51
|
Minimal mitochondrial respiration is required to prevent cell death by inhibition of mTOR signaling in CoQ-deficient cells. Cell Death Discov 2021; 7:201. [PMID: 34349107 PMCID: PMC8338951 DOI: 10.1038/s41420-021-00591-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/01/2021] [Accepted: 05/23/2021] [Indexed: 01/07/2023] Open
Abstract
Coenzyme Q (CoQ) is a lipid-like mobile electron transporter of the mitochondrial respiratory chain. Patients with partial loss-of-function mutations in the CoQ biosynthesis pathway suffer from partial primary CoQ deficiency (MIM 607426). This leads to mitochondrial dysfunction, which presents like mitochondrial disease syndrome (MDS). In addition, many other conditions, including MDS itself, lead to secondary CoQ deficiency. We sought to identify drugs that can alleviate the consequences of the mitochondrial dysfunction that is associated with CoQ deficiency. Loss of the CoQ-biosynthetic enzyme COQ7 prevents CoQ synthesis but leads to the accumulation of the biosynthetic intermediate demethoxyubiquinone (DMQ). Coq7-knockout mouse embryonic fibroblasts (MEFs) die when rapid ATP generation from glycolysis is prevented. We screened for drugs that could rescue cell death under these conditions. All compounds that were identified inhibit mTOR signaling. In the CoQ-deficient cells, the beneficial action mTOR inhibition appears to be mediated by inhibition of protein translation rather than by stimulation of autophagy. We further studied the Coq7-knockout cells to better determine under which conditions mTOR inhibition could be beneficial. We established that Coq7-knockout cells remain capable of a low level of mitochondrial respiration mediated by DMQ. To obtain more profound mitochondrial dysfunction, we created double-knockout mutant MEFs lacking both Coq7, as well as Pdss2, which is required for sidechain synthesis. These cells make neither CoQ nor DMQ, and their extremely small residual respiration depends on uptake of CoQ from the culture medium. Although these cells are healthy in the presence of sufficient glucose for glycolysis and do not require uridine or pyruvate supplementation, mTOR inhibitors were unable to prevent their death in the absence of sufficient glycolysis. We conclude that, for reasons that remain to be elucidated, the energy-sparing benefits of the inhibition of mTOR signaling require a minimally functional respiratory chain.
Collapse
|
52
|
Dankó T, Petővári G, Sztankovics D, Moldvai D, Raffay R, Lőrincz P, Visnovitz T, Zsiros V, Barna G, Márk Á, Krencz I, Sebestyén A. Rapamycin Plus Doxycycline Combination Affects Growth Arrest and Selective Autophagy-Dependent Cell Death in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22158019. [PMID: 34360785 PMCID: PMC8347279 DOI: 10.3390/ijms22158019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolic alteration is characteristic during tumour growth and therapy; however, targeting metabolic rewiring could overcome therapy resistance. mTOR hyperactivity, autophagy and other metabolic processes, including mitochondrial functions, could be targeted in breast cancer progression. We investigated the growth inhibitory mechanism of rapamycin + doxycycline treatment in human breast cancer model systems. Cell cycle and cell viability, including apoptotic and necrotic cell death, were analysed using flow cytometry, caspase activity measurements and caspase-3 immunostainings. mTOR-, autophagy-, necroptosis-related proteins and treatment-induced morphological alterations were analysed by WesTM, Western blot, immunostainings and transmission electron microscopy. The rapamycin + doxycycline combination decreased tumour proliferation in about 2/3rd of the investigated cell lines. The continuous treatment reduced tumour growth significantly both in vivo and in vitro. The effect after short-term treatment was reversible; however, autophagic vacuoles and degrading mitochondria were detected simultaneously, and the presence of mitophagy was also observed after the long-term rapamycin + doxycycline combination treatment. The rapamycin + doxycycline combination did not cause apoptosis or necrosis/necroptosis, but the alterations in autophagy- and mitochondria-related protein levels (LC3-B-II/I, p62, MitoTracker, TOM20 and certain co-stainings) were correlated to autophagy induction and mitophagy, without mitochondria repopulation. Based on these results, we suggest considering inducing metabolic stress and targeting mTOR hyperactivity and mitochondrial functions in combined anti-cancer treatments.
Collapse
Affiliation(s)
- Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Dániel Sztankovics
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Dorottya Moldvai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Regina Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary;
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Viktória Zsiros
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó utca 58, H-1094 Budapest, Hungary;
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Ágnes Márk
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (T.D.); (G.P.); (D.S.); (D.M.); (R.R.); (G.B.); (Á.M.); (I.K.)
- Correspondence:
| |
Collapse
|
53
|
Divalent Metal Transporter 1 Knock-Down Modulates IL-1β Mediated Pancreatic Beta-Cell Pro-Apoptotic Signaling Pathways through the Autophagic Machinery. Int J Mol Sci 2021; 22:ijms22158013. [PMID: 34360779 PMCID: PMC8348373 DOI: 10.3390/ijms22158013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 (DMT1) expression in pancreatic β-cells, consequently cell death. Inhibition of β-cell iron-import by DMT1 silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of DMT1 knock-down is unknown. Here, we performed phosphoproteomics using our sequential enrichment strategy of mRNA, protein, and phosphopeptides, which enabled us to explore the concurrent molecular events in the same set of wildtype and DMT1-silenced β-cells during IL-1β exposure. Our findings reveal new phosphosites in the IL-1β-induced proteins that are clearly reverted by DMT1 silencing towards their steady-state levels. We validated the levels of five novel phosphosites of the potential protective proteins using parallel reaction monitoring. We also confirmed the inactivation of autophagic flux that may be relevant for cell survival induced by DMT1 silencing during IL-1β exposure. Additionally, the potential protective proteins induced by DMT1 silencing were related to insulin secretion that may lead to improving β-cell functions upon exposure to IL-1β. This global profiling has shed light on the signal transduction pathways driving the protection against inflammation-induced cell death in β-cells after DMT1 silencing.
Collapse
|
54
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
55
|
Lu H, Mei C, Yang L, Zheng J, Tong J, Duan F, Liang H, Hong L. PPM-18, an Analog of Vitamin K, Induces Autophagy and Apoptosis in Bladder Cancer Cells Through ROS and AMPK Signaling Pathways. Front Pharmacol 2021; 12:684915. [PMID: 34305598 PMCID: PMC8299005 DOI: 10.3389/fphar.2021.684915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023] Open
Abstract
PPM-18, identified as a novel analog of vitamin K, has been reported to play a critical role in the suppression of seizures. However, the concerns that whether PPM-18, like vitamin K, exerts anticancer activity remain to be further investigated. Here, we found that PPM-18 remarkably suppressed the proliferation and induced apoptosis in bladder cancer cells. Furthermore, a significant autophagic effect of PPM-18 on bladder cancer cells was also demonstrated, which profoundly promoted apoptotic cell death. Mechanistically, PPM-18 activated AMP-activated protein kinase (AMPK), whereas it repressed PI3K/AKT and mTORC1 pathways in bladder cancer cells. Inhibition of AMPK markedly relieved PPM-18–induced autophagy and apoptosis, indicating that PPM-18 is able to induce autophagy and apoptosis in bladder cancer cells via AMPK activation. Moreover, reactive oxygen species (ROS) were notably accumulated in PPM-18–treated bladder cancer cells, and treatment with ROS scavengers not only eliminated ROS production but also abrogated AMPK activation, which eventually rescued bladder cancer cells from PPM-18–triggered autophagy and apoptotic cell death. In bladder cancer xenografts, the anticancer activities of PPM-18, including suppressing the growth of tumors and inducing autophagy and apoptosis in tumor cells, were also established. Collectively, this study was the first to demonstrate the anticancer effect of PPM-18 on bladder cancer cells in vitro and in vivo through eliciting autophagy and apoptosis via ROS and AMPK pathways, which might provide new insights into the potential utilization of PPM-18 for future bladder cancer treatment.
Collapse
Affiliation(s)
- Huiai Lu
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Mei
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luhao Yang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyan Zheng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Tong
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengsen Duan
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Hong
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
56
|
Tegeder I, Kögel D. When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biol 2021; 100-101:99-117. [DOI: 10.1016/j.matbio.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
57
|
Zhao Q, Hao C, Wei J, Huang R, Li C, Yao W. Bone marrow-derived mesenchymal stem cells attenuate silica-induced pulmonary fibrosis by inhibiting apoptosis and pyroptosis but not autophagy in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112181. [PMID: 33848736 DOI: 10.1016/j.ecoenv.2021.112181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on silica-induced lung fibrosis in a rat model. Thirty SD rats were randomly divided into three groups: control group, silica group, and BMSC group (n = 10 rats per group). BMSCs were injected successively into rats on the 14th, 28th, and 42nd days after silica exposure. All rats were sacrificed 56 days after silica exposure. We detected the pathological and fibrotic changes, apoptosis, autophagy, and pyroptosis in their lung tissue by histopathological examination, hydroxyproline content assays, real-time quantitative polymerase chain reactions, western blot assays, immunohistochemistry staining, immunofluorescence staining, and enzyme-linked immunosorbent assays. We found that BMSCs significantly relieved lung inflammatory infiltrates, collagen deposition, hydroxyproline content, and the mRNA and protein levels of collagen 1 and fibronectin. Compared to the silica group, in the BMSC group, apoptosis-associated proteins, including cleaved caspase 3 and Bax, were significantly downregulated, and Bcl-2/Bax was significantly upregulated; pyroptosis-related proteins, including Nlrp3, cleaved caspase 1, IL-1β, and IL-18, were significantly reduced. However, the BMSCs had no significant impact on autophagy-related proteins, including Beclin 1, P62, and LC3. In summary, BMSCs protected lung tissue against severe fibrosis by inhibiting apoptosis and pyroptosis but not autophagy.
Collapse
Affiliation(s)
- Qiuyan Zhao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingjing Wei
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruoxuan Huang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chao Li
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
58
|
Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 2021; 17:948-960. [PMID: 32186434 PMCID: PMC8078708 DOI: 10.1080/15548627.2020.1739447] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer tends to be highly resistant to current therapy and remains one of the great challenges in biomedicine with very low 5-year survival rates. Here, we report that zalcitabine, an antiviral drug for human immunodeficiency virus infection, can suppress the growth of primary and immortalized human pancreatic cancer cells through the induction of ferroptosis, an iron-dependent form of regulated cell death. Mechanically, this effect relies on zalcitabine-induced mitochondrial DNA stress, which activates the STING1/TMEM173-mediated DNA sensing pathway, leading to macroautophagy/autophagy-dependent ferroptotic cell death via lipid peroxidation, but not a type I interferon response. Consequently, the genetic and pharmacological inactivation of the autophagy-dependent ferroptosis pathway diminishes the anticancer effects of zalcitabine in cell culture and animal models. Together, these findings not only provide a new approach for pancreatic cancer therapy but also increase our understanding of the interplay between autophagy and DNA damage response in shaping cell death.Abbreviations: ALOX: arachidonate lipoxygenase; ARNTL/BMAL1: aryl hydrocarbon receptor nuclear translocator-like; ATM: ATM serine/threonine kinase; ATG: autophagy-related; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; ER: endoplasmic reticulum; FANCD2: FA complementation group D2; GPX4: glutathione peroxidase 4; IFNA1/IFNα: interferon alpha 1; IFNB1/IFNβ: interferon beta 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MDA: malondialdehyde; mtDNA: mitochondrial DNA; NCOA4: nuclear receptor coactivator 4; PDAC: pancreatic ductal adenocarcinoma; POLG: DNA polymerase gamma, catalytic subunit; qRT-PCR: quantitative polymerase chain reaction; RCD: regulated cell death; ROS: reactive oxygen species; SLC7A11: solute carrier family 7 member 11; STING1/TMEM173: stimulator of interferon response cGAMP interactor 1; TFAM: transcription factor A, mitochondrial.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
59
|
Zhong Y, Le F, Cheng J, Luo C, Zhang X, Wu X, Xu F, Zuo Q, Tan B. Triptolide inhibits JAK2/STAT3 signaling and induces lethal autophagy through ROS generation in cisplatin‑resistant SKOV3/DDP ovarian cancer cells. Oncol Rep 2021; 45:69. [PMID: 33760192 PMCID: PMC8020210 DOI: 10.3892/or.2021.8020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Advanced and recurrent ovarian cancer has a poor prognosis and is frequently resistant to numerous therapeutics; thus, safe and effective drugs are needed to combat this disease. Previous studies have demonstrated that triptolide (TPL) exhibits anticancer and sensitization effects against cisplatin (DDP)-resistant ovarian cancer both in vitro and in vivo by inducing apoptosis; however, the involvement of autophagy induced by TPL in resistant ovarian carcinoma remains unclear. In the present study, the results revealed that TPL induced autophagy to facilitate SKOV3/DDP ovarian cancer cell death. The xenograft experiment revealed that the autophagy inhibitor CQ significantly reduced TPL-mediated chemosensitization and tumor growth inhibition. Mechanically, TPL-induced autophagy in SKOV3/DDP cells was associated with the induction of ROS generation and inhibition of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription-3 (STAT3) pathway. The inhibitory effect of TPL on the JAK2/STAT3 pathway could be restored in the presence of the antioxidant NAC. Furthermore, it was further determined that TPL disrupted the interaction between Mcl-1 and Beclin1, which was prevented by the JAK2/STAT3 signaling activator IL-6. Overall, the present results revealed a novel molecular mechanism whereby TPL induced lethal autophagy through the ROS-JAK2/STAT3 signaling cascade in SKOV3/DDP cells. The present study has provided the groundwork for future application of TPL in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yanying Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fuyin Le
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Cheng
- Department of Tumour Immunology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiali Zhang
- Department of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingwu Wu
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Fang Xu
- Department of Obstetrics and Gynecology, The Third Hospital of Nanchang University, Nanchang, Jiangxi 330009, P.R. China
| | - Qi Zuo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
60
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
61
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
62
|
Xiang YC, Shen J, Si Y, Liu XW, Zhang L, Wen J, Zhang T, Yu QQ, Lu JF, Xiang K, Liu Y. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer. Chin J Nat Med 2021; 19:195-204. [PMID: 33781453 DOI: 10.1016/s1875-5364(21)60021-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 02/02/2023]
Abstract
Paris saponin VII (PSVII), a bioactive constituent extracted from Trillium tschonoskii Maxim., is cytotoxic to several cancer types. This study was designed to explore whether PSVII prevents non-small-cell lung cancer (NSCLC) proliferation and to investigate its molecular target. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. In cultured human NSCLC cell lines, PSVII induces autophagy by activating AMPK and inhibiting mTOR signaling. Furthermore, PSVII-induced autophagy activation was reversed by the AMPK inhibitor compound C. Computational docking analysis showed that PSVII directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. Microscale thermophoresis assay and drug affinity responsive target stability assay further confirmed the high affinity between PSVII and AMPK. In summary, PSVII acts as a direct AMPK activator to induce cell autophagy, which inhibits the growth of NSCLC cells. In the future, PSVII therapy should be applied to treat patients with NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Jie Shen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xue-Wen Liu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Jun Wen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Te Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Qing-Qing Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Jun-Fei Lu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Ke Xiang
- Department of Science and Education, Gucheng People's Hospital, Hubei University of Arts and Science, Xiangyang 441700, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
63
|
Li QW, Zhang GL, Hao CX, Ma YF, Sun X, Zhang Y, Cao KX, Li BX, Yang GW, Wang XM. SANT, a novel Chinese herbal monomer combination, decreasing tumor growth and angiogenesis via modulating autophagy in heparanase overexpressed triple-negative breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113430. [PMID: 33011366 DOI: 10.1016/j.jep.2020.113430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus, Solanum nigrum Linn, Lotus plumule, Ligusticum are widely used traditional herbal medicines for cancer treatment in China. They were typical drugs selected from Gubenyiliu II and series of formula (GYII), which were developed on the foundation of YIQIHUOXUEJIEDU theory. In the present study, four active ingredients (Astragaloside IV, α-solanine, neferine, and 2,3,5,6-tetramethylpyrazine) derived from medicines above were applied in combination as SANT. AIM OF THE STUDY Triple-negative breast cancer (TNBC) is a serious threat to women's health worldwide. Heparanase (HPSE) is often up-regulated in breast cancer with the properties of facilitating tumorigenesis and influencing the autophagy process in cancer cells. This study aimed at evaluating the anti-tumor potential of SANT in treating HPSE related TNBC both in-vitro and in-vivo. MATERIALS AND METHODS In this study, we explored the correlation between HPSE expression and survival of breast cancer patients in databases. We performed MTS, trans-well and wound scratch assays to assess the impact of SANT on cell proliferation and migration. Confocal microscopy observation and western blots were applied to verify the autophagy flux induced by SANT. Mice models were employed to evaluate the efficacy and safety of SANT in-vivo by tumor weights and volumes or serum index, respectively. To analyze the underlying mechanisms of SANT, we conducted human autophagy PCR array and angiogenesis proteome profiler on tumor tissues. RESULTS Patients with elevated HPSE expression were associated with a poor outcome in both RFS (P = 1.7e-12) and OS (P = 0.00016). SANT administration significantly inhibited cancer cells' proliferation and migration, enhanced autophagy flux, and slightly reduced the active form of HPSE in-vitro. SANT also suppressed tumor growth and angiogenesis in-vivo. Human autophagy PCR array results indicated that SANT increased the ATG16L1, ATG9B, ATG4D gene expressions while decreased TMEM74 and TNF gene expressions.Angiogenesis proteome profiler results showed SANT reduced protein level of HB-EGF, thrombospondin-2, amphiregulin, leptin, IGFBP-9, EGF, coagulation factor III, and MMP-9 (pro and active form) in tumor, raised the protein expression of serpin E1 and platelet factor 4. CONCLUSIONS These findings indicated that herbal compounds SANT may be a promising candidate in anti-cancer drug discovery. It also provides novel strategies for using natural compounds to achieve optimized effect.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacology
- Autophagy/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Glucuronidase/genetics
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Qi-Wei Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| | - Cai-Xia Hao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yun-Fei Ma
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xu Sun
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Department of Integrated Traditional Chinese and Western Medicine, The Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou Henan 450008, China
| | - Yi Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Ke-Xin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Bing-Xue Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
64
|
YM155 and BIRC5 downregulation induce genomic instability via autophagy-mediated ROS production and inhibition in DNA repair. Pharmacol Res 2021; 166:105474. [PMID: 33549731 DOI: 10.1016/j.phrs.2021.105474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Activation of autophagy plays a critical role in DNA repair, especially for the process of homologous recombination. Despite upregulation of autophagy promotes both the survival and the death of cells, the pathways that govern the pro-cell death effects of autophagy are still incompletely understood. YM155 is originally developed as an expression suppressant of BIRC5 (an anti-apoptotic molecule) and it has reached Phase I/II clinical trials for the treatment of variety types of cancer. However, the target-specificity of YM155 has recently been challenged as several studies reported that YM155 exhibits direct DNA damaging effects. Recently, we discovered that BIRC5 is an autophagy negative-modulator. Using function-comparative analysis, we found in the current study that YM155 and BIRC5 siRNA both induced early "autophagy-dependent ROS production-mediated" DNA damage/strand breaks and concurrently downregulated the expression of RAD54L, RAD51, and MRE11, which are molecules known for their important roles in homologous recombination, in human cancer (MCF7, MDA-MB-231, and SK-BR-3) and mouse embryonic fibroblast (MEF) cells. Similar to the effects of YM155 and BIRC5 siRNA, downregulation of RAD54L and RAD51 by siRNA induced autophagy and DNA damage/strand breaks in cells, suggesting YM155/BIRC5 siRNA might also induce autophagy partly through RAD54L and RAD51 downregulations. We further observed that prolonged YM155 and BIRC5 siRNA treatment induced autophagic vesicle formation proximal to the nucleus and triggered DNA leakage. In conclusion, our findings reveal a novel mechanism of action of YM155 (i.e. induces autophagy-dependent ROS production-mediated DNA damage) in cancer cells and show the functional complexity of BIRC5 and autophagy involving the modulation of genome stability, highlighting that upregulation of autophagy is not always beneficial to the DNA repair process. Our findings can aid the development of a variety of BIRC5-directly/indirectly targeted anticancer therapies that are currently under pre-clinical and clinical investigations.
Collapse
|
65
|
Targeting TRPV1-mediated autophagy attenuates nitrogen mustard-induced dermal toxicity. Signal Transduct Target Ther 2021; 6:29. [PMID: 33487631 PMCID: PMC7829253 DOI: 10.1038/s41392-020-00389-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/30/2023] Open
Abstract
Nitrogen mustard (NM) causes severe vesicating skin injury, which lacks effective targeted therapies. The major limitation is that the specific mechanism of NM-induced skin injury is not well understood. Recently, autophagy has been found to play important roles in physical and chemical exposure-caused cutaneous injuries. However, whether autophagy contributes to NM-induced dermal toxicity is unclear. Herein, we initially confirmed that NM dose-dependently caused cell death and induced autophagy in keratinocytes. Suppression of autophagy by 3-methyladenine, chloroquine, and bafilomycin A1 or ATG5 siRNA attenuated NM-induced keratinocyte cell death. Furthermore, NM increased transient receptor potential vanilloid 1 (TRPV1) expression, intracellular Ca2+ content, and the activities of Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ), AMP-activated protein kinase (AMPK), unc-51-like kinase 1 (ULK1), and mammalian target of rapamycin (mTOR). NM-induced autophagy in keratinocytes was abolished by treatment with inhibitors of TRPV1 (capsazepine), CaMKKβ (STO-609), AMPK (compound C), and ULK1 (SBI-0206965) as well as TRPV1, CaMKKβ, and AMPK siRNA transfection. In addition, an mTOR inhibitor (rapamycin) had no significant effect on NM-stimulated autophagy or cell death of keratinocytes. Finally, the results of the in vivo experiment in NM-treated skin tissues were consistent with the findings of the in vitro experiment. In conclusion, NM-caused dermal toxicity by overactivating autophagy partially through the activation of TRPV1-Ca2+-CaMKKβ-AMPK-ULK1 signaling pathway. These results suggest that blocking TRPV1-dependent autophagy could be a potential treatment strategy for NM-caused cutaneous injury.
Collapse
|
66
|
Forveille S, Leduc M, Sauvat A, Cerrato G, Kroemer G, Kepp O. High throughput screening for autophagy. Methods Cell Biol 2021; 165:89-101. [PMID: 34311873 DOI: 10.1016/bs.mcb.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Robotized high throughput screening allows for the assessment of autophagy in a large number of samples. Here, we describe a drug discovery platform for the phenotypic identification of novel autophagy inducers by means of automated cell biology workflows employing robotized cell culture, sample preparation and data acquisition. In this setting, fluorescent biosensor cells that express microtubule-associated proteins 1A/1B light chain 3B (best known as LC3) conjugated to green fluorescent protein (GFP), are utilized together with automated high content microscopy for the image-based assessment of autophagy. In sum, we detail a drug discovery screening workflow from high throughput sample preparation and processing to data acquisition and analysis.
Collapse
Affiliation(s)
- Sabrina Forveille
- Centre de Recherche des Cordeliers, Équipe 11 Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marion Leduc
- Centre de Recherche des Cordeliers, Équipe 11 Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Équipe 11 Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Giulia Cerrato
- Centre de Recherche des Cordeliers, Équipe 11 Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin-Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe 11 Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Pôle de Biologie, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Équipe 11 Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin-Bicêtre, France.
| |
Collapse
|
67
|
Nettesheim A, Dixon A, Shim MS, Coyne A, Walsh M, Liton PB. Autophagy in the Aging and Experimental Ocular Hypertensive Mouse Model. Invest Ophthalmol Vis Sci 2021; 61:31. [PMID: 32797200 PMCID: PMC7441338 DOI: 10.1167/iovs.61.10.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose To investigate autophagy in the outflow pathway and ganglion cell layer in the aging and ocular hypertensive mouse. Methods Both 4-month-old and 18-month-old C57BL/6J and GFP-LC3 mice were subjected to unilateral injection of hypertonic saline into a limbal vein, causing sclerosis of the outflow pathway and subsequent elevation of intraocular pressure (IOP). IOP was measured on a weekly basis using a rebound tonometer. Protein expression levels of LC3B, Lamp1, and p62 were evaluated by western blot and/or immunofluorescence. Retinal ganglion cell (RGC) count was performed in whole retinal flat mounts using an anti-Brn3a antibody. Optic nerves were fixed with 4% paraformaldehyde and resin-embedded for axon counts and electron microscopy. Results In contrast to 18-month-old mice, which developed sustained elevated IOP with a single injection, 4-month-old mice were refractory to high elevations of IOP. Interestingly, both the percentage of animals that developed elevated IOP and the mean ∆IOP were significantly higher in the transgenic mice compared to C57BL/6J. Immunofluorescence and western blot analysis showed dysregulated autophagy in the iridocorneal and retina tissues from 18-month-old mice compared to 4-month-old ones. Moreover, the LC3-II/LC3-I ratio correlated with IOP. As expected, injected hypertensive eyes displayed axonal degeneration and RGC death. RGC and axon loss were significantly exacerbated with aging, especially when combined with GFP-LC3 expression. Autophagic structures were observed in the degenerating axons. Conclusions Our results indicate dysregulation of autophagy in the trabecular meshwork and retinal tissues with aging and suggest that such dysregulation of autophagy contributes to neurodegeneration in glaucoma.
Collapse
Affiliation(s)
- April Nettesheim
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Angela Dixon
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Myoung Sup Shim
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Aislyn Coyne
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Molly Walsh
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
68
|
Camuzard O, Trojani MC, Santucci-Darmanin S, Pagnotta S, Breuil V, Carle GF, Pierrefite-Carle V. Autophagy in Osteosarcoma Cancer Stem Cells Is Critical Process which Can Be Targeted by the Antipsychotic Drug Thioridazine. Cancers (Basel) 2020; 12:cancers12123675. [PMID: 33297525 PMCID: PMC7762415 DOI: 10.3390/cancers12123675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) represent a minor population of cancer cells with stem cell-like properties and appear as a crucial target in oncology as they are the origin of relapses and resistance to current treatments. Autophagy, which allows the degradation and recycling of cellular components for survival purposes, has been shown to be upregulated in some CSCs, participating in the resistance of these cells. The aim of our study was to analyze the autophagy level and the consequences of targeting this process in osteosarcoma CSCs. Our results indicate that autophagy is a critical process in osteosarcoma CSCs and that targeting this pathway allows to switch their fate from survival to death. Abstract Cancer stem cells (CSCs) represent a minor population of cancer cells with stem cell-like properties which are able to fuel tumor growth and resist conventional treatments. Autophagy has been described to be upregulated in some CSCs and to play a crucial role by maintaining stem features and promoting resistance to both hostile microenvironments and treatments. Osteosarcoma (OS) is an aggressive bone cancer which mainly affects children and adolescents and autophagy in OS CSCs has been poorly studied. However, this is a very interesting case because autophagy is often deregulated in this cancer. In the present work, we used two OS cell lines showing different autophagy capacities to isolate CSC-enriched populations and to analyze the autophagy in basal and nutrient-deprived conditions. Our results indicate that autophagy is more efficient in CSCs populations compared to the parental cell lines, suggesting that autophagy is a critical process in OS CSCs. We also showed that the antipsychotic drug thioridazine is able to stimulate, and then impair autophagy in both CSC-enriched populations, leading to autosis, a cell death mediated by the Na+/K+ ATPase pump and triggered by dysregulated accumulation of autophagosomes. Taken together, our results indicate that autophagy is very active in OS CSCs and that targeting this pathway to switch their fate from survival to death could provide a novel strategy to eradicate these cells in osteosarcoma.
Collapse
Affiliation(s)
- Olivier Camuzard
- Faculté de Médecine Nice, Université Côte d’Azur, UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, CEDEX 2, 06107 Nice, France; (O.C.); (M.-C.T.); (S.S.-D.); (V.B.); (G.F.C.)
- Service de Chirurgie Réparatrice et de la Main, CHU de Nice, 06001 Nice, France
| | - Marie-Charlotte Trojani
- Faculté de Médecine Nice, Université Côte d’Azur, UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, CEDEX 2, 06107 Nice, France; (O.C.); (M.-C.T.); (S.S.-D.); (V.B.); (G.F.C.)
- Service de Rhumatologie, CHU de Nice, 06001 Nice, France
| | - Sabine Santucci-Darmanin
- Faculté de Médecine Nice, Université Côte d’Azur, UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, CEDEX 2, 06107 Nice, France; (O.C.); (M.-C.T.); (S.S.-D.); (V.B.); (G.F.C.)
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée, Université Côte d’Azur, 06107 Nice, France;
| | - Véronique Breuil
- Faculté de Médecine Nice, Université Côte d’Azur, UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, CEDEX 2, 06107 Nice, France; (O.C.); (M.-C.T.); (S.S.-D.); (V.B.); (G.F.C.)
- Service de Rhumatologie, CHU de Nice, 06001 Nice, France
| | - Georges F. Carle
- Faculté de Médecine Nice, Université Côte d’Azur, UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, CEDEX 2, 06107 Nice, France; (O.C.); (M.-C.T.); (S.S.-D.); (V.B.); (G.F.C.)
| | - Valérie Pierrefite-Carle
- Faculté de Médecine Nice, Université Côte d’Azur, UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, CEDEX 2, 06107 Nice, France; (O.C.); (M.-C.T.); (S.S.-D.); (V.B.); (G.F.C.)
- Correspondence: ; Tel.: +33-4-93-37-77-06; Fax: +33-4-93-37-77-17
| |
Collapse
|
69
|
Ding W, Feng H, Li WJ, Liao HH, Tang QZ. Research Progress on the Interaction Between Autophagy and Energy Homeostasis in Cardiac Remodeling. Front Pharmacol 2020; 11:587438. [PMID: 33328993 PMCID: PMC7734280 DOI: 10.3389/fphar.2020.587438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiac remodeling is a common pathological process in various heart diseases, such as cardiac hypertrophy, diabetes-associated cardiomyopathy and ischemic heart diseases. The inhibition of cardiac remodeling has been suggested to be a potential strategy for preventing heart failure. However, the mechanisms involved in cardiac remodeling are quite complicated. Recent studies have reported a close correlation between autophagy and energy homeostasis in cardiac remodeling associated with various heart diseases. In this review, we summarize the roles of autophagy and energy homeostasis in cardiac remodeling and discuss the relationship between these two processes in different conditions to identify potential targets and strategies for treating cardiac remodeling by regulating autophagy.
Collapse
Affiliation(s)
- Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
70
|
Alvarez-Meythaler JG, Garcia-Mayea Y, Mir C, Kondoh H, LLeonart ME. Autophagy Takes Center Stage as a Possible Cancer Hallmark. Front Oncol 2020; 10:586069. [PMID: 33194736 PMCID: PMC7643020 DOI: 10.3389/fonc.2020.586069] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular process in which intracellular components, such as damaged organelles, aggregated or misfolded proteins and macromolecules, are degraded or recycled to maintain cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a key role in tumor initiation and progression. Depending on the cellular context and microenvironmental conditions, autophagy acts as a double-edged sword, playing a role in inducing apoptosis or promoting cell survival. In this review, we propose several scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a special focus on novel promising targets and therapeutic strategies based on autophagic resistant cells is presented.
Collapse
Affiliation(s)
- Jose G. Alvarez-Meythaler
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matilde E. LLeonart
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Spanish Biomedical Research Network Center in Oncology, CIBERONC, Barcelona, Spain
| |
Collapse
|
71
|
Zhou X, Chen Y, Wang F, Wu H, Zhang Y, Liu J, Cai Y, Huang S, He N, Hu Z, Jin X. Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells. Chem Biol Interact 2020; 331:109273. [PMID: 33002460 DOI: 10.1016/j.cbi.2020.109273] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
Artesunate is a kind of derivative of artemisinin, which possesses potent anti-cancer effect in addition to its anti-malarial property. And autophagy was a highly conserved process, exerting a double-edged effect in cancer cell survival. Besides, apoptosis is a programmed cell death program, crucial to cell homeostasis. However, the relations between autophagy and apoptosis, and the role of artesunate in this interaction have not been elucidated in bladder cancer. In present study, we used human bladder cancer cells (T24 and EJ cell lines) to investigate that how artesunate would influence autophagy and apoptosis processes. We found that artesunate could inhibit the viability, proliferation and migration of bladder cancer cells, as well as induce autophagy in a time and dose dependent manner, in addition, the artesunate induced autophagy subsequently activated cells apoptosis. Furthermore, we pretreated T24 and EJ cells with 3-Methyladenine or Rapamycin to inhibit or promote autophagy, respectively, leading to inhibited or increased apoptosis. Moreover, pretreatment of these cell lines with Acadesine or Dorsomorphin to activate or inhibit the AMPK-mTOR-ULK1 pathway, respectively, also resulting in promotion or suppression in both autophagy and apoptosis. In the upstream, ROS upregulation triggered by ART initiated AMPK-mTOR-ULK1 axis. However, this initiative effect of ROS can be reversed by N-Acetyl-l-cysteine. Therefore, this study indicated that Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 pathway in human bladder cancer cells.
Collapse
Affiliation(s)
- Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Yu Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Hongshen Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Jiaxin Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Yueshu Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Shihan Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China.
| |
Collapse
|
72
|
Konac E, Kurman Y, Baltaci S. Contrast effects of autophagy in the treatment of bladder cancer. Exp Biol Med (Maywood) 2020; 246:354-367. [PMID: 32954815 DOI: 10.1177/1535370220959336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer is a disease that negatively affects patients' quality of life, but treatment options have remained unchanged for a long time. Although promising results have been achieved with current bladder cancer treatments, cancer recurrence, progression, and therapy resistance are the most severe problems preventing the efficiency of bladder cancer treatments. Autophagy refers to an evolutionarily conserved catabolic process in which proteins, damaged organelles, and cytoplasmic components are degraded by lysosomal enzymes. Autophagy regulates the therapeutic response to the chemotherapy drugs, thus determining the effect of therapy on cancer cells. Autophagy is a stress-induced cell survival mechanism and its excessive stimulation can cause resistance of tumor cells to therapeutic agents. Depending on the conditions, an increase in autophagy may cause treatment resistance or autophagic cell death, and it is related to important anti-cancer mechanisms, such as apoptosis. Therefore, understanding the roles of autophagy under different conditions is important for designing effective anti-cancer agents. The dual role of autophagy in cancer has attracted considerable attention in respect of bladder cancer treatment. In this review, we summarize the basic characteristics of autophagy, including its mechanisms, regulation, and functions, and we present examples from current studies concerning the dual role of autophagy in bladder cancer progression and therapy.
Collapse
Affiliation(s)
- Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Yener Kurman
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Sümer Baltaci
- Department of Urology, Faculty of Medicine, Ankara University, Ankara 06510, Turkey
| |
Collapse
|
73
|
Howarth A, Schröder M, Montenegro RC, Drewry DH, Sailem H, Millar V, Müller S, Ebner DV. HighVia-A Flexible Live-Cell High-Content Screening Pipeline to Assess Cellular Toxicity. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:801-811. [PMID: 32458721 PMCID: PMC7522770 DOI: 10.1177/2472555220923979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/03/2023]
Abstract
High-content screening to monitor disease-modifying phenotypes upon small-molecule addition has become an essential component of many drug and target discovery platforms. One of the most common phenotypic approaches, especially in the field of oncology research, is the assessment of cell viability. However, frequently used viability readouts employing metabolic proxy assays based on homogeneous colorimetric/fluorescent reagents are one-dimensional, provide limited information, and can in many cases yield conflicting or difficult-to-interpret results, leading to misinterpretation of data and wasted resources.The resurgence of high-content, phenotypic screening has significantly improved the quality and breadth of cell viability data, which can be obtained at the very earliest stages of drug and target discovery. Here, we describe a relatively inexpensive, high-throughput, high-content, multiparametric, fluorescent imaging protocol using a live-cell method of three fluorescent probes (Hoechst, Yo-Pro-3, and annexin V), that is amenable to the addition of further fluorophores. The protocol enables the accurate description and profiling of multiple cell death mechanisms, including apoptosis and necrosis, as well as accurate determination of compound IC50, and has been validated on a range of high-content imagers and image analysis software. To validate the protocol, we have used a small library of approximately 200 narrow-spectrum kinase inhibitors and clinically approved drugs. This fully developed, easy-to-use pipeline has subsequently been implemented in several academic screening facilities, yielding fast, flexible, and rich cell viability data for a range of early-stage high-throughput drug and target discovery programs.
Collapse
Affiliation(s)
- Alison Howarth
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- These authors contributed equally
| | - Martin Schröder
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Science, Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt, Germany
- These authors contributed equally
| | - Raquel C. Montenegro
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
- Federal University of Ceará, Drug Research and Development Center (NPDM), Pharmacogenetics Laboratory, Fortaleza, CE, Brazil
- These authors contributed equally
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heba Sailem
- Department of Engineering, University of Oxford, Oxford, UK
| | - Val Millar
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Science, Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Daniel V. Ebner
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
74
|
Lamb HM. Double agents of cell death: novel emerging functions of apoptotic regulators. FEBS J 2020; 287:2647-2663. [PMID: 32239637 PMCID: PMC8796856 DOI: 10.1111/febs.15308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis is a highly regulated form of cell death that is required for many homeostatic and pathological processes. Recently, alternative cell death pathways have emerged whose regulation is dependent on proteins with canonical functions in apoptosis. Dysregulation of apoptotic signaling frequently underlies the pathogenesis of many cancers, reinforcing the need to develop therapies that initiate alternative cell death processes. This review outlines the convergence points between apoptosis and other death pathways with the purpose of identifying novel strategies for the treatment of apoptosis-refractory cancers. Apoptosis proteins can play key roles in the initiation, regulation, and execution of nonapoptotic death processes that include necroptosis, autophagy, pyroptosis, mPTP-mediated necrosis, and ferroptosis. Notably, recent evidence illustrates that dying cells can exhibit biochemical and molecular characteristics of more than one different type of regulated cell death. Thus, this review highlights the amazing complexity and interconnectivity of cell death processes and also raises the idea that a top-to-bottom approach to describing cell death mechanisms may be inadequate for fully understanding the means by which cells die.
Collapse
Affiliation(s)
- Heather M. Lamb
- W. Harry Feinstone Department of Molecular Microbiology and
Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore,
MD 21205 USA
| |
Collapse
|
75
|
HSPA1A Protects Cells from Thermal Stress by Impeding ESCRT-0-Mediated Autophagic Flux in Epidermal Thermoresistance. J Invest Dermatol 2020; 141:48-58.e3. [PMID: 32533962 DOI: 10.1016/j.jid.2020.05.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023]
Abstract
Thermoresistance is a physiological phenomenon relevant to noninvasive laser treatments for skin esthetics and tumor removal, although the underlying mechanism remains elusive. We hypothesized that HSPA1A may regulate autophagy by reducing ESCRT-0 and/or STAM2 levels, which could lead to thermal protection from cell death. In this study, we showed that thermoresistance was induced in mouse epidermal tissue and HaCaT cells by heating at 45 °C for 10 minutes. Moreover, HSPA1A levels were increased in thermoresistant mouse epidermis and HaCaT cells. HSPA1A was highly involved in protecting cells from thermal cytotoxicity, as evidenced by the knockdown or overexpression assays of the HSPA1A gene. In addition, ESCRT-0 and STAM2 levels were dramatically decreased in thermoresistant cells, which was mediated by HSPA1A binding to STAM2, particularly through HSPA1A amino acids 395‒509. Furthermore, the loss of ESCRT-0 and/or STAM2 in response to HSPA1A-STAM2 binding regulated autophagy by impeding autophagosome‒lysosome fusion and abolishing autophagic flux in cellular thermoresistance, significantly reducing thermal cytotoxicity and promoting cell survival. To our knowledge, it is previously unreported that HSPA1A-ESCRT-0 and/or STAM2 modulates heat-induced resistance by inhibiting autophagic flux. In summary, the results of this study demonstrate that the mechanisms of thermoresistance may have clinical relevance for noninvasive or minimally invasive thermal therapeutics.
Collapse
|
76
|
Patra S, Mishra SR, Behera BP, Mahapatra KK, Panigrahi DP, Bhol CS, Praharaj PP, Sethi G, Patra SK, Bhutia SK. Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives. Semin Cancer Biol 2020; 80:205-217. [PMID: 32450139 DOI: 10.1016/j.semcancer.2020.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is an intracellular catabolic self-cannibalism that eliminates dysfunctional cytoplasmic cargos by the fusion of cargo-containing autophagosomes with lysosomes to maintain cyto-homeostasis. Autophagy sustains a dynamic interlink between cytoprotective and cytostatic function during malignant transformation in a context-dependent manner. The antioxidant and immunomodulatory phyto-products govern autophagy and autophagy-associated signaling pathways to combat cellular incompetence during malignant transformation. Moreover, in a close cellular signaling circuit, autophagy regulates aberrant epigenetic modulation and inflammation, which limits tumor metastasis. Thus, manipulating autophagy for induction of cell death and associated regulatory phenomena will embark on a new strategy for tumor suppression with wide therapeutic implications. Despite the prodigious availability of lead pharmacophores in nature, the central autophagy regulating entities, their explicit target, as well as pre-clinical and clinical assessment remains a major question to be answered. In addition to this, the stage-specific regulation of autophagy and mode of action with natural products in regulating the key autophagic molecules, control of tumor-specific pathways in relation to modulation of autophagic network specify therapeutic target in caner. Moreover, the molecular pathway specificity and enhanced efficacy of the pre-existing chemotherapeutic agents in co-treatment with these phytochemicals hold high prevalence for target specific cancer therapeutics. Hence, the multi-specific role of phytochemicals in a cellular and tumor context dependent manner raises immense curiosity for investigating of novel therapeutic avenues. In this perspective, this review discusses about diverse implicit mechanisms deployed by the bioactive compounds in diagnosis and therapeutics approach during cancer progression with special insight into autophagic regulation.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Soumya R Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Bishnu P Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal K Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Debasna P Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Chandra S Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash P Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
77
|
Li S, Lin Q, Shao X, Zhu X, Wu J, Wu B, Zhang M, Zhou W, Zhou Y, Jin H, Zhang Z, Qi C, Shen J, Mou S, Gu L, Ni Z. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radic Biol Med 2020; 152:632-649. [PMID: 31825802 DOI: 10.1016/j.freeradbiomed.2019.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
Mitophagy is a principle mechanism to degrade damaged mitochondria through PARK2-dependent or PARK2-independent pathway. Mitophagy has been identified to play an important role in acute kidney disease, whereas its role in renal fibrosis remains ill-defined. We sought to investigate the involvement and regulation of mitophagy in renal tubular epithelial cell(RTEC) injury and renal fibrosis after unilateral ureteral obstruction(UUO). Mitochondrial damageand mitochondrial reactive oxygen species (ROS) production was increased in kidney after obstruction of the left ureter. Mitophagy was increased in kidneys following UUO and HK-2 cells under hypoxia exposure, assessed by electron microscopy of mitophagosome, colocalization of MitotrackerRed-stained mitochondria and LC3 staining. The upregulation of PINK1, PARK2, and LC3 II in mitochondrial fraction was observed in the obstructed kidney and hypoxia-exposed HK-2 cells. Pink1 or Park2 gene deletion markedly increased mtROS production, mitochondrial damage, TGFβ1 expression in RTEC, and renal fibrosis in UUO. Mitochondrial recruitment of Drp1 was also induced after UUO. The Drp1 inhibitor, Mdivi-1, decreased mitochondrial PINK1, PARK2 and LC3II level, increased mtROS production both in vivo and in vitro, activated TGFβ1-Smad2/3 signaling in HK-2 cells under hypoxia and worsened renal fibrosis following UUO. The upregulation of TGFβ1 signaling in hypoxia-treated HK-2 cells due to PINK1 or PARK2 silencing, or worsened renal fibrosis after UUO due to Pink1-or Park2-KO mice was rescued by mitoTEMPO, a mitochondria-targeted antioxidant. The findings of this study suggest that Drp1-regulated PARK2-dependent mitophagy plays a critical role in hypoxia-induced renal tubular epithelial cell injury and renal fibrosis in UUO.
Collapse
Affiliation(s)
- Shu Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qisheng Lin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinghua Shao
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xuying Zhu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingkui Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bei Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Minfang Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wenyan Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yijun Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haijiao Jin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhen Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chaojun Qi
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianxiao Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shan Mou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
78
|
Wang J, Toan S, Zhou H. Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials. Pharmacol Res 2020; 156:104771. [PMID: 32234339 DOI: 10.1016/j.phrs.2020.104771] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
Thrombolytic therapy and revascularization strategies create a complete recanalization of the occluded epicardial coronary artery in patients with myocardial infarction (MI). However, about 35 % of patients still experience an impaired myocardial reperfusion, which is termed a no-reflow phenomenon mainly caused by cardiac microvascular ischemia-reperfusion (I/R) injury. Mitochondria are essential for microvascular endothelial cells' survival, both because of their roles as metabolic energy producers and as regulators of programmed cell death. Mitochondrial structure and function are regulated by a mitochondrial quality control (MQC) system, a series of processes including mitochondrial biogenesis, mitochondrial dynamics/mitophagy, mitochondrial proteostasis, and mitochondria-mediated cell death. Our review discusses the MQC mechanisms and how they are linked to cardiac microvascular I/R injury. Additionally, we will summarize the molecular basis that results in defective MQC mechanisms and present potential therapeutic interventions for improving MQC in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
79
|
Martínez-García GG, Mariño G. Autophagy role in environmental pollutants exposure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:257-291. [PMID: 32620245 DOI: 10.1016/bs.pmbts.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades, the potential harmfulness derived from the exposure to environmental pollutants has been largely demonstrated, with associated damages ranging from geno- and cyto-toxicity to tissue malfunction and alterations in organism physiology. Autophagy is an evolutionarily-conserved cellular mechanism essential for cellular homeostasis, which contributes to protect cells from a wide variety of intracellular and extracellular stressors. Due to its pivotal importance, its correct functioning is directly linked to cell, tissue and organismal fitness. Environmental pollutants, particularly industrial compounds, are able to impact autophagic flux, either by increasing it as a protective response, by blocking it, or by switching its protective role toward a pro-cell death mechanism. Thus, the understanding of the effects of chemicals exposure on autophagy has become highly relevant, offering new potential approaches for risk assessment, protection and preventive measures to counteract the detrimental effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Gemma G Martínez-García
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Guillermo Mariño
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
80
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
81
|
Ishimwe N, Zhang W, Qian J, Zhang Y, Wen L. Autophagy regulation as a promising approach for improving cancer immunotherapy. Cancer Lett 2020; 475:34-42. [PMID: 32014460 DOI: 10.1016/j.canlet.2020.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Autophagy plays a critical role in intracellular metabolism and maintaining cellular homeostasis. Certain tumor cells present a higher basal autophagy rate and autophagy inhibition can lead to impaired metabolic dysfunction in autophagy-dependent tumor cells. Autophagy status in immune cells dictates their fate and response to antigen; however, autophagy in immune cells may be beneficial or detrimental depending on the developmental stage of the cell and more specifically its degree of differentiation. Autophagy-deficient hosts present variations in many metabolites, proteins and enzymes that may have tumor-promoting or -inhibiting effects. The centrality of autophagy in the metabolism of some cancers and immune cells poses as a critical target whose mechanisms must be further unraveled to optimize patient response and prevent tumor recurrence.
Collapse
Affiliation(s)
- Nestor Ishimwe
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| | - Wenbin Zhang
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Jieying Qian
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Yunjiao Zhang
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong, 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong, 510006, PR China.
| | - Longping Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong, 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
82
|
Tributyltin(IV) ferulate, a novel synthetic ferulic acid derivative, induces autophagic cell death in colon cancer cells: From chemical synthesis to biochemical effects. J Inorg Biochem 2020; 205:110999. [PMID: 31986423 DOI: 10.1016/j.jinorgbio.2020.110999] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
Ferulic acid (FA) is a natural phenolic phytochemical that has low toxicity and exhibits therapeutic effects against various diseases, behaving as an antioxidant. FA also displays modest antitumor properties that have been reported at relatively high concentrations. With the aim of improving the anti-tumor efficacy of FA, we synthesized the novel compound tributyltin(IV) ferulate (TBT-F). The coordination environment at the tin center was investigated spectroscopically. Following synthesis, chemical characterization and computational analysis, we evaluated TBT-F effects in colon cancer cells. The results showed that TBT-F, at nanomolar range concentrations, was capable of reducing the viability of HCT116, HT-29 and Caco-2 colon cancer cells. On the other hand, FA was completely inefficacious at the same treatment conditions. Cell viability reduction induced by TBT-F was associated with G2/M cell cycle arrest, increase in membrane permeabilization and appearance of typical morphological signs. TBT-F-induced cell death seemed not to involve apoptotic or necroptotic markers whereas autophagic vacuoles appearance and increase in LC3-II and p62 autophagic proteins were observed after treatment with the compound. The autophagy inhibitor bafylomicin A1 markedly prevented the effect of TBT-F on colon cancer cells, thus indicating that autophagy is triggered as a cell death process. Taken together, our results strongly suggest that the novel ferulic derivative TBT-F is a promising therapeutic agent for colon cancer since it is capable of triggering autophagic (type-II) cell death that may be important in case of resistance to classic apoptosis.
Collapse
|
83
|
Si Y, Wang J, Liu X, Zhou T, Xiang Y, Zhang T, Wang X, Feng T, Xu L, Yu Q, Zhao H, Liu Y. Ethoxysanguinarine, a Novel Direct Activator of AMP-Activated Protein Kinase, Induces Autophagy and Exhibits Therapeutic Potential in Breast Cancer Cells. Front Pharmacol 2020; 10:1503. [PMID: 31969821 PMCID: PMC6960228 DOI: 10.3389/fphar.2019.01503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Ethoxysanguinarine (Eth) is a benzophenanthridine alkaloid extracted from Macleaya cordata (Willd) R. Br. It possesses antibacterial and antiviral activities and offers therapeutic benefits for the treatment of respiratory syndrome virus-induced cytopathic effects. However, the effect of Eth on human tumors and its pharmacological effects remain to be elucidated, together with its cellular target. Here, we examined the effects of Eth on breast cancer (BC) cells. We found that at low doses, Eth strongly inhibited the viability of BC cell lines and induced autophagy. Mechanistic studies showed that Eth induced autophagy by upregulating the activity of the AMP-activated protein kinase (AMPK). The AMPK inhibitor compound C significantly attenuated Eth-induced autophagy and inhibited proliferation. Meanwhile, the AMPK activator metformin significantly enhanced Eth-induced autophagy and inhibited proliferation. Computational docking and affinity assays showed that Eth directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. AMPK was less activated in tumor samples compared to normal breast tissues and was inversely associated with the prognosis of the patients. Moreover, Eth exhibited potent anti-BC activity in nude mice and favorable pharmacokinetics in rats. These characteristics render Eth as a promising candidate drug for further development and for designing new effective AMPK activators.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Jiu Wang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Tong Zhou
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Yuchen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Te Zhang
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xianhui Wang
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Tingting Feng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Li Xu
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Qingqing Yu
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Huzi Zhao
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
84
|
Datan E, Salman S. Autophagic cell death in viral infection: Do TAM receptors play a role? TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:123-168. [DOI: 10.1016/bs.ircmb.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
85
|
Xia Y, Chen S, Zhao Y, Chen S, Huang R, Zhu G, Yin Y, Ren W, Deng J. GABA attenuates ETEC-induced intestinal epithelial cell apoptosis involving GABA AR signaling and the AMPK-autophagy pathway. Food Funct 2019; 10:7509-7522. [PMID: 31670355 DOI: 10.1039/c9fo01863h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) triggers diarrhea in humans and livestock. We have previously showed that ETEC promotes intestinal epithelial cell apoptosis and increases gamma-aminobutyric acid (GABA) concentration in the jejunum, suggesting that GABA might mediate ETEC-induced apoptosis. Here, we found that GABA alleviates ETEC-induced intestinal barrier dysfunctions, including ETEC-induced apoptosis both in vivo and in vitro. Interestingly, the alleviation of GABA on ETEC-induced apoptosis largely depends on autophagy. Mechanistically, GABA attenuates ETEC-induced apoptosis via activating GABAAR signaling and the AMPK-autophagy pathway. These findings highlight that maintaining intestinal GABA concentration could alleviate intestinal ETEC infection.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ruilin Huang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China. and Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China. and Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
86
|
Dorvash M, Farahmandnia M, Tavassoly I. A Systems Biology Roadmap to Decode mTOR Control System in Cancer. Interdiscip Sci 2019; 12:1-11. [PMID: 31531812 DOI: 10.1007/s12539-019-00347-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a critical protein in the regulation of cell fate decision making, especially in cancer cells. mTOR acts as a signal integrator and is one of the main elements of interactions among the pivotal cellular processes such as cell death, autophagy, metabolic reprogramming, cell growth, and cell cycle. The temporal control of these processes is essential for the cellular homeostasis and dysregulation of mTOR signaling pathway results in different phenotypes, including aging, oncogenesis, cell survival, cell growth, senescence, quiescence, and cell death. In this paper, we have proposed a systems biology roadmap to study mTOR control system, which introduces the theoretical and experimental modalities to decode temporal and dynamical characteristics of mTOR signaling in cancer.
Collapse
Affiliation(s)
- Mohammadreza Dorvash
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Cell and Molecular Medicine Student Research Group, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Farahmandnia
- Cell and Molecular Medicine Student Research Group, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Tavassoly
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
| |
Collapse
|
87
|
Sales CF, Melo RMC, Pinheiro APB, Luz RK, Bazzoli N, Rizzo E. Autophagy and Cathepsin D mediated apoptosis contributing to ovarian follicular atresia in the Nile tilapia. Mol Reprod Dev 2019; 86:1592-1602. [DOI: 10.1002/mrd.23245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Ferreira Sales
- Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Ana Paula Barbosa Pinheiro
- Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Ronald Kennedy Luz
- Laboratório de Aquacultura, Escola de VeterináriaUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Nilo Bazzoli
- Programa de Pós‐graduação em Biologia de VertebradosPontifícia Universidade Católica de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
88
|
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res 2019; 29:347-364. [PMID: 30948788 PMCID: PMC6796845 DOI: 10.1038/s41422-019-0164-5] [Citation(s) in RCA: 1456] [Impact Index Per Article: 291.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, 510510, Guangzhou, Guangdong, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tom Vanden Berghe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Methusalem program, Ghent University, 9000, Ghent, Belgium
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.
- Université Pierre et Marie Curie, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
89
|
Targeting V-ATPase Isoform Restores Cisplatin Activity in Resistant Ovarian Cancer: Inhibition of Autophagy, Endosome Function, and ERK/MEK Pathway. JOURNAL OF ONCOLOGY 2019; 2019:2343876. [PMID: 31057611 PMCID: PMC6463777 DOI: 10.1155/2019/2343876] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/28/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Ovarian cancer (OVCA) patients often develop tolerance to standard platinum therapy that accounts for extensive treatment failures. Cisplatin resistant OVCA cells (cis-R) display enhanced survival mechanisms to cope with therapeutic stress. In these cells, increased autophagy process assists in chemoresistance by boosting the nutrient pool under stress. To improve the treatment response, both protective autophagy inhibition and its overactivation are showing efficacy in chemosensitization. Autophagy requires a tightly regulated intracellular pH. Vacuolar ATPases (V-ATPases) are proton extruding nanomotors present on cellular/vesicular membranes where they act as primary pH regulators. V-ATPase ‘a2' isoform (V0a2), the major pH sensing unit, is markedly overexpressed on the plasma membrane and the early endosomes of OVCA cells. Previously, V0a2 inhibition sensitized cis-R cells to platinum drugs by acidifying cytosolic pH that elevated DNA damage. Here, we examined how V0a2 inhibition affected endosomal function and the autophagy process as a possible factor for cisplatin sensitization. Clinically, V0a2 expression was significantly higher in tissues from drug nonresponder OVCA patients compared to treatment responders. In vitro V0a2 knockdown in cis-R cells (sh-V0a2-cisR) significantly reduced the tumor sphere-forming ability and caused complete disintegration of the spheres upon cisplatin treatment. The apoptotic capacity of sh-V0a2-cisR improved substantially with potentiation of both intrinsic and extrinsic apoptotic pathway when treated with cisplatin. Unlike the chemical V-ATPase inhibitors that acutely induce autophagy, here, the stable V0a2 inhibition dampened the protective autophagy process in sh-V0a2-cisR cells with downregulated expression of proteins beclin-1, ATG-7, and LC3B and low autophagosome numbers compared to control cis-R cells. These cells showed downregulated ERK/MEK pathway that is known to repress autophagy. Interestingly, upon cisplatin treatment of sh-V0a2-cisR, the autophagy initiation proteins (LC3B, ATG7, and Beclin 1) were found upregulated as a stress response compared to the untreated cells. However, there was a concomitant downstream autophagosome accumulation and an enhanced P62 protein levels indicating the overall block in autophagy flux. Mechanistically, V0a2 knockdown caused defects in early endosome function as the transferrin internalization was impaired. Taken together, this study provides a novel insight into the mechanism by which V-ATPase-isoform regulates autophagy that assists in chemoresistance in ovarian cancer. We conclude that V-ATPase-V0a2 is a potent target for developing an effective treatment to enhance patient survival rates in ovarian cancer.
Collapse
|
90
|
Siddharth S, Muniraj N, Saxena NK, Sharma D. Concomitant Inhibition of Cytoprotective Autophagy Augments the Efficacy of Withaferin A in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E453. [PMID: 30934990 PMCID: PMC6521104 DOI: 10.3390/cancers11040453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality, and despite recent advances in early diagnosis and therapeutics, HCC related morbidity and mortality rate continue to rise. Clearly, it is imperative to develop novel effective therapies for HCC to improve long-term survival of HCC patients. We found that Withaferin A (WFA), a bioactive compound derived from Withania somnifera, is an effective agent for HCC inhibition. Interestingly, we observed that in addition to inducing apoptotic cell death, WFA also induces autophagy in HCC cells. Utilizing mRFP-EGFP-LC3B, LC3B-GFP/Lysotracker and LC3B-GFP/Rab7-RFP, we show that WFA induces autophagosomes-lysosomes fusion. WFA-induced autolysosomes exhibit intact protein degradation activity as evident with cathepsin-D activation and DQ-BSA assays. Importantly, we present that inhibiting WFA-induced autophagy either by blocking autophagosome-formation or by elevating lysosomal pH (Chloroquine and Bafilomycin) enhances WFA-induced growth-inhibition and apoptosis, indicating the presence of cytoprotective autophagy. Indeed, WFA and CQ combination shows synergism and higher efficacy in comparison to either monotherapy. Collectively, we reveal that the efficacy of WFA is somewhat diminished by the concomitant induction of cytoprotective autophagy which can be successfully conquered by cotreatment with CQ, and we pave the way for development of a novel combination therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Sumit Siddharth
- Department of Oncology, School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Nethaji Muniraj
- Department of Oncology, School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Neeraj K Saxena
- Early Detection Research Group, 22 National Cancer Institute, Rockville, MD 20892, USA.
| | - Dipali Sharma
- Department of Oncology, School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
91
|
Miyamoto S. Autophagy and cardiac aging. Cell Death Differ 2019; 26:653-664. [PMID: 30692640 PMCID: PMC6460392 DOI: 10.1038/s41418-019-0286-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and the prevalence of CVD dramatically increases with age. Cardiac aging is associated with hypertrophy, fibrosis, inflammation, and decreased contractility. Autophagy, a bulk degradation/recycling system, is essential to maintain cellular homeostasis. Cardiac autophagy is decreased with age, and misfolded proteins and dysfunctional mitochondria are accumulated in the aging heart. Inhibition of autophagy leads to exacerbated cardiac aging, while stimulation of autophagy improves cardiac function and also increases lifespan in many organisms. Thus autophagy represents a potential therapeutic target for aging-related cardiac dysfunction. This review discusses recent progress in our understanding of the role and regulation of autophagy in the aging heart.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman drive, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
92
|
Maiuri MC, Kroemer G. Therapeutic modulation of autophagy: which disease comes first? Cell Death Differ 2019; 26:680-689. [PMID: 30728461 PMCID: PMC6460393 DOI: 10.1038/s41418-019-0290-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
The relentless efforts of thousands of researchers have allowed deciphering the molecular machinery that regulates and executes autophagy, thus identifying multiple molecular targets to enhance or block the process, rendering autophagy "druggable". Autophagy inhibition may be useful for preserving the life of cells that otherwise would succumb to excessive self-digestion. Moreover, autophagy blockade may reduce the fitness of cancer cells or interrupt metabolic circuitries required for their growth. Autophagy stimulation is probably useful for the prevention or treatment of aging, cancer (when stimulation of immunosurveillance is the therapeutic goal), cardiovascular disease, cystic fibrosis, infection by intracellular pathogens, obesity, and intoxication by heavy metals, just to mention a few examples. Epidemiological evidence suggests broad health-improving effects for lifestyles, micronutrients, and drugs that favor autophagy. In this review, we discuss the role of autophagy in disease pathogenesis while focusing on the question, which disease will become the first clinically approved indication for therapeutic autophagy modulation.
Collapse
Affiliation(s)
- Maria Chiara Maiuri
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France.
- INSERM U1138, 75006, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Sorbonne Université, 75006, Paris, France.
| | - Guido Kroemer
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France.
- INSERM U1138, 75006, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Sorbonne Université, 75006, Paris, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
93
|
Pentimalli F. Autophagy in disease: hunger for translation. Cell Death Dis 2019; 10:247. [PMID: 30867407 PMCID: PMC6416282 DOI: 10.1038/s41419-019-1419-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM); Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italia.
| |
Collapse
|