51
|
Sim Y, Seo HJ, Kim DH, Lee SH, Kwon J, Kwun IS, Jung C, Kim JI, Lim JH, Kim DK, Baek MC, Cho YE. The Effect of Apple-Derived Nanovesicles on the Osteoblastogenesis of Osteoblastic MC3T3-E1 Cells. J Med Food 2023; 26:49-58. [PMID: 36594993 DOI: 10.1089/jmf.2022.k.0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is characterized by low bone mass and elevated structural deterioration of the bone tissue, resulting in bone weakness with an increased risk of fracture. Considering biological activities of various phytochemicals extracted from apples, we herein demonstrated the potential antiosteoporotic effects of apple-derived nanovesicles (apple NVs) using osteoblastic MC3T3-E1 cells. Apple NVs significantly stimulated the growth of MC3T3-E1 cells. The cellular alkaline phosphatase (ALP) activity was significantly upregulated in the 5 μg/mL apple NVs-treated group. In addition, the concentrarion of mineralized nodules was significantly increased in the apple NVs-treated groups. Furthermore, apple NVs increased the expression of the genes and proteins associated with osteoblast growth and differentiation, such as Runx2, ALP, OPN, and BMP2/4, which further activated ERK- and JNK-related mitogen-activated protein kinase signaling. These results demonstrate that apple NVs have a potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells through regulating the BMP2/Smad1 pathways.
Collapse
Affiliation(s)
- Yejin Sim
- Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - Hyun-Ju Seo
- Department of Food and Nutrition, Andong National University, Andong, South Korea
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
- Agriculture Science and Technology Research Institute, Andong National University, Andong, South Korea
| | - Dong-Ha Kim
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang-Hoon Lee
- Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - JaeHee Kwon
- Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - In-Sook Kwun
- Department of Food and Nutrition, Andong National University, Andong, South Korea
| | - Chuleui Jung
- Agriculture Science and Technology Research Institute, Andong National University, Andong, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Jee-In Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae-Hwan Lim
- Department of Biological Science, Andong National University, Andong, South Korea
- Institute of Vaccine Biotechnology, Andong National University, Andong, South Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, South Korea
- Institute of Vaccine Biotechnology, Andong National University, Andong, South Korea
| |
Collapse
|
52
|
Li X, Guo X, Huang J, Lin Q, Qin B, Jiang M, Shan X, Luo Z, Zhang J, Shi Y, Lu Y, Liu X, Du Y, Yang F, Luo L, You J. Recruiting T cells and sensitizing tumors to NKG2D immune surveillance for robust antitumor immune response. J Control Release 2023; 353:943-955. [PMID: 36535542 DOI: 10.1016/j.jconrel.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Although recruiting T cells to convert cold tumors into hot can prevent some tumors from evading immune surveillance, tumors have evolved more mechanisms to achieve immune evasion, such as downregulating major histocompatibility complex I (MHC I) molecules expression to prevent T cells from recognizing tumor-antigens, or secreting immune suppression cytokines that disable T cells. Tumor immune evasion not only promotes tumor growth, but also weakens the efficacy of existing tumor immunotherapies. Therefore, recruiting T cells while reshaping innate immunity plays an important role in preventing tumor immune escape. In this study, we constructed a long-acting in situ forming implant (ISFI) based on the Atrigel technology, co-encapsulated with G3-C12 and sulfisoxazole (SFX) as a drug depot in the tumor site (SFX + G3-C12-ISFI). First, G3-C12 could recruit T cells, and transform cold into hot tumors. Furthermore, SFX could inhibit tumor-derived exosomes secretion, reduce the shedding of NKG2D ligand (NKG2DL), repair NKG2D/NKG2DL pathway, reinvigorate natural killer (NK) cells, and evade the effects of MHC I molecules missing. In the humanized cold tumor model, our strategy showed an excellent anti-tumor effect, providing a smart strategy for solving tumor evasion immune surveillance.
Collapse
Affiliation(s)
- Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Qing Lin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
53
|
Jung D, Shin S, Kang S, Jung I, Ryu S, Noh S, Choi S, Jeong J, Lee BY, Kim K, Kim CS, Yoon JH, Lee C, Bucher F, Kim Y, Im S, Song B, Yea K, Baek M. Reprogramming of T cell-derived small extracellular vesicles using IL2 surface engineering induces potent anti-cancer effects through miRNA delivery. J Extracell Vesicles 2022; 11:e12287. [PMID: 36447429 PMCID: PMC9709340 DOI: 10.1002/jev2.12287] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
T cell-derived small extracellular vesicles (sEVs) exhibit anti-cancer effects. However, their anti-cancer potential should be reinforced to enhance clinical applicability. Herein, we generated interleukin-2-tethered sEVs (IL2-sEVs) from engineered Jurkat T cells expressing IL2 at the plasma membrane via a flexible linker to induce an autocrine effect. IL2-sEVs increased the anti-cancer ability of CD8+ T cells without affecting regulatory T (Treg ) cells and down-regulated cellular and exosomal PD-L1 expression in melanoma cells, causing their increased sensitivity to CD8+ T cell-mediated cytotoxicity. Its effect on CD8+ T and melanoma cells was mediated by several IL2-sEV-resident microRNAs (miRNAs), whose expressions were upregulated by the autocrine effects of IL2. Among the miRNAs, miR-181a-3p and miR-223-3p notably reduced the PD-L1 protein levels in melanoma cells. Interestingly, miR-181a-3p increased the activity of CD8+ T cells while suppressing Treg cell activity. IL2-sEVs inhibited tumour progression in melanoma-bearing immunocompetent mice, but not in immunodeficient mice. The combination of IL2-sEVs and existing anti-cancer drugs significantly improved anti-cancer efficacy by decreasing PD-L1 expression in vivo. Thus, IL2-sEVs are potential cancer immunotherapeutic agents that regulate both immune and cancer cells by reprogramming miRNA levels.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Sanghee Shin
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Sung‐Min Kang
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Inseong Jung
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Suyeon Ryu
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Soojeong Noh
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Sung‐Jin Choi
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Jongwon Jeong
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Beom Yong Lee
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Kwang‐Soo Kim
- Department of New BiologyDGISTDaeguRepublic of Korea
| | | | - Jong Hyuk Yoon
- Department of Neural Development and DiseaseKorea Brain Research InstituteDaeguRepublic of Korea
| | - Chan‐Hyeong Lee
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Yong‐Nyun Kim
- Division of Translational ScienceNational Cancer Center 323Ilsan‐ro, Ilsandong‐guGoyang‐siGyeonggi‐doRepublic of Korea
| | - Sin‐Hyeog Im
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Gyeongsangbuk‐doRepublic of Korea
- Institute of Convergence ScienceYonsei UniversitySeoulRepublic of Korea
- ImmunoBiomePohangRepublic of Korea
| | - Byoung‐Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and BiophysicsNational Institute on Alcohol Abuse and Alcoholism (NIAAA)BethesdaMarylandUSA
| | - Kyungmoo Yea
- Department of New BiologyDGISTDaeguRepublic of Korea
- New Biology Research CenterDGISTDaeguRepublic of Korea
| | - Moon‐Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
54
|
Wang G, Luo G, Zhao M, Miao H. Significance of exosomes in hepatocellular carcinoma. Front Oncol 2022; 12:1056379. [PMID: 36531059 PMCID: PMC9748478 DOI: 10.3389/fonc.2022.1056379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Among the most prevalent cancers in the world, hepatocellular carcinoma (HCC) has a high mortality rate. The diagnosis and management of HCC are presently hindered by difficulties in early detection and suboptimal treatment outcomes. Exosomes have been shown to play an important role in hepatocarcinogenesis and can also be used for diagnosis and treatment. In this review, we discussed the research progress on exosomes in hepatocarcinogenesis development, tumor microenvironment remodeling, treatment resistance, and immunosuppression. HCC can be diagnosed and treated by understanding the pathogenesis and identifying early diagnostic markers. This review will be a significant reference for scholars with an initial understanding of the field to fully understand the role of exosomes in the organism.
Collapse
Affiliation(s)
- GuoYun Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
| | - GaiXiang Luo
- The First Clinical Medical College of Lanzhou University, Gansu Provincial People’s Hospital, Lanzhou, China
| | - MeiJing Zhao
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
| | - HuiLai Miao
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Liver Injury Diagnosis and Repair, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
55
|
Kim JH, Lee CH, Baek MC. Dissecting exosome inhibitors: therapeutic insights into small-molecule chemicals against cancer. Exp Mol Med 2022; 54:1833-1843. [PMID: 36446847 PMCID: PMC9707221 DOI: 10.1038/s12276-022-00898-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Intensive research in the field of cancer biology has revealed unique methods of communication between cells through extracellular vesicles called exosomes. Exosomes are released from a broad spectrum of cell types and serve as functional mediators under physiological or pathological conditions. Hence, blocking the release of exosome bio carriers may prove useful for slowing the progression of certain types of cancers. Therefore, efforts are being made to develop exosome inhibitors to be used both as research tools and as therapies in clinical trials. Thus, studies on exosomes may lead to a breakthrough in cancer research, for which new clinical targets for different types of cancers are urgently needed. In this review, we briefly outline exosome inhibitors and discuss their modes of action and potential for use as therapeutic tools for cancer.
Collapse
Affiliation(s)
- Jong Hyun Kim
- grid.412072.20000 0004 0621 4958Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, 42472 South Korea
| | - Chan-Hyeong Lee
- grid.258803.40000 0001 0661 1556Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| | - Moon-Chang Baek
- grid.258803.40000 0001 0661 1556Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| |
Collapse
|
56
|
Sadu L, Krishnan RH, Akshaya RL, Das UR, Satishkumar S, Selvamurugan N. Exosomes in bone remodeling and breast cancer bone metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:120-130. [PMID: 36155749 DOI: 10.1016/j.pbiomolbio.2022.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are endosome-derived microvesicles that carry cell-specific biological cargo, such as proteins, lipids, and noncoding RNAs (ncRNAs). They play a key role in bone remodeling by enabling the maintenance of a balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Recent evidence indicates that exosomes disrupt bone remodeling that occurs during breast cancer (BC) progression. The bone is a preferred site for BC metastasis owing to its abundant osseous reserves. In this review, we aimed to highlight the roles of exosomes derived from bone cells and breast tumor in bone remodeling and BC bone metastasis (BCBM). We also briefly outline the mechanisms of action of ncRNAs and proteins carried by exosomes secreted by bone and BCBM. Furthermore, this review highlights the potential of utilizing exosomes as biomarkers or delivery vehicles for the diagnosis and treatment of BCBM.
Collapse
Affiliation(s)
- Lakshana Sadu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - R Hari Krishnan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India.
| |
Collapse
|
57
|
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21:207. [PMID: 36320056 PMCID: PMC9623991 DOI: 10.1186/s12943-022-01671-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Qing-Fang Han
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wen-Jia Li
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai-Shun Hu
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Jie Gao
- grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China
| | - Wen-Long Zhai
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing-Hua Yang
- grid.412633.10000 0004 1799 0733Clinical Systems Biology Key Laboratories of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shui-Jun Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China ,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, 450052 Henan China
| |
Collapse
|
58
|
Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer. Exp Mol Med 2022; 54:1379-1389. [PMID: 36117219 PMCID: PMC9534887 DOI: 10.1038/s12276-022-00856-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mounting evidence indicates that tumor-derived exosomes (TDEs) play critical roles in tumor development and progression by regulating components in the tumor microenvironment (TME) in an autocrine or paracrine manner. Moreover, due to their delivery of critical molecules that react to chemotherapy and immunotherapy, TDEs also contribute to tumor drug resistance and impede the effective response of antitumor immunotherapy, thereby leading to poor clinical outcomes. There is a pressing need for the inhibition or removal of TDEs to facilitate the treatment and prognosis of cancer patients. Here, in the present review, we systematically overviewed the current strategies for TDE inhibition and clearance, providing novel insights for future tumor interventions in translational medicine. Moreover, existing challenges and potential prospects for TDE-targeted cancer therapy are also discussed to bridge the gaps between progress and promising applications. Inhibiting or removing tumor-derived exosomes (TDEs), tiny membrane-bound packets of DNA, RNA, and proteins secreted by tumors, may improve cancer therapies. TDEs can suppress the body’s immune response, promote tumor progression and spread, and reduce efficacy of cancer drugs and immunotherapy. Gang Chen at Wuhan University, China, and co-workers have reviewed ways to remove or inhibit production of TDEs. They report that disruption of the genes for production of TDEs, drugs that inhibit TDE secretion, and removal of TDEs via plasma exchange or dialysis are all being investigated and show promise for reducing patient TDE load, thereby increasing the efficacy of anti-cancer drugs and immunotherapy. Future challenges include reducing side effects and finding less invasive ways to filter out TDEs. Gaining a better understanding of TDEs may help to improve therapies for many types of cancer.
Collapse
|
59
|
Carberry CK, Keshava D, Payton A, Smith GJ, Rager JE. Approaches to incorporate extracellular vesicles into exposure science, toxicology, and public health research. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:647-659. [PMID: 35217808 PMCID: PMC9402811 DOI: 10.1038/s41370-022-00417-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles (EVs) represent small, membrane-enclosed particles that are derived from parent cells and are secreted into the extracellular space. Once secreted, EVs can then travel and communicate with nearby or distant cells. Due to their inherent stability and biocompatibility, these particles can effectively transfer RNAs, proteins, and chemicals/metabolites from parent cells to target cells, impacting cellular and pathological processes. EVs have been shown to respond to disease-causing agents and impact target cells. Given that disease-causing agents span environmental contaminants, pathogens, social stressors, drugs, and other agents, the translation of EV methods into public health is now a critical research gap. This paper reviews approaches to translate EVs into exposure science, toxicology, and public health applications, highlighting blood as an example due to its common use within clinical, epidemiological, and toxicological studies. Approaches are reviewed surrounding the isolation and characterization of EVs and molecular markers that can be used to inform EV cell-of-origin. Molecular cargo contained within EVs are then discussed, including an original analysis of blood EV data from Vesiclepedia. Methods to evaluate functional consequences and target tissues of EVs are also reviewed. Lastly, the expanded integration of these approaches into future public health applications is discussed, including the use of EVs as promising biomarkers of exposure, effect, and disease. IMPACT STATEMENT: Extracellular vesicles (EVs) represent small, cell-derived structures consisting of molecules that can serve as biomarkers of exposure, effect, and disease. This review lays a novel foundation for integrating EVs, a rapidly advancing molecular biological tool, into the field of public health research including epidemiological, toxicological, and clinical investigations. This article represents an important advancement in public health and exposure science as it is among the first to translate EVs into this field.
Collapse
Affiliation(s)
- Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Deepak Keshava
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gregory J Smith
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
60
|
Hemp-Derived Nanovesicles Protect Leaky Gut and Liver Injury in Dextran Sodium Sulfate-Induced Colitis. Int J Mol Sci 2022; 23:ijms23179955. [PMID: 36077356 PMCID: PMC9456148 DOI: 10.3390/ijms23179955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
Hemp (Cannabis sativa L.) is used for medicinal purposes owing to its anti-inflammatory and antioxidant activities. We evaluated the protective effect of nanovesicles isolated from hemp plant parts (root, seed, hemp sprout, and leaf) in dextran sulfate sodium (DSS)-induced colitis in mice. The particle sizes of root-derived nanovesicles (RNVs), seed-derived nanovesicles (SNVs), hemp sprout-derived nanovesicles (HSNVs), and leaf-derived nanovesicles (LNVs) were within the range of 100–200 nm as measured by nanoparticle tracking analysis. Acute colitis was induced in C57BL/N mice by 5% DSS in water provided for 7 days. RNVs were administered orally once a day, leading to the recovery of both the small intestine and colon lengths. RNVs, SNVs, and HSNVs restored the tight (ZO-1, claudin-4, occludin) and adherent junctions (E-cadherin and α-tubulin) in DSS-induced small intestine and colon injury. Additionally, RNVs markedly reduced NF-κB activation and oxidative stress proteins in DSS-induced small intestine and colon injury. Tight junction protein expression and epithelial cell permeability were elevated in RNV-, SNV-, and HSNV-treated T84 colon cells exposed to 2% DSS. Interestedly, RNVs, SNVs, HSNVs, and LNVs reduced ALT activity and liver regeneration marker proteins in DSS-induced liver injury. These results showed for the first time that hemp-derived nanovesicles (HNVs) exhibited a protective effect on DSS-induced gut leaky and liver injury through the gut–liver axis by inhibiting oxidative stress marker proteins.
Collapse
|
61
|
Clark GC, Hampton JD, Koblinski JE, Quinn B, Mahmoodi S, Metcalf O, Guo C, Peterson E, Fisher PB, Farrell NP, Wang XY, Mikkelsen RB. Radiation induces ESCRT pathway dependent CD44v3 + extracellular vesicle production stimulating pro-tumor fibroblast activity in breast cancer. Front Oncol 2022; 12:913656. [PMID: 36106109 PMCID: PMC9465418 DOI: 10.3389/fonc.2022.913656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023] Open
Abstract
Despite recent advances in radiotherapeutic strategies, acquired resistance remains a major obstacle, leading to tumor recurrence for many patients. Once thought to be a strictly cancer cell intrinsic property, it is becoming increasingly clear that treatment-resistance is driven in part by complex interactions between cancer cells and non-transformed cells of the tumor microenvironment. Herein, we report that radiotherapy induces the production of extracellular vesicles by breast cancer cells capable of stimulating tumor-supporting fibroblast activity, facilitating tumor survival and promoting cancer stem-like cell expansion. This pro-tumor activity was associated with fibroblast production of the paracrine signaling factor IL-6 and was dependent on the expression of the heparan sulfate proteoglycan CD44v3 on the vesicle surface. Enzymatic removal or pharmaceutical inhibition of its heparan sulfate side chains disrupted this tumor-fibroblast crosstalk. Additionally, we show that the radiation-induced production of CD44v3+ vesicles is effectively silenced by blocking the ESCRT pathway using a soluble pharmacological inhibitor of MDA-9/Syntenin/SDCBP PDZ1 domain activity, PDZ1i. This population of vesicles was also detected in the sera of human patients undergoing radiotherapy, therefore representing a potential biomarker for radiation therapy and providing an opportunity for clinical intervention to improve treatment outcomes.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Virginia Commonwealth University, Richmond, VA, United States,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: Gene Chatman Clark,
| | - James David Hampton
- Virginia Commonwealth University, Richmond, VA, United States,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer E. Koblinski
- Virginia Commonwealth University, Richmond, VA, United States,Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Bridget Quinn
- Virginia Commonwealth University, Richmond, VA, United States,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Sitara Mahmoodi
- Virginia Commonwealth University, Richmond, VA, United States
| | - Olga Metcalf
- University of Virginia, Charlottesville, VA, United States
| | - Chunqing Guo
- Virginia Commonwealth University, Richmond, VA, United States,Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Erica Peterson
- Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B. Fisher
- Virginia Commonwealth University, Richmond, VA, United States,Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Nicholas P. Farrell
- Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Virginia Commonwealth University, Richmond, VA, United States,University of Virginia, Charlottesville, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Ross B. Mikkelsen
- Virginia Commonwealth University, Richmond, VA, United States,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
62
|
Temsirolimus Enhances Anti-Cancer Immunity by Inducing Autophagy-Mediated Degradation of the Secretion of Small Extracellular Vesicle PD-L1. Cancers (Basel) 2022; 14:cancers14174081. [PMID: 36077620 PMCID: PMC9454510 DOI: 10.3390/cancers14174081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Immune checkpoint blockade therapies (ICBT) have increasing importance in patient survival and prognosis because it enhances immune cell activation by inhibiting the binding of programmed death-ligand 1 (PD-L1) of tumor and programmed death-1 (PD-1) of T cells. However, tumor-derived small extracellular vesicle (sEV) PD-L1 trigger low reactivity in immunotherapy because it promotes tumor growth and metastasis and inhibits activation of immune cell. In this study, temsirolimus (TEM) which the Food and Drug Administration (FDA) approved as a targeted anti-cancer drug, inhibited tumor-derived sEV PD-L1 secretion by activating autophagy. In addition, TEM induced systemic anti-cancer immunity by increasing the number and activation of CD4+ and CD8+ T cells. Therefore, TEM showed that the anti-cancer effect was better in the breast cancer-bearing-immunocompetent mice than in the nude mice. In summary, we suggest that TEM can overcome sEV PD-L1-mediated immunosuppression in patients with cancer through activation of the immune system in the body by inhibiting tumor-derived sEV PD-L1. Abstract Tumor-derived small extracellular vesicle (sEV) programmed death-ligand 1 (PD-L1) contributes to the low reactivity of cells to immune checkpoint blockade therapy (ICBT), because sEV PD-L1 binds to programmed death 1 (PD-1) in immune cells. However, there are no commercially available anti-cancer drugs that activate immune cells by inhibiting tumor-derived sEV PD-L1 secretion and cellular PD-L1. Here, we aimed to investigate if temsirolimus (TEM) inhibits both sEV PD-L1 and cellular PD-L1 levels in MDA-MB-231 cells. In cancer cell autophagy activated by TEM, multivesicular bodies (MVBs) associated with the secretion of sEV are degraded through colocalization with autophagosomes or lysosomes. TEM promotes CD8+ T cell-mediated anti-cancer immunity in co-cultures of CD8+ T cells and tumor cells. Furthermore, the combination therapy of TEM and anti-PD-L1 antibodies enhanced anti-cancer immunity by increasing both the number and activity of CD4+ and CD8+ T cells in the tumor and draining lymph nodes (DLNs) of breast cancer-bearing immunocompetent mice. In contrast, the anti-cancer effect of the combination therapy with TEM and anti-PD-L1 antibodies was reversed by the injection of exogenous sEV PD-L1. These findings suggest that TEM, previously known as a targeted anti-cancer drug, can overcome the low reactivity of ICBT by inhibiting sEV PD-L1 and cellular PD-L1 levels.
Collapse
|
63
|
Lougee MG, Pagar VV, Kim HJ, Pancoe SX, Chia WK, Mach RH, Garcia BA, Petersson EJ. Harnessing the intrinsic photochemistry of isoxazoles for the development of chemoproteomic crosslinking methods. Chem Commun (Camb) 2022; 58:9116-9119. [PMID: 35880535 PMCID: PMC9922157 DOI: 10.1039/d2cc02263j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The intrinsic photochemistry of the isoxazole, a common heterocycle in medicinal chemistry, can be applied to offer an alternative to existing strategies using more perturbing, extrinsic photo-crosslinkers. The utility of isoxazole photo-crosslinking is demonstrated in a wide range of biologically relevant experiments, including common proteomics workflows.
Collapse
Affiliation(s)
- Marshall G. Lougee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vinayak Vishnu Pagar
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA. .,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Samantha X. Pancoe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - W. Kit Chia
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
64
|
Choe EJ, Lee CH, Bae JH, Park JM, Park SS, Baek MC. Atorvastatin Enhances the Efficacy of Immune Checkpoint Therapy and Suppresses the Cellular and Extracellular Vesicle PD-L1. Pharmaceutics 2022; 14:pharmaceutics14081660. [PMID: 36015287 PMCID: PMC9414447 DOI: 10.3390/pharmaceutics14081660] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 12/12/2022] Open
Abstract
According to clinical studies, statins improve the efficacy of programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) blockade therapy for breast cancer; however, the underlying mechanisms are unclear. Herein, we showed that atorvastatin (ATO) decreased the content of PD-L1 in extracellular vesicles (EVs) by reducing cellular PD-L1 expression and inhibiting EV secretion in breast cancer cells, thereby enhancing the efficacy of anti-PD-L1 therapy. ATO reduced EV secretion by regulating the Rab proteins involved in EV biogenesis and secretion. ATO-mediated inhibition of the Ras-activated MAPK signaling pathway downregulated PD-L1 expression. In addition, ATO strongly promoted antitumor efficacy by inducing T cell-mediated tumor destruction when combined with an anti-PD-L1 antibody. Moreover, suppression of EV PD-L1 by ATO improved the reactivity of anti-PD-L1 therapy by enhancing T-cell activity in draining lymph nodes of EMT6-bearing immunocompetent mice. Therefore, ATO is a potential therapeutic drug that improves antitumor immunity by inhibiting EV PD-L1, particularly in response to immune escape during cancer.
Collapse
|
65
|
Novel antitumor therapeutic strategy using CD4+ T cell-derived extracellular vesicles. Biomaterials 2022; 289:121765. [DOI: 10.1016/j.biomaterials.2022.121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
66
|
Wu J, Wu D, Wu G, Bei HP, Li Z, Xu H, Wang Y, Wu D, Liu H, Shi S, Zhao C, Xu Y, He Y, Li J, Wang C, Zhao X, Wang S. Scale-out production of extracellular vesicles derived from natural killer cells via mechanical stimulation in a seesaw-motion bioreactor for cancer therapy. Biofabrication 2022; 14. [PMID: 35793612 DOI: 10.1088/1758-5090/ac7eeb] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Extracellular vesicles (EVs) derived from immune cells have shown great anti-cancer therapeutic potential. However, inefficiency in EV generation has considerably impeded the development of EV-based basic research and clinical translation. Here, we developed a seesaw-motion bioreactor (SMB) system by leveraging mechanical stimuli such as shear stress and turbulence for generating EVs with high quality and quantity from natural killer (NK) cells. Compared to EV production in traditional static culture (229 ± 74 particles per cell per day), SMB produced NK-92MI-derived EVs at a higher rate of 438 ± 50 particles per cell per day and yielded a total number of 2 × 1011 EVs over two weeks via continuous dynamic fluidic culture. In addition, the EVs generated from NK-92MI cells in SMB shared a similar morphology, size distribution, and protein profile to EVs generated from traditional static culture. Most importantly, the NK-92MI-derived EVs in SMB were functionally active in killing melanoma and liver cancer cells in both 2D and 3D culture conditions in vitro, as well as in suppressing melanoma growth in vivo. We believe that SMB is an attractive approach to producing EVs with high quality and quantity; it can additionally enhance EV production from NK92-MI cells and promote both the basic and translational research of EVs.
Collapse
Affiliation(s)
- Jianguo Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Di Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Guohua Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, Hong Kong SAR, HONG KONG
| | - Zihan Li
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Han Xu
- Department of Building Environment and Energy Engineering, Xi'an Jiaotong University, 28 Xianning W Rd, Beilin, Xi'An, Shaanxi, China, 710049, Xi'an, Shanxi Province, 710049, CHINA
| | - Yimin Wang
- Institute of Translational Medicine, Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, HangZhou, 310027, CHINA
| | - Dan Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Hui Liu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Shengyu Shi
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, The Old Schools, Trinity Ln, Cambridge CB2 1TN, United Kingdom, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yibing Xu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Yong He
- Department of Mechanical Engineering, Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, ZheJiang, 310027, CHINA
| | - Jun Li
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institude of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Medical Sciences, Taiping Rd. 27, 100850, Tianjin, Beijing, China, Beijing, 100850, CHINA
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, Hong Kong SAR, 999077, HONG KONG
| | - Shuqi Wang
- Sichuan University, 252 Shuncheng Ave, Qingyang District, Chengdu, Sichuan, China, Chengdu, Sichuan, 610017, CHINA
| |
Collapse
|
67
|
Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells 2022; 11:cells11121946. [PMID: 35741075 PMCID: PMC9221707 DOI: 10.3390/cells11121946] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membranous structures secreted by nearly all cell types. As critical messengers for intercellular communication, exosomes deliver bioactive cargoes to recipient cells and are involved in multiple physiopathological processes, including immunoregulation. Our pioneering study revealed that cancer cells release programmed death-ligand 1-positive exosomes into the circulation to counter antitumor immunity systemically via T cells. Tumor cell-derived exosomes (TDEs) also play an immunosuppressive role in other immunocytes, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs). Moreover, exosomes secreted by nontumor cells in the tumor microenvironments (TMEs) also exert immunosuppressive effects. This review systematically provides a summary of the immunosuppression induced by exosomes in tumor microenvironments, which modulates tumor growth, invasion, metastasis, and immunotherapeutic resistance. Additionally, therapeutic strategies targeting the molecular mechanism of exosome-mediated tumor development, which may help overcome several obstacles, such as immune tolerance in oncotherapy, are also discussed. Detailed knowledge of the specific functions of exosomes in antitumor immunity may contribute to the development of innovative treatments.
Collapse
|
68
|
Park JH. Regulation of in vivo fate of exosomes for therapeutic applications: New frontier in nanomedicines. J Control Release 2022; 348:483-488. [PMID: 35675897 DOI: 10.1016/j.jconrel.2022.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
The significance of exosomes as intercellular messengers in a range of biological phenomena has hugely inspired many researchers to use them for disease diagnosis and treatment. Likewise, since the adoption of exosomes as new tools for our research, I aspired to address relevant delivery challenges with my expertise in the field of nanomedicine to develop better exosome-related therapies. In particular, innately therapeutic and exogenous drug-loaded exosomes should be located at the target site, whereas pathological exosomes or their biogenesis pathways should be targeted to control them. Reflecting recent preclinical efforts in my research group to meet such needs, the related previous work history, and initial accomplishments for regulating the in vivo fate of exosomes are covered in this contribution to the Orations-New Horizons of the Journal of Controlled Release, along with our ambitions for future developments in the field.
Collapse
Affiliation(s)
- Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
69
|
Exosomes derived from human hypertrophic scar fibroblasts induces smad and TAK1 signaling in normal dermal fibroblasts. Arch Biochem Biophys 2022; 722:109215. [DOI: 10.1016/j.abb.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
|
70
|
Kim SB. Function and therapeutic development of exosomes for cancer therapy. Arch Pharm Res 2022; 45:295-308. [PMID: 35604532 PMCID: PMC9125016 DOI: 10.1007/s12272-022-01387-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023]
Abstract
Exosomes are extracellular vesicles, 50–150 nm in diameter, released by most cells. Exosomes contain several intracellular components, including DNA, RNA, and proteins, which reflect the parent cell’s status and contribute to intercellular communication. Cancers are associated with high morbidity and mortality rates worldwide. Owing to a high survival rate, cancer treatment by immune modulation of the tumor microenvironment has recently received a lot of attention. Exosomes’ role in immunological control is also being studied extensively. Exosomes play a role in cancer-immune cell communication. Through intracellular communication, exosomes promote tumor growth, metastasis, angiogenesis, and drug resistance. In addition, innate immune cell-derived exosomes and adaptive immune cell exosomes have an anti-tumorigenic activity. Exosome-related tumor microenvironment drugs are being developed, including inhibitors of exosomal release, tumor-derived exosomes, and immune cell-derived exosome engineering, although there are still some obstacles to overcome. We describe in this review the significance of exosomes in the tumor microenvironment. We also summarize current studies on anticancer immune drug development and the challenges in developing exosome-related drugs.
Collapse
Affiliation(s)
- Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea, 01795.
| |
Collapse
|
71
|
Shen Y, Ye H, Zhang D, Yang M, Ji Y, Tang L, Zhu X, Yuan L. The role of exosomal CDC6 in the hirudin-mediated suppression of the malignant phenotype of bladder cancer cells. Gene 2022; 821:146269. [PMID: 35150820 DOI: 10.1016/j.gene.2022.146269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bladder cancer is a malignant tumor characterized by high recurrence and persistence due to the limited therapies that are currently available. Hirudin exerts a strong anticancer effect on several tumors. Thus, it is urgent to explore the biological function of hirudin in bladder cancer and the role of bladder cancer-derived exosomes in tumor inhibition. METHODS First, a network pharmacology analysis was performed to explore the relationships among hirudin, bladder cancer, and exosomes. Then, the effects of hirudin were examined by CCK-8 assay, flow cytometry, Transwell assay, and tumorigenic ability experiments in vitro. Exosomes derived from cells were identified with transmission electron microscopy, fluorescence labeling, and Western blotting and collected for further microarray analysis. Only CDC6 expression and mRNA abundance in hirudin-treated cells and exosomes was subjected to further validation using quantitative PCR and Western blotting. RESULTS Through network analysis, we found that hirudin affected bladder cancer, and this effect was related to exosomes. Our studies verified the effects of hirudin by revealing that hirudin inhibits malignant processes of bladder cancer cells in vitro, such as invasion, metastasis, and apoptosis. Similarly, the oncogenic effects of bladder cancer-derived exosomes were successfully isolated and identified. Via microarray assessment of the exosomes, we identified 600 differential mRNAs, of which the expression of the core target CDC6 was found to be significantly different in both The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. We further confirmed that hirudin suppresses CDC6 expression mRNA abundance in both cells and exosomes. CONCLUSION Hirudin was able to decrease the expression of CDC6 in bladder cancer cells and exosomes, which effectively repressed the malignant processes of bladder cancer cells.
Collapse
Affiliation(s)
- Yang Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Hesong Ye
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Dongjian Zhang
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ming Yang
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Yuanyuan Ji
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Longlong Tang
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Xudong Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Lin Yuan
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| |
Collapse
|
72
|
Dai Y, Liu Y, Li J, Jin M, Yang H, Huang G. Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway. Bioengineered 2022; 13:13906-13918. [PMID: 35706397 PMCID: PMC9275963 DOI: 10.1080/21655979.2022.2086378] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The active ingredient of the traditional Chinese medicine comfrey is shikonin, a naphthoquinone compound. The focus of this study was to investigate the effect of shikonin on the proliferation, invasion, migration, and chemoresistance of non-small cell lung cancer (NSCLC) cells, and to explore its underlying molecular biological mechanisms. The results show that shikonin inhibited the viability, proliferation, invasion, and migration of NSCLC cells A549 and PC9, and induced apoptosis. As the inhibitor of pyruvate kinase M2 (PKM2), a key enzyme in glycolysis, shikonin inhibited glucose uptake and the production of lactate, the final metabolite of aerobic glycolysis. In vivo chemotherapeutic assay showed that shikonin reduced the tumor volume and weight in NSCLC mice model and increased the sensitivity to cisplatin chemotherapy. Histoimmunology experiments showed the combination of shikonin and cisplatin downregulated the expression of PKM2 and its transcriptionally regulated downstream gene glucose transporter 1 (Glut1) in tumor tissue. In an assessment of glucose metabolism, micro-PET/CT data showed a combination of shikonin and cisplatin inhibited the fluorodeoxy glucose (18F-FDG) uptake into tumor. Since exosomal PKM2 affected the sensitivity to cisplatin in NSCLC cells, we also demonstrated shikonin could inhibit exosome secretion and exosomal PKM2 through the administration of exosomal inhibitor GW4869. Furthermore, shikonin sensitized cisplatin treatment by reducing the extracellular secretion of exosomal PKM2. In conclusion, we suggest that shikonin not only inhibits PKM2 intracellularly but also reduces glycolytic flux and increases cisplatin sensitivity through the exosomal pathway.
Collapse
Affiliation(s)
- Yitian Dai
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuping Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Li
- Qiqihar Medical University, Qiqihar Heilongjiang, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
73
|
Shi Y, Qiu B, Huang L, Lin J, Li Y, Ze Y, Huang C, Yao Y. Exosomes and ferroptosis: roles in tumour regulation and new cancer therapies. PeerJ 2022; 10:e13238. [PMID: 35497192 PMCID: PMC9053300 DOI: 10.7717/peerj.13238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Research on the biological role of exosomes is rapidly developing, and recent evidence suggests that exosomal effects involve ferroptosis. Exosomes derived from different tissues inhibit ferroptosis, which increases tumour cell chemoresistance. Therefore, exosome-mediated regulation of ferroptosis may be leveraged to design anticancer drugs. This review discusses three pathways of exosome-mediated inhibition of ferroptosis: (1) the Fenton reaction; (2) the ferroptosis defence system, including the Xc-GSH-GPX4 axis and the FSP1/CoQ10/NAD(P)H axis; and (3) lipid peroxidation. We also summarize three recent approaches for combining exosomes and ferroptosis in oncology therapy: (1) promoting exosome-inhibited ferroptosis to enhance chemotherapy; (2) encapsulating exosomes with ferroptosis inducers to inhibit cancers; and (3) developing therapies that combine exosomal inhibitors and ferroptosis inducers. This review will contribute toward establishing effective cancer therapies.
Collapse
Affiliation(s)
- Yixin Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingrun Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglong Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
74
|
Mitani F, Lin J, Sakamoto T, Uehara R, Hikita T, Yoshida T, Setiawan A, Arai M, Oneyama C. Asteltoxin inhibits extracellular vesicle production through AMPK/mTOR-mediated activation of lysosome function. Sci Rep 2022; 12:6674. [PMID: 35461323 PMCID: PMC9035176 DOI: 10.1038/s41598-022-10692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer cells secrete aberrantly large amounts of extracellular vesicles (EVs) including exosomes, which originate from multivesicular bodies (MVBs). Because EVs potentially contribute to tumor progression, EV inhibitors are of interest as novel therapeutics. We screened a fungal natural product library. Using cancer cells engineered to secrete luciferase-labeled EVs, we identified asteltoxin, which inhibits mitochondrial ATP synthase, as an EV inhibitor. Low concentrations of asteltoxin inhibited EV secretion without inducing mitochondrial damage. Asteltoxin attenuated cellular ATP levels and induced AMPK-mediated mTORC1 inactivation. Consequently, MiT/TFE transcription factors are translocated into the nucleus, promoting transcription of lysosomal genes and lysosome activation. Electron microscopy analysis revealed that the number of lysosomes increased relative to that of MVBs and the level of EVs decreased after treatment with asteltoxin or rapamycin, an mTORC1 inhibitor. These findings suggest that asteltoxin represents a new type of EV inhibitor that controls MVB fate.
Collapse
Affiliation(s)
- Fumie Mitani
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan.,Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Jianyu Lin
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tatsuya Sakamoto
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan.,Department of Target and Drug Discovery, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan
| | - Ryo Uehara
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Andi Setiawan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lampung University, Bandar Lampung, Indonesia
| | - Masayoshi Arai
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan. .,Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan. .,Department of Target and Drug Discovery, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan. .,JST, PRESTO, Nagoya, Japan.
| |
Collapse
|
75
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
76
|
Phosphoproteomic Analysis of Breast Cancer-Derived Small Extracellular Vesicles Reveals Disease-Specific Phosphorylated Enzymes. Biomedicines 2022; 10:biomedicines10020408. [PMID: 35203617 PMCID: PMC8962341 DOI: 10.3390/biomedicines10020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 12/16/2022] Open
Abstract
Small membrane-derived extracellular vesicles have been proposed as participating in several cancer diseases, including breast cancer (BC). We performed a phosphoproteomic analysis of breast cancer-derived small extracellular vesicles (sEVs) to provide insight into the molecular and cellular regulatory mechanisms important for breast cancer tumor progression and metastasis. We examined three cell line models for breast cancer: MCF10A (non-malignant), MCF7 (estrogen and progesterone receptor-positive, metastatic), and MDA-MB-231 (triple-negative, highly metastatic). To obtain a comprehensive overview of the sEV phosphoproteome derived from each cell line, effective phosphopeptide enrichment techniques IMAC and TiO2, followed by LC-MS/MS, were performed. The phosphoproteome was profiled to a depth of 2003 phosphopeptides, of which 207, 854, and 1335 were identified in MCF10A, MCF7, and MDA-MB-231 cell lines, respectively. Furthermore, 2450 phosphorylation sites were mapped to 855 distinct proteins, covering a wide range of functions. The identified proteins are associated with several diseases, mostly related to cancer. Among the phosphoproteins, we validated four enzymes associated with cancer and present only in sEVs isolated from MCF7 and MDA-MB-231 cell lines: ATP citrate lyase (ACLY), phosphofructokinase-M (PFKM), sirtuin-1 (SIRT1), and sirtuin-6 (SIRT6). With the exception of PFKM, the specific activity of these enzymes was significantly higher in MDA-MB-231 when compared with MCF10A-derived sEVs. This study demonstrates that sEVs contain functional metabolic enzymes that could be further explored for their potential use in early BC diagnostic and therapeutic applications.
Collapse
|
77
|
Shin JM, Lee C, Son S, Kim CH, Lee JA, Ko H, Shin S, Song SH, Park S, Bae J, Park J, Choe E, Baek M, Park JH. Sulfisoxazole Elicits Robust Antitumour Immune Response Along with Immune Checkpoint Therapy by Inhibiting Exosomal PD-L1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103245. [PMID: 34927389 PMCID: PMC8844465 DOI: 10.1002/advs.202103245] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Indexed: 05/08/2023]
Abstract
Despite their potent antitumor activity, clinical application of immune checkpoint inhibitors has been significantly limited by their poor response rates (<30%) in cancer patients, primarily due to immunosuppressive tumor microenvironments. As a representative immune escape mechanism, cancer-derived exosomes have recently been demonstrated to exhaust CD8+ cytotoxic T cells. Here, it is reported that sulfisoxazole, a sulfonamide antibacterial, significantly decreases the exosomal PD-L1 level in blood when orally administered to the tumor-bearing mice. Consequently, sulfisoxazole effectively reinvigorates exhausted T cells, thereby eliciting robust antitumor effects in combination with anti-PD-1 antibody. Overall, sulfisoxazole regulates immunosuppression through the inhibition of exosomal PD-L1, implying its potential to improve the response rate of anti-PD-1 antibodies.
Collapse
Affiliation(s)
- Jung Min Shin
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Department of Genetic ResourcesNational Marine Biodiversity Institute of Korea (MABIK)75 Jangsan‐ro 101‐gil, Janghang‐eupSeocheon33662Republic of Korea
| | - Chan‐Hyeong Lee
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Soyoung Son
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Chan Ho Kim
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Jae Ah Lee
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyewon Ko
- Bionanotechnology Research CenterKorea Research Institute of Bioscience & Biotechnology125 Gwahak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Sol Shin
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Seok Ho Song
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Seong‐Sik Park
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Ju‐Hyun Bae
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Ju‐Mi Park
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Eun‐Ji Choe
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Moon‐Chang Baek
- Department of Molecular MedicineCMRIExosome Convergence Research Center (ECRC)School of MedicineKyungpook National UniversityDaegu41944Republic of Korea
| | - Jae Hyung Park
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| |
Collapse
|
78
|
Komuro H, Aminova S, Lauro K, Woldring D, Harada M. Design and Evaluation of Engineered Extracellular Vesicle (EV)-Based Targeting for EGFR-Overexpressing Tumor Cells Using Monobody Display. Bioengineering (Basel) 2022; 9:bioengineering9020056. [PMID: 35200409 PMCID: PMC8869414 DOI: 10.3390/bioengineering9020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Extracellular vesicles (EVs) are attracting interest as a new class of drug delivery vehicles due to their intrinsic nature of biomolecular transport in the body. We previously demonstrated that EV surface modification with tissue-specific molecules accomplished targeted EV-mediated DNA delivery. Methods: Here, we describe reliable methods for (i) generating EGFR tumor-targeting EVs via the display of high-affinity monobodies and (ii) in vitro measurement of EV binding using fluorescence and bioluminescence labeling. Monobodies are a well-suited class of small (10 kDa) non-antibody scaffolds derived from the human fibronectin type III (FN3) domain. Results: The recombinant protein consists of the EGFR-targeting monobody fused to the EV-binding domain of lactadherin (C1C2), enabling the monobody displayed on the surface of the EVs. In addition, the use of bioluminescence or fluorescence molecules on the EV surface allows for the assessment of EV binding to the target cells. Conclusions: In this paper, we describe methods of EV engineering to generate targeted delivery vehicles using monobodies that will have diverse applications to furnish future EV therapeutic development, including qualitative and quantitative in vitro evaluation for their binding capacity.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-884-6940
| |
Collapse
|
79
|
Extracellular Vesicles as Mediators of Therapy Resistance in the Breast Cancer Microenvironment. Biomolecules 2022; 12:biom12010132. [PMID: 35053279 PMCID: PMC8773878 DOI: 10.3390/biom12010132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Resistance to various therapies, including novel immunotherapies, poses a major challenge in the management of breast cancer and is the leading cause of treatment failure. Bidirectional communication between breast cancer cells and the tumour microenvironment is now known to be an important contributor to therapy resistance. Several studies have demonstrated that crosstalk with the tumour microenvironment through extracellular vesicles is an important mechanism employed by cancer cells that leads to drug resistance via changes in protein, lipid and nucleic acid cargoes. Moreover, the cargo content enables extracellular vesicles to be used as effective biomarkers for predicting response to treatments and as potential therapeutic targets. This review summarises the literature to date regarding the role of extracellular vesicles in promoting therapy resistance in breast cancer through communication with the tumour microenvironment.
Collapse
|
80
|
Ti W, Wang J, Cheng Y. The Interaction Between Long Non-Coding RNAs and Cancer-Associated Fibroblasts in Lung Cancer. Front Cell Dev Biol 2022; 9:714125. [PMID: 35087824 PMCID: PMC8787156 DOI: 10.3389/fcell.2021.714125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Despite great advances in research and treatment, lung cancer is still one of the most leading causes of cancer-related deaths worldwide. Evidence is mounting that dynamic communication network in the tumor microenvironment (TME) play an integral role in tumor initiation and development. Cancer-associated fibroblasts (CAFs), which promote tumor growth and metastasis, are the most important stroma component in the tumor microenvironment. Consequently, in-depth identification of relevant molecular mechanisms and biomarkers related to CAFs will increase understanding of tumor development process, which is of great significance for precise treatment of lung cancer. With the development of sequencing technologies such as microarray and next-generation sequencing, lncRNAs without protein-coding ability have been found to act as communicators between tumor cells and CAFs. LncRNAs participate in the activation of normal fibroblasts (NFs) to CAFs. Moreover, activated CAFs can influence the gene expression and secretion characteristics of cells through lncRNAs, enhancing the malignant biological process in tumor cells. In addition, lncRNA-loaded exosomes are considered to be another important form of crosstalk between tumor cells and CAFs. In this review, we focus on the interaction between tumor cells and CAFs mediated by lncRNAs in the lung cancer microenvironment, and discuss the analysis of biological function and molecular mechanism. Furthermore, it contributes to paving a novel direction for the clinical treatment of lung cancer.
Collapse
Affiliation(s)
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
81
|
Qiao Q, Qu Z, Tian S, Cao H, Zhang Y, Sun C, Jia L, Wang W. Ketogenic Diet Alleviates Hippocampal Neurodegeneration Possibly via ASIC1a and the Mitochondria-Mediated Apoptotic Pathway in a Rat Model of Temporal Lobe Epilepsy. Neuropsychiatr Dis Treat 2022; 18:2181-2198. [PMID: 36187562 PMCID: PMC9521243 DOI: 10.2147/ndt.s376979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The ketogenic diet (KD) is a proven therapy for refractory epilepsy. Although the anti-seizure properties of this diet are understood to a certain extent, the exploration of its neuroprotective effects and underlying mechanisms is still in its infancy. Tissue acidosis is a common feature of epileptogenic foci. Interestingly, the activation of acid-sensing ion channel 1a (ASIC1a), which mediates Ca2+-dependent neuronal injury during acidosis, has been found to be inhibited by ketone bodies in vitro. This prompted us to investigate whether the neuroprotective effects induced by the KD occur via ASIC1a and interconnected downstream mechanisms in a rat model of temporal lobe epilepsy. METHODS Male Sprague-Dawley rats were fed either the KD or a normal diet for four weeks after undergoing pilocarpine-induced status epilepticus (SE). The effects of KD on epileptogenesis, cognitive impairment and hippocampal neuron injury in the epileptic rats were subsequently evaluated by video electroencephalogram, Morris water maze test and Nissl staining, respectively. The expression of ASIC1a and cleaved caspase-3 in the hippocampus were determined using Western blot analysis during the chronic period following SE. Moreover, the intracellular Ca2+ concentration, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mROS) and cell apoptosis of hippocampal cells were detected by flow cytometry. RESULTS We found that the KD treatment strongly attenuated the spontaneous recurrent seizures, ameliorated learning and memory impairments and prevented hippocampal neuronal injury and apoptosis. The KD was also shown to inhibit the upregulation of ASIC1a and the ensuing intracellular Ca2+ overload in the hippocampus of the epileptic rats. Furthermore, the seizure-induced structure disruption of neuronal mitochondria, loss of MMP and accumulation of mROS were reversed by the KD treatment, suggesting that it has protective effects on mitochondria. Finally, the activation of caspase-3 was also inhibited by the KD. CONCLUSION These findings indicate that the KD suppresses mitochondria-mediated apoptosis possibly by regulating ASIC1a to exert neuroprotective effects. This may provide a mechanistic explanation of the therapeutic effects of KD.
Collapse
Affiliation(s)
- Qi Qiao
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhenzhen Qu
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shuang Tian
- The Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, People's Republic of China
| | - Huifang Cao
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yange Zhang
- The Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Can Sun
- The Department of Neurology, The Third Hospital of Peking University, Beijing, People's Republic of China
| | - Lijing Jia
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Weiping Wang
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
82
|
Khedr AM, El‐Ghamry HA, El‐Sayed YS. Nano‐synthesis, solid‐state structural characterization, and antimicrobial and anticancer assessment of new sulfafurazole azo dye‐based metal complexes for further pharmacological applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdalla M. Khedr
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| | - Hoda A. El‐Ghamry
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Yusif S. El‐Sayed
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
83
|
Brena D, Huang MB, Bond V. Extracellular vesicle-mediated transport: Reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis. Transl Oncol 2021; 15:101286. [PMID: 34839106 PMCID: PMC8636863 DOI: 10.1016/j.tranon.2021.101286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles’ (EVs) role in breast tumor microenvironment and pre-metastatic niche development. Breast cancer EV-mediated transmission of pro-metastatic and drug-resistant phenotypes. Precision medicine with EVs as biomarkers and delivery vehicles for drug and anticancer genetic material.
Breast cancer metastatic progression to critical secondary sites is the second leading cause of cancer-related mortality in women. While existing therapies are highly effective in combating primary tumors, metastatic disease is generally deemed incurable with a median survival of only 2, 3 years. Extensive efforts have focused on identifying metastatic contributory targets for therapeutic antagonism and prevention to improve patient survivability. Excessive breast cancer release of extracellular vesicles (EVs), whose contents stimulate a metastatic phenotype, represents a promising target. Complex breast cancer intercellular communication networks are based on EV transport and transference of molecular information is in bulk resulting in complete reprogramming events within recipient cells. Other breast cancer cells can acquire aggressive phenotypes, endothelial cells can be induced to undergo tubule formation, and immune cells can be neutralized. Recent advancements continue to implicate the critical role EVs play in cultivating a tumor microenvironment tailored to cancer proliferation, metastasis, immune evasion, and conference of drug resistance. This literature review serves to frame the role of EV transport in breast cancer progression and metastasis. The following five sections will be addressed: (1) Intercellular communication in developing a tumor microenvironment & pre-metastatic niche. (2) Induction of the epithelial-to-mesenchymal transition (EMT). (3). Immune suppression & evasion. (4) Transmission of drug resistance mechanisms. (5) Precision medicine: clinical applications of EVs.
Collapse
Affiliation(s)
- Dara Brena
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States.
| | - Vincent Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| |
Collapse
|
84
|
Wang X, Sun C, Huang X, Li J, Fu Z, Li W, Yin Y. The Advancing Roles of Exosomes in Breast Cancer. Front Cell Dev Biol 2021; 9:731062. [PMID: 34790660 PMCID: PMC8591197 DOI: 10.3389/fcell.2021.731062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) develops from breast tissue and is the most common aggressive malignant tumor in women worldwide. Although advanced treatment strategies have been applied and reduced current mortality rates, BC control remains unsatisfactory. It is essential to elucidate the underlying molecular mechanisms to assist clinical options. Exosomes are a type of extracellular vesicles and mediate cellular communications by delivering various biomolecules (oncogenes, oncomiRs, proteins, and even pharmacological compounds). These bioactive molecules can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. Extensive studies have implicated exosomes in BC biology, including therapeutic resistance and the surrounding microenvironment. This review focuses on discussing the functions of exosomes in tumor treatment resistance, invasion and metastasis of BC. Moreover, we will also summarize multiple interactions between exosomes and the BC tumor microenvironment. Finally, we propose promising clinical applications of exosomes in BC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternity and Child Medical Institute, Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
85
|
Li J, Gao N, Gao Z, Liu W, Pang B, Dong X, Li Y, Fan T. The Emerging Role of Exosomes in Cancer Chemoresistance. Front Cell Dev Biol 2021; 9:737962. [PMID: 34778252 PMCID: PMC8581179 DOI: 10.3389/fcell.2021.737962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance is an impending challenge in cancer treatment. In recent years, exosomes, a subtype of extracellular vesicles with a diameter of 40-150 nm in bloodstream and other bio-fluids, have attracted increasing interest. Exosomes contain proteins, nucleic acids, and lipids, which act as important signaling molecules. Many reports indicate that exosomes play critical roles in chemoresistance through intercellular interactions, including drug removal from cells, transfer of drug resistance phenotypes to other cancer cells, and the increase in plastic stem cell subsets. Exosomes can reflect the physiological and pathological state of parent cells. Owing to their elevated stability, specificity, and sensitivity, exosomes are served as biomarkers in liquid biopsies to monitor cancer chemoresistance, progression, and recurrence. This review summarizes the exosome-mediated mechanisms of cancer chemoresistance, as well as its role in reversing and monitoring chemoresistance. The scientific and technological challenges and future applications of exosomes are also explored.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zhengfan Gao
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bairen Pang
- St George Hospital, St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Xingli Dong
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China.,St George Hospital, St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
86
|
Vautrot V, Bentayeb H, Causse S, Garrido C, Gobbo J. Tumor-Derived Exosomes: Hidden Players in PD-1/PD-L1 Resistance. Cancers (Basel) 2021; 13:cancers13184537. [PMID: 34572764 PMCID: PMC8467727 DOI: 10.3390/cancers13184537] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Immunotherapies such as anti-PD-1/PD-L1 have garnered increasing importance in cancer therapy, leading to substantial improvements in patient care and survival. However, a certain proportion of patients present tumors that resist these treatments. Exosomes, small vesicles secreted by almost every cell, including tumor cells, have proven to be key actors in this resistance. In this review, we describe the involvement of immune checkpoints and immune modulators in tumor-derived exosomes (TEXs) in the context of cancer. We will focus on the most promising proteins under scrutiny for use in combination with PD-1 blockade therapy in a clinical setting: PD-L1, CTLA-4, TIM-3, CD73/39, LAG-3, and TIGIT. Finally, we will discuss how they can change the game in immunotherapy, notably through their role in immunoresistance and how they can guide therapeutic decisions, as well as the current obstacles in the field. Abstract Recently, immunotherapy has garnered increasing importance in cancer therapy, leading to substantial improvements in patient care and survival. By blocking the immune checkpoints—protein regulators of the immune system—immunotherapy prevents immune tolerance toward tumors and reactivates the immune system, prompting it to fight cancer cell growth and diffusion. A widespread strategy for this is the blockade of the interaction between PD-L1 and PD-1. However, while patients generally respond well to immunotherapy, a certain proportion of patients present tumors that resist these treatments. This portion can be very high in some cancers and hinders cancer curability. For this reason, current efforts are focusing on combining PD-1/PD-L1 immunotherapy with the targeting of other immune checkpoints to counter resistance and achieve better results. Exosomes, small vesicles secreted by almost any cell, including tumor cells, have proven to be key actors in this resistance. The exosomes released by tumor cells spread the immune-suppressive properties of the tumor throughout the tumor microenvironment and participate in establishing metastatic niches. In this review, we will describe immune checkpoints and immune modulators whose presence in tumor-derived exosomes (TEXs) has been established. We will focus on the most promising proteins under scrutiny for use in combination with PD-1 blockade therapy in a clinical setting, such as PD-L1, CTLA-4, TIM-3, CD73/39, LAG-3, and TIGIT. We will explore the immunosuppressive impact of these exosomal proteins on a variety of immune cells. Finally, we will discuss how they can change the game in immunotherapy and guide therapeutic decisions, as well as the current limits of this approach. Depending on the viewpoint, these exosomal proteins may either provide key missing information on tumor growth and resistance mechanisms or they may be the next big challenge to overcome in improving cancer treatment.
Collapse
Affiliation(s)
- Valentin Vautrot
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Hafidha Bentayeb
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Sébastien Causse
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Carmen Garrido
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Jessica Gobbo
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
- Centre Georges-François Leclerc, Early Phase Unit INCa CLIP², Department of Oncology, F-21079 Dijon, France
- Clinical Investigation Center CIC1432, Module Plurithématique, INSERM, F-21079 Dijon, France
- Correspondence:
| |
Collapse
|
87
|
Das Gupta A, Krawczynska N, Nelson ER. Extracellular Vesicles-The Next Frontier in Endocrinology. Endocrinology 2021; 162:6310412. [PMID: 34180968 PMCID: PMC8294678 DOI: 10.1210/endocr/bqab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs), including exosomes, are emerging as important carriers of signals in normal and pathological physiology. As EVs are a long-range communication or signaling modality-just like hormones are-the field of endocrinology is uniquely poised to offer insight into their functional biology and regulation. EVs are membrane-bound particles secreted by many different cell types and can have local or systemic effects, being transported in body fluids. They express transmembrane proteins, some of which are shared between EVs and some being specific to the tissue of origin, that can interact with target cells directly (much like hormones can). They also contain cargo within them that includes DNA, RNA, miRNA, and various metabolites. They can fuse with target cells to empty their cargo and alter their target cell physiology in this way also. Similar to the endocrine system, the EV system is likely to be under homeostatic control, making the regulation of their biogenesis and secretion important aspects to study. In this review, we briefly highlight select examples of how EVs are implicated in normal physiology and disease states. We also discuss what is known about their biogenesis and regulation of secretion. We hope that this paper inspires the endocrinology field to use our collective expertise to explore these new multimodal "hormones."
Collapse
Affiliation(s)
- Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: Erik R. Nelson, Ph.D., University of Illinois at Urbana-Champaign. 407 S Goodwin Ave (MC-114), Urbana, IL, 61801, USA.
| |
Collapse
|
88
|
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J, Du G. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B 2021; 11:2783-2797. [PMID: 34589397 PMCID: PMC8463268 DOI: 10.1016/j.apsb.2021.01.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial-mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.
Collapse
Key Words
- ABCA3, ATP-binding cassette transporter A3
- APCs, antigen-presenting cells
- Biomarkers
- CAFs, cancer-associated fibroblasts
- CCRCC, clear-cell renal cell carcinoma
- CD-UPRT, cytosine deaminase-uracil phosphoribosyltransferase
- CDH3, cadherin 3
- CRC, colorectal cancer
- DC, dendritic cells
- DEXs, DC-derived exosomes
- DLBCL, diffuse large B-cell lymphoma
- DNM3, dynamin 3
- Del-1, developmental endothelial locus-1
- Drug delivery
- Drug resistance
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- ESCRT, endosomal sorting complex required for transport
- Exosomes
- GPC1, glypican-1
- HA, hyaluronic acid
- HCC, hepatocellular carcinoma
- HIF1, hypoxia-inducible factor 1
- HTR, hormone therapy-resistant
- HUVECs, human umbilical vein endothelial cells
- ILVs, intraluminal vesicles
- MDSCs, myeloid-derived suppressor cells
- MIF, migration inhibitory factor
- MSC, mesenchymal stem cells
- MVB, multivesicular body
- NKEXOs, natural killer cell-derived exosomes
- NNs, nanoparticles
- NSCLC, non-small cell lung cancer
- PA, phosphatidic acid
- PCC, pheochromocytoma
- PD-L1, programmed cell death receptor ligand 1
- PDAC, pancreatic ductal adenocarcinoma
- PGL, paraganglioma
- PI, phosphatidylinositol
- PS, phosphatidylserine
- PTRF, polymerase I and transcript release factor
- RCC, renal cell carcinoma
- SM, sphingomyelin
- SNARE, soluble NSF-attachment protein receptor
- TEX, tumor-derived exosomes
- TSG101, tumor susceptibility gene 101
- Tumor immunity
- Tumor metastasis
- circRNAs, circular RNAs
- dsDNA, double stranded DNA
- hTERT, human telomerase reverse transcriptase
- lamp2b, lysosome-associated membrane glycoprotein 2b
- lncRNAs, long non-coding RNAs
- miRNA, microRNA
- mtDNA, mitochondrial DNA
- ncRNA, non-coding RNAs
Collapse
Affiliation(s)
- Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
89
|
Son S, Shin JM, Shin S, Kim CH, Lee JA, Ko H, Lee ES, Jung JM, Kim J, Park JH. Repurposing macitentan with nanoparticle modulates tumor microenvironment to potentiate immune checkpoint blockade. Biomaterials 2021; 276:121058. [PMID: 34399119 DOI: 10.1016/j.biomaterials.2021.121058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Immune checkpoint therapy (ICT), which reinvigorates cytotoxic T cells, provides clinical benefits as an alternative to conventional cancer therapies. However, its clinical response rate is too low to treat an immune-excluded tumor, owing to the presence of abundant stromal elements impeding the penetration of immune cells. Here, we report that macitentan, a dual endothelin receptor antagonist approved by the FDA to treat pulmonary arterial hypertension, can be repositioned to modulate the desmoplastic tumor microenvironment (TME). In the 4T1 orthotopic tumor model, the polymeric nanoparticles bearing macitentan (M-NPs) prevent fibrotic progression by regulating the function of cancer-associated fibroblasts, attenuate the biogenesis of cancer cell-derived exosomes, and modulate the T cell subsets and distribution in TME. These results demonstrate that the M-NPs effectively reorganize the immunosuppressive TME by targeting the endothelin-1 axis and consequently exhibit synergistic antitumor effects in combination with ICT.
Collapse
Affiliation(s)
- Soyoung Son
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Department of Genetic Resources, National Marine Biodiversity Institute of Korea (MABIK), 75 Jangsan-ro 101-gil, Janghang-eup, Seocheon, 33662, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Hyewon Ko
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Sook Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jae Min Jung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jeongyun Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
90
|
Repurposing of Antibiotic Sulfisoxazole Inhibits Lipolysis in Pre-Clinical Model of Cancer-Associated Cachexia. BIOLOGY 2021; 10:biology10080700. [PMID: 34439933 PMCID: PMC8389237 DOI: 10.3390/biology10080700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022]
Abstract
Clinical management of cancer-associated cachexia, a multi-organ wasting syndrome, has been challenging without effective treatment strategies. An effective treatment that directly targets cancer-induced wasting is desperately needed to improve the quality of life and the survival of cancer patients. Recently, an antibiotic SFX was shown to have anti-tumour and anti-metastatic effects in mouse models of breast cancer. Hence, in this study, we examined the efficacy of SFX in the treatment of cancer-induced cachexia. C26 cachexic mice models were administered with SFX, and the tumour volume and body weight were regularly measured. Blood glucose, skeletal muscles, and adipose tissue were examined at the endpoint. Contrary to a previous study, SFX did not reduce the tumour volume in mice bearing C26 cells. Administration of SFX neither revealed any survival benefit nor rescued C26 cachectic mice from muscle wasting. Interestingly, SFX administration partially rescued (~10%) tumour-induced weight loss by preserving both the subcutaneous and intestinal fat mass. Together, these results suggest that the administration of SFX could partially rescue cancer-induced weight loss by inhibiting lipolysis. As anti-cachexia therapies are scarce, the results could facilitate the design of combinatorial therapies involving SFX, standard-of-care chemotherapeutics, and drugs that inhibit muscle atrophy for the treatment of cancer cachexia.
Collapse
|
91
|
Wu J, Xie Q, Liu Y, Gao Y, Qu Z, Mo L, Xu Y, Chen R, Shi L. A Small Vimentin-Binding Molecule Blocks Cancer Exosome Release and Reduces Cancer Cell Mobility. Front Pharmacol 2021; 12:627394. [PMID: 34305581 PMCID: PMC8297618 DOI: 10.3389/fphar.2021.627394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Vimentin is an intermediate filament protein with diverse roles in health and disease far beyond its structural functions. Exosomes or small extracellular vesicles (sEVs) are key mediators for intercellular communication, contributing to tissue homeostasis and the progression of various diseases, especially the metastasis of cancers. In this study, we evaluated a novel vimentin-binding compound (R491) for its anti-cancer activities and its roles in cancer exosome release. The compound R491 induced a rapid and reversible intracellular vacuolization in various types of cancer cells. This phenotype did not result in an inhibition of cancer cell growth, which was consistent with our finding from a protein array that R491 did not reduce levels of major oncoproteins in cancer cells. Morphological and quantitative analyses on the intracellular vacuoles and extracellular exosomes revealed that in response to R491 treatment, the exosomes released from the cells were significantly reduced, while the exosomes retained as intra-luminal vesicles inside the cells were subsequently degraded. Vim+/− cells had lower amounts of vimentin and accordingly, lower amounts of both the retained and the released exosomes than Vim+/+ cells had, while the vimentin-binding compound R491 inhibited only the release of exosomes. Further functional tests showed that R491 significantly reduced the migration and invasion of cancer cells in vitro and decreased the amount of exosome in the blood in mice. Our study suggests that vimentin promotes exosome release, and small-molecule compounds that target vimentin are able to both block cancer exosome release and reduce cancer cell motility, and therefore could have potential applications for inhibiting cancer invasive growth.
Collapse
Affiliation(s)
- Jianping Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Luoda Biosciences, Inc., Chuzhou, China
| | - Qian Xie
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanjun Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanan Gao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Qu
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Lian Mo
- Aluda Pharmaceuticals, Inc., Menlo Park, CA, United States
| | - Ying Xu
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Ruihuan Chen
- Luoda Biosciences, Inc., Chuzhou, China.,Aluda Pharmaceuticals, Inc., Menlo Park, CA, United States
| | - Liyun Shi
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
92
|
Balaji S, Kim U, Muthukkaruppan V, Vanniarajan A. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci 2021; 280:119750. [PMID: 34171378 DOI: 10.1016/j.lfs.2021.119750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) constitutes multiple cell types including cancerous and non-cancerous cells. The intercellular communication between these cells through TME derived exosomes may either enhance or suppress the tumorigenic processes. The tumor-derived exosomes could convert an anti-tumor environment into a pro-tumor environment by inducing the differentiation of stromal cells into tumor-associated cells. The exosomes from tumor-associated stromal cells reciprocally trigger epithelial-to-mesenchymal transition (EMT) in tumor cells, which impose therapeutic resistance and metastasis. It is well known that these exosomes contain the signals of EMT, but how these signals execute chemoresistance and metastasis in tumors remains elusive. Understanding the significance and molecular signatures of exosomes transmitting EMT signals would aid in developing appropriate methods of inhibiting them. In this review, we focus on molecular signatures of exosomes that shuttle between cancer cells and their stromal populations in TME to explicate their impact on therapeutic resistance and metastasis through EMT. Especially Wnt signaling is found to be involved in multiple ways of exosomal transport and hence we decipher the biomolecules of Wnt signaling trafficked through exosomes and their potential in serving as therapeutic targets.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India.
| |
Collapse
|
93
|
Hosseini R, Asef-Kabiri L, Yousefi H, Sarvnaz H, Salehi M, Akbari ME, Eskandari N. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer 2021; 20:83. [PMID: 34078376 PMCID: PMC8170799 DOI: 10.1186/s12943-021-01376-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-derived exosomes (TDEs) have been shown to impede anti-tumor immune responses via their immunosuppressive cargo. Since dendritic cells (DCs) are the key mediators of priming and maintenance of T cell-mediated responses; thus it is logical that the exosomes released by tumor cells can exert a dominant influence on DCs biology. This paper intends to provide a mechanistic insight into the TDEs-mediated DCs abnormalities in the tumor context. More importantly, we discuss extensively how tumor exosomes induce subversion of DCs differentiation, maturation and function in separate sections. We also briefly describe the importance of TDEs at therapeutic level to help guide future treatment options, in particular DC-based vaccination strategy, and review advances in the design and discovery of exosome inhibitors. Understanding the exosomal content and the pathways by which TDEs are responsible for immune evasion may help to revise treatment rationales and devise novel therapeutic approaches to overcome the hurdles in cancer treatment.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
94
|
You DG, Lim GT, Kwon S, Um W, Oh BH, Song SH, Lee J, Jo DG, Cho YW, Park JH. Metabolically engineered stem cell–derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis. SCIENCE ADVANCES 2021; 7:7/23/eabe0083. [PMID: 34078596 PMCID: PMC8172131 DOI: 10.1126/sciadv.abe0083] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/16/2021] [Indexed: 05/02/2023]
Abstract
Despite the remarkable advances in therapeutics for rheumatoid arthritis (RA), a large number of patients still lack effective countermeasures. Recently, the reprogramming of macrophages to an immunoregulatory phenotype has emerged as a promising therapeutic strategy for RA. Here, we report metabolically engineered exosomes that have been surface-modified for the targeted reprogramming of macrophages. Qualified exosomes were readily harvested from metabolically engineered stem cells by tangential flow filtration at a high yield while maintaining their innate immunomodulatory components. When systemically administered into mice with collagen-induced arthritis, these exosomes effectively accumulated in the inflamed joints, inducing a cascade of anti-inflammatory events via macrophage phenotype regulation. The level of therapeutic efficacy obtained with bare exosomes was achievable with the engineered exosomes of 10 times less dose. On the basis of the boosted nature to reprogram the synovial microenvironment, the engineered exosomes display considerable potential to be developed as a next-generation drug for RA.
Collapse
Affiliation(s)
- Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyeong Taek Lim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Byeong Hoon Oh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Dong-Gyu Jo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yong Woo Cho
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Corresponding author.
| |
Collapse
|
95
|
Li C, Hou X, Zhang P, Li J, Liu X, Wang Y, Guan Q, Zhou Y. Exosome-based Tumor Therapy: Opportunities and Challenges. Curr Drug Metab 2021; 21:339-351. [PMID: 32410558 DOI: 10.2174/1389200221666200515103354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exosomes play an important role in transferring information among different cell types, as they transport materials from the cell membrane to the cytoplasm. They are involved not only in normal physiological functions, but also in the occurrence and development of a variety of diseases. Cancer is a major health problem affecting humans. Currently, exosomes are considered novel stars in tumor therapy. OBJECTIVE To present a review focusing on the role of exosomes in tumorigenesis and development and the possibility of treating tumors with exosome-targeted therapies or using exosomes as carriers. METHODS We reviewed literature related to the biological origin and function of exosomes and exosome-tumor relationship. RESULTS Exosomes are closely related to tumor immunity, angiogenesis, pre-metastasis microenvironment, chemoresistance, energy metabolism, etc. Tumor therapy involving the targeting of exosomes involves block the generation, secretion, uptake of exosomes, and elimination of circulating exosomes, and develop antitumor vaccines. Exosome as delivery vehicles can be loaded with chemotherapeutic drugs, therapeutic genes, and other therapeutic drugs to target cells. Prospects and challenges of exosome-based tumor therapy are also discussed. CONCLUSION Exosomes are involved in multiple processes during tumor development and should be further studied as novel targets for cancer therapy.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Lanzhou, China
| | - Juan Li
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoguang Liu
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,Department of Rheumatology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
96
|
Tan Y, Luo X, Lv W, Hu W, Zhao C, Xiong M, Yi Y, Wang D, Wang Y, Wang H, Wu Y, Zhang Q. Tumor-derived exosomal components: the multifaceted roles and mechanisms in breast cancer metastasis. Cell Death Dis 2021; 12:547. [PMID: 34039961 PMCID: PMC8155106 DOI: 10.1038/s41419-021-03825-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023]
Abstract
Breast cancer (BC) is the most frequently invasive malignancy and the leading cause of tumor-related mortality among women worldwide. Cancer metastasis is a complex, multistage process, which eventually causes tumor cells to colonize and grow at the metastatic site. Distant organ metastases are the major obstacles to the management of advanced BC patients. Notably, exosomes are defined as specialized membrane-enclosed extracellular vesicles with specific biomarkers, which are found in a wide variety of body fluids. Recent studies have demonstrated that exosomes are essential mediators in shaping the tumor microenvironment and BC metastasis. The transferred tumor-derived exosomes modify the capability of invasive behavior and organ-specific metastasis in recipient cells. BC exosomal components, mainly including noncoding RNAs (ncRNAs), proteins, lipids, are the most investigated components in BC metastasis. In this review, we have emphasized the multifaceted roles and mechanisms of tumor-derived exosomes in BC metastasis based on these important components. The underlying mechanisms mainly include the invasion behavior change, tumor vascularization, the disruption of the vascular barrier, and the colonization of the targeted organ. Understanding the significance of tumor-derived exosomal components in BC metastasis is critical for yielding novel routes of BC intervention.
Collapse
Affiliation(s)
- Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiao Luo
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Weijie Hu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yi Yi
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dawei Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yichen Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Haiping Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
97
|
Zhang Z, Ji J, Liu H. Drug Repurposing in Oncology: Current Evidence and Future Direction. Curr Med Chem 2021; 28:2175-2194. [PMID: 33109032 DOI: 10.2174/0929867327999200820124111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug repurposing, the application of known drugs and compounds with a primary non-oncology purpose, might be an attractive strategy to offer more effective treatment options to cancer patients at a low cost and reduced time. METHODS This review described a total of 10 kinds of non-oncological drugs from more than 100 mechanical studies as well as evidence from population-based studies. The future direction of repurposed drug screening is discussed by using patient-derived tumor organoids. RESULTS Many old drugs showed previously unknown effects or off-target effects and can be intelligently applied for cancer chemoprevention and therapy. The identification of repurposed drugs needs to combine evidence from mechanical studies and population-based studies. Due to the heterogeneity of cancer, patient-derived tumor organoids can be used to screen the non-oncological drugs in vitro. CONCLUSION These identified old drugs could be repurposed in oncology and might be added as adjuvants and finally benefit patients with cancers.
Collapse
Affiliation(s)
- Zhenzhan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
98
|
Gurunathan S, Kang MH, Qasim M, Khan K, Kim JH. Biogenesis, Membrane Trafficking, Functions, and Next Generation Nanotherapeutics Medicine of Extracellular Vesicles. Int J Nanomedicine 2021; 16:3357-3383. [PMID: 34040369 PMCID: PMC8140893 DOI: 10.2147/ijn.s310357] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-limited vesicles and multi-signal messengers loaded with biomolecules. Exosomes and ectosomes are two different types of EVs generated by all cell types. Their formation depends on local microdomains assembled in endocytic membranes for exosomes and in the plasma membrane for ectosomes. Further, EV release is a fundamental process required for intercellular communication in both normal physiology and pathological conditions to transmit/exchange bioactive molecules to recipient cells and the extracellular environment. The unique structure and composition of EVs enable them to serve as natural nanocarriers, and their physicochemical properties and biological functions can be used to develop next-generation nano and precision medicine. Knowledge of the cellular processes that govern EVs biology and membrane trafficking is essential for their clinical applications. However, in this rapidly expanding field, much remains unknown regarding EV origin, biogenesis, cargo sorting, and secretion, as well as EV-based theranostic platform generation. Hence, we present a comprehensive overview of the recent advances in biogenesis, membrane trafficking, and functions of EVs, highlighting the impact of nanoparticles and oxidative stress on EVs biogenesis and release and finally emphasizing the role of EVs as nanotherapeutic agents.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Khalid Khan
- Science and Technology KPK, Peshawar, Pakistan
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
99
|
Liao Z, Li S, Lu S, Liu H, Li G, Ma L, Luo R, Ke W, Wang B, Xiang Q, Song Y, Feng X, Zhang Y, Wu X, Hua W, Yang C. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials 2021; 274:120850. [PMID: 33984637 DOI: 10.1016/j.biomaterials.2021.120850] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are extracellular nanovesicles that deliver diverse cargoes to the cell and participate in cell communication. Mesenchymal stem cell (MSCs)-derived EVs are considered a therapeutic approach in musculoskeletal degenerative diseases, including intervertebral disc degeneration. However, limited production yield and unstable quality have impeded the clinical application of EVs. In the present study, it is indicated that metformin promotes EVs release and alters the protein profile of EVs. Metformin enhances EVs production via an autophagy-related pathway, concomitantly with the phosphorylation of synaptosome-associated protein 29. More than quantity, quality of MSCs-derived EVs is influenced by metformin treatment. Proteomics analysis reveals that metformin increases the protein content of EVs involved in cell growth. It is shown that EVs derived from metformin-treated MSCs ameliorate intervertebral disc cells senescence in vitro and in vivo. Collectively, these findings demonstrate the great promise of metformin in EVs-based intervertebral disc regeneration.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
100
|
Solé C, Lawrie CH. MicroRNAs in Metastasis and the Tumour Microenvironment. Int J Mol Sci 2021; 22:4859. [PMID: 34064331 PMCID: PMC8125549 DOI: 10.3390/ijms22094859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the process whereby cancer cells migrate from the primary tumour site to colonise the surrounding or distant tissue or organ. Metastasis is the primary cause of cancer-related mortality and approximately half of all cancer patients present at diagnosis with some form of metastasis. Consequently, there is a clear need to better understand metastasis in order to develop new tools to combat this process. MicroRNAs (miRNAs) regulate gene expression and play an important role in cancer development and progression including in the metastatic process. Particularly important are the roles that miRNAs play in the interaction between tumour cells and non-tumoral cells of the tumour microenvironment (TME), a process mediated largely by circulating miRNAs contained primarily in extracellular vesicles (EVs). In this review, we outline the accumulating evidence for the importance of miRNAs in the communication between tumour cells and the cells of the TME in the context of the pre-metastatic and metastatic niche.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastian, Spain;
| | - Charles Henderson Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX4 3DU, UK
| |
Collapse
|