.
Collapse
Affiliation(s)
- Arata Nishimoto
- Division of Basic Pharmaceutical Science, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda City 756-0884, Yamaguchi, Japan
| |
Collapse
|
58
|
Gillson J, Abd El-Aziz YS, Leck LYW, Jansson PJ, Pavlakis N, Samra JS, Mittal A, Sahni S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers (Basel) 2022; 14:3528. [PMID: 35884592 PMCID: PMC9315706 DOI: 10.3390/cancers14143528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is known to have the lowest survival outcomes among all major cancers, and unfortunately, this has only been marginally improved over last four decades. The innate characteristics of pancreatic cancer include an aggressive and fast-growing nature from powerful driver mutations, a highly defensive tumor microenvironment and the upregulation of advantageous survival pathways such as autophagy. Autophagy involves targeted degradation of proteins and organelles to provide a secondary source of cellular supplies to maintain cell growth. Elevated autophagic activity in pancreatic cancer is recognized as a major survival pathway as it provides a plethora of support for tumors by supplying vital resources, maintaining tumour survival under the stressful microenvironment and promoting other pathways involved in tumour progression and metastasis. The combination of these features is unique to pancreatic cancer and present significant resistance to chemotherapeutic strategies, thus, indicating a need for further investigation into therapies targeting this crucial pathway. This review will outline the autophagy pathway and its regulation, in addition to the genetic landscape and tumor microenvironment that contribute to pancreatic cancer severity. Moreover, this review will also discuss the mechanisms of novel therapeutic strategies that inhibit autophagy and how they could be used to suppress tumor progression.
Collapse
Affiliation(s)
- Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Jaswinder S. Samra
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
- School of Medicine, University of Notre Dame, Darlinghurst, Sydney, NSW 2010, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| |
Collapse
|
59
|
Ferreira A, Pereira F, Reis C, Oliveira MJ, Sousa MJ, Preto A. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells 2022; 11:cells11142183. [PMID: 35883626 PMCID: PMC9319879 DOI: 10.3390/cells11142183] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
KRAS, one of the RAS protein family members, plays an important role in autophagy and apoptosis, through the regulation of several downstream effectors. In cancer cells, KRAS mutations confer the constitutive activation of this oncogene, stimulating cell proliferation, inducing autophagy, suppressing apoptosis, altering cell metabolism, changing cell motility and invasion and modulating the tumor microenvironment. In order to inhibit apoptosis, these oncogenic mutations were reported to upregulate anti-apoptotic proteins, including Bcl-xL and survivin, and to downregulate proteins related to apoptosis induction, including thymine-DNA glycosylase (TDG) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). In addition, KRAS mutations are known to induce autophagy in order to promote cell survival and tumor progression through MAPK and PI3K regulation. Thus, these mutations confer resistance to anti-cancer drug treatment and, consequently, result in poor prognosis. Several therapies have been developed in order to overcome KRAS-induced cell death resistance and the downstream signaling pathways blockade, especially by combining MAPK and PI3K inhibitors, which demonstrated promising results. Understanding the involvement of KRAS mutations in apoptosis and autophagy regulation, might bring new avenues to the discovery of therapeutic approaches for CRCs harboring KRAS mutations.
Collapse
Affiliation(s)
- Anabela Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Flávia Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
| | - Celso Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Maria José Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-601524
| |
Collapse
|
60
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|
61
|
Neutrophil Extracellular Traps and Pancreatic Cancer Development: A Vicious Cycle. Cancers (Basel) 2022; 14:cancers14143339. [PMID: 35884400 PMCID: PMC9318070 DOI: 10.3390/cancers14143339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/07/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are a neutrophil-generated extracellular network of chromatin and chromatin-bound molecules with antimicrobial potency. Recent data suggest that NETs are associated with cancer progression and cancer-associated hypercoagulability. Pancreatic adenocarcinoma (PDAC) is a lethal type of cancer in which hypercoagulability and cancer-related thrombosis are among the main complications. In the current report, we summarize the available data on the interplay between NET formation and PDAC development. We conclude that NETs support a dual role during PDAC progression and metastasis. Their formation is on the one hand an important event that shapes the cancer microenvironment to support cancer cell proliferation, invasion and metastasis. On the other hand, NETs may lead to cancer-associated thrombosis. Both mechanisms seem to be dependent on distinct molecular mechanisms that link inflammation to cancer progression. Collectively, NET formation may contribute to the pathogenesis of PDAC, while during cancer development, the proinflammatory environment enables the induction of new NETs and thrombi, forming a vicious cycle. We suggest that targeting NET formation may be an effective mechanism to inhibit both PDAC development and the accompanying hypercoagulability.
Collapse
|
62
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
63
|
Rahman MA, Ahmed KR, Rahman MDH, Parvez MAK, Lee IS, Kim B. Therapeutic Aspects and Molecular Targets of Autophagy to Control Pancreatic Cancer Management. Biomedicines 2022; 10:1459. [PMID: 35740481 PMCID: PMC9220066 DOI: 10.3390/biomedicines10061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer (PC) begins within the organ of the pancreas, which produces digestive enzymes, and is one of the formidable cancers for which appropriate treatment strategies are urgently needed. Autophagy occurs in the many chambers of PC tissue, including cancer cells, cancer-related fibroblasts, and immune cells, and can be fine-tuned by various promotive and suppressive signals. Consequently, the impacts of autophagy on pancreatic carcinogenesis and progression depend greatly on its stage and conditions. Autophagy inhibits the progress of preneoplastic damage during the initial phase. However, autophagy encourages tumor formation during the development phase. Several studies have reported that both a tumor-promoting and a tumor-suppressing function of autophagy in cancer that is likely cell-type dependent. However, autophagy is dispensable for pancreatic ductal adenocarcinoma (PDAC) growth, and clinical trials with autophagy inhibitors, either alone or in combination with other therapies, have had limited success. Autophagy's dual mode of action makes it therapeutically challenging despite autophagy inhibitors providing increased longevity in medical studies, highlighting the need for a more rigorous review of current findings and more precise targeting strategies. Indeed, the role of autophagy in PC is complicated, and numerous factors must be considered when transitioning from bench to bedside. In this review, we summarize the evidence for the tumorigenic and protective role of autophagy in PC tumorigenesis and describe recent advances in the understanding of how autophagy may be regulated and controlled in PDAC.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | | | - In-Seon Lee
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
64
|
Arikoglu H, Dursunoglu D, Kaya DE, Avci E. The effects of Juglone-Selenium combination on invasion and metastasis in pancreatic cancer cell lines. Afr Health Sci 2022; 22:334-342. [PMID: 36407358 PMCID: PMC9652687 DOI: 10.4314/ahs.v22i2.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Pancreatic cancer does not show any symptoms in the early period and metastatic process is already passed when the diagnosis is done. Therefore, in the battle with pancreatic cancer, novel treatment strategies, particularly antiinvasive and antimetastatic strategies, are needed. The cytotoxic and anticancer effects of juglone and sodium selenite (NaSe) have been showed in various cancer cells. OBJECTIVES In this study, it is aimed to investigate the synergistic effects of juglone and selenium on PANC-1 and BxPC-3 pancreatic cancer cells. METHODS Antimetastatic effects of juglone-NaSe were carried out by adhesion and invasion assays and the genes and protein expressions. Expression analysis of the CDH1, ITGB3 and COL4A3 genes and their proteins E-cadherin, β3 integrin and tumstatin which play role in metastasis and angiogenesis processes, were done by qPCR and immunohistochemical analysis, respectively. RESULTS Study findings have provided evidences that the juglone-selenium has a cytotoxic and dose dependent suppressive effect on invasion and metastasis in PANC-1 and BxPC-3 cells. CONCLUSION The juglone-NaSe has the potential to be a promising agent especially to inhibit invasion and metastasis in pancreatic cancer treatment. However, more in depth studies are needed to more clearly demonstrate the effects of juglone-selenium.
Collapse
Affiliation(s)
| | | | | | - Ebru Avci
- Necmettin Erbakan University, Medical Biology
| |
Collapse
|
65
|
Lee S, Hong E, Jo E, Kim ZH, Yim KJ, Woo SH, Choi YS, Jang HJ. Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway. J Microbiol Biotechnol 2022; 32:645-656. [PMID: 35283426 PMCID: PMC9628887 DOI: 10.4014/jmb.2110.10019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.
Collapse
Affiliation(s)
- Soon Lee
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Eunmi Hong
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Eunbi Jo
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Z-Hun Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Kyung June Yim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sung Hwan Woo
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| | - Hyun-Jin Jang
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Corresponding author Phone: +82-42-860-4563 E-mail:
| |
Collapse
|
66
|
Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals (Basel) 2022; 15:ph15060648. [PMID: 35745567 PMCID: PMC9228383 DOI: 10.3390/ph15060648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the main causes of death globally. Most of the molecular mechanisms underlying cancer are marked by complex aberrations that activate the critical cell-signaling pathways that play a pivotal role in cell metabolism, tumor development, cytoskeletal reorganization, and metastasis. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway is one of the main signaling pathways involved in carcinogenesis and metastasis. Autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation, plays a dual role in cancer, as either a tumor promoter or a tumor suppressor, depending on the stage of the carcinogenesis. Statins are the group of drugs of choice to lower the level of low-density lipoprotein (LDL) cholesterol in the blood. Experimental and clinical data suggest the potential of statins in the treatment of cancer. In vitro and in vivo studies have demonstrated the molecular mechanisms through which statins inhibit the proliferation and metastasis of cancer cells in different types of cancer. The anticancer properties of statins have been shown to result in the suppression of tumor growth, the induction of apoptosis, and autophagy. This literature review shows the dual role of the autophagic process in cancer and the latest scientific evidence related to the inducing effect exerted by statins on autophagy, which could explain their anticancer potential.
Collapse
|
67
|
Diclofenac: A Nonsteroidal Anti-Inflammatory Drug Inducing Cancer Cell Death by Inhibiting Microtubule Polymerization and Autophagy Flux. Antioxidants (Basel) 2022; 11:antiox11051009. [PMID: 35624874 PMCID: PMC9138099 DOI: 10.3390/antiox11051009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammatory diseases induces cellular toxicity by increasing the production of reactive oxygen species (ROS) and impairing autophagic flux. In this study, we investigated whether diclofenac induces cancer cell death and the mechanism by which diclofenac causes cell death. We observed that diclofenac induces mitotic arrest with a half-maximal effective concentration of 170 μM and cell death with a half-maximal lethal dose of 200 µM during 18-h incubation in HeLa cells. Cellular microtubule imaging and in vitro tubulin polymerization assays demonstrated that treatment with diclofenac elicits microtubule destabilization. Autophagy relies on microtubule-mediated transport and the fusion of autophagic vesicles. We observed that diclofenac inhibits both phagophore movement, an early step of autophagy, and the fusion of autophagosomes and lysosomes, a late step of autophagy. Diclofenac also induces the fragmentation of mitochondria and the Golgi during cell death. We found that diclofenac induces cell death further in combination with 5-fuorouracil, a DNA replication inhibitor than in single treatment in cancer cells. Pancreatic cancer cells, which have high basal autophagy, are particularly sensitive to cell death by diclofenac. Our study suggests that microtubule destabilization by diclofenac induces cancer cell death via compromised spindle assembly checkpoints and increased ROS through impaired autophagy flux. Diclofenac may be a candidate therapeutic drug in certain type of cancers by inhibiting microtubule-mediated cellular events in combination with clinically utilized nucleoside metabolic inhibitors, including 5-fluorouracil, to block cancer cell proliferation.
Collapse
|
68
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
69
|
Overexpression of TP53INP2 Promotes Apoptosis in Clear Cell Renal Cell Cancer via Caspase-8/TRAF6 Signaling Pathway. J Immunol Res 2022; 2022:1260423. [PMID: 35615533 PMCID: PMC9125430 DOI: 10.1155/2022/1260423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Clear cell renal cell cancer (ccRCC) is a tumor of high malignancy, which can escape apoptosis. The tumor protein p53-inducible nuclear protein 2 (TP53INP2), known as an autophagy protein, is the essential part for autophagosome formation and sensitizes cells to apoptosis. Our study is aimed at exploring the role of TP53INP2 in ccRCC. We have identified the autophagy-related genes (ARGs) of differential expression in ccRCC patients with the help of the TCGA database by bioinformatics analysis. Our assays of quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were for the determination on the both levels of mRNA and protein. Overexpression of TP53INP2 on cellular proliferation, migration, and apoptosis of ccRCC was verified in the ways of performing CCK-8, wound scrape, transwell and flow cytometry assays in vitro, and a mice tumor model in vivo. Transmission electron microscopy was used to measure autophagy formation. The underlying mechanisms of TP53INP2 on ccRCC were determined via coimmunoprecipitation. TP53INP2 was found highly associated with an outcome of worse overall survival (OS) in Kaplan-Meier curves, and this parameter in ccRCC tissues was also lower than the normal tissues. Overexpression of TP53INP2 inhibited ccRCC cellular proliferation, migration, and invasion, as well as the tumor growth of mice. Those cells treated with autophagy inhibitor chloroquine (CQ) or TP53INP2 increased the apoptosis rate. TP53INP2 promoted autophagy formation and elevated the ratio of LC3 II/LC3 I. However, TP53INP2 did not significantly decrease the p-mTOR level. In addition, TP53INP2 activates the expressions of caspase-3, caspase-8, and PARP. Caspase-8 and TNF receptor associated factor 6 (TRAF6) were found to bind to each other in the presence of TP53INP2. TP53INP2 induces apoptosis in ccRCC cells through caspase-8/TRAF6 pathway, rather than the autophagy-dependent pathway.
Collapse
|
70
|
Kargbo RB. Long-Awaited Small-Molecule Drug Candidate for Drugging the Next Undruggable KRAS G12D Mutant in Cancer Therapy. ACS Med Chem Lett 2022; 13:773-774. [PMID: 35586425 PMCID: PMC9109515 DOI: 10.1021/acsmedchemlett.2c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, , San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
71
|
Fukui K, Nomura M, Kishimoto K, Tanuma N, Kurosawa K, Kanazawa K, Kato H, Sato T, Miura S, Miura K, Sato I, Tsuji H, Yamashita Y, Tamai K, Watanabe T, Yasuda J, Tanaka T, Satoh K, Furukawa T, Jingu K, Shima H. PP6 deficiency in mice with KRAS mutation and Trp53 loss promotes early death by PDAC with cachexia-like features. Cancer Sci 2022; 113:1613-1624. [PMID: 35247012 PMCID: PMC9128171 DOI: 10.1111/cas.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
To examine effects of PP6 gene (Ppp6c) deficiency on pancreatic tumor development, we developed pancreas-specific, tamoxifen-inducible Cre-mediated KP (KRAS(G12D) plus Trp53-deficient) mice (cKP mice) and crossed them with Ppp6cflox / flox mice. cKP mice with the homozygous Ppp6c deletion developed pancreatic tumors, became emaciated and required euthanasia within 150 days of mutation induction, phenotypes that were not seen in heterozygous or wild-type (WT) mice. At 30 days, a comparative analysis of genes commonly altered in homozygous versus WT Ppp6c cKP mice revealed enhanced activation of Erk and NFκB pathways in homozygotes. By 80 days, the number and size of tumors and number of precancerous lesions had significantly increased in the pancreas of Ppp6c homozygous relative to heterozygous or WT cKP mice. Ppp6c-/- tumors were pathologically diagnosed as pancreatic ductal adenocarcinoma (PDAC) undergoing the epithelial-mesenchymal transition (EMT), and cancer cells had invaded surrounding tissues in three out of six cases. Transcriptome and metabolome analyses indicated an enhanced cancer-specific glycolytic metabolism in Ppp6c-deficient cKP mice and the increased expression of inflammatory cytokines. Individual Ppp6c-/- cKP mice showed weight loss, decreased skeletal muscle and adipose tissue, and increased circulating tumor necrosis factor (TNF)-α and IL-6 levels, suggestive of systemic inflammation. Overall, Ppp6c deficiency in the presence of K-ras mutations and Trp53 gene deficiency promoted pancreatic tumorigenesis with generalized cachexia and early death. This study provided the first evidence that Ppp6c suppresses mouse pancreatic carcinogenesis and supports the use of Ppp6c-deficient cKP mice as a model for developing treatments for cachexia associated with pancreatic cancer.
Collapse
Affiliation(s)
- Katsuya Fukui
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Miyuki Nomura
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kazuhiro Kishimoto
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Department of Head and Neck SurgeryKanazawa Medical UniversityKanazawaJapan
| | - Nobuhiro Tanuma
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Koreyuki Kurosawa
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Department of Plastic and Reconstructive SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kosuke Kanazawa
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Division of SurgeryMiyagi Cancer CenterNatoriJapan
| | - Hiroyuki Kato
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Tomoki Sato
- Laboratory of Nutritional BiochemistryGraduate School of Nutritional and Environmental SciencesUniversity of ShizuokaShizuokaJapan
| | - Shinji Miura
- Laboratory of Nutritional BiochemistryGraduate School of Nutritional and Environmental SciencesUniversity of ShizuokaShizuokaJapan
| | - Koh Miura
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of SurgeryMiyagi Cancer CenterNatoriJapan
| | - Ikuro Sato
- Division of PathologyMiyagi Cancer CenterNatoriJapan
| | - Hiroyuki Tsuji
- Department of Head and Neck SurgeryKanazawa Medical UniversityKanazawaJapan
| | - Yoji Yamashita
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Toshio Watanabe
- Department of Biological ScienceGraduate School of Humanities and SciencesNara Women’s UniversityNaraJapan
| | - Jun Yasuda
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Division of Molecular Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Takuji Tanaka
- Research Center of Diagnostic PathologyGifu Municipal HospitalGifuJapan
| | - Kennichi Satoh
- Division of GastroenterologyTohoku Medical Pharmaceutical UniversitySendaiJapan
| | - Toru Furukawa
- Department of Investigative PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Keiichi Jingu
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Shima
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
72
|
Rahman MA, Rahman MDH, Mamun-Or-Rashid ANM, Hwang H, Chung S, Kim B, Rhim H. Autophagy Modulation in Aggresome Formation: Emerging Implications and Treatments of Alzheimer's Disease. Biomedicines 2022; 10:1027. [PMID: 35625764 PMCID: PMC9138936 DOI: 10.3390/biomedicines10051027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases in the world, which is characterized by memory dysfunction and the formation of tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The formation of senile plaques involving tau hyperphosphorylation, fibrillar Aβ, and neurofibrillary tangles (NFTs) is used as a pathological marker of AD and eventually produces aggregation or misfolded protein. Importantly, it has been found that the failure to degrade these aggregate-prone proteins leads to pathological consequences, such as synaptic impairment, cytotoxicity, neuronal atrophy, and memory deficits associated with AD. Recently, increasing evidence has suggested that the autophagy pathway plays a role as a central cellular protection system to prevent the toxicity induced by aggregation or misfolded proteins. Moreover, it has also been revealed that AD-related protein aggresomes could be selectively degraded by autophagosome and lysosomal fusion through the autophagy pathway, which is known as aggrephagy. Therefore, the regulation of autophagy serve as a useful approach to modulate the formation of aggresomes associated with AD. This review focuses on the recent improvements in the application of natural compounds and small molecules as a potential therapeutic approach for AD prevention and treatment via aggrephagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - M D Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - A N M Mamun-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 602-8566, Japan
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Sooyoung Chung
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| |
Collapse
|
73
|
Deng J, Zhang Q, Lv L, Ma P, Zhang Y, Zhao N, Zhang Y. Identification of an autophagy-related gene signature for predicting prognosis and immune activity in pancreatic adenocarcinoma. Sci Rep 2022; 12:7006. [PMID: 35488119 PMCID: PMC9054801 DOI: 10.1038/s41598-022-11050-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adenocarcinoma of the pancreas (PAAD) is a cancerous growth that deteriorates rapidly and has a poor prognosis. Researchers are investigating autophagy in PAAD to identify a new biomarker and treatment target. An autophagy-related gene (ARG) model for overall survival (OS) was constructed using multivariate Cox regression analyses. A cohort of the Cancer Genome Atlas (TCGA)-PAAD was used as the training group as a basis for model construction. This prediction model was validated with several external datasets. To evaluate model performance, the analysis with receiver operating characteristic curves (ROC) was performed. The Human Protein Atlas (HPA) and Cancer Cell Line Encyclopedia (CCLE) were investigated to validate the effects of ARGs expression on cancer cells. Comparing the levels of immune infiltration between high-risk and low-risk groups was finished through the use of CIBERSORT. The differentially expressed genes (DEGs) between the low-/high-risk groups were analyzed further via Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, which were used to identify potential small-molecule compounds in Connectivity Map (CMap), followed by half-maximal inhibitory concentration (IC50) examination with PANC-1 cells. The risk score was finally calculated as follows: BAK1 × 0.34 + ITGA3 × 0.38 + BAG3 × 0.35 + APOL1 × 0.26-RAB24 × 0.67519. ITGA3 and RAB24 both emerged as independent prognostic factors in multivariate Cox regression. Each PAAD cohort had a significantly shorter OS in the high-risk group than in the low-risk group. The high-risk group exhibited infiltration of several immune cell types, including naive B cells (p = 0.003), plasma cells (p = 0.044), and CD8 T cells (nearly significant, p = 0.080). Higher infiltration levels of NK cells (p = 0.025), resting macrophages (p = 0.020), and mast cells (p = 0.007) were found in the high-risk group than the low-risk group. The in vitro and in vivo expression of signature ARGs was consistent in the CCLE and HPA databases. The top 3 enriched Gene Ontology biological processes (GO-BPs) were signal release, regulation of transsynaptic signaling, and modulation of chemical synaptic transmission, and the top 3 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were MAPK, cAMP, and cell adhesion molecules. Four potential small-molecule compounds (piperacetazine, vinburnine, withaferin A and hecogenin) that target ARGs were also identified. Taking the results together, our research shows that the ARG signature may serve as a useful prognostic indicator and reveal potential therapeutic targets in patients with PAAD.
Collapse
Affiliation(s)
- Jiang Deng
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Qian Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Ning Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China.
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, People's Republic of China.
| |
Collapse
|
74
|
Kuang Y, Ye N, Kyani A, Ljungman M, Paulsen M, Chen H, Zhou M, Wild C, Chen H, Zhou J, Neamati N. Induction of Genes Implicated in Stress Response and Autophagy by a Novel Quinolin-8-yl-nicotinamide QN523 in Pancreatic Cancer. J Med Chem 2022; 65:6133-6156. [PMID: 35439009 PMCID: PMC9195374 DOI: 10.1021/acs.jmedchem.1c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a cytotoxicity-based phenotypic screen of a highly diverse library of 20,000 small-molecule compounds, we identified a quinolin-8-yl-nicotinamide, QN519, as a promising lead. QN519 represents a novel scaffold with drug-like properties, showing potent in vitro cytotoxicity in a panel of 12 cancer cell lines. Subsequently, lead optimization campaign generated compounds with IC50 values < 1 μM. An optimized compound, QN523, shows significant in vivo efficacy in a pancreatic cancer xenograft model. QN523 treatment significantly increased the expression of HSPA5, DDIT3, TRIB3, and ATF3 genes, suggesting activation of the stress response pathway. We also observed a significant increase in the expression of WIPI1, HERPUD1, GABARAPL1, and MAP1LC3B, implicating autophagy as a major mechanism of action. Due to the lack of effective treatments for pancreatic cancer, discovery of novel agents such as the QN series of compounds with unique mechanism of action has the potential to fulfill a clear unmet medical need.
Collapse
Affiliation(s)
- Yuting Kuang
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haijun Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Christopher Wild
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
75
|
Zhang X, Mao T, Xu H, Li S, Yue M, Ma J, Yao J, Wang Y, Zhang X, Ge W, Wang Y, Shentu D, Wang L. Synergistic blocking of RAS downstream signaling and epigenetic pathway in KRAS mutant pancreatic cancer. Aging (Albany NY) 2022; 14:3597-3606. [PMID: 35468095 PMCID: PMC9085242 DOI: 10.18632/aging.204031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy and lacks effective therapeutic targets. Trametinib is considered to be a promising potential indirectly targeted KRAS inhibitor in PDAC. However, the clinical outcomes were poor. JQ1 displayed a significant synergistic effect when combined with chemotherapy or potential targeted therapy in pancreatic cancer. The impact of Trametinib and JQ1 combination treatment in PDAC remains to be fully elucidated. METHODS The efficacy of trametinib and JQ1 on cell proliferation and cytotoxicity was assayed in 7 KRAS mutant pancreatic cancer cell lines. The cytotoxic effects of drugs either alone or in combination were evaluated using a luminescent cell viability assay. Immunoblot analysis was carried out to investigate changes in p62 and autophagy. RESULTS We found that either trametinib or JQ1 alone inhibited the proliferation of some pancreatic cancer cell lines with KRAS alterations, irrespective of the mutational loci of KRAS and the aberrant status of the other driver genes. The synergistic effects of combination treatment of trametinib and JQ1 were observed in both trametinib-resistant and trametinib-sensitive cells. In trametinib-sensitive PDAC cells, the combined treatment definitely inhibited p62 expression compared with trametinib alone, while LC3 expression at high levels changed little. In trametinib-resistant PDAC cells, the combination of MEK/BET inhibitor dramatically decreased p62 expression compared with single agent, while p62 expression increased after anti-autophagic therapy was added. CONCLUSIONS Blocking RAS downstream signaling and epigenetic pathway synergistically increases the antiproliferative activity in KRAS mutant PDAC cells. Combination therapeutic synergism may induce different cell death modes in different pancreatic cancer subtypes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shumin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyu Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongchao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daiyuan Shentu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
76
|
Chen YY, Chen SY, Li TJ, Lin TW, Chen CC, Yen GC. 4-Acetylantroquinonol B enhances cell death and inhibits autophagy by downregulating the PI3K/Akt/MDR1 pathway in gemcitabine-resistant pancreatic cancer cells. Oncol Lett 2022; 23:128. [PMID: 35251348 PMCID: PMC8895450 DOI: 10.3892/ol.2022.13248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Gemcitabine (GEM) is a typical chemotherapeutic drug used to treat pancreatic cancer, but GEM resistance develops within weeks after chemotherapy. Hence, the development of a new strategy to overcome drug resistance is urgent. 4-Acetylantroquinonol B (4-AAQB), a ubiquinone derived from Taiwanofungus camphoratus, has hepatoprotective, anti-obesity, and antitumor activities. However, the role of 4-AAQB in enhancing GEM sensitivity is unclear. This study aimed to determine the underlying mechanisms by which 4-AAQB enhances cytotoxicity and GEM sensitivity. Cell viability was dramatically reduced by 4-AAQB (2 and 5 µM) treatment in the MiaPaCa-2 and GEM-resistant MiaPaCa-2 (MiaPaCa-2GEMR) human pancreatic cancer cells. 4-AAQB led to cell cycle arrest, upregulated the levels of reactive oxygen species (ROS), promoted apoptosis, and inhibited autophagy, which subsequently enhanced GEM chemosensitivity by suppressing the receptor for advanced glycation end products (RAGE)/high mobility group box 1 (HMGB1)-initiated PI3K/Akt/multidrug resistance protein 1 (MDR1) signaling pathway in both cell lines. Vascular endothelial growth factor A (VEGFA) expression, cell migration, and invasion were also inhibited by the 4-AAQB incubation. Overall, this combination treatment strategy might represent a novel approach for GEM-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ying-Yin Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
77
|
Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166400. [PMID: 35341960 DOI: 10.1016/j.bbadis.2022.166400] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.
Collapse
Affiliation(s)
- Rakesh Ravichandran
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
78
|
Gulla A, Andriusaityte U, Zdanys GT, Babonaite E, Strupas K, Kelly H. The Impact of Epithelial-Mesenchymal Transition and Metformin on Pancreatic Cancer Chemoresistance: A Pathway towards Individualized Therapy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:467. [PMID: 35454306 PMCID: PMC9032206 DOI: 10.3390/medicina58040467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022]
Abstract
Globally, pancreatic ductal adenocarcinoma remains among the most aggressive forms of neoplastic diseases, having a dismal prognostic outcome. Recent findings elucidated that epithelial-mesenchymal transition (EMT) can play an important role in pancreatic tumorigenic processes, as it contributes to the manifestation of malignant proliferative masses, which impede adequate drug delivery. An organized literature search with PubMed, Scopus, Microsoft Academic and the Cochrane library was performed for articles published in English from 2011 to 2021 to review and summarize the latest updates and knowledge on the current understanding of EMT and its implications for tumorigenesis and chemoresistance. Furthermore, in the present paper, we investigate the recent findings on metformin as a possible neoadjuvant chemotherapy agent, which affects EMT progression and potentially provides superior oncological outcomes for PDAC patients. Our main conclusions indicate that selectively suppressing EMT in pancreatic cancer cells has a promising therapeutic utility by selectively targeting the chemotherapy-resistant sub-population of cancer stem cells, inhibiting tumor growth via EMT pathways and thereby improving remission in PDAC patients. Moreover, given that TGF-β1-driven EMT generates the migration of tumor-initiating cells by directly linking the acquisition of abnormal cellular motility with the maintenance of tumor initiating potency, the chemoprevention of TGF-β1-induced EMT may have promising clinical applications in the therapeutic management of PDAC outcomes.
Collapse
Affiliation(s)
- Aiste Gulla
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
- Center of Visceral Medicine and Translational Research, Department of Surgery, Georgetown University Hospital, 3800 Reservoir Road Northwest BLES Building 1st. Floor, Washington, DC 20007, USA
| | - Urte Andriusaityte
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Gabrielius Tomas Zdanys
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Elena Babonaite
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Kestutis Strupas
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| |
Collapse
|
79
|
Taucher E, Mykoliuk I, Fediuk M, Smolle-Juettner FM. Autophagy, Oxidative Stress and Cancer Development. Cancers (Basel) 2022; 14:cancers14071637. [PMID: 35406408 PMCID: PMC8996905 DOI: 10.3390/cancers14071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy, as an important cellular repair mechanism, is important for the prevention of several diseases, including metabolic and neurologic disorders, and cancer. Hence, dysfunctional autophagy has been linked to these diseases, and in recent years researchers have tried to outline therapeutic targets in autophagy-related pathways as a treatment. With this review of the literature, we want to give an overview about the connection between oxidative stress, autophagy and cancer. Abstract Autophagy is an important cellular repair mechanism, aiming at sequestering misfolded and dysfunctional proteins and damaged cell organelles. Dysfunctions in the autophagy process have been linked to several diseases, like infectious and neurodegenerative diseases, type II diabetes mellitus and cancer. Living organisms are constantly subjected to some degree of oxidative stress, mainly induced by reactive oxygen and nitrogen species. It has been shown that autophagy is readily induced by reactive oxygen species (ROS) upon nutrient deprivation. In recent years, research has increasingly focused on outlining novel therapeutic targets related to the autophagy process. With this review of the literature, we want to give an overview about the link between autophagy, oxidative stress and carcinogenesis.
Collapse
Affiliation(s)
- Elisabeth Taucher
- Division of Pulmonology, Department of Internal Medicine, Medical University Graz, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-12183
| | - Iurii Mykoliuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Melanie Fediuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Freyja-Maria Smolle-Juettner
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| |
Collapse
|
80
|
Mainz L, Sarhan MAFE, Roth S, Sauer U, Maurus K, Hartmann EM, Seibert HD, Rosenwald A, Diefenbacher ME, Rosenfeldt MT. Autophagy Blockage Reduces the Incidence of Pancreatic Ductal Adenocarcinoma in the Context of Mutant Trp53. Front Cell Dev Biol 2022; 10:785252. [PMID: 35372352 PMCID: PMC8965752 DOI: 10.3389/fcell.2022.785252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is a homeostatic process that preserves cellular integrity. In mice, autophagy regulates pancreatic ductal adenocarcinoma (PDAC) development in a manner dependent on the status of the tumor suppressor gene Trp53. Studies published so far have investigated the impact of autophagy blockage in tumors arising from Trp53-hemizygous or -homozygous tissue. In contrast, in human PDACs the tumor suppressor gene TP53 is mutated rather than allelically lost, and TP53 mutants retain pathobiological functions that differ from complete allelic loss. In order to better represent the patient situation, we have investigated PDAC development in a well-characterized genetically engineered mouse model (GEMM) of PDAC with mutant Trp53 (Trp53R172H) and deletion of the essential autophagy gene Atg7. Autophagy blockage reduced PDAC incidence but had no impact on survival time in the subset of animals that formed a tumor. In the absence of Atg7, non-tumor-bearing mice reached a similar age as animals with malignant disease. However, the architecture of autophagy-deficient, tumor-free pancreata was effaced, normal acinar tissue was largely replaced with low-grade pancreatic intraepithelial neoplasias (PanINs) and insulin expressing islet β-cells were reduced. Our data add further complexity to the interplay between Atg7 inhibition and Trp53 status in tumorigenesis.
Collapse
Affiliation(s)
- Laura Mainz
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Salk Institute for Biological Studies, San Diego, CA, United States
| | - Mohamed A. F. E. Sarhan
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Sabine Roth
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Ursula Sauer
- Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Katja Maurus
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Elena M. Hartmann
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Helen-Desiree Seibert
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Markus E. Diefenbacher
- Biocenter, Department of Biochemistry and Molecular Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Mathias T. Rosenfeldt
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- *Correspondence: Mathias T. Rosenfeldt,
| |
Collapse
|
81
|
He Z, Cai K, Zeng Z, Lei S, Cao W, Li X. Autophagy-associated circRNA circATG7 facilitates autophagy and promotes pancreatic cancer progression. Cell Death Dis 2022; 13:233. [PMID: 35288538 PMCID: PMC8921308 DOI: 10.1038/s41419-022-04677-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022]
Abstract
Dysregulation of autophagy and circular RNAs (circRNAs) are involved in the pancreatic cancer (PC) progression. However, the regulatory network between circRNAs, autophagy, and PC progression remains unknown. Herein, we demonstrated that autophagy-associated circRNA circ-autophagy related 7 (circATG7) was elevated in PC tissues compared to adjacent tissues, and in PC cells treated with EBSS and hypoxia. circATG7 expression was positively associated with tumor diameter and lymph node invasion in patients with PC. circATG7 overexpression promoted PC cell proliferation, mobility, and autophagy in vitro, while circATG7 knockdown induced the opposite effects. ATG7 inhibition attenuated the effects of circATG7 on the biological functions of PC cells. CircATG7 is located in the cell cytoplasm and nucleus. Cytoplasmic circATG7 sponged miR-766-5p and decreased its expression, and increased the expression of ATG7, a target gene of miR-766-5p. Nuclear circATG7 acted as a scaffold to increase the interaction between the human antigen R protein and ATG7 mRNA and enhanced ATG mRNA stability. Furthermore, we demonstrated that circATG7 regulates PC cell proliferation and metastasis in vivo via ATG7-dependent autophagy. In conclusion, our results demonstrated that circATG7 accelerates PC progression via miR-766-5p/ATG7 and that HUR/ATG7 depends on autophagic flux. Thus, circATG7 may be a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases & Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Kun Cai
- Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shan Lei
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Wenpeng Cao
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases & Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
82
|
Xiao W, Cao RC, Yang WJ, Tan JH, Liu RQ, Kan HP, Zhou L, Zhang N, Chen ZY, Chen XM, Xu J, Zhang GW, Shen P. Roles and Clinical Significances of ATF6, EMC6, and APAF1 in Prognosis of Pancreatic Cancer. Front Genet 2022; 12:730847. [PMID: 35222510 PMCID: PMC8873166 DOI: 10.3389/fgene.2021.730847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Pancreatic cancer (PC) is prevalent among malignant tumors with poor prognosis and lacks efficient therapeutic strategies. Endoplasmic reticulum (ER) stress and apoptosis are associated with chronic inflammation and cancer progression. However, the prognostic value of ER stress-related, and apoptosis-related genes in PC remains to be further elucidated. Our study aimed at confirming the prognostic values of the ER stress-related genes, ATF6, EMC6, XBP1, and CHOP, and the apoptosis-related gene, APAF1, in PC patients. Methods: Gene Expression Profiling Interactive Analysis 2 (GEPIA2) was used to evaluate prognosis value of ATF6, EMC6, XBP1, CHOP, and APAF1 in PC. Clinical data from 69 PC patients were retrospectively analyzed. Immunohistochemistry, Western blotting, and qRT-PCR were used for the assessment of gene or protein expression. The cell counting kit-8 (CCK-8) and the Transwell invasion assays were, respectively, used for the assessment of the proliferative and invasive abilities of PC cells. The prognostic values of ATF6, XBP1, CHOP, EMC6, and APAF1 in PC patients were evaluated using Kaplan–Meier and Cox regression analyses. Results: XBP1 and CHOP expressions were not associated with PC recurrence-free survival (RFS), overall survival (OS) and disease-specific survival (DSS). ATF6 upregulation and EMC6 and APAF1 downregulations significantly correlated with the poor RFS, OS, and DSS of PC patients. ATF6 promoted PC cell proliferation and invasion, while EMC6 and APAF1 inhibited these events. Conclusion: ATF6 upregulation and EMC6 and APAF1 downregulations may be valid indicators of poor prognosis of PC patients. Moreover, ATF6, EMC6, and APAF1 may constitute potential therapeutic targets in PC patients.
Collapse
Affiliation(s)
- Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo-Qi Liu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - He-Ping Kan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Department of Hepoctobiliary Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Na Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ye Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Guo-Wei Zhang, ; Peng Shen,
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Guo-Wei Zhang, ; Peng Shen,
| |
Collapse
|
83
|
Autophagic Schwann cells promote perineural invasion mediated by the NGF/ATG7 paracrine pathway in pancreatic cancer. J Exp Clin Cancer Res 2022; 41:48. [PMID: 35109895 PMCID: PMC8809009 DOI: 10.1186/s13046-021-02198-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Background Perineural invasion (PNI) and autophagy are two common features in the tumor microenvironment of pancreatic cancer (PanCa) and have a negative effect on prognosis. Potential mediator cells and the molecular mechanism underlying their relationships need to be fully elucidated. Methods To investigate the autophagy of Schwann cells (SCs) in PNI, we reproduced the microenvironment of PNI by collecting clinical PNI tissue, performing sciatic nerve injection of nude mice with cancer cells and establishing a Dorsal root ganglion (DRG) coculture system with cancer cell lines. Autophagy was detected by IHC, IF, transmission electron microscopy (TEM) and western blotting assays. Apoptosis was detected by IF, TEM and western blotting. NGF targeting molecular RO 08–2750(RO) and the autophagy inhibitor Chloroquine (CQ) were utilized to evaluate the effect on autophagy and apoptosis in SCs and PanCa cells in PNI samples. Results SC autophagy is activated in PNI by paracrine NGF from PanCa cells. Autophagy-activated Schwann cells promote PNI through a) enhanced migration and axon guidance toward PanCa cells and b) increased chemoattraction to PanCa cells. The NGF-targeting reagent RO and autophagy inhibitor CQ inhibited Schwann cell autophagic flux and induced Schwann cell apoptosis. Moreover, RO and CQ could induce PanCa cell apoptosis and showed good therapeutic effects in the PNI model. Conclusions PanCa cells can induce autophagy in SCs through paracrine pathways such as the NGF/ATG7 pathway. Autophagic SCs exert a “nerve-repair like effect”, induce a high level of autophagy of cancer cells, provide a “beacon” for the invasion of cancer cells to nerve fibers, and induce directional growth of cancer cells. Targeting NGF and autophagy for PNI treatment can block nerve infiltration and is expected to provide new directions and an experimental basis for the research and treatment of nerve infiltration in pancreatic cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02198-w.
Collapse
|
84
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Xi D, Yuan P, Brady DC, Chang CJ. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 2022; 22:102-113. [PMID: 34764459 PMCID: PMC8810673 DOI: 10.1038/s41568-021-00417-2] [Citation(s) in RCA: 573] [Impact Index Per Article: 286.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen G Kaler
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael L Schilsky
- Section of Transplantation and Immunology, Division of Digestive Diseases, Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | | | - Linda T Vahdat
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dan Xi
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
85
|
Chen H, Miao Y, Bian A, Ye J, Wang J, Cong X, Jian S, Yi Z, Liang L, Sun Z, Yang F, Ding T. A novel small-molecule activator of unfolded protein response suppresses castration-resistant prostate cancer growth. Cancer Lett 2022; 532:215580. [PMID: 35121048 DOI: 10.1016/j.canlet.2022.215580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Androgen receptor-targeted therapy improves survival in castration-resistant prostate cancer (CRPC). However, almost all patients with CRPC eventually develop secondary resistance to these drugs. Therefore, alternative therapeutic approaches for incurable metastatic CRPC are urgently needed. Unfolded protein response (UPR) is regarded as a cytoprotective mechanism that removes misfolded proteins in rapidly proliferating tumor cells. However, acute activation of the UPR directly leads to tumor cell death. This study has shown that WJ-644A, a novel small molecule activator of UPR, potently inhibited the proliferation of prostate cancer cells and caused tumor regression with a good safety profile in multiple animal models. Mechanistically, we have identified that WJ-644A induced cell methuosis and autophagy upon UPR activation. Our study not only identifies the UPR as an actionable target for CRPC treatment, but also establishes WJ-644A as a novel UPR activator that has potential therapeutic value for CRPC.
Collapse
Affiliation(s)
- Huang Chen
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Ying Miao
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Aiwu Bian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jiangnan Ye
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jing Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development & Shanghai Key Laboratory of Green Chemistry and Chemical Processes, SCME, East China Normal University, Shanghai, 200062, China
| | - Xiaonan Cong
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Shuyi Jian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Zhengfang Yi
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Lin Liang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China, 201499
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China, 201499.
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development & Shanghai Key Laboratory of Green Chemistry and Chemical Processes, SCME, East China Normal University, Shanghai, 200062, China.
| | - Tao Ding
- Department of Urology, Southern Medical University Affifiliated Fengxian Hospital, Shanghai, China, 201499.
| |
Collapse
|
86
|
Reyes-Castellanos G, Abdel Hadi N, Carrier A. Autophagy Contributes to Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Tumors. Cells 2022; 11:426. [PMID: 35159234 PMCID: PMC8834004 DOI: 10.3390/cells11030426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming is a feature of cancers for which recent research has been particularly active, providing numerous insights into the mechanisms involved. It occurs across the entire cancer process, from development to resistance to therapies. Established tumors exhibit dependencies for metabolic pathways, constituting vulnerabilities that can be targeted in the clinic. This knowledge is of particular importance for cancers that are refractory to any therapeutic approach, such as Pancreatic Ductal Adenocarcinoma (PDAC). One of the metabolic pathways dysregulated in PDAC is autophagy, a survival process that feeds the tumor with recycled intracellular components, through both cell-autonomous (in tumor cells) and nonautonomous (from the local and distant environment) mechanisms. Autophagy is elevated in established PDAC tumors, contributing to aberrant proliferation and growth even in a nutrient-poor context. Critical elements link autophagy to PDAC including genetic alterations, mitochondrial metabolism, the tumor microenvironment (TME), and the immune system. Moreover, high autophagic activity in PDAC is markedly related to resistance to current therapies. In this context, combining autophagy inhibition with standard chemotherapy, and/or drugs targeting other vulnerabilities such as metabolic pathways or the immune response, is an ongoing clinical strategy for which there is still much to do through translational and multidisciplinary research.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Institut Paoli-Calmettes, Aix Marseille Université, F-13009 Marseille, France; (G.R.-C.); (N.A.H.)
| |
Collapse
|
87
|
Fernández-Díaz J, Beteta-Göbel R, Torres M, Cabot J, Fernández-García P, Lladó V, Escribá PV, Busquets X. Tri-2-Hydroxyarachidonein Induces Cytocidal Autophagy in Pancreatic Ductal Adenocarcinoma Cancer Cell Models. Front Physiol 2022; 12:782525. [PMID: 35126175 PMCID: PMC8811354 DOI: 10.3389/fphys.2021.782525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cell proliferation in pancreatic cancer is determined by a complex network of signaling pathways. Despite the extensive understanding of these protein-mediated signaling processes, there are no significant drug discoveries that could considerably improve a patient’s survival. However, the recent understanding of lipid-mediated signaling gives a new perspective on the control of the physiological state of pancreatic cells. Lipid signaling plays a major role in the induction of cytocidal autophagy and can be exploited using synthetic lipids to induce cell death in pancreatic cancer cells. In this work, we studied the activity of a synthetic lipid, tri-2-hydroxyarachidonein (TGM4), which is a triacylglycerol mimetic that contains three acyl moieties with four double bonds each, on cellular and in vivo models of pancreatic cancer. We demonstrated that TGM4 inhibited proliferation of Mia-PaCa-2 (human pancreatic carcinoma) and PANC-1 (human pancreatic carcinoma of ductal cells) in in vitro models and in an in vivo xenograft model of Mia-PaCa-2 cells. In vitro studies demonstrated that TGM4 induced cell growth inhibition paralleled with an increased expression of PARP and CHOP proteins together with the presence of sub-G0 cell cycle events, indicating cell death. This cytocidal effect was associated with elevated ER stress or autophagy markers such as BIP, LC3B, and DHFR. In addition, TGM4 activated peroxisome proliferator-activated receptor gamma (PPAR-γ), which induced elevated levels of p-AKT and downregulation of p-c-Jun. We conclude that TGM4 induced pancreatic cell death by activation of cytocidal autophagy. This work highlights the importance of lipid signaling in cancer and the use of synthetic lipid structures as novel and potential approaches to treat pancreatic cancer and other neoplasias.
Collapse
Affiliation(s)
- Javier Fernández-Díaz
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Roberto Beteta-Göbel
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Manuel Torres
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | | | - Victoria Lladó
- Laminar Pharmaceuticals, Department of R&D, Palma de Mallorca, Spain
| | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- *Correspondence: Xavier Busquets,
| |
Collapse
|
88
|
Liu J, Wang L, Ge L, Sun W, Song Z, Lu X, Jin C, Wu S, Yang J. Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. Food Chem Toxicol 2022; 161:112831. [DOI: 10.1016/j.fct.2022.112831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
|
89
|
Suzuki S, Ogawa M, Miyazaki M, Ota K, Kazama H, Hirota A, Takano N, Hiramoto M, Miyazawa K. Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells. Oncol Rep 2021; 47:40. [PMID: 34958115 PMCID: PMC8759104 DOI: 10.3892/or.2021.8251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer-related mortality and has the lowest 5-year survival rate. Therefore, novel strategies are urgently required to treat pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) cells rely on enhanced lysosomal function for survival and proliferation to facilitate the degradation of contents accumulated via autophagy and macropinocytosis. Previously, we have reported that the combination of epidermal growth factor receptor/HER2 inhibitor lapatinib and sphingosine analog fingolimod (FTY720) confers a significant cytostatic effect in lung cancer cells. In the present study, the combined effects of these drugs on PDAC cell lines, BxPC-3, KP-4, PANC-1 and MIA PaCa-2, were examined. It was observed that FTY720 enhanced the lapatinib-induced cytotoxic effect and caused non-canonical and lysosome-dependent death in PDAC cells. Lapatinib and FTY720 induced lysosomal swelling and inhibited lysosomal acidification. Combination treatment with lapatinib and FTY720 increased lysosomal membrane permeability, induced mitochondrial depolarization, induced endoplasmic reticulum stress and disturbed intracellular calcium homeostasis. Additionally, the cytotoxic effect of lapatinib was enhanced by hydroxychloroquine or the CDK4/6 inhibitor abemaciclib, both of which induce lysosomal dysfunction. Collectively, these results indicated that the lysosome-targeted drug combination induces multiple organelle dysfunction and exerts a marked cytotoxic effect in PDAC cells.
Collapse
Affiliation(s)
- Sumire Suzuki
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Masato Ogawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Masaya Miyazaki
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Kohki Ota
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Ayako Hirota
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
90
|
The Autophagic Route of E-Cadherin and Cell Adhesion Molecules in Cancer Progression. Cancers (Basel) 2021; 13:cancers13246328. [PMID: 34944948 PMCID: PMC8699259 DOI: 10.3390/cancers13246328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary A hallmark of carcinoma progression is the loss of epithelial integrity. In this context, the deregulation of adhesion molecules, such as E-cadherin, affects epithelial structures and associates with epithelial to mesenchymal transition (EMT). This, in turn, fosters cancer progression. Autophagy endows cancer cells with the ability to overcome intracellular and environmental stress stimuli, such as anoikis, nutrient deprivation, hypoxia, and drugs. Furthermore, it plays an important role in the degradation of cell adhesion proteins and in EMT. This review focuses on the interplay between the turnover of adhesion molecules, primarily E-cadherin, and autophagy in cancer progression. Abstract Cell-to-cell adhesion is a key element in epithelial tissue integrity and homeostasis during embryogenesis, response to damage, and differentiation. Loss of cell adhesion and gain of mesenchymal features, a phenomenon known as epithelial to mesenchymal transition (EMT), are essential steps in cancer progression. Interestingly, downregulation or degradation by endocytosis of epithelial adhesion molecules (e.g., E-cadherin) associates with EMT and promotes cell migration. Autophagy is a physiological intracellular degradation and recycling process. In cancer, it is thought to exert a tumor suppressive role in the early phases of cell transformation but, once cells have gained a fully transformed phenotype, autophagy may fuel malignant progression by promoting EMT and conferring drug resistance. In this review, we discuss the crosstalk between autophagy, EMT, and turnover of epithelial cell adhesion molecules, with particular attention to E-cadherin.
Collapse
|
91
|
Wang C, Chen D, Pan C, Wang C. Research progress of Bub3 gene in malignant tumors. Cell Biol Int 2021; 46:673-682. [PMID: 34882895 PMCID: PMC9303375 DOI: 10.1002/cbin.11740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/09/2022]
Abstract
The spindle assembly checkpoint (SAC) is a highly conserved monitoring system that ensures a fidelity of chromosome segregation during mitosis. Bub3, a mitotic Checkpoint Protein, is a member of the Bub protein family, and an important factor in the SAC. Abnormal expression of Bub3 results in mitotic defects, defective spindle gate function, chromosomal instability and the development of aneuploidy cells. Aneuploidy is a state of abnormal karyotype that has long been considered as a marker of tumorigenesis. Karyotypic heterogeneity in tumor cells, known as "chromosomal instability" (CIN), can be used to distinguish cancerous cells from their normal tissue counterpart. In this review, we summarize the expression and clinical significance of Bub3 in a variety of tumors and suggest that it has potential in the treatment of cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,1997-09, Woman, Han, Breast cancer
| | - Dating Chen
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,1974-07, Woman, Han, Breast cancer
| |
Collapse
|
92
|
Chen W, Hu MJ, Zhong XL, Ji LH, Wang J, Zhang CF, Zhang R, Lin HM. Screening of a novel autophagy-related prognostic signature and therapeutic targets in hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:2985-2998. [PMID: 35070424 PMCID: PMC8748040 DOI: 10.21037/jgo-21-664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Many studies have indicated that autophagy plays an important role in multiple cancers, including hepatocellular carcinoma (HCC). This study aimed to establish a prognostic signature for HCC based on autophagy-related genes (ARGs) to predict the prognosis of patients. METHODS The list of ARGs was derived from screening National Center for Biotechnology Information (NCBI)-Gene and Molecular Signatures Database (MSigDB) datasets. Differential analysis was conducted via the R limma package in HCC patients based on The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression analysis were conducted to identify key prognostic ARGs via the survival package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by clusterProfiler package. The Estimation of Stromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm was used to conduct immune analysis. Finally, the correlation between the prognostic model and clinical characteristics was also assessed, including age, tumor-node-metastasis (TNM) stages, and tumor grades. RESULTS Firstly, 106 differential ARGs were identified and 10 candidates were further confirmed via Cox regression analysis, including BAMBI, HIF1A, SERPINE1, EZH2, SLC9A3R1, IGFBP3, HSPB8, DAB2, CXCL1 and PRNP. The receiver operating characteristic (ROC) curve analysis revealed that the ARGs risk model had a well diagnostic positive rate with 1-year area under the curve (AUC) =0.688 and 3-year AUC =0.674. Correlation analysis indicated that only advanced tumor stages were positively associated with high ARGs scores with P=0.0227. There were also significant differences in tumor purity (P=6.71e-05), infiltrating cell analysis (P=7.77e-05), immune analysis (P=7.9e-05), and stromal cells analysis (P=0.0015) in high- and low-risk ARGs samples. The genes HIF1A, IGFBP3, and DAB2 were found to have high frequent missense mutations in samples with high-risk ARGs scores. Lastly, we also established a nomogram to predict overall survival (OS) of HCC by integrating ARGs scores and other clinical parameters. CONCLUSIONS Our study established an autophagy-related signature for predicting the prognosis of HCC patients, providing a thorough understanding of the underlying mechanisms of autophagy in HCC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Ming-Juan Hu
- Department of Pathology, People’s Hospital of Huadu District, Guangzhou, China
| | - Xiao-Lan Zhong
- Department of Gastroenterology, People’s Hospital of Huadu District, Guangzhou, China
| | - Lin-Hua Ji
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Jian Wang
- Department of Interventional Medicine, People’s Hospital of Huadu District, Guangzhou, China
| | - Cheng-Fang Zhang
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Rui Zhang
- HBP Surgery Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao-Ming Lin
- HBP Surgery Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
93
|
Andersen HB, Ialchina R, Pedersen SF, Czaplinska D. Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets. Cancer Metastasis Rev 2021; 40:1093-1114. [PMID: 34855109 DOI: 10.1007/s10555-021-10004-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers globally with a mortality rate exceeding 95% and very limited therapeutic options. A hallmark of PDAC is its acidic tumor microenvironment, further characterized by excessive fibrosis and depletion of oxygen and nutrients due to poor vascularity. The combination of PDAC driver mutations and adaptation to this hostile environment drives extensive metabolic reprogramming of the cancer cells toward non-canonical metabolic pathways and increases reliance on scavenging mechanisms such as autophagy and macropinocytosis. In addition, the cancer cells benefit from metabolic crosstalk with nonmalignant cells within the tumor microenvironment, including pancreatic stellate cells, fibroblasts, and endothelial and immune cells. Increasing evidence shows that this metabolic rewiring is closely related to chemo- and radioresistance and immunosuppression, causing extensive treatment failure. Indeed, stratification of human PDAC tumors into subtypes based on their metabolic profiles was shown to predict disease outcome. Accordingly, an increasing number of clinical trials target pro-tumorigenic metabolic pathways, either as stand-alone treatment or in conjunction with chemotherapy. In this review, we highlight key findings and potential future directions of pancreatic cancer metabolism research, specifically focusing on novel therapeutic opportunities.
Collapse
Affiliation(s)
- Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
94
|
Raufi AG, Liguori NR, Carlsen L, Parker C, Hernandez Borrero L, Zhang S, Tian X, Louie A, Zhou L, Seyhan AA, El-Deiry WS. Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2021; 12:751568. [PMID: 34916936 PMCID: PMC8670090 DOI: 10.3389/fphar.2021.751568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Cassandra Parker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| |
Collapse
|
95
|
Ramachandran S, Kaushik IS, Srivastava SK. Pimavanserin: A Novel Autophagy Modulator for Pancreatic Cancer Treatment. Cancers (Basel) 2021; 13:cancers13225661. [PMID: 34830816 PMCID: PMC8616166 DOI: 10.3390/cancers13225661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic tumors exhibit high basal autophagy compared to that of other cancers. Several studies including those from our laboratory reported that enhanced autophagy leads to apoptosis in cancer cells. In this study, we evaluated the autophagy and apoptosis inducing effects of Pimavanserin tartrate (PVT). Autophagic effects of PVT were determined by Acridine Orange assay and Transmission Electron Microscopy analysis. Clinical significance of ULK1 in normal and pancreatic cancer patients was evaluated by R2 and GEPIA cancer genomic databases. Modulation of proteins in autophagy signaling was assessed by Western blotting and Immunofluorescence. Apoptotic effects of PVT was evaluated by Annexin-V/APC assay. Subcutaneous xenograft pancreatic tumor model was used to evaluate the autophagy-mediated apoptotic effects of PVT in vivo. Autophagy was induced upon PVT treatment in pancreatic ducal adenocarcinoma (PDAC) cells. Pancreatic cancer patients exhibit reduced levels of autophagy initiator gene, ULK1, which correlated with reduced patient survival. Interestingly, PVT induced the expression of autophagy markers ULK1, FIP200, Atg101, Beclin-1, Atg5, LC3A/B, and cleavage of caspase-3, an indicator of apoptosis in several PDAC cells. ULK1 agonist LYN-1604 enhanced the autophagic and apoptotic effects of PVT. On the other hand, autophagy inhibitors chloroquine and bafilomycin blocked the autophagic and apoptotic effects of PVT in PDAC cells. Notably, chloroquine abrogated the growth suppressive effects of PVT by 25% in BxPC3 tumor xenografts in nude mice. Collectively, our results indicate that PVT mediated pancreatic tumor growth suppression was associated with induction of autophagy mediated apoptosis.
Collapse
|
96
|
Kargbo RB. Targeting KRAS Mutant Protein Inhibitor for Potential Treatment in Cancer. ACS Med Chem Lett 2021; 12:1633-1634. [PMID: 34795848 PMCID: PMC8591626 DOI: 10.1021/acsmedchemlett.1c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis
Obispo, California 93401-7337, United States
| |
Collapse
|
97
|
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021; 18:804-823. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal cancer characterized by late diagnosis, limited treatment success and dismal prognosis. Exocrine tumours account for 95% of pancreatic cancers and the most common pathological type is pancreatic ductal adenocarcinoma (PDAC). The occurrence and progression of PDAC involve multiple factors, including internal genetic alterations and external inflammatory stimuli. The biology and therapeutic response of PDAC are further shaped by various forms of regulated cell death, such as apoptosis, necroptosis, ferroptosis, pyroptosis and alkaliptosis. Cell death induced by local or systemic treatments suppresses tumour proliferation, invasion and metastasis. However, unrestricted cell death or tissue damage might result in an inflammation-related immunosuppressive microenvironment, which is conducive to tumour progression or recurrence. The precise extent to which cell death affects PDAC is not yet well described. A growing body of preclinical and clinical studies document significant correlations between mutations (for example, in KRAS and TP53), stress responses (such as hypoxia and autophagy), metabolic reprogramming and chemotherapeutic responses. Here, we describe the molecular machinery of cell death, discuss the complexity and multifaceted nature of lethal signalling in PDAC cells, and highlight the challenges and opportunities for activating cell death pathways through precision oncology treatments.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
98
|
Liu PF, Shu CW, Yang HC, Lee CH, Liou HH, Ger LP, Tzeng YDT, Wang WC. Combined Evaluation of MAP1LC3B and SQSTM1 for Biological and Clinical Significance in Ductal Carcinoma of Breast Cancer. Biomedicines 2021; 9:biomedicines9111514. [PMID: 34829743 PMCID: PMC8615094 DOI: 10.3390/biomedicines9111514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer is the leading cause of cancer death in women worldwide. The microtubule-associated protein light chain 3B (MAP1LC3B) and adaptor sequestosome 1 (SQSTM1) are two major markers for autophagy. Increased protein levels of MAP1LC3B and SQSTM1 are considered to be causes of autophagy inhibition or activation in various types of cancers. However, the roles of MAP1LC3B and SQSTM1 in breast cancer are still not clear. Using a tissue microarray from 274 breast invasive ductal carcinoma (IDC) patients, we found that tumor tissues showed higher protein levels of MAP1LC3B and cytoplasmic SQSTM1 in comparison to those in adjacent normal tissues. Moreover, high levels of MAP1LC3B were associated with better survival, including disease-specific survival and disease-free survival (DFS) in IDC patients. Furthermore, high co-expression of MAP1LC3B and SQSTM1 was significantly associated with better DFS in IDC patients. Astonishingly, the autophagy inhibitor accumulated the protein levels of MAP1LC3B/SQSTM1 and enhanced the cytotoxic effects of cisplatin and paclitaxel in MCF7 and BT474 breast cancer cell lines, implying that autophagy inhibition might result in poor prognosis and chemosensitivity in IDC. Taken together, high co-expression of MAP1LC3B and SQSTM1 might serve as a potential diagnostic and prognostic biomarker for IDC patients.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-F.L.); (C.-H.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Hsiu-Chen Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-C.Y.); (H.-H.L.); (L.-P.G.)
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-F.L.); (C.-H.L.)
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-C.Y.); (H.-H.L.); (L.-P.G.)
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (H.-C.Y.); (H.-H.L.); (L.-P.G.)
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- Correspondence: (Y.-D.T.T.); (W.-C.W.); Tel.: +886-07-3422121-73008 (Y.-D.T.T.); +886-06-2812811-57112 (W.-C.W.)
| | - Wen-Ching Wang
- Department of General Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
- Correspondence: (Y.-D.T.T.); (W.-C.W.); Tel.: +886-07-3422121-73008 (Y.-D.T.T.); +886-06-2812811-57112 (W.-C.W.)
| |
Collapse
|
99
|
Zhu L, Wang Y, Lv W, Wu X, Sheng H, He C, Hu J. Schizandrin A can inhibit non‑small cell lung cancer cell proliferation by inducing cell cycle arrest, apoptosis and autophagy. Int J Mol Med 2021; 48:214. [PMID: 34643254 PMCID: PMC8522958 DOI: 10.3892/ijmm.2021.5047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Schizandrin A (SchA) can be extracted from the vine plant Schisandra chinensis and has been reported to confer various biologically active properties. However, its potential biological effects on non‑small cell lung cancer (NSCLC) remain unknown. Therefore, the present study aims to address this issue. NSCLC and normal lung epithelial cell lines were first treated with SchA. Cell viability and proliferation were measured using CellTiter‑Glo Assay and colony formation assays, respectively. PI staining was used to measure cell cycle distribution. Cell cycle‑related proteins p53, p21, cyclin D1, CDK4, CDK6, cyclin E1, cyclin E2, CDK2 and DNA damage‑related protein SOX4 were detected by western blot analysis. Annexin V‑FITC/PI staining, DNA electrophoresis and Hoechst 33342/PI dual staining were used to detect apoptosis. JC‑1 and DCFH‑DA fluorescent dyes were used to measure the mitochondrial membrane potential and reactive oxygen species concentrations, respectively. Apoptosis‑related proteins caspase‑3, cleaved caspase‑3, poly(ADP‑ribose) polymerase (PARP), cleaved PARP, BimEL, BimL, BimS, Bcl2, Bax, caspase‑9 and cleaved caspas‑9 were measured by western blot analysis. Dansylcadaverine was used to detect the presence of the acidic lysosomal vesicles. The expression levels of the autophagy‑related proteins LC3‑I/II, p62/SQSTM and AMPKα activation were measured using western blot analysis. In addition, the autophagy inhibitor 3‑methyladenine was used to inhibit autophagy. SchA treatment was found to reduce NSCLC cell viability whilst inhibiting cell proliferation. Low concentrations of SchA (10‑20 µM) mainly induced G1/S‑phase cell cycle arrest. By contrast, as the concentration of SchA used increases (20‑50 µM), cells underwent apoptosis and G2/M‑phase cell cycle a13rrest. As the treatment concentration of SchA increased from 0 to 50 µM, the expression of p53 and SOX4 protein also concomitantly increased, but the expression of p21 protein was increased by 10 µM SchA and decreased by higher concentrations (20‑50 µM). In addition, the mRNA and protein expression levels of Bcl‑like 11 (Bim)EL, BimL and BimS increased following SchA application. SchA induced the accumulation of acidic vesicles and induced a marked increase in the expression of LC3‑II protein, suggsting that SchA activated the autophagy pathway. However, the expression of the p62 protein was found to be increased by SchA, suggesting that p62 was not degraded during the autophagic flux. The 3‑methyladenine exerted no notable effects on SchA‑induced apoptosis. Taken together, results from the present study suggest that SchA exerted inhibitory effects on NSCLC physiology by inducing cell cycle arrest and apoptosis. In addition, SchA partially induced autophagy, which did not result in any cytoprotective effects.
Collapse
Affiliation(s)
- Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Wang
- Operating Room, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
100
|
Kargbo RB. Dual Inhibition of KRAS G12C and G12D Mutants as a Potential Treatment in Cancer Therapy. ACS Med Chem Lett 2021; 12:1512-1513. [PMID: 34676024 DOI: 10.1021/acsmedchemlett.1c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|