51
|
Identification of Immune Infiltration and the Potential Biomarkers in Diabetic Peripheral Neuropathy through Bioinformatics and Machine Learning Methods. Biomolecules 2022; 13:biom13010039. [PMID: 36671424 PMCID: PMC9855866 DOI: 10.3390/biom13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications in diabetes. Previous studies have shown that chronic neuroinflammation was associated with DPN. However, further research is needed to investigate the exact immune molecular mechanism underlying the pathogenesis of DPN. Expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened by R software. After functional enrichment analysis of DEGs, a protein-protein interaction (PPI) network analysis was performed. The CIBERSORT algorithm was used to evaluate the infiltration of immune cells in DPN. Next, the least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were applied to identify potential DPN diagnostic markers. Finally, the results were further validated by qRT-PCR. A total of 1308 DEGs were screened in this study. Enrichment analysis identified that DEGs were significantly enriched in immune-related biological functions and pathways. Immune cell infiltration analysis found that M1 and M2 macrophages, monocytes, resting mast cells, resting CD4 memory T cells and follicular helper T cells were involved in the development of DPN. LTBP2 and GPNMB were identified as diagnostic markers of DPN. qRT-PCR results showed that 15 mRNAs, including LTBP2 and GPNMB, were differentially expressed, consistent with the microarray results. In conclusion, LTBP2 and GPNMB can be used as novel candidate molecular diagnostic markers for DPN. Furthermore, the infiltration of immune cells plays an important role in the progression of DPN.
Collapse
|
52
|
Friedmann KS, Kaschek L, Knörck A, Cappello S, Lünsmann N, Küchler N, Hoxha C, Schäfer G, Iden S, Bogeski I, Kummerow C, Schwarz EC, Hoth M. Interdependence of sequential cytotoxic T lymphocyte and natural killer cell cytotoxicity against melanoma cells. J Physiol 2022; 600:5027-5054. [PMID: 36226443 DOI: 10.1113/jp283667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2023] Open
Abstract
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells recognize and eliminate cancer cells. However, immune evasion, downregulation of immune function by the tumour microenvironment and resistance of cancer cells are major problems. Although CTL and NK cells are both important to eliminate cancer, most studies address them individually. We quantified sequential primary human CTL and NK cell cytotoxicity against the melanoma cell line SK-Mel-5. At high effector-to-target ratios, NK cells or melan-A (MART-1)-specific CTL eliminated all SK-Mel-5 cells within 24 h, indicating that SK-Mel-5 cells are not resistant initially. However, at lower effector-to-target ratios, which resemble numbers of the immune contexture in human cancer, a substantial number of SK-Mel-5 cells survived. Pre-exposure to CTL induced resistance in surviving SK-Mel-5 cells to subsequent CTL or NK cell cytotoxicity, and pre-exposure to NK cells induced resistance in surviving SK-Mel-5 cells to NK cells. Higher human leucocyte antigen class I expression or interleukin-6 levels were correlated with resistance to NK cells, whereas reduction in MART-1 antigen expression was correlated with reduced CTL cytotoxicity. The CTL cytotoxicity was rescued beyond control levels by exogenous MART-1 antigen. In contrast to the other three combinations, CTL cytotoxicity against SK-Mel-5 cells was enhanced following NK cell pre-exposure. Our assay allows quantification of sequential CTL and NK cell cytotoxicity and might guide strategies for efficient CTL-NK cell anti-melanoma therapies. KEY POINTS: Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells eliminate cancer cells. Both CTL and NK cells attack the same targets, but most studies address them individually. In a sequential cytotoxicity model, the interdependence of antigen-specific CTL and NK cell cytotoxicity against melanoma is quantified. High numbers of antigen-specific CTL and NK cells eliminate all melanoma cells. However, lower numbers induce resistance if secondary CTL or NK cell exposure follows initial CTL exposure or if secondary NK cell exposure follows initial NK cell exposure. On the contrary, if secondary CTL exposure follows initial NK cell exposure, cytotoxicity is enhanced. Alterations in human leucocyte antigen class I expression and interleukin-6 levels are correlated with resistance to NK cells, whereas a reduction in antigen expression is correlated with reduced CTL cytotoxicity; CTL cytotoxicity is rescued beyond control levels by exogenous antigen. This assay and the results on interdependencies will help us to understand and optimize immune therapies against cancer.
Collapse
Affiliation(s)
- Kim S Friedmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Lea Kaschek
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Sabrina Cappello
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Niklas Lünsmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Nadja Küchler
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Cora Hoxha
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gertrud Schäfer
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Sandra Iden
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), School of Medicine, Saarland University, Homburg, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Carsten Kummerow
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
53
|
Giannoudis A, Varešlija D, Sharma V, Zakaria R, Platt-Higgins A, Rudland P, Jenkinson M, Young L, Palmieri C. Characterisation of the immune microenvironment of primary breast cancer and brain metastasis reveals depleted T-cell response associated to ARG2 expression. ESMO Open 2022; 7:100636. [PMID: 36423363 PMCID: PMC9808462 DOI: 10.1016/j.esmoop.2022.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibition is an established treatment in programmed death-ligand 1 (PD-L1)-positive metastatic triple-negative (TN) breast cancer (BC). However, the immune landscape of breast cancer brain metastasis (BCBM) remains poorly defined. MATERIALS AND METHODS The tumour-infiltrating lymphocytes (TILs) and the messenger RNA (mRNA) levels of 770 immune-related genes (NanoString™, nCounter™ Immuno-oncology IO360) were assessed in primary BCs and BCBMs. The prognostic role of ARG2 transcripts and protein expression in primary BCs and its association with outcome was determined. RESULTS There was a significant reduction of TILs in the BCBMs in comparison to primary BCs. 11.5% of BCs presented a high immune infiltrate (hot), 46.2% were altered (immunosuppressed/excluded) and 34.6% were cold (no/low immune infiltrate). 3.8% of BCBMs were hot, 23.1% altered and 73.1% cold. One hundred and twelve immune-related genes including PD-L1 and CTLA4 were decreased in BCBM compared to the primary BCs (false discovery rate <0.01, log2 fold-change >1.5). These genes are involved in matrix remodelling and metastasis, cytokine-chemokine signalling, lymphoid compartment, antigen presentation and immune cell adhesion and migration. Immuno-modulators such as PD-L1 (CD274), CTLA4, TIGIT and CD276 (B7H3) were decreased in BCBMs. However, PD-L1 and CTLA4 expression was significantly higher in TN BCBMs (P = 0.01), with CTLA4 expression also high in human epidermal growth factor receptor 2-positive (P < 0.01) compared to estrogen receptor-positive BCBMs. ARG2 was one of four genes up-regulated in BCBMs. High ARG2 mRNA expression in primary BCs was associated with worse distant metastasis-free survival (P = 0.038), while ARG2 protein expression was associated with worse breast-brain metastasis-free (P = 0.027) and overall survival (P = 0.019). High transcript levels of ARG2 correlated to low levels of cytotoxic and T cells in both BC and BCBM (P < 0.01). CONCLUSION This study highlights the immunological differences between primary BCs and BCBMs and the potential importance of ARG2 expression in T-cell depletion and clinical outcome.
Collapse
Affiliation(s)
- A. Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - D. Varešlija
- The School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - V. Sharma
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK,Department of Pathology, Royal Liverpool University Hospital NHS Trust, Liverpool, UK
| | - R. Zakaria
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK,Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - A. Platt-Higgins
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - P.S. Rudland
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - M.D. Jenkinson
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK,Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - L.S. Young
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - C. Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK,The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK,Correspondence to: Prof. Carlo Palmieri, University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK. Tel: +44 151 7949813 @cancermedic
| |
Collapse
|
54
|
Hao L, Chen Q, Chen X, Zhou Q. Integrated analysis of bulk and single-cell RNA-seq reveals the role of MYC signaling in lung adenocarcinoma. Front Genet 2022; 13:1021978. [PMID: 36299592 PMCID: PMC9589149 DOI: 10.3389/fgene.2022.1021978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
MYC is one of the well-known oncogenes, and its important role in cancer still remains largely unknown. We obtained lung adenocarcinoma (LUAD) multi-omics data including genome, transcriptome, and single-cell sequencing data from multiple cohorts. We calculated the GSVA score of the MYC target v1 using the ssGSEA method, and obtained the genes highly correlated with this score by Spearman correlation analysis. Subsequent hierarchical clustering divided these genes into two gene sets highly associated with MYC signaling (S1 and S2). Unsupervised clustering based on these genes divided the LUAD samples into two distinct subgroups, namely, the MYC signaling inhibition group (C1) and activation group (C2). The MCP counter package in R was used to assess tumor immune cell infiltration abundance and ssGSEA was used to calculate gene set scores. The scRNA-seq was used to verify the association of MYC signaling to cell differentiation. We observed significant differences in prognosis, clinical characteristics, immune microenvironment, and genomic alterations between MYC signaling inhibition and MYC signaling activation groups. MYC-signaling is associated with genomic instability and can mediate the immunosuppressive microenvironment and promote cell proliferation, tumor stemness. Moreover, MYC-signaling activation is also subject to complex post-transcriptional regulation and is highly associated with cell differentiation. In conclusion, MYC signaling is closely related to the genomic instability, genetic alteration and regulation, the immune microenvironment landscape, cell differentiation, and disease survival in LUAD. The findings of this study provide a valuable reference to revealing the mechanism of cancer-promoting action of MYC in LUAD.
Collapse
Affiliation(s)
- Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qing Zhou
- Central Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Qing Zhou,
| |
Collapse
|
55
|
Luo L, Wei Q, Xu C, Dong M, Zhao W. Immune landscape and risk prediction based on pyroptosis-related molecular subtypes in triple-negative breast cancer. Front Immunol 2022; 13:933703. [PMID: 36189269 PMCID: PMC9524227 DOI: 10.3389/fimmu.2022.933703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
The survival outcome of triple-negative breast cancer (TNBC) remains poor, with difficulties still existing in prognosis assessment and patient stratification. Pyroptosis, a newly discovered form of programmed cell death, is involved in cancer pathogenesis and progression. The role of pyroptosis in the tumor microenvironment (TME) of TNBC has not been fully elucidated. In this study, we disclosed global alterations in 58 pyroptosis-related genes at somatic mutation and transcriptional levels in TNBC samples collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. Based on the expression patterns of genes related to pyroptosis, we identified two molecular subtypes that harbored different TME characteristics and survival outcomes. Then, based on differentially expressed genes between two subtypes, we established a 12-gene score with robust efficacy in predicting short- and long-term overall survival of TNBC. Patients at low risk exhibited a significantly better prognosis, more antitumor immune cell infiltration, and higher expression of immune checkpoints including PD-1, PD-L1, CTLA-4, and LAG3. The comprehensive analysis of the immune landscape in TNBC indicated that alterations in pyroptosis-related genes were closely related to the formation of the immune microenvironment and the intensity of the anticancer response. The 12-gene score provided new information on the risk stratification and immunotherapy strategy for highly heterogeneous patients with TNBC.
Collapse
|
56
|
Thymic epithelial tumors: examining the GTF2I mutation and developing a novel prognostic signature with LncRNA pairs to predict tumor recurrence. BMC Genomics 2022; 23:656. [PMID: 36114454 PMCID: PMC9482307 DOI: 10.1186/s12864-022-08880-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background General transcription factor IIi (GTF2I) mutations are very common in thymic epithelial tumors (TETs) and are related to a more favorable prognosis in TET patients. However, limited research has been conducted on the role of GTF2I in the tumor immune microenvironment (TIME). Further, long non-coding RNAs (lncRNAs) have been associated with the survival of patients with TETs. Therefore, this study aimed to explore the relationship between GTF2I mutations and TIME and build a new potential signature for predicting tumor recurrence in the TETs. Research data was downloaded from The Cancer Genome Atlas database and the CIBERSORT algorithm was used to evaluate TIME differences between GTF2I mutant and wild-type TETs. Relevant differentially expressed lncRNAs based on differentially expressed immune-related genes were identified to establish lncRNA pairs. We constructed a signature using univariate and multivariate Cox regression analyses. Results GTF2I is the most commonly mutated gene in TETs, and is associated with an increased number of early-stage pathological types, as well as no history of myasthenia gravis or radiotherapy treatment. In the GTF2I wild-type group, immune score and immune cell infiltrations with M2 macrophages, activated mast cells, neutrophils, plasma, T helper follicular cells, and activated memory CD4 T cells were higher than the GTF2I mutant group. A risk model was built using five lncRNA pairs, and the 1-, 3-, and 5-year area under the curves were 0.782, 0.873, and 0.895, respectively. A higher risk score was related to more advanced histologic type. Conclusion We can define the GTF2I mutant-type TET as an immune stable type and the GTF2I wild-type as an immune stressed type. A signature based on lncRNA pairs was also constructed to effectively predict tumor recurrence.
Collapse
|
57
|
Subtype and cell type specific expression of lncRNAs provide insight into breast cancer. Commun Biol 2022; 5:834. [PMID: 35982125 PMCID: PMC9388662 DOI: 10.1038/s42003-022-03559-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in breast cancer pathogenesis through chromatin remodeling, transcriptional and post-transcriptional gene regulation. We report robust associations between lncRNA expression and breast cancer clinicopathological features in two population-based cohorts: SCAN-B and TCGA. Using co-expression analysis of lncRNAs with protein coding genes, we discovered three distinct clusters of lncRNAs. In silico cell type deconvolution coupled with single-cell RNA-seq analyses revealed that these three clusters were driven by cell type specific expression of lncRNAs. In one cluster lncRNAs were expressed by cancer cells and were mostly associated with the estrogen signaling pathways. In the two other clusters, lncRNAs were expressed either by immune cells or fibroblasts of the tumor microenvironment. To further investigate the cis-regulatory regions driving lncRNA expression in breast cancer, we identified subtype-specific transcription factor (TF) occupancy at lncRNA promoters. We also integrated lncRNA expression with DNA methylation data to identify long-range regulatory regions for lncRNA which were validated using ChiA-Pet-Pol2 loops. lncRNAs play an important role in shaping the gene regulatory landscape in breast cancer. We provide a detailed subtype and cell type-specific expression of lncRNA, which improves the understanding of underlying transcriptional regulation in breast cancer.
Collapse
|
58
|
Staaf J, Häkkinen J, Hegardt C, Saal LH, Kimbung S, Hedenfalk I, Lien T, Sørlie T, Naume B, Russnes H, Marcone R, Ayyanan A, Brisken C, Malterling RR, Asking B, Olofsson H, Lindman H, Bendahl PO, Ehinger A, Larsson C, Loman N, Rydén L, Malmberg M, Borg Å, Vallon-Christersson J. RNA sequencing-based single sample predictors of molecular subtype and risk of recurrence for clinical assessment of early-stage breast cancer. NPJ Breast Cancer 2022; 8:94. [PMID: 35974007 PMCID: PMC9381586 DOI: 10.1038/s41523-022-00465-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Multigene assays for molecular subtypes and biomarkers can aid management of early invasive breast cancer. Using RNA-sequencing we aimed to develop single-sample predictor (SSP) models for clinical markers, subtypes, and risk of recurrence (ROR). A cohort of 7743 patients was divided into training and test set. We trained SSPs for subtypes and ROR assigned by nearest-centroid (NC) methods and SSPs for biomarkers from histopathology. Classifications were compared with Prosigna in two external cohorts (ABiM, n = 100 and OSLO2-EMIT0, n = 103). Prognostic value was assessed using distant recurrence-free interval. Agreement between SSP and NC for PAM50 (five subtypes) was high (85%, Kappa = 0.78) for Subtype (four subtypes) very high (90%, Kappa = 0.84) and for ROR risk category high (84%, Kappa = 0.75, weighted Kappa = 0.90). Prognostic value was assessed as equivalent and clinically relevant. Agreement with histopathology was very high or high for receptor status, while moderate for Ki67 status and poor for Nottingham histological grade. SSP and Prosigna concordance was high for subtype (OSLO-EMIT0 83%, Kappa = 0.73 and ABiM 80%, Kappa = 0.72) and moderate and high for ROR risk category (68 and 84%, Kappa = 0.50 and 0.70, weighted Kappa = 0.70 and 0.78). Pooled concordance for emulated treatment recommendation dichotomized for chemotherapy was high (85%, Kappa = 0.66). Retrospective evaluation suggested that SSP application could change chemotherapy recommendations for up to 17% of postmenopausal ER+/HER2-/N0 patients with balanced escalation and de-escalation. Results suggest that NC and SSP models are interchangeable on a group-level and nearly so on a patient level and that SSP models can be derived to closely match clinical tests.
Collapse
Affiliation(s)
- Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden.
| | - Jari Häkkinen
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Cecilia Hegardt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Lao H Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Siker Kimbung
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Tonje Lien
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, POB 4953 Nydalen N-0424, Oslo, Norway
- Department of Pathology, Oslo University Hospital, POB 4953 Nydalen N-0424, Oslo, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, POB 4953 Nydalen N-0424, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Naume
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, POB 4953 Nydalen N-0424, Oslo, Norway
| | - Hege Russnes
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, POB 4953 Nydalen N-0424, Oslo, Norway
- Department of Pathology, Oslo University Hospital, POB 4953 Nydalen N-0424, Oslo, Norway
| | - Rachel Marcone
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1005, Lausanne, Switzerland
| | - Ayyakkannu Ayyanan
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | | | - Bengt Asking
- Department of Surgery, Region Jönköping County, Jönköping, Sweden
| | - Helena Olofsson
- Department of Clinical Pathology, Akademiska Hospital, Uppsala, Sweden
- Department of Pathology, Centre for Clinical Research of Uppsala University, Vastmanland´s Hospital Västerås, Västerås, Sweden
| | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Pär-Ola Bendahl
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Anna Ehinger
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
- Department of Genetics and Pathology, Laboratory Medicine, Region Skåne, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Surgery and Gastroenterology, Skåne University Hospital Malmö, Malmö, Sweden
| | - Martin Malmberg
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden
| | - Johan Vallon-Christersson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381, Lund, Sweden.
| |
Collapse
|
59
|
Guo X, Zhou X. Risk stratification of acute myeloid leukemia: Assessment using a novel prediction model based on ferroptosis-immune related genes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:11821-11839. [PMID: 36653976 DOI: 10.3934/mbe.2022551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In acute myeloid leukemia (AML), the link between ferroptosis and the immune microenvironment has profound clinical significance. The objective of this study was to investigate the role of ferroptosis-immune related genes (FIRGs) in predicting the prognosis and therapeutic sensitivity in patients with AML. Using The Cancer Genome Atlas dataset, single sample gene set enrichment analysis was performed to calculate the ferroptosis score of AML samples. To search for FIRGs, differentially expressed genes between the high- and low-ferroptosis score groups were identified and then cross-screened with immune related genes. Univariate Cox and LASSO regression analyses were performed on the FIRGs to establish a prognostic risk score model with five signature FIRGs (BMP2, CCL3, EBI3, ELANE, and S100A6). The prognostic risk score model was then used to divide the patients into high- and low-risk groups. For external validation, two Gene Expression Omnibus cohorts were employed. Overall survival was poorer in the high-risk group than in the low-risk group. The novel risk score model was an independent prognostic factor for overall survival in patients with AML. Infiltrating immune cells were also linked to high-risk scores. Treatment targeting programmed cell death protein 1 may be more effective in high-risk patients. This FIRG-based prognostic risk model may aid in optimizing prognostic risk stratification and treatment of AML.
Collapse
Affiliation(s)
- Xing Guo
- Department of Hematology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiaogang Zhou
- Department of Hematology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
60
|
Xu H, Zhang F, Gao X, Zhou Q, Zhu L. Fate decisions of breast cancer stem cells in cancer progression. Front Oncol 2022; 12:968306. [PMID: 36046046 PMCID: PMC9420991 DOI: 10.3389/fonc.2022.968306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has a marked recurrence and metastatic trait and is one of the most prevalent malignancies affecting women’s health worldwide. Tumor initiation and progression begin after the cell goes from a quiescent to an activated state and requires different mechanisms to act in concert to regulate t a specific set of spectral genes for expression. Cancer stem cells (CSCs) have been proven to initiate and drive tumorigenesis due to their capability of self-renew and differentiate. In addition, CSCs are believed to be capable of causing resistance to anti-tumor drugs, recurrence and metastasis. Therefore, exploring the origin, regulatory mechanisms and ultimate fate decision of CSCs in breast cancer outcomes has far-reaching clinical implications for the development of breast cancer stem cell (BCSC)-targeted therapeutic strategies. In this review, we will highlight the contribution of BCSCs to breast cancer and explore the internal and external factors that regulate the fate of BCSCs.
Collapse
|
61
|
Zhang M, Zhang J, Liu Y. Comprehensive analysis of molecular features, prognostic values, and immune landscape association of m6A-regulated immune-related lncRNAs in smoking-associated lung squamous cell carcinoma. Front Genet 2022; 13:887477. [PMID: 36035178 PMCID: PMC9399351 DOI: 10.3389/fgene.2022.887477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is the second most common histopathological subtype of lung cancer, and smoking is the leading cause of this type of cancer. However, the critical factors that directly affect the survival rate and sensitivity to immunotherapy of smoking LUSC patients are still unknown. Previous studies have highlighted the role of N6-methyladenosine (m6A) RNA modification, the most common epigenetic modification in eukaryotic species, together with immune-related long non-coding RNAs (lncRNAs) in promoting the development and progression of tumors. Thus, elucidating m6A-modified immune lncRNAs in LUSC patients with smoking history is vital. In this study, we described the expression and mutation features of the 24 m6A-related regulators in the smoking-associated LUSC cohort from The Cancer Genome Atlas (TCGA) database. Then, two distinct subtypes based on the expression levels of the prognostic m6A-regulated immune lncRNAs were defined, and differentially expressed genes (DEGs) between the subtypes were identified. The distributions of clinical characteristics and the tumor microenvironment (TME) between clusters were analyzed. Finally, we established a lncRNA-associated risk model and exhaustively clarified the clinical features, prognosis, immune landscape, and drug sensitivity on the basis of this scoring system. Our findings give insight into potential mechanisms of LUSC tumorigenesis and development and provide new ideas in offering LUSC patients with individual and effective immunotherapies.
Collapse
Affiliation(s)
- Meng Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jian Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- School of Medicine, Nankai University, Tianjin, China
- Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yang Liu,
| |
Collapse
|
62
|
A Novel Risk Score Model of Lactate Metabolism for Predicting over Survival and Immune Signature in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153727. [PMID: 35954390 PMCID: PMC9367335 DOI: 10.3390/cancers14153727] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Since the discovery of the WarBurg effect, the veil of the tumorigenic role of lactic acid has been gradually revealed. Recently, it was proposed that lactic acid that is produced by tumor cells was secreted into the extracellular space to create immunosuppressive tumor microenvironment (TME) in a variety of ways. However, the intersection genes and the association with immunotherapy are unclear. At present, we identified six lactate-metabolism-associated genes, which were thought to enable tumor progression, that were related to LUAD immunotherapy and we constructed an LAR-score risk model. Abstract Background: The role of lactate acid in tumor progression was well proved. Recently, it was found that lactate acid accumulation induced an immunosuppressive microenvironment. However, these results were based on a single gene and it was unclear that lactate acid genes were associated with immunotherapy and able to predict overall survival. Methods: Genes and survival data were acquired from TCGA, GEO and GENECARDS. PCA and TSNE were used to distinguish sample types according to lactate metabolism-associated gene expression. A Wilcox-test examined the expression differences between normal and tumor samples. The distribution in chromatin and mutant levels were displayed by Circo and MAfTools. The lactate metabolism-associated gene were divided into categories by consistent clustering and visualized by Cytoscape. Immune cell infiltration was evaluated by CIBERSORT and LM22 matrix. Enrichment analysis was performed by GSVA. We used the ConsensusClusterPlus package for consistent cluster analysis. A prognostic model was constructed by Univariate Cox regression and Lasso regression analysis. Clinical specimens were detected their expression of genes in model by IHC. Results: Most lactate metabolism-associated gene were significantly differently expressed between normal and tumor samples. There was a strong correlation between the expression of lactate metabolism-associated gene and the abundance of immune cells. We divided them into two clusters (lactate.cluster A,B) with significantly different survival. The two clusters showed a difference in signal, immune cells, immune signatures, chemokines, and clinical features. We identified 162 differential genes from the two clusters, by which the samples were divided into three categories (gene.cluster A,B,C). They also showed a difference in OS and immune infiltration. Finally, a risk score model that was composed of six genes was constructed. There was significant difference in the survival between the high and low risk groups. ROC curves of 1, 3, 5, and 10 years verified the model had good predictive efficiency. Gene expression were correlated with ORR and PFS in patients who received anti-PD-1/L1. Conclusion: The lactate metabolism-associated genes in LUAD were significantly associated with OS and immune signatures. The risk scoring model that was constructed by us was able to well identify and predict OS and were related with anti-PD-1/L1 therapy outcome.
Collapse
|
63
|
Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol 2022; 12:960317. [PMID: 35965519 PMCID: PMC9372369 DOI: 10.3389/fonc.2022.960317] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy has historically been the mainstay of cancer treatment, but our understanding of what drives a successful therapeutic response remains limited. The diverse response of cancer patients to chemotherapy has been attributed principally to differences in the proliferation rate of the tumor cells, but there is actually very little experimental data supporting this hypothesis. Instead, other mechanisms at the cellular level and the composition of the tumor microenvironment appear to drive chemotherapy sensitivity. In particular, the immune system is a critical determinant of chemotherapy response with the depletion or knock-out of key immune cell populations or immunological mediators completely abrogating the benefits of chemotherapy in pre-clinical models. In this perspective, we review the literature regarding the known mechanisms of action of cytotoxic chemotherapy agents and the determinants of response to chemotherapy from the level of individual cells to the composition of the tumor microenvironment. We then summarize current work toward the development of dynamic biomarkers for response and propose a model for a chemotherapy sensitive tumor microenvironment.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Scott A. Fisher
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, Australia
- *Correspondence: W. Joost Lesterhuis,
| |
Collapse
|
64
|
Hamilton AM, Hurson AN, Olsson LT, Walens A, Nsonwu-Farley J, Kirk EL, Abdou Y, Downs-Canner SM, Serody JS, Perou CM, Calhoun BC, Troester MA, Hoadley KA. The Landscape of Immune Microenvironments in Racially Diverse Breast Cancer Patients. Cancer Epidemiol Biomarkers Prev 2022; 31:1341-1350. [PMID: 35437570 PMCID: PMC9292136 DOI: 10.1158/1055-9965.epi-21-1312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Immunotherapy is a rapidly evolving treatment option in breast cancer; However, the breast cancer immune microenvironment is understudied in Black and younger (<50 years) patients. METHODS We used histologic and RNA-based immunoprofiling methods to characterize the breast cancer immune landscape in 1,952 tumors from the Carolina Breast Cancer Study (CBCS), a population-based study that oversampled Black (n = 1,030) and young women (n = 1,039). We evaluated immune response leveraging markers for 10 immune cell populations, compared profiles to those in The Cancer Genome Atlas (TCGA) Project [n = 1,095 tumors, Black (n = 183), and young women (n = 295)], and evaluated in association with clinical and demographic variables, including recurrence. RESULTS Consensus clustering identified three immune clusters in CBCS (adaptive-enriched, innate-enriched, or immune-quiet) that varied in frequency by race, age, tumor grade and subtype; however, only two clusters were identified in TCGA, which were predominantly comprised of adaptive-enriched and innate-enriched tumors. In CBCS, the strongest adaptive immune response was observed for basal-like, HER2-positive (HER2+), triple-negative breast cancer (TNBC), and high-grade tumors. Younger patients had higher proportions of adaptive-enriched tumors, particularly among estrogen receptor (ER)-negative (ER-) cases. Black patients had higher frequencies of both adaptive-enriched and innate-enriched tumors. Immune clusters were associated with recurrence among ER- tumors, with adaptive-enriched showing the best and innate-enriched showing the poorest 5-year recurrence-free survival. CONCLUSIONS These data suggest that immune microenvironments are intricately related to race, age, tumor subtype, and grade. IMPACT Given higher mortality among Black and young women, more defined immune classification using cell-type-specific panels could help explain higher recurrence and ultimately lead to targetable interventions.
Collapse
Affiliation(s)
- Alina M. Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amber N. Hurson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Linnea T. Olsson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Joseph Nsonwu-Farley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erin L. Kirk
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yara Abdou
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie M. Downs-Canner
- Department of Surgery, Division of Surgical Oncology and Endocrine Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan S. Serody
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M. Perou
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Benjamin C. Calhoun
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Melissa A. Troester
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katherine A. Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
65
|
Gu H, Song J, Chen Y, Wang Y, Tan X, Zhao H. Inflammation-Related LncRNAs Signature for Prognosis and Immune Response Evaluation in Uterine Corpus Endometrial Carcinoma. Front Oncol 2022; 12:923641. [PMID: 35719911 PMCID: PMC9201290 DOI: 10.3389/fonc.2022.923641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Backgrounds Uterine corpus endometrial carcinoma (UCEC) is one of the greatest threats on the female reproductive system. The aim of this study is to explore the inflammation-related LncRNA (IRLs) signature predicting the clinical outcomes and response of UCEC patients to immunotherapy and chemotherapy. Methods Consensus clustering analysis was employed to determine inflammation-related subtype. Cox regression methods were used to unearth potential prognostic IRLs and set up a risk model. The prognostic value of the prognostic model was calculated by the Kaplan-Meier method, receiver operating characteristic (ROC) curves, and univariate and multivariate analyses. Differential abundance of immune cell infiltration, expression levels of immunomodulators, the status of tumor mutation burden (TMB), the response to immune checkpoint inhibitors (ICIs), drug sensitivity, and functional enrichment in different risk groups were also explored. Finally, we used quantitative real-time PCR (qRT-PCR) to confirm the expression patterns of model IRLs in clinical specimens. Results All UCEC cases were divided into two clusters (C1 = 454) and (C2 = 57) which had significant differences in prognosis and immune status. Five hub IRLs were selected to develop an IRL prognostic signature (IRLPS) which had value in forecasting the clinical outcome of UCEC patients. Biological processes related to tumor and immune response were screened. Function enrichment algorithm showed tumor signaling pathways (ERBB signaling, TGF-β signaling, and Wnt signaling) were remarkably activated in high-risk group scores. In addition, the high-risk group had a higher infiltration level of M2 macrophages and lower TMB value, suggesting patients with high risk were prone to a immunosuppressive status. Furthermore, we determined several potential molecular drugs for UCEC. Conclusion We successfully identified a novel molecular subtype and inflammation-related prognostic model for UCEC. Our constructed risk signature can be employed to assess the survival of UCEC patients and offer a valuable reference for clinical treatment regimens.
Collapse
Affiliation(s)
- Hongmei Gu
- Department of Radiotherapy Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahang Song
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Tan
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Hongyu Zhao
- Department of Radiotherapy Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
66
|
Jiang Y, Lin L, Lv H, Zhang H, Jiang L, Ma F, Wang Q, Ma X, Yu S. Immune cell infiltration and immunotherapy in hepatocellular carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7178-7200. [PMID: 35730302 DOI: 10.3934/mbe.2022339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma is a highly malignant tumor and patients yield limited benefits from the existing treatments. The application of immune checkpoint inhibitors is promising but the results described in the literature are not favorable. It is therefore urgent to systematically analyze the immune microenvironment of HCC and screen the population best suited for the application of immune checkpoint inhibitors to provide a basis for clinical treatment. In this study, we collected The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)-related data sets to evaluate the immune microenvironment and immune cell infiltration (ICI) in HCC. Three independent ICI subtypes showing significant differences in survival were identified. Further, TCGA-LIHC immunophenoscore (IPS) was used to identify the differentially expressed genes between high- and low-IPS in HCC, so as to identify the immune gene subtypes in HCC tumors. The ICI score model for HCC was constructed, whereby we divided HCC samples into high- and low-score groups based on the median ICI score. The differences between these groups in genomic mutation load and immunotherapy benefit in HCC were examined in detail to provide theoretical support for accurate immunotherapy strategy in HCC. Finally, four genes were screened, which could accurately predict the subtype based on the tumor immune infiltration score. The findings may provide a basis and simplify the process for screening clinical drugs suitable for relevant subgroups.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Huiming Lv
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - He Zhang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Lili Jiang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Fenfen Ma
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Qiuyue Wang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Xue Ma
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Shengjin Yu
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| |
Collapse
|
67
|
Urueña C, Lasso P, Bernal-Estevez D, Rubio D, Salazar AJ, Olaya M, Barreto A, Tawil M, Torregrosa L, Fiorentino S. The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Sci Rep 2022; 12:7981. [PMID: 35562400 PMCID: PMC9106657 DOI: 10.1038/s41598-022-12108-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Neoadjuvant chemotherapy (NAT) in breast cancer (BC) has been used to reduce tumor burden prior to surgery. However, the impact on prognosis depends on the establishment of Pathological Complete Response (pCR), which is influenced by tumor-infiltrating lymphocyte levels and the activation of the antitumor immune response. Nonetheless, NAT can affect immune infiltration and the quality of the response. Here, we showed that NAT induces dynamic changes in the tumor microenvironment (TME). After NAT, an increase of regulatory T cells and a decrease of CD8+ T cells was found in tumor, correlated with the presence of metastatic cells in lymph nodes. In addition, an increase of polymorphonuclear myeloid-derived suppressor like cells was found in luminal patients post-NAT. pCR patients showed a balance between the immune populations, while non-pCR patients presented an inverse relationship in the frequency of CD68+ versus CD3+, CD8+, and CD20+ cells. Moreover, activated T cells were found in peripheral blood, as well as an increase in T cell clonality with a lower diversity post-NAT. Overall, these results shown that NAT induces an activation of immune response, however, a balance in the TME seems to be related to a better antigenic presentation and therefore a better response to treatment.
Collapse
Affiliation(s)
- Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - David Bernal-Estevez
- Grupo de Investigación en Inmunología y Oncología Clínica, Fundación Salud de los Andes, Bogotá, Colombia
| | - Diego Rubio
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Ana Janeth Salazar
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mercedes Olaya
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - Mauricio Tawil
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Lilian Torregrosa
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| |
Collapse
|
68
|
A Novel Necroptosis-Associated lncRNA Signature Can Impact the Immune Status and Predict the Outcome of Breast Cancer. J Immunol Res 2022; 2022:3143511. [PMID: 35578667 PMCID: PMC9107037 DOI: 10.1155/2022/3143511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BRCA) is one of the leading causes of death among women worldwide, and drug resistance often leads to a poor prognosis. Necroptosis is a type of programmed cell death (PCD) and exhibits regulatory effects on tumor progression, but few studies have focused on the relationships between necroptosis-associated lncRNAs and BRCA. In this study, we established a signature basis of 7 necroptosis-related lncRNAs associated with prognosis and divided BRCA patients into high- and low-risk groups. Kaplan-Meier curves all showed an adverse prognosis for patients in the high-risk group. Cox assays confirmed that risk score was an independent prognostic factor for BRCA patients. The receiver operating characteristic (ROC) curve proved the predictive accuracy of the signature and the area under the curve (AUC) values of the risk score reached 0.722. The nomogram relatively accurately predicted the prognosis of the patients. GSEA analysis suggested that the related signaling pathways and biological processes enriched in the high- and low-risk groups may influence the tumor microenvironment (TME) of BRCA. ssGSEA showed the difference in immune cell infiltration, immune pathway activation, and immune checkpoint expression between the two risk groups, with the low-risk group more suitable for immunotherapy. According to the significant difference in IC50 between risk groups, patients can be guided for an individualized treatment plan. Overall, the authors established a prognostic signature consisting of 7 necroptosis-associated lncRNAs that can independently predict the clinical outcome of BRCA patients. The difference in the tumor immune microenvironment between the low- and high-risk populations may be the reason for the resistance to immunotherapy in some patients.
Collapse
|
69
|
Blaye C, Boyer T, Peyraud F, Domblides C, Larmonier N. Beyond Immunosuppression: The Multifaceted Functions of Tumor-Promoting Myeloid Cells in Breast Cancers. Front Immunol 2022; 13:838040. [PMID: 35309358 PMCID: PMC8927658 DOI: 10.3389/fimmu.2022.838040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancers are commonly associated with an immunosuppressive microenvironment responsible for tumor escape from anti-cancer immunity. Cells of the myeloid lineage account for a major part of this tumor-promoting landscape. These myeloid cells are composed of heterogeneous subsets at different stages of differentiation and have traditionally been described by their cardinal ability to suppress innate and adaptive anticancer immunity. However, evidence has accumulated that, beyond their immunosuppressive properties, breast cancer-induced myeloid cells are also equipped with a broad array of “non-immunological” tumor-promoting functions. They therefore represent major impediments for anticancer therapies, particularly for immune-based interventions. We herein analyze and discuss current literature related to the versatile properties of the different myeloid cell subsets engaged in breast cancer development. We critically assess persisting difficulties and challenges in unequivocally discriminate dedicated subsets, which has so far prevented both the selective targeting of these immunosuppressive cells and their use as potential biomarkers. In this context, we propose the concept of IMCGL, “pro-tumoral immunosuppressive myeloid cells of the granulocytic lineage”, to more accurately reflect the contentious nature and origin of granulocytic cells in the breast tumor microenvironment. Future research prospects related to the role of this myeloid landscape in breast cancer are further considered.
Collapse
Affiliation(s)
- Céline Blaye
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Thomas Boyer
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France
| | - Florent Peyraud
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France
| | - Charlotte Domblides
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Service d'Oncologie Médicale, Centre Hospitalo-Universitaire (CHU) Bordeaux, Bordeaux, France
| | - Nicolas Larmonier
- Centre National de la Recherche Scientific (CNRS) Unité Mixte de Recherche (UMR) 5164, ImmunoConcEpT, Bordeaux, France.,Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France
| |
Collapse
|
70
|
Li C, Wang X, Chen T, Li W, Yang Q. A Novel lncRNA Panel for Risk Stratification and Immune Landscape in Breast Cancer Patients. Int J Gen Med 2022; 15:5253-5272. [PMID: 35655656 PMCID: PMC9154001 DOI: 10.2147/ijgm.s366335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose In recent years, breast cancer (BC) has been a primary cause of mortality in women. However, the underlying mechanisms remain to be elucidated. Accumulating evidence has supported the hypothesis that long noncoding RNAs (lncRNAs) play central roles in the progression of cancer. We aimed to construct an immune-related lncRNA panel to predict the prognosis of patients with BC and evaluate the immune features. Methods The expression profiles of patients with BC were obtained from The Cancer Genome Atlas (TCGA) database to screen the differentially expressed lncRNAs (DELs). Pearson’s correlation analysis was employed to filter the DELs related to the immune-associated genes. Univariate Cox regression, the LASSO algorithm, and multivariate Cox regression analyses were conducted to establish the model. Functional enrichment analyses and biological experiments were performed to explore the immune activity of the lncRNA panel. Results A four-immune-related lncRNA panel (IRLP) composed of AC022196.1, ARHGAP26-AS1, DPYD-AS1 and PURPL was established in TCGA training cohort. The prognostic accuracy of the predictive model was confirmed in TCGA internal validation cohort, TCGA entire cohort and Qilu external validation cohort. Bioinformatics analyses indicated that the IRLP had a close relationship with tumour infiltrating immune cells and immunomodulatory biomarkers. The biological functions of the four immune-related lncRNAs in BC were first investigated in vitro and in vivo. PURPL was indicated to play a central role in the regulation of macrophage recruitment and polarization via CCL2. Conclusion Our study identified IRLP as a reliable prognostic indicator with great potential for clinical application in personalized immunotherapy.
Collapse
Affiliation(s)
- Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wenhao Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, People’s Republic of China
- Correspondence: Qifeng Yang, Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China, Email
| |
Collapse
|
71
|
Yu Z, Cheng L, Liu X, Zhang L, Cao H. Increased Expression of INHBA Is Correlated With Poor Prognosis and High Immune Infiltrating Level in Breast Cancer. FRONTIERS IN BIOINFORMATICS 2022; 2:729902. [PMID: 36304286 PMCID: PMC9580937 DOI: 10.3389/fbinf.2022.729902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Inhibin, beta A (INHBA) is a member of the transforming growth factor-β superfamily and is associated with carcinogenesis and cancer progression in several types of human cancers. However, its significance in breast cancer has not been evaluated. Here, we investigated the prognostic value of INHBA and its correlation with tumor-infiltration immune cells in the microenvironment of breast cancer. Methods: In this study, we analyzed the INHBA expression profile in the Oncomine database and Tumor Immune Estimation Resource 2.0 (TIMER2.0) site. Using Breast Cancer Gene-Expression Miner (bc-GenExMiner v4.7) tool and the UALCAN cancer database, we further evaluated the correlation of INHBA expression with clinicopathological factors in breast cancer. Then, we assessed the clinical prognostic value of INHBA using Kaplan–Meier Plotter and the PrognoScan databases. The correlations between INHBA and tumor-infiltrating immune cells were investigated via TIMER2.0. In addition, correlations between INHBA expression and gene markers of immune infiltrates were analyzed by TIMER2.0 and Gene Expression Profiling Interactive Analysis 2. Results: Compared with the level in normal tissues, the INHBA mRNA expression was upregulated in different subtypes of breast cancer, and its expression was positively correlated with progesterone receptor, human epidermal growth factor receptor-2 status, and PAM50 subtypes but negatively related to age and basal-like status. The INHBA protein was also highly expressed in primary breast cancer and closely related to the pathological stage. Patients with high INHBA expression levels showed worse overall survival, relapse-free survival, and distant metastasis-free survival. Also, high INHBA expression was significantly associated with worse overall survival and relapse-free survival in positive lymph nodes. Of interest, INHBA expression was negatively correlated with infiltrating levels of activated NK cells, NKT, and CD4+ T cells but was positively correlated with tumor infiltration of CD8+ T cells, neutrophils, especially macrophages and cancer-associated fibroblasts. Moreover, INHBA expression showed strong correlations with various markers of monocytes/macrophages and cancer-associated fibroblasts. Conclusion: High INHBA expression is correlated with poor prognosis and the infiltration of immune cells in the tumor microenvironment. These findings suggest that INHBA may be involved in immune escape and can serve as a potential biomarker of prognosis and tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Zeying Yu
- Department of Pathogenic Biology, School of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Li Cheng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Xinlian Liu
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Chengdu Medical College, Chengdu, China
| | - Hui Cao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Chengdu Medical College, Chengdu, China
- *Correspondence: Hui Cao,
| |
Collapse
|
72
|
Tilsed CM, Casey TH, de Jong E, Bosco A, Zemek RM, Salmons J, Wan G, Millward MJ, Nowak AK, Lake RA, Lesterhuis WJ. Retinoic Acid Induces an IFN-Driven Inflammatory Tumour Microenvironment, Sensitizing to Immune Checkpoint Therapy. Front Oncol 2022; 12:849793. [PMID: 35402250 PMCID: PMC8988133 DOI: 10.3389/fonc.2022.849793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
With immune checkpoint therapy (ICT) having reshaped the treatment of many cancers, the next frontier is to identify and develop novel combination therapies to improve efficacy. Previously, we and others identified beneficial immunological effects of the vitamin A derivative tretinoin on anti-tumour immunity. Although it is known that tretinoin preferentially depletes myeloid derived suppressor cells in blood, little is known about the effects of tretinoin on the tumour microenvironment, hampering the rational design of clinical trials using tretinoin in combination with ICT. Here, we aimed to identify how tretinoin changed the tumour microenvironment in mouse tumour models, using flow cytometry and RNAseq, and we sought to use that information to establish optimal dosing and scheduling of tretinoin in combination with several ICT antibodies in multiple cancer models. We found that tretinoin rapidly induced an interferon dominated inflammatory tumour microenvironment, characterised by increased CD8+ T cell infiltration. This phenotype completely overlapped with the phenotype that was induced by ICT itself, and we confirmed that the combination further amplified this inflammatory milieu. The addition of tretinoin significantly improved the efficacy of anti-CTLA4/anti-PD-L1 combination therapy, and staggered scheduling was more efficacious than concomitant scheduling, in a dose-dependent manner. The positive effects of tretinoin could be extended to ICT antibodies targeting OX40, GITR and CTLA4 monotherapy in multiple cancer models. These data show that tretinoin induces an interferon driven, CD8+ T cell tumour microenvironment that is responsive to ICT.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Joanne Salmons
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Graeme Wan
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Michael J. Millward
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
| | - Willem Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Willem Joost Lesterhuis,
| |
Collapse
|
73
|
Yang X, Weng X, Yang Y, Jiang Z. Pyroptosis-Related lncRNAs Predict the Prognosis and Immune Response in Patients With Breast Cancer. Front Genet 2022; 12:792106. [PMID: 35360412 PMCID: PMC8963933 DOI: 10.3389/fgene.2021.792106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related death in women worldwide. Pyroptosis and long noncoding RNAs (lncRNAs) have been demonstrated to play vital roles in the tumorigenesis and development of BC. However, the clinical significance of pyroptosis-related lncRNAs in BC remains unclear. Methods: Using the mRNA and lncRNA profiles of BC obtained from TCGA dataset, a risk model based on the pyroptosis-related lncRNAs for prognosis was constructed using univariate and multivariate Cox regression model, and least absolute shrinkage and selection operator. Patients were divided into high- and low-risk groups based on the risk model, and the prognosis value and immune response in different risk groups were analyzed. Furthermore, functional enrichment annotation, therapeutic signature, and tumor mutation burden were performed to evaluate the risk model we established. Moreover, the expression level and clinical significance of the selected pyroptosis-related lncRNAs were further validated in BC samples. Results: 3,364 pyroptosis-related lncRNAs were identified using Pearson’s correlation analysis. The risk model we constructed comprised 10 pyroptosis-related lncRNAs, which was identified as an independent predictor of overall survival (OS) in BC. The nomogram we constructed based on the clinicopathologic features and risk model yielded favorable performance for prognosis prediction in BC. In terms of immune response and mutation status, patients in the low-risk group had a higher expression of immune checkpoint markers and exhibited higher fractions of activated immune cells, while the high-risk group had a highly percentage of TMB. Further analyses in our cohort BC samples found that RP11-459E5.1 was significantly upregulated, while RP11-1070N10.3 and RP11-817J15.3 were downregulated and significantly associated with worse OS. Conclusion: The risk model based on the pyroptosis-related lncRNAs we established may be a promising tool for predicting the prognosis and personalized therapeutic response in BC patients.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Weng
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yajie Yang
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - ZhiNong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: ZhiNong Jiang,
| |
Collapse
|
74
|
Thomas CE, Dahl L, Byström S, Chen Y, Uhlén M, Mälarstig A, Czene K, Hall P, Schwenk JM, Gabrielson M. Circulating proteins reveal prior use of menopausal hormonal therapy and increased risk of breast cancer. Transl Oncol 2022; 17:101339. [PMID: 35033985 PMCID: PMC8760550 DOI: 10.1016/j.tranon.2022.101339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 11/15/2022] Open
Abstract
Accessible risk predictors are crucial for improving the early detection and prognosis of breast cancer. Blood samples are widely available and contain proteins that provide important information about human health and disease, however, little is still known about the contribution of circulating proteins to breast cancer risk prediction. We profiled EDTA plasma samples collected before diagnosis from the Swedish KARMA breast cancer cohort to evaluate circulating proteins as molecular predictors. A data-driven analysis strategy was applied to the molecular phenotypes built on 700 circulating proteins to identify and annotate clusters of women. The unsupervised analysis of 183 future breast cancer cases and 366 age-matched controls revealed five stable clusters with distinct proteomic plasma profiles. Among these women, those in the most stable cluster (N = 19; mean Jaccard index: 0.70 ± 0.29) were significantly more likely to have used menopausal hormonal therapy (MHT), get a breast cancer diagnosis, and were older compared to the remaining clusters. The circulating proteins associated with this cluster (FDR < 0.001) represented physiological processes related to cell junctions (F11R, CLDN15, ITGAL), DNA repair (RBBP8), cell replication (TJP3), and included proteins found in female reproductive tissue (PTCH1, ZP4). Using a data-driven approach on plasma proteomics data revealed the potential long-lasting molecular effects of menopausal hormonal therapy (MHT) on the circulating proteome, even after women had ended their treatment. This provides valuable insights concerning proteomics efforts to identify molecular markers for breast cancer risk prediction.
Collapse
Affiliation(s)
- Cecilia E Thomas
- Science for Life Laboratory, Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden
| | - Leo Dahl
- Science for Life Laboratory, Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden
| | - Sanna Byström
- Science for Life Laboratory, Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden
| | - Yan Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet Nobels väg 12A, Stockholm SE-171 77, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet Nobels väg 12A, Stockholm SE-171 77, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet Nobels väg 12A, Stockholm SE-171 77, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet Nobels väg 12A, Stockholm SE-171 77, Sweden; Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Solna, Stockholm 171 65, Sweden.
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet Nobels väg 12A, Stockholm SE-171 77, Sweden.
| |
Collapse
|
75
|
Han X, Cao W, Wu L, Liang C. Radiomics Assessment of the Tumor Immune Microenvironment to Predict Outcomes in Breast Cancer. Front Immunol 2022; 12:773581. [PMID: 35046937 PMCID: PMC8761791 DOI: 10.3389/fimmu.2021.773581] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background The immune microenvironment of tumors provides information on prognosis and prediction. A prior validation of the immunoscore for breast cancer (ISBC) was made on the basis of a systematic assessment of immune landscapes extrapolated from a large number of neoplastic transcripts. Our goal was to develop a non-invasive radiomics-based ISBC predictive factor. Methods Immunocell fractions of 22 different categories were evaluated using CIBERSORT on the basis of a large, open breast cancer cohort derived from comprehensive information on gene expression. The ISBC was constructed using the LASSO Cox regression model derived from the Immunocell type scores, with 479 quantified features in the intratumoral and peritumoral regions as observed from DCE-MRI. A radiomics signature [radiomics ImmunoScore (RIS)] was developed for the prediction of ISBC using a random forest machine-learning algorithm, and we further evaluated its relationship with prognosis. Results An ISBC consisting of seven different immune cells was established through the use of a LASSO model. Multivariate analyses showed that the ISBC was an independent risk factor in prognosis (HR=2.42, with a 95% CI of 1.49–3.93; P<0.01). A radiomic signature of 21 features of the ISBC was then exploited and validated (the areas under the curve [AUC] were 0.899 and 0.815). We uncovered statistical associations between the RIS signature with recurrence-free and overall survival rates (both P<0.05). Conclusions The RIS is a valuable instrument with which to assess the immunoscore, and offers important implications for the prognosis of breast cancer.
Collapse
Affiliation(s)
- Xiaorui Han
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wuteng Cao
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Wu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Changhong Liang
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| |
Collapse
|
76
|
Rezaei M, Danilova ND, Soltani M, Savvateeva LV, V Tarasov V, Ganjalikhani-Hakemi M, V Bazhinf A, A Zamyatnin A. Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Curr Cancer Drug Targets 2022; 22:437-453. [PMID: 35156572 DOI: 10.2174/1568009622666220214103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
The idea of cancer immunotherapy is to stimulate the immune system to fight tumors without destroying normal cells. One of the anticancer therapy methods, among many, is based on the use of cancer vaccines that contain tumor antigens in order to induce immune responses against tumors. However, clinical trials have shown that the use of such vaccines as a monotherapy is ineffective in many cases, since they do not cause a strong immune response. Particular tumors are resistant to immunotherapy due to the absence or insufficient infiltration of tumors with CD8+ T cells, and hence, they are called cold or non-inflamed tumors. Cold tumors are characterized by a lack of CD8+ T cell infiltration, the presence of anti-inflammatory myeloid cells, tumor-associated M2 macrophages, and regulatory T cells. It is very important to understand which stage of the antitumor response does not work properly in order to use the right strategy for the treatment of patients. Applying other therapeutic methods alongside cancer vaccines can be more rational for cold tumors which do not provoke the immune system strongly. Herein, we indicate some combinational therapies that have been used or are in progress for cold tumor treatment alongside vaccines.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mozhdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V Bazhinf
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
77
|
Locy H, Verhulst S, Cools W, Waelput W, Brock S, Cras L, Schiettecatte A, Jonckheere J, van Grunsven LA, Vanhoeij M, Thielemans K, Breckpot K. Assessing Tumor-Infiltrating Lymphocytes in Breast Cancer: A Proposal for Combining Immunohistochemistry and Gene Expression Analysis to Refine Scoring. Front Immunol 2022; 13:794175. [PMID: 35222378 PMCID: PMC8876933 DOI: 10.3389/fimmu.2022.794175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Scoring of tumor-infiltrating lymphocytes (TILs) in breast cancer specimens has gained increasing attention, as TILs have prognostic and predictive value in HER2+ and triple-negative breast cancer. We evaluated the intra- and interrater variability when scoring TILs by visual inspection of hematoxylin and eosin-stained tissue sections. We further addressed whether immunohistochemical staining of these sections for immune cell surface markers CD45, CD3, CD4, and CD8 and combination with nanoString nCounter® gene expression analysis could refine TIL scoring. Formalin-fixed paraffin-embedded and fresh-frozen core needle biopsies of 12 female and treatment-naive breast cancer patients were included. Scoring of TILs was performed twice by three independent pathologists with a washout period of 3 days. Increasing intra- and interrater variability was observed with higher TIL numbers. The highest reproducibility was observed on tissue sections stained for CD3 and CD8. The latter TIL scores correlated well with the TIL scores obtained through nanoString nCounter® gene expression analysis. Gene expression analysis also revealed 104 and 62 genes that are positively and negatively related to both TIL scores. In conclusion, integration of immunohistochemistry and gene expression analysis is a valuable strategy to refine TIL scoring in breast tumors.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Hanne Locy, ; Karine Breckpot,
| | | | - Wilfried Cools
- Interfaculty Center Data processing and Statistics, VUB, Brussels, Belgium
| | - Wim Waelput
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Stefanie Brock
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Louise Cras
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Hanne Locy, ; Karine Breckpot,
| |
Collapse
|
78
|
Yu K, Ravoor A, Malats N, Pineda S, Sirota M. A Pan-Cancer Analysis of Tumor-Infiltrating B Cell Repertoires. Front Immunol 2022; 12:790119. [PMID: 35069569 PMCID: PMC8767103 DOI: 10.3389/fimmu.2021.790119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor-infiltrating B cells can play an important role in anti-tumor responses but their presence is not well understood. In this study, we extracted the B cell receptor repertoires from 9522 tumor and adjacent non-tumor samples across 28 tumor types in the Cancer Genome Atlas project and performed diversity and network analysis. We identified differences in diversity and network statistics across tumor types and subtypes and observed a trend towards increased clonality in primary tumors compared to adjacent non-tumor tissues. We also found significant associations between the repertoire features and mutation load, tumor stage, and age. Our V-gene usage analysis identified similar V-gene usage patterns in colorectal and endometrial cancers. Lastly, we evaluated the prognostic value of the repertoire features and identified significant associations with survival in seven tumor types. This study warrants further research into better understanding the role of tumor-infiltrating B cells across a wide range of tumor types.
Collapse
Affiliation(s)
- Katharine Yu
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Akshay Ravoor
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Silvia Pineda
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
79
|
Miyamoto T, Murakami R, Hamanishi J, Tanigaki K, Hosoe Y, Mise N, Takamatsu S, Mise Y, Ukita M, Taki M, Yamanoi K, Horikawa N, Abiko K, Yamaguchi K, Baba T, Matsumura N, Mandai M. B7-H3 Suppresses Antitumor Immunity via the CCL2-CCR2-M2 Macrophage Axis and Contributes to Ovarian Cancer Progression. Cancer Immunol Res 2022; 10:56-69. [PMID: 34799346 PMCID: PMC9414298 DOI: 10.1158/2326-6066.cir-21-0407] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
New approaches beyond PD-1/PD-L1 inhibition are required to target the immunologically diverse tumor microenvironment (TME) in high-grade serous ovarian cancer (HGSOC). In this study, we explored the immunosuppressive effect of B7-H3 (CD276) via the CCL2-CCR2-M2 macrophage axis and its potential as a therapeutic target. Transcriptome analysis revealed that B7-H3 is highly expressed in PD-L1-low, nonimmunoreactive HGSOC tumors, and its expression negatively correlated with an IFNγ signature, which reflects the tumor immune reactivity. In syngeneic mouse models, B7-H3 (Cd276) knockout (KO) in tumor cells, but not in stromal cells, suppressed tumor progression, with a reduced number of M2 macrophages and an increased number of IFNγ+CD8+ T cells. CCL2 expression was downregulated in the B7-H3 KO tumor cell lines. Inhibition of the CCL2-CCR2 axis partly negated the effects of B7-H3 suppression on M2 macrophage migration and differentiation, and tumor progression. In patients with HGSOC, B7-H3 expression positively correlated with CCL2 expression and M2 macrophage abundance, and patients with B7-H3-high tumors had fewer tumoral IFNγ+CD8+ T cells and poorer prognosis than patients with B7-H3-low tumors. Thus, B7-H3 expression in tumor cells contributes to CCL2-CCR2-M2 macrophage axis-mediated immunosuppression and tumor progression. These findings provide new insights into the immunologic TME and could aid the development of new therapeutic approaches against the unfavorable HGSOC phenotype.
Collapse
Affiliation(s)
- Taito Miyamoto
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Gynecology, Shiga General Hospital, Moriyama, Japan.,Corresponding Author: Ryusuke Murakami, Department of Gynecology, Shiga General Hospital, 5-4-30, Moriyama, Moriyama City, Shiga 524-8524, Japan. Phone: 817-7582-5031; Fax: 817-7582-5931; E-mail:
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuka Mise
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayo Ukita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Horikawa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, Shizuoka General Hospital, Shizuoka, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University School of Medicine, Higashiosaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
80
|
Cai J, Zhang X, Xie W, Li Z, Liu W, Liu A. Identification of a basement membrane-related gene signature for predicting prognosis and estimating the tumor immune microenvironment in breast cancer. Front Endocrinol (Lausanne) 2022; 13:1065530. [PMID: 36531485 PMCID: PMC9751030 DOI: 10.3389/fendo.2022.1065530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Breast cancer (BC) is the most common malignancy in the world and has a high cancer-related mortality rate. Basement membranes (BMs) guide cell polarity, differentiation, migration and survival, and their functions are closely related to tumor diseases. However, few studies have focused on the association of basement membrane-related genes (BMRGs) with BC. This study aimed to explore the prognostic features of BMRGs in BC and provide new directions for the prevention and treatment of BC. METHODS We collected transcriptomic and clinical data of BC patients from TCGA and GEO datasets and constructed a predictive signature for BMRGs by using univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. The reliability of the model was further evaluated and validated by Kaplan-Meier survival curves and receiver operating characteristic curves (ROC). Column line plots and corresponding calibration curves were constructed. Possible biological pathways were investigated by enrichment analysis. Afterward, we assessed the mutation status by tumor mutational burden (TMB) analysis and compared different subtypes using cluster analysis. Finally, we examined drug treatment sensitivity and immunological correlation to lay the groundwork for more in-depth studies in this area. RESULTS The prognostic risk model consisted of 7 genes (FBLN5, ITGB2, LAMC3, MMP1, EVA1B, SDC1, UNC5A). After validation, we found that the model was highly reliable and could accurately predict the prognosis of BC patients. Cluster analysis showed that patients with cluster 1 had more sensitive drugs and had better chances of better clinical outcomes. In addition, TMB, immune checkpoint, immune status, and semi-inhibitory concentrations were significantly different between high and low-risk groups, with lower-risk patients having the better anti-cancer ability. DISCUSSION The basement membrane-related gene signature that we established can be applied as an independent prognostic factor for BC and can provide a reference for individualized treatment of BC patients.
Collapse
Affiliation(s)
- Jiehui Cai
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xinkang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wanchun Xie
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiyang Li
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - An Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- *Correspondence: An Liu,
| |
Collapse
|
81
|
Zhang S, Lv M, Cheng Y, Wang S, Li C, Qu X. Immune landscape of advanced gastric cancer tumor microenvironment identifies immunotherapeutic relevant gene signature. BMC Cancer 2021; 21:1324. [PMID: 34893046 PMCID: PMC8665569 DOI: 10.1186/s12885-021-09065-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Advanced gastric cancer (AGC) is a disease with poor prognosis due to the current lack of effective therapeutic strategies. Immune checkpoint blockade treatments have shown effective responses in patient subgroups but biomarkers remain challenging. Traditional classification of gastric cancer (GC) is based on genomic profiling and molecular features. Therefore, it is critical to identify the immune-related subtypes and predictive markers by immuno-genomic profiling. Methods Single-sample gene-set enrichment analysis (ssGSEA) and ESTIMATE algorithm were used to identify the immue-related subtypes of AGC in two independent GEO datasets. Weighted gene co-expression network analysis (WGCNA) and Molecular Complex Detection (MCODE) algorithm were applied to identify hub-network of immune-related subtypes. Hub genes were confirmed by prognostic data of KMplotter and GEO datasets. The value of hub-gene in predicting immunotherapeutic response was analyzed by IMvigor210 datasets. MTT assay, Transwell migration assay and Western blotting were performed to confirm the cellular function of hub gene in vitro. Results Three immune-related subtypes (Immunity_H, Immunity_M and Immunity_L) of AGC were identified in two independent GEO datasets. Compared to Immunity_L, the Immuntiy_H subtype showed higher immune cell infiltration and immune activities with favorable prognosis. A weighted gene co-expression network was constructed based on GSE62254 dataset and identified one gene module which was significantly correlated with the Immunity_H subtype. A Hub-network which represented high immune activities was extracted based on topological features and Molecular Complex Detection (MCODE) algorithm. Furthermore, ADAM like decysin 1 (ADAMDEC1) was identified as a seed gene among hub-network genes which is highly associated with favorable prognosis in both GSE62254 and external validation datasets. In addition, high expression of ADAMDEC1 correlated with immunotherapeutic response in IMvigor210 datasets. In vitro, ADAMDEC1 was confirmed as a potential protein in regulating proliferation and migration of gastric cancer cell. Deficiency of ADAMDEC1 of gastric cancer cell also associated with high expression of PD-L1 and Jurkat T cell apoptosis. Conclusions We identified immune-related subtypes and key tumor microenvironment marker in AGC which might facilitate the development of novel immune therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09065-z.
Collapse
Affiliation(s)
- Simeng Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, 110001, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, China
| | - Mengzhu Lv
- Department of Plastic Surgery, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yu Cheng
- Department of Medical Oncology, the First Hospital of China Medical University, 110001, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, China
| | - Shuo Wang
- Department of Medical Oncology, the First Hospital of China Medical University, 110001, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, China
| | - Ce Li
- Department of Medical Oncology, the First Hospital of China Medical University, 110001, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, 110001, Shenyang, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China. .,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, China. .,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, China.
| |
Collapse
|
82
|
Zhang ZC, Guo JN, Zhang N, Wang ZQ, Lou G, Cui BB, Yang C. Identification and Validation of Immune-Related Gene for Predicting Prognosis and Therapeutic Response in Ovarian Cancer. Front Immunol 2021; 12:763791. [PMID: 34880862 PMCID: PMC8645858 DOI: 10.3389/fimmu.2021.763791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer (OC) is a devastating malignancy with a poor prognosis. The complex tumor immune microenvironment results in only a small number of patients benefiting from immunotherapy. To explore the different factors that lead to immune invasion and determine prognosis and response to immune checkpoint inhibitors (ICIs), we established a prognostic risk scoring model (PRSM) with differential expression of immune-related genes (IRGs) to identify key prognostic IRGs. Patients were divided into high-risk and low-risk groups according to their immune and stromal scores. We used a bioinformatics method to identify four key IRGs that had differences in expression between the two groups and affected prognosis. We evaluated the sensitivity of treatment from three aspects, namely chemotherapy, targeted inhibitors (TIs), and immunotherapy, to evaluate the value of prediction models and key prognostic IRGs in the clinical treatment of OC. Univariate and multivariate Cox regression analyses revealed that these four key IRGs were independent prognostic factors of overall survival in OC patients. In the high-risk group comprising four genes, macrophage M0 cells, macrophage M2 cells, and regulatory T cells, observed to be associated with poor overall survival in our study, were higher. The high-risk group had a high immunophenoscore, indicating a better response to ICIs. Taken together, we constructed a PRSM and identified four key prognostic IRGs for predicting survival and response to ICIs. Finally, the expression of these key genes in OC was evaluated using RT-qPCR. Thus, these genes provide a novel predictive biomarker for immunotherapy and immunomodulation.
Collapse
Affiliation(s)
- Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
83
|
Lien TG, Ohnstad HO, Lingjærde OC, Vallon-Christersson J, Aaserud M, Sveli MAT, Borg Å, OSBREAC OBO, Garred Ø, Borgen E, Naume B, Russnes H, Sørlie T. Sample Preparation Approach Influences PAM50 Risk of Recurrence Score in Early Breast Cancer. Cancers (Basel) 2021; 13:6118. [PMID: 34885228 PMCID: PMC8657125 DOI: 10.3390/cancers13236118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
The PAM50 gene expression subtypes and the associated risk of recurrence (ROR) score are used to predict the risk of recurrence and the benefits of adjuvant therapy in early-stage breast cancer. The Prosigna assay includes the PAM50 subtypes along with their clinicopathological features, and is approved for treatment recommendations for adjuvant hormonal therapy and chemotherapy in hormone-receptor-positive early breast cancer. The Prosigna test utilizes RNA extracted from macrodissected tumor cells obtained from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, RNA extracted from fresh-frozen (FF) bulk tissue without macrodissection is widely used for research purposes, and yields high-quality RNA for downstream analyses. To investigate the impact of the sample preparation approach on ROR scores, we analyzed 94 breast carcinomas included in an observational study that had available gene expression data from macrodissected FFPE tissue and FF bulk tumor tissue, along with the clinically approved Prosigna scores for the node-negative, hormone-receptor-positive, HER2-negative cases (n = 54). ROR scores were calculated in R; the resulting two sets of scores from FFPE and FF samples were compared, and treatment recommendations were evaluated. Overall, ROR scores calculated based on the macrodissected FFPE tissue were consistent with the Prosigna scores. However, analyses from bulk tissue yielded a higher proportion of cases classified as normal-like; these were samples with relatively low tumor cellularity, leading to lower ROR scores. When comparing ROR scores (low, intermediate, and high), discordant cases between the two preparation approaches were revealed among the luminal tumors; the recommended treatment would have changed in a minority of cases.
Collapse
Affiliation(s)
- Tonje G. Lien
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (T.G.L.); (O.C.L.); (H.R.)
| | - Hege Oma Ohnstad
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (H.O.O.); (B.N.)
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (T.G.L.); (O.C.L.); (H.R.)
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23 B, N-0373 Oslo, Norway
| | - Johan Vallon-Christersson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381 Lund, Sweden; (J.V.-C.); (Å.B.)
| | - Marit Aaserud
- Department of Pathology, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (M.A.); (M.A.T.S.); (Ø.G.); (E.B.)
| | - My Anh Tu Sveli
- Department of Pathology, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (M.A.); (M.A.T.S.); (Ø.G.); (E.B.)
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381 Lund, Sweden; (J.V.-C.); (Å.B.)
| | | | - Øystein Garred
- Department of Pathology, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (M.A.); (M.A.T.S.); (Ø.G.); (E.B.)
| | - Elin Borgen
- Department of Pathology, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (M.A.); (M.A.T.S.); (Ø.G.); (E.B.)
| | - Bjørn Naume
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (H.O.O.); (B.N.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, N-0318 Oslo, Norway
| | - Hege Russnes
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (T.G.L.); (O.C.L.); (H.R.)
- Department of Pathology, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (M.A.); (M.A.T.S.); (Ø.G.); (E.B.)
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, N-0424 Oslo, Norway; (T.G.L.); (O.C.L.); (H.R.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, N-0318 Oslo, Norway
| |
Collapse
|
84
|
Bandini E, Rossi T, Scarpi E, Gallerani G, Vannini I, Salvi S, Azzali I, Melloni M, Salucci S, Battistelli M, Serra P, Maltoni R, Cho WC, Fabbri F. Early Detection and Investigation of Extracellular Vesicles Biomarkers in Breast Cancer. Front Mol Biosci 2021; 8:732900. [PMID: 34820420 PMCID: PMC8606536 DOI: 10.3389/fmolb.2021.732900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed malignant tumor in women worldwide, and the leading cause of cancer death in the female population. The percentage of patients experiencing poor prognosis along with the risk of developing metastasis remains high, also affecting the resistance to current main therapies. Cancer progression and metastatic development are no longer due entirely to their intrinsic characteristics, but also regulated by signals derived from cells of the tumor microenvironment. Extracellular vesicles (EVs) packed with DNA, RNA, and proteins, are the most attractive targets for both diagnostic and therapeutic applications, and represent a decisive challenge as liquid biopsy-based markers. Here we performed a study based on a multiplexed phenotyping flow cytometric approach to characterize BC-derived EVs from BC patients and cell lines, through the detection of multiple antigens. Our data reveal the expression of EVs-related biomarkers derived from BC patient plasma and cell line supernatants, suggesting that EVs could be exploited for characterizing and monitoring disease progression.
Collapse
Affiliation(s)
- Erika Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emanuela Scarpi
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giulia Gallerani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Samanta Salvi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Irene Azzali
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Mattia Melloni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Patrizia Serra
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Roberta Maltoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
85
|
Bertok T, Pinkova Gajdosova V, Bertokova A, Svecova N, Kasak P, Tkac J. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev Proteomics 2021; 18:881-910. [PMID: 34711108 DOI: 10.1080/14789450.2021.1996231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.
Collapse
Affiliation(s)
- Tomas Bertok
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Pinkova Gajdosova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Natalia Svecova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Tkac
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
86
|
Zheng X, Li L, Yu C, Yang J, Zhao Y, Su C, Yu J, Xu M. Establishment of a tumor immune microenvironment-based molecular classification system of breast cancer for immunotherapy. Aging (Albany NY) 2021; 13:24313-24338. [PMID: 34762599 PMCID: PMC8610112 DOI: 10.18632/aging.203682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023]
Abstract
Antitumor immunotherapy can enable promising and durable responses following their clinical application. However, heterogeneity in the tumor immune microenvironment leads to differences in the individual response rates. In this study, we identified novel immune-related molecular subclasses of breast cancer using a non-negative matrix factorization analysis. We enrolled 4184 patients with breast cancer, including 1104 patients from The Cancer Genome Atlas as a training cohort and 3080 patients from another four independent datasets as validation cohorts. In the training cohort, 36.9% of patients who exhibited significantly higher immunocyte infiltration and enrichment of immune response-associated signatures were categorized into an immune class, which was confirmed by probing the expression of immunocyte markers (CD3, CD19, and CD163). Within the immune class, 53.3% of patients belonged to an immune-suppressed subclass, characterized by the activation of stroma-related signatures and immune-suppressive cells. The remaining patients in the immune class were allocated to an immune-activated subclass. The interferon-γ and granzyme B levels were higher in the immune-activated subclass, whereas the transforming growth factor-β1 and programmed cell death-1 (PD-1) levels were higher in the immune-suppressed subclass. The established molecular classification system was recapitulated in validation cohorts. The immune-activated subclass was predicted to have a better response to anti-PD-1 immunotherapy. The immune-related subclasses were associated with differences in copy number alterations, tumor mutation burden, neoantigens, tumor-infiltrating lymphocyte enrichment, PD-1/programmed death-ligand 1 expression, mutation landscape, and various infiltration immunocytes. Overall, we established a novel immune-related molecular classification of breast cancer, which may be used to select candidate patients for immunotherapy.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chune Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiqiao Yang
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujie Zhao
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chao Su
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Hepatopancreatobiliary Surgery, Meishan City People’s Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, Sichuan 610020, China
| |
Collapse
|
87
|
Liu X, Su L, Li J, Ou G. Identification of Pathway-Based Biomarkers with Crosstalk Analysis for Overall Survival Risk Prediction in Breast Cancer. Front Genet 2021; 12:689715. [PMID: 34745202 PMCID: PMC8566719 DOI: 10.3389/fgene.2021.689715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, many studies have investigated the role of gene-signature on the prognostic assessment of breast cancer (BC), however, the tumor heterogeneity and sequencing noise have limited the clinical usage of these models. Pathway-based approaches are more stable to the perturbation of certain gene expression. In this study, we constructed a prognostic classifier based on survival-related pathway crosstalk analysis. We estimated pathway’s deregulation scores (PDSs) for samples collected from public databases to select survival-related pathways. After pathway crosstalk analysis, we conducted K-means clustering analysis to cluster the patients into G1 and G2 subgroups. The survival outcome of the G2 subgroup was significantly worse than the G1 subgroup. Internal and external dataset exhibits high consistency with the training dataset. Significant differences were found between G2 and G1 subgroups on pathway activity, gene mutation, immune cell infiltration levels, and in particular immune cells/pathway’s activities were significantly negatively associated with BC patient’s outcomes. In conclusion, we established a novel classifier reflecting the overall survival risk of BC and successfully validated its clinical usage on multiple BC datasets, which could offer clinicians inspiration in formulating the clinical treatment plan.
Collapse
Affiliation(s)
- Xiaohua Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lili Su
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jingcong Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guoping Ou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
88
|
Zhou YF, Xiao Y, Jin X, Di GH, Jiang YZ, Shao ZM. Integrated analysis reveals prognostic value of HLA-I LOH in triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2021-003371. [PMID: 34615706 PMCID: PMC8496394 DOI: 10.1136/jitc-2021-003371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Triple-negative breast cancers (TNBCs), especially those non-immune-inflamed tumors, have a poor prognosis and limited therapies. Human leukocyte antigen (HLA)-I not only contributes to antitumor immune response and the phenotype of the tumor microenvironment, but also is a negative predictor of outcomes after immunotherapy. However, the importance of HLA functional status in TNBCs remains poorly understood. Methods Using the largest original multiomics datasets on TNBCs, we systematically characterized the HLA-Ⅰ status of TNBCs from the perspective of HLA-Ⅰ homogeneity and loss of heterozygosity (LOH). The prognostic significance of HLA-I status was measured. To explain the potential mechanism of prognostic value in HLA-Ⅰ status, the mutational signature, copy number alteration, neoantigen and intratumoral heterogeneity were measured. Furthermore, the correlation between HLA-Ⅰ functional status and the tumor immune microenvironment was analyzed. Results LOH and homogeneity in HLA-I accounted for 18% and 21% of TNBCs, respectively. HLA-I LOH instead of HLA-I homogeneity was an independent prognostic biomarker in TNBCs. In particular, for patients with non-immune-inflamed tumors, HLA-I LOH indicated a worse prognosis than HLA-I non-LOH. Furthermore, integrated genomic and transcriptomic analysis showed that HLA-I LOH was accompanied by upregulated scores of mutational signature 3 and homologous recombination deficiency scores, which implied the failure of DNA double-strand break repair. Moreover, HLA-I LOH had higher mutation and neoantigen loads and more subclones than HLA-I non-LOH. These results indicated that although HLA-I LOH tumors with failure of DNA double-strand break repair were prone to produce neoantigens, their limited capacity for antigen presentation finally contributed to poor immune selection pressure. Conclusion Our study illustrates the genomic landscape of HLA-I functional status and stresses the prognostic significance of HLA-I LOH in TNBCs. For “cold” tumors in TNBCs, HLA-I LOH indicated a worse prognosis than HLA-I non-LOH.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
89
|
Ping L, Zhang K, Ou X, Qiu X, Xiao X. A Novel Pyroptosis-Associated Long Non-coding RNA Signature Predicts Prognosis and Tumor Immune Microenvironment of Patients With Breast Cancer. Front Cell Dev Biol 2021; 9:727183. [PMID: 34616734 PMCID: PMC8488148 DOI: 10.3389/fcell.2021.727183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Pyroptosis, a kind of programmed cell death characterized by the rupture of cell membranes and the release of inflammatory substances, plays an important role in the occurrence and development of cancer. However, few studies focus on the pyroptosis-associated long non-coding RNAs (lncRNAs) in breast cancer (BC). The prognostic value of pyroptosis-associated lncRNAs and their relationship with tumor microenvironment (TME) in BC remain unclear. The purpose of this study was to explore the prognostic role of pyroptosis-associated lncRNAs and their relationship with TME in BC. Methods: The transcriptome data and clinical data of female BC patients were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 937 patients were randomly assigned to either training set or validation set. A pyroptosis-associated lncRNA signature was constructed in the training set and verified in the validation set. Functional analysis and immune microenvironment analysis related to pyroptosis-associated lncRNAs were performed. A nomogram based on the risk score and clinical characteristics was established. Results: A 9-pyroptosis-associated lncRNA signature was constructed to separate BC patients into two risk groups. High-risk patients had poorer prognosis than low-risk patients. The risk score was proven to be an independent prognostic factor by multivariate Cox regression analysis. Function analysis and immune microenvironment analysis showed that low-risk BC tended to be an immunologically “hot” tumor. A nomogram was constructed with risk score and clinical characteristics. Receiver operating characteristic curve (ROC) analysis demonstrated credible predictive power of the nomogram. The area under time-dependent ROC curve (AUC) reached 0.880 at 1 year, 0.804 at 3 years, and 0.769 at 5 years in the training set, and 0.799 at 1 year, 0.794 at 3 years, and 0.728 at 5 years in the validation set. Conclusion: We identified a novel pyroptosis-associated lncRNA signature that was an independent prognostic indicator for BC patients. Pyroptosis-associated lncRNAs had potential relationship with the immune microenvironment and might be therapeutic targets for BC patients.
Collapse
Affiliation(s)
- Liqin Ping
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kaiming Zhang
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangsheng Xiao
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
90
|
Bergholtz H, Carter JM, Cesano A, Cheang MCU, Church SE, Divakar P, Fuhrman CA, Goel S, Gong J, Guerriero JL, Hoang ML, Hwang ES, Kuasne H, Lee J, Liang Y, Mittendorf EA, Perez J, Prat A, Pusztai L, Reeves JW, Riazalhosseini Y, Richer JK, Sahin Ö, Sato H, Schlam I, Sørlie T, Stover DG, Swain SM, Swarbrick A, Thompson EA, Tolaney SM, Warren SE, On Behalf Of The GeoMx Breast Cancer Consortium. Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMx ® Digital Spatial Profiler. Cancers (Basel) 2021; 13:4456. [PMID: 34503266 PMCID: PMC8431590 DOI: 10.3390/cancers13174456] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023] Open
Abstract
Breast cancer is a heterogenous disease with variability in tumor cells and in the surrounding tumor microenvironment (TME). Understanding the molecular diversity in breast cancer is critical for improving prediction of therapeutic response and prognostication. High-plex spatial profiling of tumors enables characterization of heterogeneity in the breast TME, which can holistically illuminate the biology of tumor growth, dissemination and, ultimately, response to therapy. The GeoMx Digital Spatial Profiler (DSP) enables researchers to spatially resolve and quantify proteins and RNA transcripts from tissue sections. The platform is compatible with both formalin-fixed paraffin-embedded and frozen tissues. RNA profiling was developed at the whole transcriptome level for human and mouse samples and protein profiling of 100-plex for human samples. Tissue can be optically segmented for analysis of regions of interest or cell populations to study biology-directed tissue characterization. The GeoMx Breast Cancer Consortium (GBCC) is composed of breast cancer researchers who are developing innovative approaches for spatial profiling to accelerate biomarker discovery. Here, the GBCC presents best practices for GeoMx profiling to promote the collection of high-quality data, optimization of data analysis and integration of datasets to advance collaboration and meta-analyses. Although the capabilities of the platform are presented in the context of breast cancer research, they can be generalized to a variety of other tumor types that are characterized by high heterogeneity.
Collapse
Affiliation(s)
- Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Maggie Chon U Cheang
- ICR Clinical Trials and Statistics Unit, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
| | | | | | | | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jingjing Gong
- NanoString® Technologies Inc., Seattle, WA 98109, USA
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - E Shelley Hwang
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jinho Lee
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yan Liang
- NanoString® Technologies Inc., Seattle, WA 98109, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Perez
- NanoString® Technologies Inc., Seattle, WA 98109, USA
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
- McGill University Genome Centre, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Özgür Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Hiromi Sato
- NanoString® Technologies Inc., Seattle, WA 98109, USA
| | - Ilana Schlam
- MedStar Washington Hospital Center, Washington, DC 20010, USA
- Tufts Medical Center, Boston, MA 02111, USA
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Daniel G Stover
- Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Sandra M Swain
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
- Georgetown University Medical Center, Washington, DC 20057, USA
- MedStar Health, Washington, DC 20057, USA
| | - Alexander Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney NSW 2052, Australia
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Sara M Tolaney
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
91
|
Lopez-Yrigoyen M, Cassetta L, Pollard JW. Macrophage targeting in cancer. Ann N Y Acad Sci 2021; 1499:18-41. [PMID: 32445205 DOI: 10.1111/nyas.14377] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Tumorigenesis is not only determined by the intrinsic properties of cancer cells but also by their interactions with components of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are among the most abundant immune cells in the TME. During initial stages of tumor development, macrophages can either directly promote antitumor responses by killing tumor cells or indirectly recruit and activate other immune cells. As genetic changes occur within the tumor or T helper 2 (TH 2) cells begin to dominate the TME, TAMs begin to exhibit an immunosuppressive protumor phenotype that promotes tumor progression, metastasis, and resistance to therapy. Thus, targeting TAMs has emerged as a strategy for cancer therapy. To date, TAM targeting strategies have focused on macrophage depletion and inhibition of their recruitment into the TME. However, these strategies have shown limited therapeutic efficacy, although trials are still underway with combination therapies. The fact that macrophages have the potential for antitumor activity has moved the TAM targeting field toward the development of TAM-reprogramming strategies to support this antitumor immune response. Here, we discuss the various roles of TAMs in cancer therapy and their immunosuppressive properties, as well as implications for emerging checkpoint inhibitor-based immunotherapies. We review state-of-the-art TAM-targeting strategies, focusing on current ones at the preclinical and clinical trial stages that aim to reprogram TAMs as an oncological therapy.
Collapse
Affiliation(s)
- Martha Lopez-Yrigoyen
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Luca Cassetta
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
92
|
Hu Y, Pan Q, Wang M, Ai X, Yan Y, Tian Y, Jing Y, Tang P, Jiang J. m 6A RNA Methylation Regulator YTHDF1 Correlated With Immune Microenvironment Predicts Clinical Outcomes and Therapeutic Efficacy in Breast Cancer. Front Med (Lausanne) 2021; 8:667543. [PMID: 34434939 PMCID: PMC8380833 DOI: 10.3389/fmed.2021.667543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Increasing evidence highlights the roles of N6-methyladenosine (m6A) and its regulators in oncogenesis. Herein, this study observed the associations of m6A regulators with breast cancer. Methods: RNA-seq profiles of breast cancer were retrieved from the Cancer Genome Atlas (TCGA) database. The expression of m6A regulators was analyzed in tumor and normal tissues. Their expression correlations were analyzed by Spearson test. Overall survival (OS) analysis of these regulators was then presented. Gene set enrichment analysis (GSEA) was performed in high and low YTHDF1 expression groups. The correlations of YTHDF1 expression with immune cells and tumor mutation burden (TMB) were calculated in breast cancer samples. Somatic variation was assessed in high and low YTHDF1 expression groups. Results: Most of m6A regulators were abnormally expressed in breast cancer compared to normal tissues. At the mRNA levels, there were closely relationships between them. Among them, YTHDF1 up-regulation was significantly related to undesirable prognosis (p = 0.025). GSEA results showed that high YTHDF1 expression was associated with cancer-related pathways. Furthermore, YTHDF1 expression was significantly correlated with T cells CD4 memory activated, NK cells activated, monocytes, and macrophages. There were higher TMB scores in YTHDF1 up-regulation group than its down-regulation group. Missense mutation and non-sense mutation were the most frequent mutation types. Conclusion: Our findings suggested that dysregulated m6A regulator YTHDF1 was predictive of survival outcomes as well as response to immunotherapy of breast cancer, and were closely related to immune microenvironment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Qinwen Pan
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Minghao Wang
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Xiang Ai
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yuzhao Yan
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yuan Tian
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yuting Jing
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Peng Tang
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jun Jiang
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| |
Collapse
|
93
|
Li Y, Xu F, Chen F, Chen Y, Ge D, Zhang S, Lu C. Transcriptomics based multi-dimensional characterization and drug screen in esophageal squamous cell carcinoma. EBioMedicine 2021; 70:103510. [PMID: 34365093 PMCID: PMC8353400 DOI: 10.1016/j.ebiom.2021.103510] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) remains one of the deadly cancer types. Comprehensively dissecting the molecular characterization and the heterogeneity of ESCC paves the way for developing more promising therapeutics. METHODS Expression profiles of multiple ESCC datasets were integrated. ATAC-seq and RNA-seq were combined to reveal the chromatin accessibility features. A prognosis-related subtype classifier (PrSC) was constructed, and its association with the tumor microenvironment (TME) and immunotherapy was assessed. The key gene signature was validated in clinical samples. Based on the TME heterogeneity of ESCC patients, potential subtype-specific therapeutic agents were screened. FINDINGS The common differentially expressed genes (cDEGs) in ESCC were identified. Up-regulated genes (HEATR1, TIMELESS, DTL, GINS1, RUVBL1, and ECT2) were found highly important in ESCC cell survival. The expression alterations of PRIM2, HPGD, NELL2, and TFAP2B were associated with chromatin accessibility changes. PrSC was a robust scoring tool that was not only associated with the prognosis of ESCC patients, but also could reflect the TME heterogeneity. TNS1high fibroblasts were associated with immune exclusion. TG-101348 and Vinorelbine were identified as potential subtype-specific therapeutic agents. Besides, the application of PrSC into two immunotherapy cohorts indicated its potential value in assessing treatment response to immunotherapy. INTERPRETATION Our study depicted the multi-dimensional characterization of ESCC, established a robust scoring tool for the prognosis assessment, highlighted the role of TNS1high fibroblasts in TME, and identified potential drugs for clinical use. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fanghua Chen
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yiwei Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
94
|
Zhao N, Powell RT, Yuan X, Bae G, Roarty KP, Stossi F, Strempfl M, Toneff MJ, Johnson HL, Mani SA, Jones P, Stephan CC, Rosen JM. Morphological screening of mesenchymal mammary tumor organoids to identify drugs that reverse epithelial-mesenchymal transition. Nat Commun 2021; 12:4262. [PMID: 34253738 PMCID: PMC8275587 DOI: 10.1038/s41467-021-24545-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) has been implicated in conferring stem cell properties and therapeutic resistance to cancer cells. Therefore, identification of drugs that can reprogram EMT may provide new therapeutic strategies. Here, we report that cells derived from claudin-low mammary tumors, a mesenchymal subtype of triple-negative breast cancer, exhibit a distinctive organoid structure with extended "spikes" in 3D matrices. Upon a miR-200 induced mesenchymal-epithelial transition (MET), the organoids switch to a smoother round morphology. Based on these observations, we developed a morphological screening method with accompanying analytical pipelines that leverage deep neural networks and nearest neighborhood classification to screen for EMT-reversing drugs. Through screening of a targeted epigenetic drug library, we identified multiple class I HDAC inhibitors and Bromodomain inhibitors that reverse EMT. These data support the use of morphological screening of mesenchymal mammary tumor organoids as a platform to identify drugs that reverse EMT.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, USA
| | - Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Goeun Bae
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, USA
| | - Kevin P Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Hannah L Johnson
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute of Applied Cancer Science (IACS), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifford C Stephan
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
95
|
Zhang X, Shen L, Cai R, Yu X, Yang J, Wu X, Zhu Y, Liu X. Comprehensive Analysis of the Immune-Oncology Targets and Immune Infiltrates of N 6-Methyladenosine-Related Long Noncoding RNA Regulators in Breast Cancer. Front Cell Dev Biol 2021; 9:686675. [PMID: 34277627 PMCID: PMC8283003 DOI: 10.3389/fcell.2021.686675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer (BRCA) has become the highest incidence of cancer due to its heterogeneity. To predict the prognosis of BRCA patients, sensitive biomarkers deserve intensive investigation. Herein, we explored the role of N6-methyladenosine-related long non-coding RNAs (m6A-related lncRNAs) as prognostic biomarkers in BRCA patients acquired from The Cancer Genome Atlas (TCGA; n = 1,089) dataset and RNA sequencing (RNA-seq) data (n = 196). Pearson’s correlation analysis, and univariate and multivariate Cox regression were performed to select m6A-related lncRNAs associated with prognosis. Twelve lncRNAs were identified to construct an m6A-related lncRNA prognostic signature (m6A-LPS) in TCGA training (n = 545) and validation (n = 544) cohorts. Based on the 12 lncRNAs, risk scores were calculated. Then, patients were classified into low- and high-risk groups according to the median value of risk scores. Distinct immune cell infiltration was observed between the two groups. Patients with low-risk score had higher immune score and upregulated expressions of four immune-oncology targets (CTLA4, PDCD1, CD274, and CD19) than patients with high-risk score. On the contrary, the high-risk group was more correlated with overall gene mutations, Wnt/β-catenin signaling, and JAK-STAT signaling pathways. In addition, the stratification analysis verified the ability of m6A-LPS to predict prognosis. Moreover, a nomogram (based on risk score, age, gender, stage, PAM50, T, M, and N stage) was established to evaluate the overall survival (OS) of BRCA patients. Thus, m6A-LPS could serve as a sensitive biomarker in predicting the prognosis of BRCA patients and could exert positive influence in personalized immunotherapy.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Shen
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruyu Cai
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junzhe Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Wu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
96
|
Shen J, Liu T, Bei Q, Xu S. Comprehensive Landscape of Ovarian Cancer Immune Microenvironment Based on Integrated Multi-Omics Analysis. Front Oncol 2021; 11:685065. [PMID: 34222009 PMCID: PMC8247482 DOI: 10.3389/fonc.2021.685065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer has a low response rate to immunotherapy and a complex immune microenvironment that regulates its treatment outcomes. Understanding the immune microenvironment and its molecular basis is of great clinical significance in the effort to improve immunotherapy response and outcomes. To determine the characteristics of the immune microenvironment in ovarian cancer, we stratified ovarian cancer patients into three immune subtypes (C1, C2, and C3) using immune-related genes based on gene expression data from The Cancer Genome Atlas and found that these three subtypes had significant differences in immune characteristics and prognosis. Methylation and copy number variant analysis showed that the immune checkpoint genes that influenced immune response were significantly hypermethylated and highly deleted in the immunosuppressive C3 subtype, suggesting that epigenetic therapy may be able to reverse the efficacy of immunotherapy. In addition, the mutation frequencies of BRCA2 and CDK12 were significantly higher in the C2 subtype than in the other two subtypes, suggesting that mutation of DNA repair-related genes significantly affects the prognosis of ovarian cancer patients. Our study further elucidated the molecular characteristics of the immune microenvironment of ovarian cancer, which providing an effective hierarchical method for the immunotherapy of ovarian cancer patients, and has clinical relevance to the design of new immunotherapies and a reasonable combination strategies.
Collapse
Affiliation(s)
- Jiacheng Shen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tingwei Liu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiaoli Bei
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
97
|
Zhang K, Ping L, Du T, Liang G, Huang Y, Li Z, Deng R, Tang J. A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer. Front Mol Biosci 2021; 8:678877. [PMID: 34164433 PMCID: PMC8215711 DOI: 10.3389/fmolb.2021.678877] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Ferroptosis, a regulated cell death which is driven by the iron-dependent peroxidation of lipids, plays an important role in cancer. However, studies about ferroptosis-related Long non-coding RNAs (lncRNAs) in breast cancer (BC) are limited. Besides, the prognostic role of ferroptosis-related lncRNAs and their relationship to immune microenvironment in breast cancer remain unclear. This study aimed to explore the potential prognostic value of ferroptosis-related lncRNAs and their relationship to immune microenvironment in breast cancer. Methods: RNA-sequencing data of female breast cancer patients were downloaded from TCGA database. 937 patients were randomly separated into training or validation cohort in 2:1 ratio. Ferroptosis-related lncRNAs were screened by Pearson correlation analysis with 239 reported ferroptosis-related genes. A ferroptosis-related lncRNAs signature was constructed with univariate and multivariate Cox regression analyses in the training cohort, and its prognostic value was further tested in the validation cohort. Results: An 8-ferroptosis-related-lncRNAs signature was developed by multivariate Cox regression analysis to divide patients into two risk groups. Patients in the high-risk group had worse prognosis than patients in the low-risk group. Multivariate Cox regression analysis showed the risk score was an independent prognostic indicator. Receiver operating characteristic curve (ROC) analysis proved the predictive accuracy of the signature. The area under time-dependent ROC curve (AUC) reached 0.853 at 1 year, 0.802 at 2 years, 0.740 at 5 years in the training cohort and 0.791 at 1 year, 0.778 at 2 years, 0.722 at 5 years in the validation cohort. Further analysis demonstrated that immune-related pathways were significantly enriched in the high-risk group. Analysis of the immune cell infiltration landscape showed that breast cancer in the high-risk group tended be immunologically “cold”. Conclusion: We identified a novel ferroptosis-related lncRNA signature which could precisely predict the prognosis of breast cancer patients. Ferroptosis-related lncRNAs may have a potential role in the process of anti-tumor immunity and serve as therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Kaiming Zhang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liqin Ping
- Department of Medical Oncology, State Key Laboratory of On cology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tian Du
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Gehao Liang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhiling Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong Deng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jun Tang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
98
|
Walens A, Olsson LT, Gao X, Hamilton AM, Kirk EL, Cohen SM, Midkiff BR, Xia Y, Sherman ME, Nikolaishvili-Feinberg N, Serody JS, Hoadley KA, Troester MA, Calhoun BC. Protein-based immune profiles of basal-like vs. luminal breast cancers. J Transl Med 2021; 101:785-793. [PMID: 33623115 PMCID: PMC8140991 DOI: 10.1038/s41374-020-00506-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/28/2023] Open
Abstract
Tumor-infiltrating lymphocytes play an important, but incompletely understood role in chemotherapy response and prognosis. In breast cancer, there appear to be distinct immune responses by subtype, but most studies have used limited numbers of protein markers or bulk sequencing of RNA to characterize immune response, in which spatial organization cannot be assessed. To identify immune phenotypes of Basal-like vs. Luminal breast cancer we used the GeoMx® (NanoString) platform to perform digital spatial profiling of immune-related proteins in tumor whole sections and tissue microarrays (TMA). Visualization of CD45, CD68, or pan-Cytokeratin by immunofluorescence was used to select regions of interest in formalin-fixed paraffin embedded tissue sections. Forty-four antibodies representing stromal markers and multiple immune cell types were applied to quantify the tumor microenvironment. In whole tumor slides, immune hot spots (CD45+) had increased expression of many immune markers, suggesting a diverse and robust immune response. In epithelium-enriched areas, immune signals were also detectable and varied by subtype, with regulatory T-cell (Treg) markers (CD4, CD25, and FOXP3) being higher in Basal-like vs. Luminal breast cancer. Extending these findings to TMAs with more patients (n = 75), we confirmed subtype-specific immune profiles, including enrichment of Treg markers in Basal-likes. This work demonstrated that immune responses can be detected in epithelium-rich tissue, and that TMAs are a viable approach for obtaining important immunoprofiling data. In addition, we found that immune marker expression is associated with breast cancer subtype, suggesting possible prognostic, or targetable differences.
Collapse
Affiliation(s)
- Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Linnea T Olsson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiaohua Gao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erin L Kirk
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Stephanie M Cohen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Translational Pathology Laboratory, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Bentley R Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Translational Pathology Laboratory, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Yongjuan Xia
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Translational Pathology Laboratory, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mark E Sherman
- Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Nana Nikolaishvili-Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Translational Pathology Laboratory, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Benjamin C Calhoun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
99
|
Wang J, Lou J, Fu L, Jin Q. An independent poor-prognosis subtype of hepatocellular carcinoma based on the tumor microenvironment. J Int Med Res 2021; 49:300060520980646. [PMID: 33567957 PMCID: PMC7883156 DOI: 10.1177/0300060520980646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly malignant tumor with a particularly poor prognosis. The tumor microenvironment (TME) is closely associated with tumorigenesis, progression, and treatment. However, the relationship between TME genes and HCC patient prognosis is poorly understood. Methods In this study, we identified two prognostic subtypes based on the TME using data from The Cancer Genome Atlas and Gene Expression Omnibus. The Microenvironment Cell Populations-counter method was used to evaluate immune cell infiltration in HCC. Differentially expressed genes between molecular subtypes were calculated with the Limma package, and clusterProfiler was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to identify genes related to the independent subtypes. We also integrated mRNA expression data into our bioinformatics analysis. Results We identified 4227 TME-associated genes and 640 genes related to the prognosis of HCC. We defined two major subtypes (Clusters 1 and 2) based on the analysis of TME-associated gene expression. Cluster 1 was characterized by increased expression of immune-associated genes and a worse prognosis than Cluster 2. Conclusions The identification of these HCC subtypes based on the TME provides further insight into the molecular mechanisms and prediction of HCC prognosis.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of General Surgery, Hangzhou Mingzhou Hospital, Hangzhou, China
| | - Jianying Lou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Fu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of General Surgery, Hangzhou Mingzhou Hospital, Hangzhou, China
| | - Qu Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of General Surgery, Hangzhou Mingzhou Hospital, Hangzhou, China
| |
Collapse
|
100
|
Tian Y, Wang J, Wen Q, Su G, Sun Y. Immune subgroup analysis for non-small cell lung cancer may be a good choice for evaluating therapeutic efficacy and prognosis. Aging (Albany NY) 2021; 13:12691-12709. [PMID: 33973529 PMCID: PMC8148502 DOI: 10.18632/aging.202941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 12/26/2022]
Abstract
Due to its effectiveness, cancer immunotherapy has attracted widespread attention from clinicians and scientific researchers. Numerous studies have proven that effective stratification of cancer patients would promote the personalized application of immunotherapy. Therefore, we used the transcriptome data of nearly 1,000 patients with non-small cell lung cancer (NSCLC) to construct a new immune subgroup. We found that the new immune subgroup, named cluster 2, was a mixture of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), and showed poor overall survival, which was further verified in the independent validation set. Immune infiltration correlation analysis showed that the Mast cell type and its status subdivisions had a predictive effect on the prognosis of NSCLC, especially in LUAD. Phenotypic analysis suggested that epithelial-mesenchymal transition (EMT) was positively correlated with immunosuppression, supporting the correlation between tumor phenotype and immune background. Although immune subtypes failed to significantly distinguish the progression-free survival (PFS) of immunotherapy patients, they showed the expected trend; the sample size needs to be further expanded for verification. In addition, some results indicated that the two cancer types, LUAD and LUSC, might require independent analyses.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan 250013, Shandong, P.R. China.,Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, P.R. China.,Department of Radiotherapy Oncology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, P.R. China
| | - Jingnan Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan 250013, Shandong, P.R. China
| | - Qing Wen
- Jinan Clinical Research Center of Shandong First Medical University, Jinan 250013, Shandong, P.R. China
| | - Guohai Su
- Department of Cardiovascular Diseases, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, P.R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan 250013, Shandong, P.R. China.,Department of Oncology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, P.R. China
| |
Collapse
|