51
|
Muralidhar A, Potluri HK, Jaiswal T, McNeel DG. Targeted Radiation and Immune Therapies-Advances and Opportunities for the Treatment of Prostate Cancer. Pharmaceutics 2023; 15:252. [PMID: 36678880 PMCID: PMC9863141 DOI: 10.3390/pharmaceutics15010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is the most diagnosed malignancy in men in the United States and the second leading cause of cancer-related death. For localized disease, radiation therapy is a standard treatment that is often curative. For metastatic disease, radiation therapy has been primarily used for palliation, however, several newer systemic radiation therapies have been demonstrated to significantly improve patient outcomes and improve survival. In particular, several targeted radionuclide therapies have been approved for the treatment of advanced-stage cancer, including strontium-89, samarium-153, and radium-223 for bone-metastatic disease, and lutetium-177-labeled PSMA-617 for patients with prostate-specific membrane antigen (PSMA)-expressing metastatic castration-resistant prostate cancer (mCRPC). Contrarily, immune-based treatments have generally demonstrated little activity in advanced prostate cancer, with the exception of the autologous cellular vaccine, sipuleucel-T. This has been attributed to the presence of an immune-suppressive prostate cancer microenvironment. The ability of radiation therapy to not only eradicate tumor cells but also potentially other immune-regulatory cells within the tumor immune microenvironment suggests that targeted radionuclide therapies may be well poised to combine with immune-targeted therapies to eliminate prostate cancer metastases more effectively. This review provides an overview of the recent advances of targeted radiation agents currently approved for prostate cancer, and those being investigated in combination with immunotherapy, and discusses the challenges as well as the opportunities in this field.
Collapse
Affiliation(s)
- Anusha Muralidhar
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Hemanth K. Potluri
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Tanya Jaiswal
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Douglas G. McNeel
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
- 7007 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
52
|
Conde E, Casares N, Mancheño U, Elizalde E, Vercher E, Capozzi R, Santamaria E, Rodriguez-Madoz JR, Prosper F, Lasarte JJ, Lozano T, Hervas-Stubbs S. FOXP3 expression diversifies the metabolic capacity and enhances the efficacy of CD8 T cells in adoptive immunotherapy of melanoma. Mol Ther 2023; 31:48-65. [PMID: 36045586 PMCID: PMC9840123 DOI: 10.1016/j.ymthe.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Regulatory T cells overwhelm conventional T cells in the tumor microenvironment (TME) thanks to a FOXP3-driven metabolic program that allows them to engage different metabolic pathways. Using a melanoma model of adoptive T cell therapy (ACT), we show that FOXP3 overexpression in mature CD8 T cells improved their antitumor efficacy, favoring their tumor recruitment, proliferation, and cytotoxicity. FOXP3-overexpressing (Foxp3UP) CD8 T cells exhibited features of tissue-resident memory-like and effector T cells, but not suppressor activity. Transcriptomic analysis of tumor-infiltrating Foxp3UP CD8 T cells showed positive enrichment in a wide variety of metabolic pathways, such as glycolysis, fatty acid (FA) metabolism, and oxidative phosphorylation (OXPHOS). Intratumoral Foxp3UP CD8 T cells exhibited an enhanced capacity for glucose and FA uptake as well as accumulation of intracellular lipids. Interestingly, Foxp3UP CD8 T cells compensated for the loss of mitochondrial respiration-driven ATP production by activating aerobic glycolysis. Moreover, in limiting nutrient conditions these cells engaged FA oxidation to drive OXPHOS for their energy demands. Importantly, their ability to couple glycolysis and OXPHOS allowed them to sustain proliferation under glucose restriction. Our findings demonstrate a hitherto unknown role for FOXP3 in the adaptation of CD8 T cells to TME that may enhance their efficacy in ACT.
Collapse
Affiliation(s)
- Enrique Conde
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Uxua Mancheño
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Edurne Elizalde
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Enric Vercher
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Roberto Capozzi
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Eva Santamaria
- Hepatology Program, CIMA, University of Navarra, Pamplona, 31008 Navarra, Spain; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Hemat-Oncology Program, CIMA Universidad de Navarra, Pamplona, 31008 Navarra, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Hemat-Oncology Program, CIMA Universidad de Navarra, Pamplona, 31008 Navarra, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Pamplona, 31008 Navarra, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain.
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
53
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
54
|
Haist M, Kaufmann J, Kur IM, Zimmer S, Grabbe S, Schmidberger H, Weigert A, Mayer A. Response to primary chemoradiotherapy of locally advanced oropharyngeal carcinoma is determined by the degree of cytotoxic T cell infiltration within tumor cell aggregates. Front Immunol 2023; 14:1070203. [PMID: 37187729 PMCID: PMC10175951 DOI: 10.3389/fimmu.2023.1070203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Background Effective anti-tumor immune responses are mediated by T cells and require organized, spatially coordinated interactions within the tumor microenvironment (TME). Understanding coordinated T-cell-behavior and deciphering mechanisms of radiotherapy resistance mediated by tumor stem cells will advance risk stratification of oropharyngeal cancer (OPSCC) patients treated with primary chemoradiotherapy (RCTx). Methods To determine the role of CD8 T cells (CTL) and tumor stem cells for response to RCTx, we employed multiplex immunofluorescence stains on pre-treatment biopsy specimens from 86 advanced OPSCC patients and correlated these quantitative data with clinical parameters. Multiplex stains were analyzed at the single-cell level using QuPath and spatial coordination of immune cells within the TME was explored using the R-package Spatstat. Results Our observations demonstrate that a strong CTL-infiltration into the epithelial tumor compartment (HR for overall survival, OS: 0.35; p<0.001) and the expression of PD-L1 on CTL (HR: 0.36; p<0.001) were both associated with a significantly better response and survival upon RCTx. As expected, p16 expression was a strong predictor of improved OS (HR: 0.38; p=0.002) and correlated with overall CTL infiltration (r: 0.358, p<0.001). By contrast, tumor cell proliferative activity, expression of the tumor stem cell marker CD271 and overall CTL infiltration, regardless of the affected compartment, were not associated with response or survival. Conclusion In this study, we could demonstrate the clinical relevance of the spatial organization and the phenotype of CD8 T cells within the TME. In particular, we found that the infiltration of CD8 T cells specifically into the tumor cell compartment was an independent predictive marker for response to chemoradiotherapy, which was strongly associated with p16 expression. Meanwhile, tumor cell proliferation and the expression of stem cell markers showed no independent prognostic effect for patients with primary RCTx and thus requires further study.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Maximilian Haist,
| | - Justus Kaufmann
- Department of Radiation Oncology and Radiotherapy, University Medical Center, Mainz, Germany
| | - Ivan-Maximiliano Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center, Mainz, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Arnulf Mayer
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
55
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
56
|
de Kermenguy F, Meziani L, Mondini M, Clémenson C, Morel D, Deutsch E, Robert C. Radio-induced lymphopenia in the era of anti-cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
57
|
Guo B, Zang Y, Lin LH, Zhang R. A Bayesian phase I/II design to determine subgroup-specific optimal dose for immunotherapy sequentially combined with radiotherapy. Pharm Stat 2023; 22:143-161. [PMID: 36161762 PMCID: PMC9840650 DOI: 10.1002/pst.2265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023]
Abstract
Sequential administration of immunotherapy following radiotherapy (immunoRT) has attracted much attention in cancer research. Due to its unique feature that radiotherapy upregulates the expression of a predictive biomarker for immunotherapy, novel clinical trial designs are needed for immunoRT to identify patient subgroups and the optimal dose for each subgroup. In this article, we propose a Bayesian phase I/II design for immunotherapy administered after standard-dose radiotherapy for this purpose. We construct a latent subgroup membership variable and model it as a function of the baseline and pre-post radiotherapy change in the predictive biomarker measurements. Conditional on the latent subgroup membership of each patient, we jointly model the continuous immune response and the binary efficacy outcome using plateau models, and model toxicity using the equivalent toxicity score approach to account for toxicity grades. During the trial, based on accumulating data, we continuously update model estimates and adaptively randomize patients to admissible doses. Simulation studies and an illustrative trial application show that our design has good operating characteristics in terms of identifying both patient subgroups and the optimal dose for each subgroup.
Collapse
Affiliation(s)
- Beibei Guo
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yong Zang
- Department of Biostatistics and Data Science, School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, Indiana, USA
| | - Li-Hsiang Lin
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rui Zhang
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Radiation Oncology, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
58
|
Rajeev-Kumar G, Pitroda SP. Synergizing radiotherapy and immunotherapy: Current challenges and strategies for optimization. Neoplasia 2022; 36:100867. [PMID: 36563632 PMCID: PMC9798173 DOI: 10.1016/j.neo.2022.100867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous clinical studies are investigating the integration of radiotherapy and immune checkpoint inhibitors (ICI) in the management of advanced or metastatic solid cancers based on preclinical evidence demonstrating a synergistic interaction between these treatments. However, it remains unclear how to optimally integrate these therapeutic modalities in the treatment of cancer patients. Beyond disease-specific factors there exists numerous unanswered questions regarding optimal sequencing of radiation and ICI, as well as, radiation dosing and target selection. Here, we examine the available clinical evidence for combination radiation and ICI approaches and propose strategies to expand investigations of the potential synergy in cancer patients.
Collapse
|
59
|
Lv Y, Lv Y, Wang Z, Lan T, Feng X, Chen H, Zhu J, Ma X, Du J, Hou G, Liao W, Yuan K, Wu H. FLASH radiotherapy: A promising new method for radiotherapy. Oncol Lett 2022; 24:419. [PMID: 36284652 PMCID: PMC9580247 DOI: 10.3892/ol.2022.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022] Open
Abstract
Among the treatments for malignant tumors, radiotherapy is of great significance both as a main treatment and as an adjuvant treatment. Radiation therapy damages cancer cells with ionizing radiation, leading to their death. However, radiation-induced toxicity limits the dose delivered to the tumor, thereby constraining the control effect of radiotherapy on tumor growth. In addition, the delayed toxicity caused by radiotherapy significantly harms the physical and mental health of patients. FLASH-RT, an emerging class of radiotherapy, causes a phenomenon known as the 'FLASH effect', which delivers radiotherapy at an ultra-high dose rate with lower toxicity to normal tissue than conventional radiotherapy to achieve local tumor control. Although its mechanism remains to be fully elucidated, this modality constitutes a potential new approach to treating malignant tumors. In the present review, the current research progress of FLASH-RT and its various particular effects are described, including the status of research on FLASH-RT and its influencing factors. The hypothetic mechanism of action of FLASH-RT is also summarized, providing insight into future tumor treatments.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yue Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Zhen Wang
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Tian Lan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xuping Feng
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hao Chen
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jiang Zhu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xiao Ma
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jinpeng Du
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Guimin Hou
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Wenwei Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Kefei Yuan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hong Wu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
60
|
Turchan WT, Pitroda SP, Weichselbaum RR. Beyond the Visible Spectrum: Considering the Oligometastatic Hypothesis in the Light of a New Era. Int J Radiat Oncol Biol Phys 2022; 114:581-586. [DOI: 10.1016/j.ijrobp.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
|
61
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
62
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
63
|
Gough MJ, Crittenden MR. The paradox of radiation and T cells in tumors. Neoplasia 2022; 31:100808. [PMID: 35691060 PMCID: PMC9194456 DOI: 10.1016/j.neo.2022.100808] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 10/27/2022]
Abstract
In this review we consider what appears to be a paradox in immunotherapies based around radiation therapy. The paradox is based on three main points. 1. That T cells are needed for radiation's efficacy; 2. That tumor-specific T cells are enriched in the field of treatment; and 3. That radiation kills T cells in the treatment field. We discuss evidence of the effect of radiation on T cells in the field given their ongoing movement in and out of tissues and the tumor, and how the movement of T cells impacts the treated primary tumor and untreated distant metastases. Given this evidence, we revisit the paradox to understand how the extraordinary efficacy of radiation and immunity in preclinical models is dependent on this radiation sensitive cell.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St., Portland, OR 97213, USA.
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St., Portland, OR 97213, USA; The Oregon Clinic, Portland, OR, 97213, USA
| |
Collapse
|
64
|
Hartmann L, Osen W, Eichmüller OL, Kordaß T, Furkel J, Dickes E, Reid C, Debus J, Brons S, Abdollahi A, Moustafa M, Rieken S, Eichmüller SB. Carbon ion irradiation plus CTLA4 blockade elicits therapeutic immune responses in a murine tumor model. Cancer Lett 2022; 550:215928. [DOI: 10.1016/j.canlet.2022.215928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
|
65
|
Synergistic effects of radiotherapy and targeted immunotherapy in improving tumor treatment efficacy: a review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2255-2271. [PMID: 35913663 DOI: 10.1007/s12094-022-02888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy (RT), unlike chemotherapy, is one of the most routinely used and effective genotoxic and immune response inducing cancer therapies with an advantage of reduced side effects. However, cancer can relapse after RT owing to multiple factors, including acquired tumor resistance, immune suppressive microenvironment buildup, increased DNA repair, thus favoring tumor metastasis. Efforts to mitigate these undesirable effects have drawn interest in combining RT with immunotherapy, particularly the use of immune checkpoint inhibitors, to tilt the pre-existing tumor stromal microenvironment into long-lasting therapy-induced antitumor immunity at multiple metastatic sites (abscopal effects). This multimodal therapeutic strategy can alleviate the increased T cell priming and decrease tumor growth and metastasis, thus emerging as a significant approach to sustain as long-term antitumor immunity. To understand more about this synergism, a detailed cellular mechanism underlying the dynamic interaction between tumor and immune cells within the irradiated tumor microenvironment needs to be explored. Hence, in the present review, we have attempted to evaluate various RT-inducible immune factors, which can be targeted by immunotherapy and provide detailed explanation to optimally maximize their synergy with immunotherapy for long-lasting antitumor immunity. Moreover, we have critically assessed various combinatorial approaches along with their challenges and described strategies to modify them in addition to providing approaches for optimal synergistic effects of the combination.
Collapse
|
66
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
67
|
The oligometastatic spectrum in the era of improved detection and modern systemic therapy. Nat Rev Clin Oncol 2022; 19:585-599. [PMID: 35831494 DOI: 10.1038/s41571-022-00655-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Metastases remain the leading cause of cancer-related mortality. The oligometastasis hypothesis postulates that a spectrum of metastatic spread exists and that some patients with a limited burden of metastases can be cured with ablative therapy. Over the past decade, substantial advances in systemic therapies have resulted in considerable improvements in the outcomes of patients with metastatic cancers, warranting re-examination of the oligometastatic paradigm and the role of local ablative therapies within the context of the improved therapeutic responses, shifting patterns of disease recurrence and possible synergy with systemic treatments. Herein, we reframe the oligometastatic phenotype as a dynamic state for which locally ablative, metastasis-directed therapy improves clinical outcomes, including by prolonging survival and increasing cure rates. Important risk factors defining the metastatic spectrum are highlighted that inform both staging and therapy. Finally, we synthesize the literature on combining local therapies with modern systemic treatments, identifying general themes to optimally integrate ablative therapies in this context.
Collapse
|
68
|
|
69
|
Yang G, Chang JS, Choi JE, Baek ES, Kim SS, Byun HK, Cho Y, Koom WS, Yang SY, Min BS, Shin SJ. Association of neutrophil-to-lymphocyte ratio, radiotherapy fractionation/technique, and risk of development of distant metastasis among patients with locally advanced rectal cancer. Radiat Oncol 2022; 17:100. [PMID: 35597954 PMCID: PMC9123758 DOI: 10.1186/s13014-022-02065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/09/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We investigated the prognostic impact of the neutrophil-to-lymphocyte ratio (NLR) in patients with locally advanced rectal cancer (LARC) and whether modifiable factors in radiotherapy (RT) influenced the NLR. METHODS Data of 1386 patients who were treated with neoadjuvant RT and concurrent or sequential chemotherapy for LARC between 2006 and 2019 were evaluated. Most patients (97.8%) were treated with long-course RT (LCRT; 50-50.4 Gy in 25-28 fractions) using three-dimensional conformal radiotherapy (3D-CRT) (n = 851) or helical tomotherapy (n = 504), and 30 patients underwent short-course RT (SCRT; 25 Gy in 5 fractions, followed by XELOX administration for 6 weeks). Absolute neutrophil and lymphocyte counts were obtained at initial diagnosis, before and during the preoperative RT course, and after preoperative concurrent chemoradiotherapy. The primary endpoint was distant metastasis-free survival (DMFS). RESULTS The median follow-up time was 61.3 (4.1-173.7) months; the 5-year DMFS was 80.1% and was significantly associated with the NLR after RT but not before. A post-RT NLR ≥ 4 independently correlated with worse DMFS (hazard ratio, 1.42; 95% confidence interval, 1.12-1.80), along with higher ypT and ypN stages. Post-RT NLR (≥ 4) more frequently increased following LCRT (vs. SCRT, odds ratio [OR] 2.77, p = 0.012) or helical tomotherapy (vs. 3D-CRT, OR 1.29, p < 0.001). CONCLUSIONS Increased NLR after neoadjuvant RT is associated with increased distant metastasis risk and poor survival outcome in patients with LARC. Moreover, high NLR following RT is directly related to RT fractionation, delivery modality, and tumor characteristics. These results are hypothesis-generating only, and confirmatory studies are required.
Collapse
Affiliation(s)
- Gowoon Yang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jeong Eun Choi
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Sil Baek
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Seob Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeona Cho
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Yoon Yang
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
70
|
Melake MJ, Smith HG, Mansfield D, Davies E, Dillon MT, Wilkins AC, Patin EC, Pedersen M, Buus R, Melcher AA, Thway K, Miah AB, Zaidi SH, Hayes AJ, Fenton TR, Harrington KJ, McLaughlin M. OX40 and 4-1BB delineate distinct immune profiles in sarcoma. Oncoimmunology 2022; 11:2066050. [PMID: 35558159 PMCID: PMC9090286 DOI: 10.1080/2162402x.2022.2066050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/08/2023] Open
Abstract
Systemic relapse after radiotherapy and surgery is the major cause of disease-related mortality in sarcoma patients. Combining radiotherapy and immunotherapy is under investigation as a means to improve response rates. However, the immune contexture of sarcoma is understudied. Here, we use a retrospective cohort of sarcoma patients, treated with neoadjuvant radiotherapy, and TCGA data. We explore therapeutic targets of relevance to sarcoma, using genomics and multispectral immunohistochemistry to provide insights into the tumor immune microenvironment across sarcoma subtypes. Differential gene expression between radioresponsive myxoid liposarcoma (MLPS) and more radioresistant undifferentiated pleomorphic sarcoma (UPS) indicated UPS contained higher transcript levels of a number of immunotherapy targets (CD73/NT5E, CD39/ENTPD1, CD25/IL2RA, and 4-1BB/TNFRSF9). We focused on 4-1BB/TNFRSF9 and other costimulatory molecules. In TCGA data, 4-1BB correlated to an inflamed and exhausted phenotype. OX40/TNFRSF4 and 4-1BB/TNFRSF9 were highly expressed in sarcoma subtypes versus other cancers. Despite OX40 and 4-1BB being described as Treg markers, we identified that they delineate distinct tumor immune profiles. This was true for sarcoma and other cancers. While only a limited number of samples could be analyzed, spatial analysis of OX40 expression identified two diverse phenotypes of OX40+ Tregs, one associated with and one independent of tertiary lymphoid structures (TLSs). Patient stratification is of intense interest for immunotherapies. We provide data supporting the viewpoint that a cohort of sarcoma patients, appropriately selected, are promising candidates for immunotherapies. Spatial profiling of OX40+ Tregs, in relation to TLSs, could be an additional metric to improve future patient stratification.
Collapse
Affiliation(s)
- MJ Melake
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - HG Smith
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Denmark
| | - D Mansfield
- Translational Immunotherapy Team, The Institute of Cancer Research, London, UK
| | - E Davies
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - MT Dillon
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | | | - EC Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - M Pedersen
- Translational Immunotherapy Team, The Institute of Cancer Research, London, UK
| | - R Buus
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - AA Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - K Thway
- The Royal Marsden Hospital, London, UK
| | - AB Miah
- The Royal Marsden Hospital, London, UK
| | - SH Zaidi
- The Royal Marsden Hospital, London, UK
| | - AJ Hayes
- The Royal Marsden Hospital, London, UK
| | - TR Fenton
- University of Southampton, Somers Cancer Research Building MP824, Southampton General Hospital, Southampton, UK
| | - KJ Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - M McLaughlin
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| |
Collapse
|
71
|
Zhu M, Li X, Cheng X, Yi X, Ye F, Li X, Hu Z, Zhang L, Nie J, Li X. Association of the tissue infiltrated and peripheral blood immune cell subsets with response to radiotherapy for rectal cancer. BMC Med Genomics 2022; 15:107. [PMID: 35534879 PMCID: PMC9082952 DOI: 10.1186/s12920-022-01252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tumor microenvironment plays pivotal roles in carcinogenesis, cancer development and metastasis. Composition of cancer immune cell subsets can be inferred by deconvolution of gene expression profile accurately. Compositions of the cell types in cancer microenvironment including cancer infiltrating immune and stromal cells have been reported to be associated with the cancer outcomes markers for cancer prognosis. However, rare studies have been reported on their association with the response to preoperative radiotherapy for rectal cancer. Methods In this paper, we deconvoluted the immune/stromal cell composition from the gene expression profiles. We compared the composition of immune/stromal cell types in the RT responsive versus nonresponsive for rectal cancer. We also compared the peripheral blood immune cell subset composition in the stable diseases versus progressive diseases of rectal cancer patients with fluorescence-activated cell sorting from our institution. Results Compared with the non-responsive group, the responsive group showed higher proportions of CD4+ T cell (0.1378 ± 0.0368 vs. 0.1071 ± 0.0373, p = 0.0215), adipocytes, T cells CD4 memory resting, and lower proportions of CD8+ T cell (0.1798 ± 0.0217 vs. 0.2104 ± 0.0415, p = 0.0239), macrophages M2, and preadipocytes in their cancer tissue. The responsive patients showed a higher ratio of CD4+/CD8+ T cell proportions (mean 0.7869 vs. 0.5564, p = 0.0210). Consistently, the peripheral blood dataset showed higher proportion of CD4+ T cells and higher ratio of CD4+/CD8+ T cells, and lower proportion of CD8+ T cells for favorable prognosis. We validated these results with a pooled dataset of GSE3493 and GSE35452, and more peripheral blood data, respectively. Finally, we imported these eight cell features including eosinophils and macrophage M1 to Support Vector Machines and could predict the pre-radiotherapy responsive versus non-responsive with an accuracy of 76%, ROC AUC 0.77, 95% confidential interval of 0.632–0.857, better than the gene signatures. Conclusions Our results showed that the proportions of tumor-infiltrating subsets and peripheral blood immune cell subsets can be important immune cell markers and treatment targets for outcomes of radiotherapy for rectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01252-6.
Collapse
Affiliation(s)
- Min Zhu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, People's Republic of China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Xingjie Li
- Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, People's Republic of China
| | - Xu Cheng
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Xingxu Yi
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Fang Ye
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Xiaolai Li
- Hefei Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, People's Republic of China
| | - Zongtao Hu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Liwei Zhang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, People's Republic of China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Xueling Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, People's Republic of China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
72
|
Turchan WT, Pitroda SP, Weichselbaum RR. Combined radio-immunotherapy: An opportunity to increase the therapeutic ratio of oligometastasis-directed radiotherapy. Neoplasia 2022; 27:100782. [PMID: 35303578 PMCID: PMC8931441 DOI: 10.1016/j.neo.2022.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
The utility of radiotherapy as a means of palliating symptoms due to metastatic cancer is well-accepted. A growing body of literature suggests that radiotherapy may play a role beyond palliation in some patients with low-burden metastatic disease. Recent data suggest that oligometastasis-directed radiotherapy may improve progression-free and even overall survival in select patients. Immunotherapy also has a growing role in the management of patients with metastatic cancer and, like radiotherapy, appears to be most effective in the setting of low-volume disease. Thus, the addition of immunotherapy may be a feasible means of increasing the therapeutic ratio of metastasis-directed radiotherapy, particularly among patients with oligometastatic cancer.
Collapse
Affiliation(s)
- William Tyler Turchan
- University of Chicago, Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, 5758 S Maryland Ave, Chicago, IL 60637, United States
| | - Sean P Pitroda
- University of Chicago, Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, 5758 S Maryland Ave, Chicago, IL 60637, United States
| | - Ralph R Weichselbaum
- University of Chicago, Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, 5758 S Maryland Ave, Chicago, IL 60637, United States.
| |
Collapse
|
73
|
Dehghankelishadi P, Maritz MF, Dmochowska N, Badiee P, Cheah E, Kempson I, Berbeco RI, Thierry B. Formulation of simvastatin within high density lipoprotein enables potent tumour radiosensitisation. J Control Release 2022; 346:98-109. [PMID: 35447296 DOI: 10.1016/j.jconrel.2022.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Preclinical, clinical and epidemiologic studies have established the potent anticancer and radiosensitisation effects of HMG-CoA reductase inhibitors (statins). However, the low bioavailability of oral statin formulations is a key barrier to achieving effective doses within tumour. To address this issue and ascertain the radiosensitisation potential of simvastatin, we developed a parenteral high density lipoprotein nanoparticle (HDL NP) formulation of this commonly used statin. A scalable method for the preparation of the simvastatin-HDL NPs was developed using a 3D printed microfluidic mixer. This enables the production of litre scale amounts of particles with minimal batch to batch variation. Simvastatin-HDL NPs enhanced the radiobiological response in 2D/3D head and neck squamous cell carcinoma (HNSCC) in vitro models. The simvastatin-HDL NPs radiosensitisation was comparable to that of 10 and 5 times higher doses of free drug in 2D and 3D cultures, respectively, which could be partially explained by more efficient cellular uptake of the statin in the nanoformulation as well as by the inherent biological activity of the HDL NPs on the cholesterol pathway. The radiosensitising potency of the simvastatin-HDL nanoformulation was validated in an immunocompetent MOC-1 HNSCC tumour bearing mouse model. This data supports the rationale of repurposing statins through reformulation within HDL NPs. Statins are safe and readily available molecules including as generic, and their use as radiosensitisers could lead to much needed effective and affordable approaches to improve treatment of solid tumours.
Collapse
Affiliation(s)
- Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Edward Cheah
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Ross I Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
74
|
Ali N, Sharma AA, de Rezende ACP, Otegbeye F, Latif BM, Kerbauy MN, Cooper BW, Sanchez G, Metheny L, Bal SK, Sakuraba R, Tomlinson BK, Boughan KM, Kerbauy L, Malek E, Ribeiro AF, Gallogly M, Mansur D, Pereira G, Weltman E, Sekaly RP, de Lima M, Caimi PF, Hamerschlak N. Targeted Marrow Irradiation Intensification of Reduced Intensity Fludarabine/Busulfan Conditioning for Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2022; 28:370.e1-370.e10. [DOI: 10.1016/j.jtct.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
75
|
Daniel Grass G, Alfonso JCL, Welsh E, Ahmed KA, Teer JK, Pilon-Thomas S, Harrison LB, Cleveland JL, Mulé JJ, Eschrich SA, Enderling H, Torres-Roca JF. The Radiosensitivity Index (RSI) Gene Signature Identifies Distinct Tumor Immune Microenvironment Characteristics Associated with Susceptibility to Radiotherapy. Int J Radiat Oncol Biol Phys 2022; 113:635-647. [PMID: 35289298 DOI: 10.1016/j.ijrobp.2022.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Radiotherapy (RT) is a mainstay of cancer care and accumulating evidence suggests the potential for synergism with components of the immune response. However, little data describes the tumor immune contexture in relation to RT-sensitivity. To address this challenge, we employed the radiation sensitivity index (RSI) gene signature to estimate the RT-sensitivity of >10,000 primary tumors and characterized their immune microenvironments in relation to the RSI. MATERIAL AND METHODS We analyzed gene expression profiles of 10,469 primary tumors (31 types) within a prospective tissue collection protocol. The RT-sensitivity of each tumor was estimated by the RSI and respective distributions were characterized. The tumor biology measured by the RSI was evaluated by differentially expressed genes (DEGs) combined with single sample gene set enrichment analysis (ssGSEA). Differences in the expression of immune regulatory molecules were assessed and deconvolution algorithms were used to estimate immune cell infiltrates in relation to the RSI. A subset (n=2,368) of tumors underwent DNA sequencing for mutational frequency characterization. RESULTS We identified a wide range of RSI values within and across various tumor types, with several demonstrating non-unimodal distributions (e.g. colon, renal, lung, prostate, esophagus, pancreas and PAM50 breast subtypes; p <0.05). Across all tumors types, stratifying RSI at a tumor type-specific median, identified 7,148 DEGs, of which 146 were coordinate in direction. Network topology analysis demonstrates RSI measures a coordinated STAT1, IRF1, and CCL4/MIP-1β transcriptional network. Tumors with an estimated high sensitivity to RT demonstrated distinct enrichment of interferon-associated signaling pathways and immune cell infiltrates (e.g. CD8+ T cells, activated natural killer cells, M1-macrophages; q < 0.05), which was in the context of diverse expression patterns of various immunoregulatory molecules. CONCLUSION This analysis describes the immune microenvironments of patient tumors in relation to the RSI gene expression signature.
Collapse
Affiliation(s)
- G Daniel Grass
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Juan C L Alfonso
- Departments of Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research
| | - Eric Welsh
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Kamran A Ahmed
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Jamie K Teer
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Shari Pilon-Thomas
- Departments of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Louis B Harrison
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - John L Cleveland
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - James J Mulé
- Departments of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Steven A Eschrich
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Heiko Enderling
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA; Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA.
| | - Javier F Torres-Roca
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL, USA.
| |
Collapse
|
76
|
Simon Davis DA, Atmosukarto II, Garrett J, Gosling K, Syed FM, Quah BJ. Irradiation immunity interactions. J Med Imaging Radiat Oncol 2022; 66:519-535. [PMID: 35261190 PMCID: PMC9314628 DOI: 10.1111/1754-9485.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The immune system can influence cancer development by both impeding and/or facilitating tumour growth and spread. A better understanding of this complex relationship is fundamental to optimise current and future cancer therapeutic strategies. Although typically regarded as a localised and immunosuppressive anti‐cancer treatment modality, radiation therapy has been associated with generating profound systemic effects beyond the intended target volume. These systemic effects are immune‐driven suggesting radiation therapy can enhance anti‐tumour immunosurveillance in some instances. In this review, we summarise how radiation therapy can positively and negatively affect local and systemic anti‐tumour immune responses, how co‐administration of immunotherapy with radiation therapy may help promote anti‐tumour immunity, and how the use of immune biomarkers may help steer radiation therapy‐immunotherapy personalisation to optimise clinical outcomes.
Collapse
Affiliation(s)
- David A Simon Davis
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ines I Atmosukarto
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jessica Garrett
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katharine Gosling
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Farhan M Syed
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Radiation Oncology Department, Canberra Hospital, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| | - Ben Jc Quah
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Radiation Oncology Department, Canberra Hospital, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
77
|
Qin VM, Haynes NM, D'Souza C, Neeson PJ, Zhu JJ. CAR-T Plus Radiotherapy: A Promising Combination for Immunosuppressive Tumors. Front Immunol 2022; 12:813832. [PMID: 35095911 PMCID: PMC8790144 DOI: 10.3389/fimmu.2021.813832] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
Radiotherapy (RT) is the standard-of-care treatment for more than half of cancer patients with localized tumors and is also used as palliative care to facilitate symptom relief in metastatic cancers. In addition, RT can alter the immunosuppressive tumor microenvironment (TME) of solid tumors to augment the anti-tumor immune response of immune checkpoint blockade (ICB). The rationale of this combination therapy can also be extended to other forms of immunotherapy, such as chimeric antigen receptor T cell (CAR-T) therapy. Similar to ICB, the efficacy of CAR-T therapy is also significantly impacted by the immunosuppressive TME, leading to compromised T cell function and/or insufficient T cell infiltration. In this review, we will discuss some of the key barriers to the activity of CAR-T cells in the immunosuppressive TME and focus on how RT can be used to eliminate or bypass these barriers. We will present the challenges to achieving success with this therapeutic partnership. Looking forward, we will also provide strategies currently being investigated to ensure the success of this combination strategy in the clinic.
Collapse
Affiliation(s)
- Vicky Mengfei Qin
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole M Haynes
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
78
|
Dosimetric Modeling of Lymphopenia in Patients With Metastatic Cancer Receiving Palliative Radiation and PD-1 Immune Checkpoint Inhibitors. Adv Radiat Oncol 2022; 7:100880. [PMID: 35097241 PMCID: PMC8783121 DOI: 10.1016/j.adro.2021.100880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Methods and Materials Results Conclusions
Collapse
|
79
|
Okoro CM, Schüler E, Taniguchi CM. The Therapeutic Potential of FLASH-RT for Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14051167. [PMID: 35267474 PMCID: PMC8909276 DOI: 10.3390/cancers14051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Ultra-high dose rate radiation, widely nicknamed FLASH-RT, kills tumors without significantly damaging nearby normal tissues. This selective sparing of normal tissue by FLASH-RT tissue is called the FLASH effect. This review explores some of the proposed mechanisms of the FLASH effect and the current data that might support its use in pancreatic cancer. Since radiation for pancreatic cancer treatment is limited by GI toxicity issues and is a disease with one of the lowest five-year survival rates, FLASH-RT could have a large impact in the treatment of this disease with further study. Abstract Recent preclinical evidence has shown that ionizing radiation given at an ultra-high dose rate (UHDR), also known as FLASH radiation therapy (FLASH-RT), can selectively reduce radiation injury to normal tissue while remaining isoeffective to conventional radiation therapy (CONV-RT) with respect to tumor killing. Unresectable pancreatic cancer is challenging to control without ablative doses of radiation, but this is difficult to achieve without significant gastrointestinal toxicity. In this review article, we explore the propsed mechanisms of FLASH-RT and its tissue-sparing effect, as well as its relevance and suitability for the treatment of pancreatic cancer. We also briefly discuss the challenges with regard to dosimetry, dose rate, and fractionation for using FLASH-RT to treat this disease.
Collapse
Affiliation(s)
- Chidi M. Okoro
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (E.S.); (C.M.T.)
| | - Cullen M. Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (E.S.); (C.M.T.)
| |
Collapse
|
80
|
Johnson TR, Bassil AM, Williams NT, Brundage S, Kent CL, Palmer G, Mowery YM, Oldham M. An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys Med Biol 2022; 67:10.1088/1361-6560/ac508c. [PMID: 35100573 PMCID: PMC9167045 DOI: 10.1088/1361-6560/ac508c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Objective. To develop and characterize novel methods of extreme spatially fractionated kV radiation therapy (including mini-GRID therapy) and to evaluate efficacy in the context of a pre-clinical mouse study.Approach. Spatially fractionated GRIDs were precision-milled from 3 mm thick lead sheets compatible with mounting on a 225 kVp small animal irradiator (X-Rad). Three pencil-beam GRIDs created arrays of 1 mm diameter beams, and three 'bar' GRIDs created 1 × 20 mm rectangular fields. GRIDs projected 20 × 20 mm2fields at isocenter, and beamlets were spaced at 1, 1.25, and 1.5 mm, respectively. Peak-to-valley ratios and dose distributions were evaluated with Gafchromic film. Syngeneic transplant tumors were induced by intramuscular injection of a soft tissue sarcoma cell line into the gastrocnemius muscle of C57BL/6 mice. Tumor-bearing mice were randomized to four groups: unirradiated control, conventional irradiation of entire tumor, GRID therapy, and hemi-irradiation (half-beam block, 50% tumor volume treated). All irradiated mice received a single fraction of 15 Gy.Results. High peak-to-valley ratios were achieved (bar GRIDs: 11.9 ± 0.9, 13.6 ± 0.4, 13.8 ± 0.5; pencil-beam GRIDs: 18.7 ± 0.6, 26.3 ± 1.5, 31.0 ± 3.3). Pencil-beam GRIDs could theoretically spare more intra-tumor immune cells than bar GRIDs, but they treat less tumor tissue (3%-4% versus 19%-23% area receiving 90% prescription, respectively). Bar GRID and hemi-irradiation treatments significantly delayed tumor growth (P < 0.05), but not as much as a conventional treatment (P < 0.001). No significant difference was found in tumor growth delay between GRID and hemi-irradiation.Significance. High peak-to-valley ratios were achieved with kV grids: two-to-five times higher than values reported in literature for MV grids. GRID irradiation and hemi-irradiation delayed tumor growth, but neither was as effective as conventional whole tumor uniform dose treatment. Single fraction GRID therapy could not initiate an anti-cancer immune response strong enough to match conventional RT outcomes, but follow-up studies will evaluate the combination of mini-GRID with immune checkpoint blockade.
Collapse
Affiliation(s)
- Timothy R Johnson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Alex M Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Simon Brundage
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
81
|
CW. Wong K, Johnson D, Hui EP, CT. Lam R, BY. Ma B, TC. Chan A. Opportunities and Challenges in Combining Immunotherapy and Radiotherapy in Head and Neck Cancers. Cancer Treat Rev 2022; 105:102361. [DOI: 10.1016/j.ctrv.2022.102361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023]
|
82
|
Cytlak UM, Dyer DP, Honeychurch J, Williams KJ, Travis MA, Illidge TM. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat Rev Immunol 2022; 22:124-138. [PMID: 34211187 DOI: 10.1038/s41577-021-00568-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-β (TGFβ). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.
Collapse
Affiliation(s)
- Urszula M Cytlak
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Douglas P Dyer
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Timothy M Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
83
|
Thor M, Shepherd AF, Preeshagul I, Offin M, Gelblum DY, Wu AJ, Apte A, Simone CB, Hellmann MD, Rimner A, Chaft JE, Gomez DR, Deasy JO, Shaverdian N. Pre-treatment immune status predicts disease control in NSCLCs treated with chemoradiation and durvalumab. Radiother Oncol 2022; 167:158-164. [PMID: 34942280 PMCID: PMC9518843 DOI: 10.1016/j.radonc.2021.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The impact of peripheral blood immune measures and radiation-induced lymphopenia on outcomes in non-small cell lung cancer (NSCLC) patients treated with concurrent chemoradiation (cCRT) and immune check point inhibition (ICI) has yet to be fully defined. METHODS Stage III NSCLC patients treated with cCRT and ≥1 dose of durvalumab across a cancer center were examined. Peripheral blood counts were assessed pre-cCRT, during cCRT and at the start of ICI. These measures and risk-scores from two published models estimating radiation dose to immune-bearing organs were tested for association with disease control. RESULTS We assessed 113 patients treated with cCRT and a median of 8.5 months of durvalumab. Median PFS was 29 months (95% CI 18-35 months). A lower pre-cCRT ALC (HR: 0.51 (95% CI: 0.32-0.82), p = 0.02) and a higher pre-cCRT ANC (HR: 1.14 (1.06-1.23), p = 0.005) were associated with poor PFS. Neither ALC nadir, ALC at ICI start, ANC at ICI start or the normalized change in ALC from pre-cCRT to nadir were significantly associated with PFS (p = 0.07-0.49). Also, risk scores from the two radiation-dose models were not associated with PFS (p = 0.14, p = 0.21) but were so with the ALC Nadir (p = 0.001, p = 0.002). A higher pre-cCRT NLR was the strongest predictor for PFS (HR: 1.09 (1.05-1.14), p = 0.0001). The 12-month PFS in patients with the bottom vs. top NLR tertile was 84% vs 46% (p = 0.000004). CONCLUSIONS Baseline differences in peripheral immune cell populations are associated with disease outcomes in NSCLC patients treated with cCRT and ICI.
Collapse
Affiliation(s)
- Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Annemarie F. Shepherd
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Isabel Preeshagul
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York, United States
| | - Michael Offin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York, United States
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Matthew D. Hellmann
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York, United States
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Jamie E. Chaft
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York, United States
| | - Daniel R. Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| | - Narek Shaverdian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center,1275 York Ave, New York, New York, United States
| |
Collapse
|
84
|
Bertho A, Iturri L, Prezado Y. Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 376:37-68. [PMID: 36997269 DOI: 10.1016/bs.ircmb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The last several years have revealed increasing evidence of the immunomodulatory role of radiation therapy. Radiotherapy reshapes the tumoral microenvironment can shift the balance toward a more immunostimulatory or immunosuppressive microenvironment. The immune response to radiation therapy appears to depend on the irradiation configuration (dose, particle, fractionation) and delivery modes (dose rate, spatial distributions). Although an optimal irradiation configuration (dose, temporal fractionation, spatial dose distribution, etc.) has not yet been determined, temporal schemes employing high doses per fraction appear to favor radiation-induced immune response through immunogenic cell death. Through the release of damage-associated molecular patterns and the sensing of double-stranded DNA and RNA breaks, immunogenic cell death activates the innate and adaptive immune response, leading to tumor infiltration by effector T cells and the abscopal effect. Novel radiotherapy approaches such as FLASH and spatially fractionated radiotherapies (SFRT) strongly modulate the dose delivery method. FLASH-RT and SFRT have the potential to trigger the immune system effectively while preserving healthy surrounding tissues. This manuscript reviews the current state of knowledge on the immunomodulation effects of these two new radiotherapy techniques in the tumor, healthy immune cells and non-targeted regions, as well as their therapeutic potential in combination with immunotherapy.
Collapse
|
85
|
Wang X, Luo H, Zheng X, Ge H. FLASH radiotherapy: Research process from basic experimentation to clinical application. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaohui Wang
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hui Luo
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Xiaoli Zheng
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hong Ge
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
86
|
Higher Radiation Dose to the Immune Cells Correlates with Worse Tumor Control and Overall Survival in Patients with Stage III NSCLC: A Secondary Analysis of RTOG0617. Cancers (Basel) 2021; 13:cancers13246193. [PMID: 34944813 PMCID: PMC8699524 DOI: 10.3390/cancers13246193] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background: We hypothesized that the Effective radiation Dose to the Immune Cells (EDIC) in circulating blood is a significant factor for the treatment outcome in patients with locally advanced non-small-cell lung cancer (NSCLC). Methods: This is a secondary study of a phase III trial, NRG/RTOG 0617, in patients with stage III NSCLC treated with radiation-based treatment. The EDIC was computed as equivalent uniform dose to the entire blood based on radiation doses to all blood-containing organs, with consideration of blood flow and fractionation effect. The primary endpoint was overall survival (OS), and the secondary endpoints were progression-free survival (PFS) and local progression-free survival (LPFS). The EDIC-survival relationship was analyzed with consideration of clinical significant factors. Results: A total of 456 patients were eligible. The median EDIC values were 5.6 Gy (range, 2.1-12.2 Gy) and 6.3 Gy (2.1-11.6 Gy) for the low- and high-dose groups, respectively. The EDIC was significantly associated with OS (hazard ratio [HR] = 1.12, p = 0.005) and LPFS (HR = 1.09, p = 0.02) but PFS (HR = 1.05, p = 0.17) after adjustment for tumor dose, gross tumor volume and other factors. OS decreased with an increasing EDIC in a non-linear pattern: the two-year OS decreased first with a slope of 8%/Gy when the EDIC < 6 Gy, remained relatively unchanged when the EDIC was 6-8 Gy, and followed by a further reduction with a slope of 12%/Gy when the EDIC > 8 Gy. Conclusions: The EDIC is a significant independent risk factor for poor OS and LPFS in RTOG 0617 patients with stage III NSCLC, suggesting that radiation dose to circulating immune cells is critical for tumor control. Organ at risk for the immune system should be considered during RT plan.
Collapse
|
87
|
Shi LZ, Bonner JA. Bridging Radiotherapy to Immunotherapy: The IFN-JAK-STAT Axis. Int J Mol Sci 2021; 22:12295. [PMID: 34830176 PMCID: PMC8619591 DOI: 10.3390/ijms222212295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The unprecedented successes of immunotherapies (IOs) including immune checkpoint blockers (ICBs) and adoptive T-cell therapy (ACT) in patients with late-stage cancer provide proof-of-principle evidence that harnessing the immune system, in particular T cells, can be an effective approach to eradicate cancer. This instills strong interests in understanding the immunomodulatory effects of radiotherapy (RT), an area that was actually investigated more than a century ago but had been largely ignored for many decades. With the "newly" discovered immunogenic responses from RT, numerous endeavors have been undertaken to combine RT with IOs, in order to bolster anti-tumor immunity. However, the underlying mechanisms are not well defined, which is a subject of much investigation. We therefore conducted a systematic literature search on the molecular underpinnings of RT-induced immunomodulation and IOs, which identified the IFN-JAK-STAT pathway as a major regulator. Our further analysis of relevant studies revealed that the signaling strength and duration of this pathway in response to RT and IOs may determine eventual immunological outcomes. We propose that strategic targeting of this axis can boost the immunostimulatory effects of RT and radiosensitizing effects of IOs, thereby promoting the efficacy of combination therapy of RT and IOs.
Collapse
Affiliation(s)
- Lewis Zhichang Shi
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Programs in Immunology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James A. Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
88
|
Pointer KB, Pitroda SP, Weichselbaum RR. Radiotherapy and immunotherapy: open questions and future strategies. Trends Cancer 2021; 8:9-20. [PMID: 34740553 DOI: 10.1016/j.trecan.2021.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022]
Abstract
Immune checkpoint blockade (ICB) improves outcomes for some patients with advanced or metastatic cancers. Despite demonstrable progress, many patients do not respond to ICB. Recently, clinical trials have focused on combinations of ICB with radiation therapy. Although two recent Phase III randomized trials demonstrated improved survival with adjuvant ICB following chemoradiation, other Phase I/II/III trials are either negative or inconclusive, but do yield suggestive results and promising insights into future therapeutic strategies. We provide a selective review of a subset of these trials and attempt to integrate with basic laboratory findings where relevant to define issues pertaining to the combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Kelli B Pointer
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA.
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
89
|
Yuan R, Yu J, Jiao Z, Li J, Wu F, Yan R, Huang X, Chen C. The Roles of Tissue-Resident Memory T Cells in Lung Diseases. Front Immunol 2021; 12:710375. [PMID: 34707601 PMCID: PMC8542931 DOI: 10.3389/fimmu.2021.710375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
The unique environment of the lungs is protected by complex immune interactions. Human lung tissue-resident memory T cells (TRM) have been shown to position at the pathogen entry points and play an essential role in fighting against viral and bacterial pathogens at the frontline through direct mechanisms and also by orchestrating the adaptive immune system through crosstalk. Recent evidence suggests that TRM cells also play a vital part in slowing down carcinogenesis and preventing the spread of solid tumors. Less beneficially, lung TRM cells can promote pathologic inflammation, causing chronic airway inflammatory changes such as asthma and fibrosis. TRM cells from infiltrating recipient T cells may also mediate allograft immunopathology, hence lung damage in patients after lung transplantations. Several therapeutic strategies targeting TRM cells have been developed. This review will summarize recent advances in understanding the establishment and maintenance of TRM cells in the lung, describe their roles in different lung diseases, and discuss how the TRM cells may guide future immunotherapies targeting infectious diseases, cancers and pathologic immune responses.
Collapse
Affiliation(s)
- Rui Yuan
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiang Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziqiao Jiao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinfei Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rongkai Yan
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaojie Huang
- Department Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
90
|
Foster CC, Fleming GF, Karrison TG, Liao CY, Desai AV, Moroney JW, Ratain MJ, Nanda R, Polite BN, Hahn OM, O'Donnell PH, Vokes EE, Kindler HL, Hseu R, Janisch LA, Dai J, Hoffman MD, Weichselbaum RR, Pitroda SP, Chmura SJ, Luke JJ. Phase I Study of Stereotactic Body Radiotherapy plus Nivolumab and Urelumab or Cabiralizumab in Advanced Solid Tumors. Clin Cancer Res 2021; 27:5510-5518. [PMID: 34168049 DOI: 10.1158/1078-0432.ccr-21-0810] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE CD137 agonism and CSF1R blockade augment stereotactic body radiotherapy (SBRT) and anti-programmed death-1 in preclinical models. We evaluated the safety and efficacy of SBRT with nivolumab+urelumab (CD137 agonist) or nivolumab+cabiralizumab (CSF1R inhibitor). PATIENTS AND METHODS This phase I clinical trial enrolled patients with advanced solid tumors that had progressed on standard therapies. SBRT was delivered to 1-4 metastases with nivolumab+urelumab or nivolumab+cabiralizumab given concurrently and following SBRT. Dose-limiting toxicity (DLT) was the primary endpoint with anatomic location-specific SBRT doses deemed safe if ≤33% DLT frequency was observed. Secondary endpoints included RECISTv1.1 response, progression-free survival (PFS), overall survival (OS), and molecular correlative studies. RESULTS Sixty patients were enrolled, and median follow-up for living patients is 13.8 months. Of these, 23 (38%) received SBRT+nivolumab+urelumab and 37 (62%) received SBRT+nivolumab+cabiralizumab. Seven patients (12%) experienced a DLT (n = 3 grade 3, n = 4 grade 4) in the following anatomic cohorts: abdominal/pelvic (3/17, 18%), liver (1/13, 8%), central lung (2/14, 14%), and peripheral lung (1/12, 8%). Of 41 patients radiographically evaluable for best overall response including 55 radiated and 23 unirradiated RECIST target lesions, 2 had complete responses (5%), 7 had partial responses (17%), 12 had stable disease (29%), and 20 had progression (49%). Median estimated PFS and OS are 3.0 months [95% confidence interval (CI), 2.9-4.8] and 17.0 months (95% CI, 6.8-undetermined), respectively. No patients with elevated pre-SBRT serum IL8 experienced a response. CONCLUSIONS SBRT to ≤4 sites with nivolumab+urelumab or nivolumab+cabiralizumab for treating advanced solid tumors is feasible with acceptable toxicity and modest antitumor activity.See related commentary by Rodriguez-Ruiz et al., p. 5443.
Collapse
Affiliation(s)
- Corey C Foster
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Gini F Fleming
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Theodore G Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Chih-Yi Liao
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Ami V Desai
- Department of Pediatrics, Section of Hematology, Oncology, and Stem Cell Transplantation, The University of Chicago, Chicago, Illinois
| | - John W Moroney
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, Illinois
| | - Mark J Ratain
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Blase N Polite
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Olwen M Hahn
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Peter H O'Donnell
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Everett E Vokes
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Hedy L Kindler
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Robyn Hseu
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Linda A Janisch
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Julia Dai
- Department of Medicine, Section of Dermatology, The University of Chicago, Chicago, Illinois
| | - Mark D Hoffman
- Department of Medicine, Section of Dermatology, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois.
| | - Jason J Luke
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
91
|
Meng L, Xu J, Ye Y, Wang Y, Luo S, Gong X. The Combination of Radiotherapy With Immunotherapy and Potential Predictive Biomarkers for Treatment of Non-Small Cell Lung Cancer Patients. Front Immunol 2021; 12:723609. [PMID: 34621270 PMCID: PMC8490639 DOI: 10.3389/fimmu.2021.723609] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is an effective local treatment modality of NSCLC. Its capabilities of eliminating tumor cells by inducing double strand DNA (dsDNA) damage and modulating anti-tumor immune response in irradiated and nonirradiated sites have been elucidated. The novel ICIs therapy has brought hope to patients resistant to traditional treatment methods, including radiotherapy. The integration of radiotherapy with immunotherapy has shown improved efficacy to control tumor progression and prolong survival in NSCLC. In this context, biomarkers that help choose the most effective treatment modality for individuals and avoid unnecessary toxicities caused by ineffective treatment are urgently needed. This article summarized the effects of radiation in the tumor immune microenvironment and the mechanisms involved. Outcomes of multiple clinical trials investigating immuno-radiotherapy were also discussed here. Furthermore, we outlined the emerging biomarkers for the efficacy of PD-1/PD-L1 blockades and radiation therapy and discussed their predictive value in NSCLC.
Collapse
Affiliation(s)
- Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfang Xu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Ye
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Wang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
92
|
Ollivier L, Labbé M, Fradin D, Potiron V, Supiot S. Interaction Between Modern Radiotherapy and Immunotherapy for Metastatic Prostate Cancer. Front Oncol 2021; 11:744679. [PMID: 34595122 PMCID: PMC8477651 DOI: 10.3389/fonc.2021.744679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is the most frequently diagnosed cancer in men and a leading cause of cancer-related death. In recent decades, the development of immunotherapies has resulted in great promise to cure metastatic disease. However, prostate cancer has failed to show any significant response, presumably due to its immunosuppressive microenvironment. There is therefore growing interest in combining immunotherapy with other therapies able to relieve the immunosuppressive microenvironment. Radiation therapy remains the mainstay treatment for prostate cancer patients, is known to exhibit immunomodulatory effects, depending on the dose, and is a potent inducer of immunogenic tumor cell death. Optimal doses of radiotherapy are thus expected to unleash the full potential of immunotherapy, improving primary target destruction with further hope of inducing immune-cell-mediated elimination of metastases at distance from the irradiated site. In this review, we summarize the current knowledge on both the tumor immune microenvironment in prostate cancer and the effects of radiotherapy on it, as well as on the use of immunotherapy. In addition, we discuss the utility to combine immunotherapy and radiotherapy to treat oligometastatic metastatic prostate cancer.
Collapse
Affiliation(s)
- Luc Ollivier
- Institut de Cancérologie de l'Ouest, Nantes, France.,Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | - Maureen Labbé
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | | | - Vincent Potiron
- Institut de Cancérologie de l'Ouest, Nantes, France.,Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | - Stéphane Supiot
- Institut de Cancérologie de l'Ouest, Nantes, France.,Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| |
Collapse
|
93
|
He K, Barsoumian HB, Sezen D, Puebla-Osorio N, Hsu EY, Verma V, Abana CO, Chen D, Patel RR, Gu M, Cortez MA, Welsh JW. Pulsed Radiation Therapy to Improve Systemic Control of Metastatic Cancer. Front Oncol 2021; 11:737425. [PMID: 34497773 PMCID: PMC8419338 DOI: 10.3389/fonc.2021.737425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) is emerging as an interventional modality in the cancer-immunity cycle, augmenting the activation of an adaptive immune response against tumors. RT, particularly in combination with immunotherapy, can enhance immune memory effects and shape the tumor-directed T-cell populations. However, a single cycle of RT delivered to a limited number of polymetastatic lesions is rarely sufficient to achieve systemic control. We hypothesize that several rounds of RT, akin to several rounds of immunotherapeutic drugs, is likely to provide greater clinical benefit to patients with metastatic disease. We propose that the repeated exposure to tumor antigens released by “pulsed-RT” (i.e., treating 2-4 tumor lesions with 3 irradiation cycles given one month apart) may amplify the adaptive immune response by expanding the tumor-specific T-cell receptor repertoire, the production of high-affinity tumor antibodies, and the generation of memory lymphocytes and thereby improve immune control of systemic disease.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Y Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Chike O Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | | | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
94
|
Affiliation(s)
- Chandan Guha
- Departments of Radiation Oncology, Pathology and Urology, and Institute of Onco-Physics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY.
| |
Collapse
|
95
|
Turchan WT, Pitroda SP, Weichselbaum RR. Treatment of Cancer with Radio-Immunotherapy: What We Currently Know and What the Future May Hold. Int J Mol Sci 2021; 22:9573. [PMID: 34502479 PMCID: PMC8431248 DOI: 10.3390/ijms22179573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy and immunotherapy are most effective as cancer therapies in the setting of low-volume disease. Although initial studies of radio-immunotherapy in patients with metastatic cancer have not confirmed the efficacy of this approach, the role of radio-immunotherapy in patients with limited metastatic burden is unclear. We propose that further investigation of radio-immunotherapy in metastatic patients should focus upon patients with oligometastatic disease.
Collapse
Affiliation(s)
| | | | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, 5758 S Maryland Ave, Chicago, IL 60637, USA; (W.T.T.); (S.P.P.)
| |
Collapse
|
96
|
Pareri AU, Koijam AS, Kumar C. Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anticancer Agents Med Chem 2021; 22:1845-1858. [PMID: 34477531 DOI: 10.2174/1871520621666210903152354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patientsis a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy, and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians. Radionuclide therapy using alpha or beta-emitting radionuclide as payload became state-of-the-art for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules, and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.
Collapse
Affiliation(s)
| | | | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai-400085, India
| |
Collapse
|
97
|
Activated B Cells and Plasma Cells Are Resistant to Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 112:514-528. [PMID: 34474108 DOI: 10.1016/j.ijrobp.2021.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE B cells play a key role in outcomes of cancer patients and responses to checkpoint blockade immunotherapies. However, the effect of radiation therapy on B cell populations is poorly understood. Here we characterize the effects of radiation on the development, survival, and phenotype of physiological B-cell subsets. METHODS AND MATERIALS Naïve and immunized tumor bearing and nontumor bearing mice were treated with large-field or focal stereotactic radiation and distinct B-cell subsets of varying developmental stages were analyzed by flow cytometry and real-time reverse transcription polymerase chain reaction. RESULTS We first report that focal stereotactic radiation is highly superior to large-field radiation at inducing tumor infiltration of B cells, CD8+ T cells, and macrophages. We observed that radiation affects B cell development in the bone marrow, increasing frequencies of early pro-B cells and late pro-B cells while inducing upregulation of programmed cell death protein 1. We then demonstrate that class switched B cells and plasma cells are highly resistant to radiation therapy compared with naïve B cells and upregulate activation markers programmed cell death 1 ligand 2 and major histocompatibility complex class II) after radiation. Mechanistically, radiation upregulates Xbp1 and Bcl6 in plasma cells, conferring radioresistance. Furthermore, using an immunization approach, we demonstrate that radiation enhances activation-induced cytidine deaminase mediated class switching and somatic hypermutation in primed B cells. CONCLUSIONS These data demonstrate that stereotactic radiation is superior to large-field radiation at inducing infiltration of immune cells into tumors and that plasma cells and class switched B cells are highly resistant to radiation therapy. These results represent the most comprehensive analysis of the effects of radiation on B cells to date and identify novel mechanisms by which radiation modulates immune cells within the tumor microenvironment.
Collapse
|
98
|
Li JJ, Tsang JY, Tse GM. Tumor Microenvironment in Breast Cancer-Updates on Therapeutic Implications and Pathologic Assessment. Cancers (Basel) 2021; 13:cancers13164233. [PMID: 34439387 PMCID: PMC8394502 DOI: 10.3390/cancers13164233] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) in breast cancer comprises local factors, cancer cells, immune cells and stromal cells of the local and distant tissues. The interaction between cancer cells and their microenvironment plays important roles in tumor proliferation, propagation and response to therapies. There is increasing research in exploring and manipulating the non-cancerous components of the TME for breast cancer treatment. As the TME is now increasingly recognized as a treatment target, its pathologic assessment has become a critical component of breast cancer management. The latest WHO classification of tumors of the breast listed stromal response pattern/fibrotic focus as a prognostic factor and includes recommendations on the assessment of tumor infiltrating lymphocytes and PD-1/PD-L1 expression, with therapeutic implications. This review dissects the TME of breast cancer, describes pathologic assessment relevant for prognostication and treatment decision, and details therapeutic options that interacts with and/or exploits the TME in breast cancer.
Collapse
Affiliation(s)
| | | | - Gary M. Tse
- Correspondence: ; Tel.: 852-3505-2359; Fax: 852-2637-4858
| |
Collapse
|
99
|
Abstract
OPINION STATEMENT Oligometastatic breast cancer, typically defined as the presence of 1-5 metastases, represents an intermediate state between locally advanced and widely metastatic disease. Emerging research suggests that oligometastatic cancer has a unique molecular signature distinct from widely metastatic disease, and that it carries a superior prognosis. Owing to its more limited capacity for widespread progression, oligometastatic disease may benefit from aggressive ablative therapy to known metastases. Options for ablation include surgical excision, radiofrequency ablation, and hypofractionated image-guided radiotherapy (HIGRT). The phase II SABR-COMET trial, which enrolled patients with oligometastatic disease of multiple histologies and randomized them to HIGRT vs. standard of care, found a notable survival advantage in favor of HIGRT. Other data suggest that HIGRT may synergize with immunotherapy by releasing powerful cytokines that increase anti-tumor immune surveillance and by recruiting tumor infiltrating lymphocytes, helping to overcome resistance to therapy. There are many ongoing trials exploring the role of ablative therapy, most notably HIGRT, with or without immunotherapy, for the treatment of oligometastatic breast cancer.We believe that patients with oligometastatic breast cancer should be offered enrollment on prospective clinical trials when possible. Outside the context of a clinical trial, we recommend that select patients with oligometastatic breast cancer be offered treatment with a curative approach, including ablative therapy to all sites of disease if it can be safely accomplished. Currently, selection criteria to consider for ablative therapy include longer disease-free interval from diagnosis to metastasis (>2 years), fewer metastases, and fewer involved organs. Undoubtedly, new data will refine or even upend our understanding of the definition and optimal management of oligometastatic disease.
Collapse
|
100
|
Hewavisenti R, Ferguson A, Wang K, Jones D, Gebhardt T, Edwards J, Zhang M, Britton W, Yang J, Hong A, Palendira U. CD103+ tumor-resident CD8+ T cell numbers underlie improved patient survival in oropharyngeal squamous cell carcinoma. J Immunother Cancer 2021; 8:jitc-2019-000452. [PMID: 32527931 PMCID: PMC7292045 DOI: 10.1136/jitc-2019-000452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human Papillomavirus (HPV) associated oropharyngeal squamous cell carcinoma (OPSCC) is one of the fastest growing cancers in the Western world. When compared to OPSCCs induced by smoking or alcohol, patients with HPV+ OPSCC, have better survival and the mechanisms remain unclear. METHODS The Cancer Genome Atlas (TCGA) database was examined for genes associated with tissue-resident CD8+ T cells. Multiplex immunohistochemistry (IHC) staining was performed on tumor specimen taken from 35 HPV+ and 27 HPV- OPSCC patients. RESULTS TCGA database revealed that the expression of genes encoding CD103 and CD69 were significantly higher in HPV+ head and neck SCCs (HNSCC) than in HPV- HNSCC. Higher expression levels of these two genes were also associated with better overall survival. IHC staining showed that the proportion of CD103+ tumor-resident CD8+ T cells were significantly higher in HPV+ OPSCCs when compared to HPV- OPSCC. This higher level was also associated with both lower risk of loco-regional failure, and better overall survival. Importantly, patients with HPV- OPSCC who had comparable levels of CD103+ tumor-resident CD8+ T cells to those with HPV+ OPSCC demonstrated similar survival as those with HPV+OPSCC. CONCLUSION Our results show that CD103+ tumor-resident CD8+ T cells are critical for protective immunity in both types of OPSCCs. Our data further suggest that the enhanced local protective immunity provided by tumor-resident T cell responses is the underlying factor driving favorable clinical outcomes in HPV+ OPSCCs over HPV- OPSCCs.
Collapse
Affiliation(s)
| | - Angela Ferguson
- Centenary Institute, Newtown, New South Wales, Australia.,Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Wang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| | - Deanna Jones
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Gebhardt
- Department of Immunology and Microbiology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jarem Edwards
- Centenary Institute, Newtown, New South Wales, Australia
| | - Mei Zhang
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | | | - Jean Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| | - Angela Hong
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia .,Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Umaimainthan Palendira
- Centenary Institute, Newtown, New South Wales, Australia .,Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|