51
|
Spencer AJ, Morris S, Ulaszewska M, Powers C, Kailath R, Bissett C, Truby A, Thakur N, Newman J, Allen ER, Rudiansyah I, Liu C, Dejnirattisai W, Mongkolsapaya J, Davies H, Donnellan FR, Pulido D, Peacock TP, Barclay WS, Bright H, Ren K, Screaton G, McTamney P, Bailey D, Gilbert SC, Lambe T. The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine 2022; 77:103902. [PMID: 35228013 PMCID: PMC8881183 DOI: 10.1016/j.ebiom.2022.103902] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. METHODS In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). FINDINGS We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. INTERPRETATION Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. FUNDING This research was funded by AstraZeneca with supporting funds from MRC and BBSRC.
Collapse
Affiliation(s)
- Alexandra J Spencer
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| | - Susan Morris
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Claire Powers
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Reshma Kailath
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Cameron Bissett
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Adam Truby
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nazia Thakur
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Joseph Newman
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Elizabeth R Allen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Indra Rudiansyah
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Chang Liu
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Wanwisa Dejnirattisai
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Juthathip Mongkolsapaya
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Hannah Davies
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Francesca R Donnellan
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - David Pulido
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Helen Bright
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Kuishu Ren
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Gavin Screaton
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Patrick McTamney
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| |
Collapse
|
52
|
Nguyen TT, Quach THT, Tran TM, Phuoc HN, Nguyen HT, Vo TK, Vo GV. Reactogenicity and immunogenicity of heterologous prime-boost immunization with COVID-19 vaccine. Biomed Pharmacother 2022; 147:112650. [PMID: 35066301 PMCID: PMC8767802 DOI: 10.1016/j.biopha.2022.112650] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The objective of the present work was to assess the reactogenicity and immunogenicity of heterologous COVID-19 vaccination regimens in clinical trials and observational studies. METHODS PubMed, Cochrane Library, Embase, MedRxiv, BioRxiv databases were searched in September 29, 2021. The PRISMA instruction for systemic review was followed. Two reviewers independently selected the studies, extracted the data and assessed risk of bias. The quality of studies was evaluated using the New Castle-Ottawa and Cochrane risk of instrument. The characteristics and study outcome (e.g., adverse events, immune response, and variant of concern) were extracted. RESULTS Nineteen studies were included in the final data synthesis with 5 clinical trials and 14 observational studies. Heterologous vaccine administration showed a trend toward more frequent systemic reactions. However, the total reactogenicity was tolerable and manageable. Importantly, the heterologous prime-boost vaccination regimens provided higher immunogenic effect either vector/ mRNA-based vaccine or vector/ inactivated vaccine in both humoral and cellular immune response. Notably, the heterologous regimens induced the potential protection against the variant of concern, even to the Delta variant. CONCLUSIONS The current findings provided evidence about the higher induction of robust immunogenicity and tolerated reactogenicity of heterologous vaccination regimens (vector-based/mRNA vaccine or vector-based/inactivated vaccine). Also, this study supports the application of heterologous regimens against COVID-19 which may provide more opportunities to speed up the global vaccination campaign and maximize the capacity to control the pandemic.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City 700000, Viet Nam
| | - Trang Ho Thu Quach
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City 700000, Viet Nam; Global Health Institute, College of Public Health, University of Georgia, Athens, GA, USA
| | - Thanh Mai Tran
- School of Medicine, Vietnam National University -Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam
| | - Huynh Ngoc Phuoc
- School of Medicine, Vietnam National University -Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam
| | - Ha Thi Nguyen
- School of Medicine, Vietnam National University -Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam
| | - Tuong Kha Vo
- Vietnam Sports Hospital, Ministry of Culture, Sports and Tourism, Hanoi 100000, Viet Nam; Department of Sports Medicine, University of Medicine and Pharmacy (VNU-UMP), Vietnam National University Hanoi, Hanoi 100000, Viet Nam.
| | - Giau Van Vo
- School of Medicine, Vietnam National University -Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
53
|
Bauswein M, Peterhoff D, Plentz A, Hiergeist A, Wagner R, Gessner A, Salzberger B, Schmidt B, Bauernfeind S. Increased neutralization of SARS-CoV-2 Delta variant after heterologous ChAdOx1 nCoV-19/BNT162b2 versus homologous BNT162b2 vaccination. iScience 2022; 25:103694. [PMID: 35013723 PMCID: PMC8730691 DOI: 10.1016/j.isci.2021.103694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
Heterologous SARS-CoV-2 vaccine approaches with a second mRNA-based vaccine have been favored in the recommendations of many countries over homologous vector-based ChAdOx1 nCoV-19 vaccination after reports of thromboembolic events and lower efficacy of this regimen. In the middle of 2021, the SARS-CoV-2 Delta variant of concern (VoC) has become predominant in many countries worldwide. Data addressing the neutralization capacity of a heterologous ChAdOx1 nCoV-19/mRNA-based vaccination approach against the Delta VoC in comparison to the widely used homologous mRNA-based vaccine regimen are limited. Here, we compare serological immune responses of a cohort of ChAdOx1 nCoV-19/BNT162b2-vaccinated participants with those of BNT162b2/BNT162b2 vaccinated ones and show that neutralization capacity against the Delta VoC is significantly increased in sera of ChAdOx1 nCoV-19/BNT162b2-vaccinated participants. This overall effect can be attributed to ChAdOx1 nCoV-19/BNT162b2-vaccinated women, especially those with more severe adverse effects leading to sick leave following second immunization. Heterologous ChAd/BNT vaccination is highly immunogenic Delta VoC neutralization is increased after heterologous ChAd/BNT vaccination This effect is attributable to women with sick leave after second vaccination IgA levels are overall low, but higher after BNT/BNT vaccination
Collapse
Affiliation(s)
- Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Corresponding author
| | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Annelie Plentz
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Bernd Salzberger
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Stilla Bauernfeind
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
54
|
Khoo NKH, Lim JME, Gill US, de Alwis R, Tan N, Toh JZN, Abbott JE, Usai C, Ooi EE, Low JGH, Le Bert N, Kennedy PTF, Bertoletti A. Differential immunogenicity of homologous versus heterologous boost in Ad26.COV2.S vaccine recipients. MED 2022; 3:104-118.e4. [PMID: 35072129 PMCID: PMC8767655 DOI: 10.1016/j.medj.2021.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Protection offered by coronavirus disease 2019 (COVID-19) vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. METHODS We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals (n = 55) who were either primed with Ad26.COV2.S only (n = 13) or were boosted with a homologous (Ad26.COV2.S, n = 28) or heterologous (BNT162b2, n = 14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n = 16) or double (n = 44) dose of BNT162b2. FINDINGS We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals. In contrast, the impact of the homologous boost was quantitatively minimal in Ad26.COV2.S-vaccinated individuals, and Spike-specific antibodies and T cells were narrowly focused to the S1 region. CONCLUSIONS Despite the small sample size of the study and the lack of well-defined correlates of protection against COVID-19, the immunological features detected support the utilization of a heterologous vaccine boost in individuals who received Ad26.COV2.S vaccination. FUNDING This study is partially supported by the Singapore Ministry of Health's National Medical Research Council under its COVID-19 Research Fund (COVID19RF3-0060, COVID19RF-001, and COVID19RF-008), The Medical College St. Bartholomew's Hospital Trustees - Pump Priming Fund for SMD COVID-19 Research.
Collapse
Affiliation(s)
- Nicholas Kim Huat Khoo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Joey Ming Er Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Upkar S Gill
- Barts Liver Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Mile End Road, London E1, UK
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Nicole Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Justin Zhen Nan Toh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Jane E Abbott
- Barts Liver Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Mile End Road, London E1, UK
| | - Carla Usai
- Barts Liver Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Mile End Road, London E1, UK
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Jenny Guek Hong Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169856, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Patrick T F Kennedy
- Barts Liver Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Mile End Road, London E1, UK
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore Immunology Network, A∗STAR, Singapore 138648, Singapore
| |
Collapse
|
55
|
Hollstein MM, Münsterkötter L, Schön MP, Bergmann A, Husar TM, Abratis A, Eidizadeh A, Schaffrinski M, Zachmann K, Schmitz A, Holsapple JS, Stanisz‐Bogeski H, Schanz J, Fischer A, Groß U, Leha A, Zautner AE, Schnelle M, Erpenbeck L. Interdependencies of cellular and humoral immune responses in heterologous and homologous SARS-CoV-2 vaccination. Allergy 2022; 77:2381-2392. [PMID: 35124800 PMCID: PMC9111248 DOI: 10.1111/all.15247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
Background Homologous and heterologous SARS‐CoV‐2 vaccinations yield different spike protein‐directed humoral and cellular immune responses. This study aimed to explore their currently unknown interdependencies. Methods COV‐ADAPT is a prospective, observational cohort study of 417 healthcare workers who received vaccination with homologous ChAdOx1 nCoV‐19, homologous BNT162b2 or with heterologous ChAdOx1 nCoV‐19/BNT162b2. We assessed humoral (anti‐spike‐RBD‐IgG, neutralizing antibodies, and avidity) and cellular (spike‐induced T‐cell interferon‐γ release) immune responses in blood samples up to 2 weeks before (T1) and 2–12 weeks following secondary immunization (T2). Results Initial vaccination with ChAdOx1 nCoV‐19 resulted in lower anti‐spike‐RBD‐IgG compared with BNT162b2 (70 ± 114 vs. 226 ± 279 BAU/ml, p < .01) at T1. Booster vaccination with BNT162b2 proved superior to ChAdOx1 nCoV‐19 at T2 (anti‐spike‐RBD‐IgG: ChAdOx1 nCoV‐19/BNT162b2 2387 ± 1627 and homologous BNT162b2 3202 ± 2184 vs. homologous ChAdOx1 nCoV‐19 413 ± 461 BAU/ml, both p < .001; spike‐induced T‐cell interferon‐γ release: ChAdOx1 nCoV‐19/BNT162b2 5069 ± 6733 and homologous BNT162b2 4880 ± 7570 vs. homologous ChAdOx1 nCoV‐19 1152 ± 2243 mIU/ml, both p < .001). No significant differences were detected between BNT162b2‐boostered groups at T2. For ChAdOx1 nCoV‐19, no booster effect on T‐cell activation could be observed. We found associations between anti‐spike‐RBD‐IgG levels (ChAdOx1 nCoV‐19/BNT162b2 and homologous BNT162b2) and T‐cell responses (homologous ChAdOx1 nCoV‐19 and ChAdOx1 nCoV‐19/BNT162b2) from T1 to T2. Additionally, anti‐spike‐RBD‐IgG and T‐cell response were linked at both time points (all groups combined). All regimes yielded neutralizing antibodies and increased antibody avidity at T2. Conclusions Interdependencies between humoral and cellular immune responses differ between common SARS‐CoV‐2 vaccination regimes. T‐cell activation is unlikely to compensate for poor humoral responses.
Collapse
Affiliation(s)
- Moritz M. Hollstein
- Department of Dermatology, Venereology and Allergology University Medical Center Göttingen Göttingen Germany
| | - Lennart Münsterkötter
- Institute of Medical Microbiology and Virology University Medical Center Göttingen Göttingen Germany
| | - Michael P. Schön
- Department of Dermatology, Venereology and Allergology University Medical Center Göttingen Göttingen Germany
- Lower Saxony Institute of Occupational Dermatology University Medical Center Göttingen Göttingen Germany
| | - Armin Bergmann
- Department of Dermatology, Venereology and Allergology University Medical Center Göttingen Göttingen Germany
| | - Thea M. Husar
- Department of Dermatology, Venereology and Allergology University Medical Center Göttingen Göttingen Germany
| | - Anna Abratis
- Institute for Clinical Chemistry University Medical Center Göttingen Göttingen Germany
| | - Abass Eidizadeh
- Institute for Clinical Chemistry University Medical Center Göttingen Göttingen Germany
| | - Meike Schaffrinski
- Department of Dermatology, Venereology and Allergology University Medical Center Göttingen Göttingen Germany
| | - Karolin Zachmann
- Department of Dermatology, Venereology and Allergology University Medical Center Göttingen Göttingen Germany
| | - Anne Schmitz
- Department of Dermatology University of Münster Münster Germany
| | | | - Hedwig Stanisz‐Bogeski
- Department of Dermatology, Venereology and Allergology University Medical Center Göttingen Göttingen Germany
| | - Julie Schanz
- Institute for Clinical Chemistry University Medical Center Göttingen Göttingen Germany
- Department of Hematology and Medical Oncology University Medical Center Göttingen Göttingen Germany
| | - Andreas Fischer
- Institute for Clinical Chemistry University Medical Center Göttingen Göttingen Germany
- Division Vascular Signaling and Cancer German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Uwe Groß
- Institute of Medical Microbiology and Virology University Medical Center Göttingen Göttingen Germany
| | - Andreas Leha
- Department of Medical Statistics University Medical Center Göttingen Göttingen Germany
| | - Andreas E. Zautner
- Institute of Medical Microbiology and Virology University Medical Center Göttingen Göttingen Germany
- Institute of Medical Microbiology and Hospital Hygiene Medical Faculty Otto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Moritz Schnelle
- Institute for Clinical Chemistry University Medical Center Göttingen Göttingen Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology University Medical Center Göttingen Göttingen Germany
- Department of Dermatology University of Münster Münster Germany
| |
Collapse
|
56
|
Costa Clemens SA, Weckx L, Clemens R, Almeida Mendes AV, Ramos Souza A, Silveira MBV, da Guarda SNF, de Nobrega MM, de Moraes Pinto MI, Gonzalez IGS, Salvador N, Franco MM, de Avila Mendonça RN, Queiroz Oliveira IS, de Freitas Souza BS, Fraga M, Aley P, Bibi S, Cantrell L, Dejnirattisai W, Liu X, Mongkolsapaya J, Supasa P, Screaton GR, Lambe T, Voysey M, Pollard AJ. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet 2022; 399:521-529. [PMID: 35074136 PMCID: PMC8782575 DOI: 10.1016/s0140-6736(22)00094-0] [Citation(s) in RCA: 297] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac, Sinovac) has been widely used in a two-dose schedule. We assessed whether a third dose of the homologous or a different vaccine could boost immune responses. METHODS RHH-001 is a phase 4, participant masked, two centre, safety and immunogenicity study of Brazilian adults (18 years and older) in São Paulo or Salvador who had received two doses of CoronaVac 6 months previously. The third heterologous dose was of either a recombinant adenoviral vectored vaccine (Ad26.COV2-S, Janssen), an mRNA vaccine (BNT162b2, Pfizer-BioNTech), or a recombinant adenoviral-vectored ChAdOx1 nCoV-19 vaccine (AZD1222, AstraZeneca), compared with a third homologous dose of CoronaVac. Participants were randomly assigned (5:6:5:5) by a RedCAP computer randomisation system stratified by site, age group (18-60 years or 61 years and over), and day of randomisation, with a block size of 42. The primary outcome was non-inferiority of anti-spike IgG antibodies 28 days after the booster dose in the heterologous boost groups compared with homologous regimen, using a non-inferiority margin for the geometric mean ratio (heterologous vs homologous) of 0·67. Secondary outcomes included neutralising antibody titres at day 28, local and systemic reactogenicity profiles, adverse events, and serious adverse events. This study was registered with Registro Brasileiro de Ensaios Clínicos, number RBR-9nn3scw. FINDINGS Between Aug 16, and Sept 1, 2021, 1240 participants were randomly assigned to one of the four groups, of whom 1239 were vaccinated and 1205 were eligible for inclusion in the primary analysis. Antibody concentrations were low before administration of a booster dose with detectable neutralising antibodies of 20·4% (95% CI 12·8-30·1) in adults aged 18-60 years and 8·9% (4·2-16·2) in adults 61 years or older. From baseline to day 28 after the booster vaccine, all groups had a substantial rise in IgG antibody concentrations: the geometric fold-rise was 77 (95% CI 67-88) for Ad26.COV2-S, 152 (134-173) for BNT162b2, 90 (77-104) for ChAdOx1 nCoV-19, and 12 (11-14) for CoronaVac. All heterologous regimens had anti-spike IgG responses at day 28 that were superior to homologous booster responses: geometric mean ratios (heterologous vs homologous) were 6·7 (95% CI 5·8-7·7) for Ad26.COV2-S, 13·4 (11·6-15·3) for BNT162b2, and 7·0 (6·1-8·1) for ChAdOx1 nCoV-19. All heterologous boost regimens induced high concentrations of pseudovirus neutralising antibodies. At day 28, all groups except for the homologous boost in the older adults reached 100% seropositivity: geometric mean ratios (heterologous vs homologous) were 8·7 (95% CI 5·9-12·9) for Ad26.COV2-S vaccine, 21·5 (14·5-31·9) for BNT162b2, and 10·6 (7·2-15·6) for ChAdOx1 nCoV-19. Live virus neutralising antibodies were also boosted against delta (B.1.617.2) and omicron variants (B.1.1.529). There were five serious adverse events. Three of which were considered possibly related to the vaccine received: one in the BNT162b2 group and two in the Ad26.COV2-S group. All participants recovered and were discharged home. INTERPRETATION Antibody concentrations were low at 6 months after previous immunisation with two doses of CoronaVac. However, all four vaccines administered as a third dose induced a significant increase in binding and neutralising antibodies, which could improve protection against infection. Heterologous boosting resulted in more robust immune responses than homologous boosting and might enhance protection. FUNDING Ministry of Health, Brazil.
Collapse
Affiliation(s)
- Sue Ann Costa Clemens
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Institute of Global Health, University of Siena, Siena, Italy
| | - Lily Weckx
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Ana Verena Almeida Mendes
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil; General Medicine, Hospital São Rafael, Salvador, Brazil; Instituto D'Or de Pesquisa e Ensino, Salvador, Brazil
| | | | | | - Suzete Nascimento Farias da Guarda
- General Medicine, Hospital São Rafael, Salvador, Brazil; Instituto D'Or de Pesquisa e Ensino, Salvador, Brazil; Department of Pediatrics, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | | | - Marilia Miranda Franco
- General Medicine, Hospital São Rafael, Salvador, Brazil; Instituto D'Or de Pesquisa e Ensino, Salvador, Brazil
| | | | | | | | - Mayara Fraga
- Instituto D'Or de Pesquisa e Ensino, Salvador, Brazil
| | - Parvinder Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Liberty Cantrell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | |
Collapse
|
57
|
Zinatizadeh MR, Zarandi PK, Zinatizadeh M, Yousefi MH, Amani J, Rezaei N. Efficacy of mRNA, adenoviral vector, and perfusion protein COVID-19 vaccines. Biomed Pharmacother 2022; 146:112527. [PMID: 34906769 PMCID: PMC8660177 DOI: 10.1016/j.biopha.2021.112527] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has a devastating impact on global populations triggered by a highly infectious viral sickness, produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The third major cause of mortality in the United States, following heart disease and cancer in 2020, was undoubtedly COVID-19. The centers for disease control and prevention (CDC) and the world health organization (WHO) separately developed a categorization system for differentiating new strains of SARS-CoV-2 into variants of concern (VoCs) and variants of interest (VoIs) with the continuing development of various strains SARS-CoV-2. By December 2021, five of the SARS-CoV-2 VoCs were discovered from the onset of the pandemic depending on the latest epidemiologic report by the WHO: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529). Mutations in the receptor-binding domain (RBD) and n-terminal domain (NTD) have been found throughout all five identified VoCs. All strains other than the delta mutant are often found with the N501Y mutation situated on the RBD, resulting in higher binding between the spike protein and angiotensin-converting enzyme 2 (ACE2) receptors, enhanced viral adhesion, and following the entrance to host cells. The introduction of these new strains of SRAS-CoV-2 is likely to overcome the remarkable achievements gained in restricting this viral disease to the point where it is presented with remarkable vaccine developments against COVID-19 and strong worldwide mass immunization initiatives. Throughout this literature review, the effectiveness of current COVID-19 vaccines for managing and prohibiting SARS-CoV-2 strains is thoroughly described.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Zinatizadeh
- Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hadi Yousefi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Jaffar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
58
|
Reindl-Schwaighofer R, Heinzel A, Mayrdorfer M, Jabbour R, Hofbauer TM, Merrelaar A, Eder M, Regele F, Doberer K, Spechtl P, Aschauer C, Koblischke M, Paschen C, Eskandary F, Hu K, Öhler B, Bhandal A, Kleibenböck S, Jagoditsch RI, Reiskopf B, Heger F, Bond G, Böhmig GA, Strassl R, Weseslindtner L, Indra A, Aberle JH, Binder M, Oberbauer R. Comparison of SARS-CoV-2 Antibody Response 4 Weeks After Homologous vs Heterologous Third Vaccine Dose in Kidney Transplant Recipients: A Randomized Clinical Trial. JAMA Intern Med 2022; 182:165-171. [PMID: 34928302 PMCID: PMC8689434 DOI: 10.1001/jamainternmed.2021.7372] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Fewer than 50% of kidney transplant recipients (KTRs) develop antibodies against the SARS-CoV-2 spike protein after 2 doses of an mRNA vaccine. Preliminary data suggest that a heterologous vaccination, combining mRNA and viral vector vaccines, may increase immunogenicity. OBJECTIVE To assess the effectiveness of a third dose of an mRNA vs a vector vaccine in KTRs who did not have antibodies against the SARS-CoV-2 spike protein after 2 doses of an mRNA vaccine. DESIGN, SETTING, AND PARTICIPANTS This was a single center, single-blinded, 1:1 randomized clinical trial of a third dose of vaccine against SARS-CoV-2, conducted from June 15 to August 16, 2021, in 201 KTRs who had not developed SARS-CoV-2 spike protein antibodies after 2 doses of an mRNA vaccine. Data analyses were performed from August 17 to August 31, 2021. INTERVENTIONS mRNA (BNT162b2 or mRNA-1273) or vector (Ad26COVS1) as a third dose of a SARS-CoV-2 vaccine. MAIN OUTCOMES AND MEASURES The primary study end point was seroconversion after 4 weeks (29-42 days) following the third vaccine dose. Secondary end points included neutralizing antibodies and T-cell response assessed by interferon-γ release assays (IGRA). In addition, the association of patient characteristics and vaccine response was assessed using logistic regression, and the reactogenicity of the vaccines was compared. RESULTS Among the study population of 197 kidney transplant recipients (mean [SD] age, 61.2 [12.4] years; 82 [42%] women), 39% developed SARS-CoV-2 antibodies after the third vaccine. There was no statistically significant difference between groups, with an antibody response rate of 35% and 42% for the mRNA and vector vaccines, respectively. Only 22% of seroconverted patients had neutralizing antibodies. Similarly, T-cell response assessed by IGRA was low with only 17 patients showing a positive response after the third vaccination. Receiving nontriple immunosuppression (odds ratio [OR], 3.59; 95% CI, 1.33-10.75), longer time after kidney transplant (OR, 1.44; 95% CI, 1.15-1.83, per doubling of years), and torque teno virus plasma levels (OR, 0.92; 95% CI, 0.88-0.96, per doubling of levels) were associated with vaccine response. The third dose of an mRNA vaccine was associated with a higher frequency of local pain at the injection site compared with the vector vaccine, while systemic symptoms were comparable between groups. CONCLUSIONS AND RELEVANCE This randomized clinical trial found that 39% of KTRs without an immune response against SARS-CoV-2 after 2 doses of an mRNA vaccine developed antibodies against the SARS-CoV-2 spike protein 4 weeks after a third dose of an mRNA or a vector vaccine. The heterologous vaccination strategy with a vector-based vaccine was well tolerated and safe but not significantly better than the homologous mRNA-based strategy. TRIAL REGISTRATION EudraCT Identifier: 2021-002927-39.
Collapse
Affiliation(s)
- Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Manuel Mayrdorfer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rhea Jabbour
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Hofbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Anne Merrelaar
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florina Regele
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Paul Spechtl
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Christopher Paschen
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karin Hu
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Barbara Öhler
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Arshdeep Bhandal
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sabine Kleibenböck
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rahel I Jagoditsch
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bianca Reiskopf
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian Heger
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Division of Virology, Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | | | - Alexander Indra
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria.,Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
59
|
Rose R, Neumann F, Grobe O, Lorentz T, Fickenscher H, Krumbholz A. Humoral immune response after different SARS-CoV-2 vaccination regimens. BMC Med 2022; 20:31. [PMID: 35057798 PMCID: PMC8776512 DOI: 10.1186/s12916-021-02231-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The humoral immune response after primary immunisation with a SARS-CoV-2 vector vaccine (AstraZeneca AZD1222, ChAdOx1 nCoV-19, Vaxzevria) followed by an mRNA vaccine boost (Pfizer/BioNTech, BNT162b2; Moderna, m-1273) was examined and compared with the antibody response after homologous vaccination schemes (AZD1222/AZD1222 or BNT162b2/BNT162b2). METHODS Sera from 59 vaccinees were tested for anti-SARS-CoV-2 immunoglobulin G (IgG) and virus-neutralising antibodies (VNA) with three IgG assays based on (parts of) the SARS-CoV-2 spike (S)-protein as antigen, an IgG immunoblot (additionally contains the SARS-CoV-2 nucleoprotein (NP) as an antigen), a surrogate neutralisation test (sVNT), and a Vero-cell-based virus-neutralisation test (cVNT) with the B.1.1.7 variant of concern (VOC; alpha) as antigen. Investigation was done before and after heterologous (n = 30 and 42) or homologous booster vaccination (AZD1222/AZD1222, n = 8/9; BNT162b2/BNT162b2, n = 8/8). After the second immunisation, a subgroup of 26 age- and gender-matched sera (AZD1222/mRNA, n = 9; AZD1222/AZD1222, n = 9; BNT162b2/BNT162b2, n = 8) was also tested for VNA against VOC B.1.617.2 (delta) in the cVNT. The strength of IgG binding to separate SARS-CoV-2 antigens was measured by avidity. RESULTS After the first vaccination, the prevalence of IgG directed against the (trimeric) SARS-CoV-2 S-protein and its receptor binding domain (RBD) varied from 55-95% (AZD1222) to 100% (BNT162b2), depending on the vaccine regimen and the SARS-CoV-2 antigen used. The booster vaccination resulted in 100% seroconversion and the occurrence of highly avid IgG, which is directed against the S-protein subunit 1 and the RBD, as well as VNA against VOC B.1.1.7, while anti-NP IgGs were not detected. The results of the three anti-SARS-CoV-2 IgG tests showed an excellent correlation to the VNA titres against this VOC. The agreement of cVNT and sVNT results was good. However, the sVNT seems to overestimate non- and weak B.1.1.7-neutralising titres. The anti-SARS-CoV-2 IgG concentrations and the B.1.1.7-neutralising titres were significantly higher after heterologous vaccination compared to the homologous AZD1222 scheme. If VOC B.1.617.2 was used as antigen, significantly lower VNA titres were measured in the cVNT, and three (33.3%) vector vaccine recipients had a VNA titre < 1:10. CONCLUSIONS Heterologous SARS-CoV-2 vaccination leads to a strong antibody response with anti-SARS-CoV-2 IgG concentrations and VNA titres at a level comparable to that of a homologous BNT162b2 vaccination scheme. Irrespective of the chosen immunisation regime, highly avid IgG antibodies can be detected just 2 weeks after the second vaccine dose indicating the development of a robust humoral immunity. The reduction in the VNA titre against VOC B.1.617.2 observed in the subgroup of 26 individuals is remarkable and confirms the immune escape of the delta variant.
Collapse
Affiliation(s)
- Ruben Rose
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig Holstein, Campus Kiel, Brunswiker Straße 4, D-24105, Kiel, Germany
| | - Franziska Neumann
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany
| | - Olaf Grobe
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany
| | - Thomas Lorentz
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany
| | - Helmut Fickenscher
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig Holstein, Campus Kiel, Brunswiker Straße 4, D-24105, Kiel, Germany
| | - Andi Krumbholz
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig Holstein, Campus Kiel, Brunswiker Straße 4, D-24105, Kiel, Germany.
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany.
| |
Collapse
|
60
|
Tavares ACFMG, de Melo AKG, Cruz VA, de Souza VA, de Carvalho JS, Machado KLLL, de Azevedo Valadares LD, dos Reis Neto ET, de Rezende RPV, de Resende Guimarães MFB, Ferreira GA, de Sousa Braz A, de Abreu Vieira RMR, de Medeiros Pinheiro M, Ribeiro SLE, Bica BEGR, Baptista KL, da Costa IP, Marques CDL, Lopes MLL, Martinez JE, Giorgi RDN, da Mota LMH, da Rocha Loures MAA, dos Santos Paiva E, Monticielo OA, Xavier RM, Kakehasi AM, Pileggi GCS. Guidelines on COVID-19 vaccination in patients with immune-mediated rheumatic diseases: a Brazilian Society of Rheumatology task force. Adv Rheumatol 2022; 62:3. [PMID: 35039077 PMCID: PMC8762982 DOI: 10.1186/s42358-022-00234-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/08/2022] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To provide guidelines on the coronavirus disease 2019 (COVID-19) vaccination in patients with immune-mediated rheumatic diseases (IMRD) to rheumatologists considering specific scenarios of the daily practice based on the shared-making decision (SMD) process. METHODS A task force was constituted by 24 rheumatologists (panel members), with clinical and research expertise in immunizations and infectious diseases in immunocompromised patients, endorsed by the Brazilian Society of Rheumatology (BSR), to develop guidelines for COVID-19 vaccination in patients with IMRD. A consensus was built through the Delphi method and involved four rounds of anonymous voting, where five options were used to determine the level of agreement (LOA), based on the Likert Scale: (1) strongly disagree; (2) disagree, (3) neither agree nor disagree (neutral); (4) agree; and (5) strongly agree. Nineteen questions were addressed and discussed via teleconference to formulate the answers. In order to identify the relevant data on COVID-19 vaccines, a search with standardized descriptors and synonyms was performed on September 10th, 2021, of the MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and LILACS to identify studies of interest. We used the Newcastle-Ottawa Scale to assess the quality of nonrandomized studies. RESULTS All the nineteen questions-answers (Q&A) were approved by the BSR Task Force with more than 80% of panelists voting options 4-agree-and 5-strongly agree-, and a consensus was reached. These Guidelines were focused in SMD on the most appropriate timing for IMRD patients to get vaccinated to reach the adequate covid-19 vaccination response. CONCLUSION These guidelines were developed by a BSR Task Force with a high LOA among panelists, based on the literature review of published studies and expert opinion for COVID-19 vaccination in IMRD patients. Noteworthy, in the pandemic period, up to the time of the review and the consensus process for this document, high-quality evidence was scarce. Thus, it is not a substitute for clinical judgment.
Collapse
Affiliation(s)
| | - Ana Karla Guedes de Melo
- Hospital Universitário Lauro Wanderley, Universidade Federal da Paraíba, R. Tab. Stanislau Eloy, 585 - Castelo Branco, João Pessoa, Paraíba 58050-585 Brazil
| | - Vítor Alves Cruz
- Hospital das Clínicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | | | | | | | | | | | | - Alessandra de Sousa Braz
- Hospital Universitário Lauro Wanderley, Universidade Federal da Paraíba, R. Tab. Stanislau Eloy, 585 - Castelo Branco, João Pessoa, Paraíba 58050-585 Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Meng H, Mao J, Ye Q. Booster vaccination strategy: Necessity, Immunization Objectives, Immunization Strategy and Safety. J Med Virol 2022; 94:2369-2375. [PMID: 35028946 DOI: 10.1002/jmv.27590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
At present, the global COVID-19 epidemic has not been completely controlled, and epidemic prevention and control still face severe challenges. As there is no specific treatment for COVID-19, promoting roll-out vaccinations and building herd immunity are still the most effective and economic measures to control the COVID-19 pandemic. However, the neutralizing antibody level in the recipients decreases with time, and the vaccine's protective efficacy gradually weakens. It is still inconclusive whether it is necessary to carry out booster vaccination to strengthen the immune barrier to infection. In this paper, we combined the existing data on the effectiveness and persistence of COVID-19 vaccines. We found that it is necessary to carry out a booster vaccination strategy. However, not all subjects need to receive one more dose of vaccine six months after the initial immunization. Priority should be given to the high-risk groups, such as the elderly and people with immunodeficiency. A heterologous booster can induce higher immune responses and enhance immune protection than homologous vaccinations. However, more scientific data and clinical studies are needed to verify the safety of heterologous vaccination strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanyan Meng
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Jianhua Mao
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Qing Ye
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| |
Collapse
|
62
|
Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? THE LANCET. RESPIRATORY MEDICINE 2021; 9:1450-1466. [PMID: 34688434 PMCID: PMC8530467 DOI: 10.1016/s2213-2600(21)00407-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022]
Abstract
Many nations are pursuing the rollout of SARS-CoV-2 vaccines as an exit strategy from unprecedented COVID-19-related restrictions. However, the success of this strategy relies critically on the duration of protective immunity resulting from both natural infection and vaccination. SARS-CoV-2 infection elicits an adaptive immune response against a large breadth of viral epitopes, although the duration of the response varies with age and disease severity. Current evidence from case studies and large observational studies suggests that, consistent with research on other common respiratory viruses, a protective immunological response lasts for approximately 5-12 months from primary infection, with reinfection being more likely given an insufficiently robust primary humoral response. Markers of humoral and cell-mediated immune memory can persist over many months, and might help to mitigate against severe disease upon reinfection. Emerging data, including evidence of breakthrough infections, suggest that vaccine effectiveness might be reduced significantly against emerging variants of concern, and hence secondary vaccines will need to be developed to maintain population-level protective immunity. Nonetheless, other interventions will also be required, with further outbreaks likely to occur due to antigenic drift, selective pressures for novel variants, and global population mobility.
Collapse
|
63
|
Mohammadi G, Sotoudehnia Koranni Z, Jebali A. The oral vaccine based on self-replicating RNA lipid nanoparticles can simultaneously neutralize both SARS-CoV-2 variants alpha and delta. Int Immunopharmacol 2021; 101:108231. [PMID: 34655852 PMCID: PMC8495003 DOI: 10.1016/j.intimp.2021.108231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
The aim of this study was to evaluate self-replicating RNA lipid nanoparticles (saRNA LNPs) to neutralize SARS-CoV-2 variants delta (B.1.617 lineage) and alpha (B.1.1.7 lineage). Before immunization of mice with saRNA LNPs, we saw high expression of S-protein at both mRNA and protein levels after transfection of HEK293T/17 cells with saRNA LNPs. After oral immunization of BALB/c mice with 0.1 - 10 µg saRNA LNPs , a high quantity of SARS-CoV-2 specific IgG and IgA antibodies were seen with a dose-dependent pattern. Importantly, the ratio of IgG2a/IgG1 in serum of vaccinated mice showed Th1/Th2 skewing response. We also found that the secreted antibodies could neutralize SARS-CoV-2 variants delta (B.1.617 lineage) and alpha (B.1.1.7 lineage). Re-stimulated splenocytes of vaccinated mice showed high secretion of IFN-γ, IL-6, and TNF- α . The authors think that although the preclinical study confirmed the efficacy of saRNA LNPs against SARS-CoV-2, the actual efficacy and safety of the oral vaccine must be evaluated in clinical trials.
Collapse
Affiliation(s)
| | | | - Ali Jebali
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
64
|
Meir J, Abid MA, Abid MB. State of the CAR-T: Risk of Infections with Chimeric Antigen Receptor T-Cell Therapy and Determinants of SARS-CoV-2 Vaccine Responses. Transplant Cell Ther 2021; 27:973-987. [PMID: 34587552 PMCID: PMC8473073 DOI: 10.1016/j.jtct.2021.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown unprecedented response rates in patients with relapsed/refractory (R/R) hematologic malignancies. Although CAR-T therapy gives hope to heavily pretreated patients, the rapid commercialization and cumulative immunosuppression of this therapy predispose patients to infections for a prolonged period. CAR-T therapy poses distinctive short- and long-term toxicities and infection risks among patients who receive CAR T-cells after multiple prior treatments, often including hematopoietic cell transplantation. The acute toxicities include cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. The long-term B cell depletion, hypogammaglobulinemia, and cytopenia further predispose patients to severe infections and abrogate the remission success achieved by the living drug. These on-target-off-tumor toxicities deplete B-cells across the entire lineage and further diminish immune responses to vaccines. Early observational data suggest that patients with hematologic malignancies may not mount adequate humoral and cellular responses to SARS-CoV-2 vaccines. In this review, we summarize the immune compromising factors indigenous to CAR-T recipients. We discuss the immunogenic potential of different SARS-CoV-2 vaccines for CAR-T recipients based on the differences in vaccine manufacturing platforms. Given the lack of data related to the safety and efficacy of SARS-CoV-2 vaccines in this distinctively immunosuppressed cohort, we summarize the infection risks associated with Food and Drug Administration-approved CAR-T constructs and the potential determinants of vaccine responses. The review further highlights the potential need for booster vaccine dosing and the promise for heterologous prime-boosting and other novel vaccine strategies in CAR-T recipients. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Juliet Meir
- Department of Medicine, Westchester Medical Center, Valhalla, New York
| | - Muhammad Abbas Abid
- Department of Hematopathology & Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Bilal Abid
- Divisions of Infectious Diseases and Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
65
|
Fendler A, Au L, Shepherd STC, Byrne F, Cerrone M, Boos LA, Rzeniewicz K, Gordon W, Shum B, Gerard CL, Ward B, Xie W, Schmitt AM, Joharatnam-Hogan N, Cornish GH, Pule M, Mekkaoui L, Ng KW, Carlyle E, Edmonds K, Rosario LD, Sarker S, Lingard K, Mangwende M, Holt L, Ahmod H, Stone R, Gomes C, Flynn HR, Agua-Doce A, Hobson P, Caidan S, Howell M, Wu M, Goldstone R, Crawford M, Cubitt L, Patel H, Gavrielides M, Nye E, Snijders AP, MacRae JI, Nicod J, Gronthoud F, Shea RL, Messiou C, Cunningham D, Chau I, Starling N, Turner N, Welsh L, van As N, Jones RL, Droney J, Banerjee S, Tatham KC, Jhanji S, O'Brien M, Curtis O, Harrington K, Bhide S, Bazin J, Robinson A, Stephenson C, Slattery T, Khan Y, Tippu Z, Leslie I, Gennatas S, Okines A, Reid A, Young K, Furness AJS, Pickering L, Gandhi S, Gamblin S, Swanton C, Nicholson E, Kumar S, Yousaf N, Wilkinson KA, Swerdlow A, Harvey R, Kassiotis G, Larkin J, Wilkinson RJ, Turajlic S. Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study. NATURE CANCER 2021; 2:1321-1337. [PMID: 35121900 DOI: 10.1038/s43018-021-00275-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer.
Collapse
Affiliation(s)
- Annika Fendler
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Lewis Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Scott T C Shepherd
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Fiona Byrne
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Maddalena Cerrone
- Tuberculosis Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laura Amanda Boos
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - William Gordon
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Benjamin Shum
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Camille L Gerard
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Barry Ward
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Wenyi Xie
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Andreas M Schmitt
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Georgina H Cornish
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Martin Pule
- Department of Haematology, University College London Cancer Institute, London, UK
- Autolus Ltd., London, UK
| | | | - Kevin W Ng
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Eleanor Carlyle
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Kim Edmonds
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Lyra Del Rosario
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Sarah Sarker
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Karla Lingard
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Mary Mangwende
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Lucy Holt
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Hamid Ahmod
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Richard Stone
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, UK
| | - Camila Gomes
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ana Agua-Doce
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Philip Hobson
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Simon Caidan
- Safety, Health and Sustainability, The Francis Crick Institute, London, UK
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, London, UK
| | - Mary Wu
- High Throughput Screening Laboratory, The Francis Crick Institute, London, UK
| | - Robert Goldstone
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Margaret Crawford
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Laura Cubitt
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Department of Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Mike Gavrielides
- Scientific Computing Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Emma Nye
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - James I MacRae
- Metabolomics Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Jerome Nicod
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Firza Gronthoud
- Department of Pathology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Robyn L Shea
- Department of Pathology, The Royal Marsden NHS Foundation Trust, London, UK
- Translational Cancer Biochemistry Laboratory, The Institute of Cancer Research, London, UK
| | - Christina Messiou
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - David Cunningham
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, London, UK
| | - Ian Chau
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, London, UK
| | - Naureen Starling
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, London, UK
| | - Nicholas Turner
- Breast Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Liam Welsh
- Neuro-oncology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Nicholas van As
- Clinical Oncology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - Joanne Droney
- Palliative Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Kate C Tatham
- Anaesthetics, Perioperative Medicine and Pain Department, The Royal Marsden NHS Foundation Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Shaman Jhanji
- Anaesthetics, Perioperative Medicine and Pain Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Mary O'Brien
- Lung Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Olivia Curtis
- Lung Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Kevin Harrington
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Shreerang Bhide
- Head and Neck Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Jessica Bazin
- Haemato-oncology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Anna Robinson
- Haemato-oncology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Tim Slattery
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Yasir Khan
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Zayd Tippu
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Isla Leslie
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Spyridon Gennatas
- Acute Oncology Service, The Royal Marsden NHS Foundation Trust, London, UK
- Department of Medical Oncology, Guy's Hospital, London, UK
| | - Alicia Okines
- Breast Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Acute Oncology Service, The Royal Marsden NHS Foundation Trust, London, UK
| | - Alison Reid
- Uro-oncology Unit, The Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Kate Young
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Andrew J S Furness
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Lisa Pickering
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Sonia Gandhi
- Neurodegeneration Biology Laboratory, The Francis Crick Institute, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Steve Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- University College London Cancer Institute, London, UK
| | - Emma Nicholson
- Haemato-oncology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Sacheen Kumar
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, London, UK
| | - Nadia Yousaf
- Lung Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Acute Oncology Service, The Royal Marsden NHS Foundation Trust, London, UK
| | - Katalin A Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London, UK
- Wellcome Center for Infectious Disease Research in Africa, University Cape Town, Cape Town, Republic of South Africa
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology and Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - James Larkin
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Robert J Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
- Wellcome Center for Infectious Disease Research in Africa, University Cape Town, Cape Town, Republic of South Africa
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK.
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
66
|
Lapuente D, Fuchs J, Willar J, Vieira Antão A, Eberlein V, Uhlig N, Issmail L, Schmidt A, Oltmanns F, Peter AS, Mueller-Schmucker S, Irrgang P, Fraedrich K, Cara A, Hoffmann M, Pöhlmann S, Ensser A, Pertl C, Willert T, Thirion C, Grunwald T, Überla K, Tenbusch M. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nat Commun 2021; 12:6871. [PMID: 34836955 PMCID: PMC8626513 DOI: 10.1038/s41467-021-27063-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Willar
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Valentina Eberlein
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Nadja Uhlig
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Leila Issmail
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Mueller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Fraedrich
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | - Thomas Grunwald
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
67
|
The Combined Expression of the Non-structural Protein NS1 and the N-Terminal Half of NS2 (NS2 1-180) by ChAdOx1 and MVA Confers Protection against Clinical Disease in Sheep upon Bluetongue Virus Challenge. J Virol 2021; 96:e0161421. [PMID: 34787454 PMCID: PMC8826911 DOI: 10.1128/jvi.01614-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bluetongue, caused by bluetongue virus (BTV), is a widespread arthropod-borne disease of ruminants that entails a recurrent threat to the primary sector of developed and developing countries. In this work, we report modified vaccinia virus Ankara (MVA) and ChAdOx1-vectored vaccines designed to simultaneously express the immunogenic NS1 protein and/or NS2-Nt, the N-terminal half of protein NS2 (NS21-180). A single dose of MVA or ChAdOx1 expressing NS1-NS2-Nt improved the protection conferred by NS1 alone in IFNAR(-/-) mice. Moreover, mice immunized with ChAdOx1/MVA-NS1, ChAdOx1/MVA-NS2-Nt, or ChAdOx1/MVA-NS1-NS2-Nt developed strong cytotoxic CD8+ T-cell responses against NS1, NS2-Nt, or both proteins and were fully protected against a lethal infection with BTV serotypes 1, 4, and 8. Furthermore, although a single immunization with ChAdOx1-NS1-NS2-Nt partially protected sheep against BTV-4, the administration of a booster dose of MVA-NS1-NS2-Nt promoted a faster viral clearance, reduction of the period and level of viremia and also protected from the pathology produced by BTV infection. IMPORTANCE Current BTV vaccines are effective but they do not allow to distinguish between vaccinated and infected animals (DIVA strategy) and are serotype specific. In this work we have develop a DIVA multiserotype vaccination strategy based on adenoviral (ChAdOx1) and MVA vaccine vectors, the most widely used in current phase I and II clinical trials, and the conserved nonstructural BTV proteins NS1 and NS2. This immunization strategy solves the major drawbacks of the current marketed vaccines.
Collapse
|
68
|
Li Z, Liu X, Liu M, Wu Z, Liu Y, Li W, Liu M, Wang X, Gao B, Luo Y, Li X, Tao L, Wang W, Guo X. The Effect of the COVID-19 Vaccine on Daily Cases and Deaths Based on Global Vaccine Data. Vaccines (Basel) 2021; 9:1328. [PMID: 34835259 PMCID: PMC8622191 DOI: 10.3390/vaccines9111328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), a global pandemic, has caused over 216 million cases and 4.50 million deaths as of 30 August 2021. Vaccines can be regarded as one of the most powerful weapons to eliminate the pandemic, but the impact of vaccines on daily COVID-19 cases and deaths by country is unclear. This study aimed to investigate the correlation between vaccines and daily newly confirmed cases and deaths of COVID-19 in each country worldwide. METHODS Daily data on firstly vaccinated people, fully vaccinated people, new cases and new deaths of COVID-19 were collected from 187 countries. First, we used a generalized additive model (GAM) to analyze the association between daily vaccinated people and daily new cases and deaths of COVID-19. Second, a random effects meta-analysis was conducted to calculate the global pooled results. RESULTS In total, 187 countries and regions were included in the study. During the study period, 1,011,918,763 doses of vaccine were administered, 540,623,907 people received at least one dose of vaccine, and 230,501,824 people received two doses. For the relationship between vaccination and daily increasing cases of COVID-19, the results showed that daily increasing cases of COVID-19 would be reduced by 24.43% [95% CI: 18.89, 29.59] and 7.50% [95% CI: 6.18, 8.80] with 10,000 fully vaccinated people per day and at least one dose of vaccine, respectively. Daily increasing deaths of COVID-19 would be reduced by 13.32% [95% CI: 3.81, 21.89] and 2.02% [95% CI: 0.18, 4.16] with 10,000 fully vaccinated people per day and at least one dose of vaccine, respectively. CONCLUSIONS These findings showed that vaccination can effectively reduce the new cases and deaths of COVID-19, but vaccines are not distributed fairly worldwide. There is an urgent need to accelerate the speed of vaccination and promote its fair distribution across countries.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Mengyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Yue Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Weiming Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Mengmeng Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Xiaonan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Bo Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Yanxia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
| | - Wei Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
- Center for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, 10 Xi-Tou-Tiao, You-An-Men Street, Fengtai District, Beijing 100069, China; (Z.L.); (X.L.); (M.L.); (Z.W.); (Y.L.); (W.L.); (M.L.); (X.W.); (B.G.); (Y.L.); (L.T.)
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100071, China;
- Center for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
| |
Collapse
|
69
|
Agrati C, Capone S, Castilletti C, Cimini E, Matusali G, Meschi S, Tartaglia E, Camerini R, Lanini S, Milleri S, Colloca S, Vitelli A, Folgori A. Strong immunogenicity of heterologous prime-boost immunizations with the experimental vaccine GRAd-COV2 and BNT162b2 or ChAdOx1-nCOV19. NPJ Vaccines 2021; 6:131. [PMID: 34737309 PMCID: PMC8569156 DOI: 10.1038/s41541-021-00394-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Here we report on the humoral and cellular immune response in eight volunteers who autonomously chose to adhere to the Italian national COVID-19 vaccination campaign more than 3 months after receiving a single-administration GRAd-COV2 vaccine candidate in the context of the phase-1 clinical trial. We observed a clear boost of both binding/neutralizing antibodies as well as T-cell responses upon receipt of the heterologous BNT162b2 or ChAdOx1-nCOV19 vaccines. These results, despite the limitation of the small sample size, support the concept that a single dose of an adenoviral vaccine may represent an ideal tool to effectively prime a balanced immune response, which can be boosted to high levels by a single dose of a different vaccine platform.
Collapse
Affiliation(s)
- Chiara Agrati
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS, Rome, Italy.
| | | | - Concetta Castilletti
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Eleonora Cimini
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Giulia Matusali
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Silvia Meschi
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Eleonora Tartaglia
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS, Rome, Italy
| | | | - Simone Lanini
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS, Rome, Italy
| | | | | | | | | |
Collapse
|
70
|
Richardson CD. Heterologous ChAdOx1-nCoV19–BNT162b2 vaccination provides superior immunogenicity against COVID-19. THE LANCET RESPIRATORY MEDICINE 2021; 9:1207-1209. [PMID: 34391548 PMCID: PMC8360699 DOI: 10.1016/s2213-2600(21)00366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
|
71
|
Doherty J, Fennessy S, Stack R, O’ Morain N, Cullen G, Ryan EJ, De Gascun C, Doherty GA. Review Article: vaccination for patients with inflammatory bowel disease during the COVID-19 pandemic. Aliment Pharmacol Ther 2021; 54:1110-1123. [PMID: 34472643 PMCID: PMC8653045 DOI: 10.1111/apt.16590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Poor immune responses are frequently observed in patients with inflammatory bowel disease (IBD) receiving established vaccines; risk factors include immunosuppressants and active disease. AIMS To summarise available information regarding immune responses achieved in patients with IBD receiving established vaccines. Using this information, to identify risk factors in the IBD population related to poor vaccine-induced immunity that may be applicable to vaccines against COVID-19. METHODS We undertook a literature review on immunity to currently recommended vaccines for patients with IBD and to COVID-19 vaccines and summarised the relevant literature. RESULTS Patients with IBD have reduced immune responses following vaccination compared to the general population. Factors including the use of immunomodulators and anti-TNF agents reduce response rates. Patients with IBD should be vaccinated against COVID-19 at the earliest opportunity as recommended by International Advisory Committees, and vaccination should not be deferred because a patient is receiving immune-modifying therapies. Antibody titres to COVID-19 vaccines appear to be reduced in patients receiving anti-TNF therapy, especially in combination with immunomodulators after one vaccination. Therefore, we should optimise any established risk factors that could impact response to vaccination in patients with IBD before vaccination. CONCLUSIONS Ideally, patients with IBD should be vaccinated at the earliest opportunity against COVID-19. Patients should be in remission and, if possible, have their corticosteroid dose minimised before vaccination. Further research is required to determine the impact of different biologics on vaccine response to COVID-19 and the potential for booster vaccines or heterologous prime-boost vaccinations in the IBD population.
Collapse
Affiliation(s)
- Jayne Doherty
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Sean Fennessy
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Roisin Stack
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Neil O’ Morain
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Garret Cullen
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Elizabeth J. Ryan
- Department of Biological SciencesHealth Research InstituteUniversity of LimerickLimerickIreland
| | - Cillian De Gascun
- National Virus Reference LaboratoryUniversity College DublinDublinIreland
| | - Glen A. Doherty
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
72
|
Hillus D, Schwarz T, Tober-Lau P, Vanshylla K, Hastor H, Thibeault C, Jentzsch S, Helbig ET, Lippert LJ, Tscheak P, Schmidt ML, Riege J, Solarek A, von Kalle C, Dang-Heine C, Gruell H, Kopankiewicz P, Suttorp N, Drosten C, Bias H, Seybold J, Klein F, Kurth F, Corman VM, Sander LE. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. THE LANCET. RESPIRATORY MEDICINE 2021; 9:1255-1265. [PMID: 34391547 PMCID: PMC8360702 DOI: 10.1016/s2213-2600(21)00357-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Heterologous vaccine regimens have been widely discussed as a way to mitigate intermittent supply shortages and to improve immunogenicity and safety of COVID-19 vaccines. We aimed to assess the reactogenicity and immunogenicity of heterologous immunisations with ChAdOx1 nCov-19 (AstraZeneca, Cambridge, UK) and BNT162b2 (Pfizer-BioNtech, Mainz, Germany) compared with homologous BNT162b2 and ChAdOx1 nCov-19 immunisation. METHODS This is an interim analysis of a prospective observational cohort study enrolling health-care workers in Berlin (Germany) who received either homologous ChAdOx1 nCov-19 or heterologous ChAdOx1 nCov-19-BNT162b2 vaccination with a 10-12-week vaccine interval or homologous BNT162b2 vaccination with a 3-week vaccine interval. We assessed reactogenicity after the first and second vaccination by use of electronic questionnaires on days 1, 3, 5, and 7. Immunogenicity was measured by the presence of SARS-CoV-2-specific antibodies (full spike-IgG, S1-IgG, and RBD-IgG), by an RBD-ACE2 binding inhibition assay (surrogate SARS-CoV-2 virus neutralisation test), a pseudovirus neutralisation assay against two variants of concerns (alpha [B.1.1.7] and beta [B.1.351]), and anti-S1-IgG avidity. T-cell reactivity was measured by IFN-γ release assay. FINDINGS Between Dec 27, 2020, and June 14, 2021, 380 participants were enrolled in the study, with 174 receiving homologous BNT162b2 vaccination, 38 receiving homologous ChAdOx1 nCov-19 vaccination, and 104 receiving ChAdOx1 nCov-19-BNT162b2 vaccination. Systemic symptoms were reported by 103 (65%, 95% CI 57·1-71·8) of 159 recipients of homologous BNT162b2, 14 (39%, 24·8-55·1) of 36 recipients of homologous ChAdOx1 nCov-19, and 51 (49%, 39·6-58·5) of 104 recipients of ChAdOx1 nCov-19-BNT162b2 after the booster immunisation. Median anti-RBD IgG levels 3 weeks after boost immunisation were 5·4 signal to cutoff ratio (S/co; IQR 4·8-5·9) in recipients of homologous BNT162b2, 4·9 S/co (4·3-5·6) in recipients of homologous ChAdOx1 nCov-19, and 5·6 S/co (5·1-6·1) in recipients of ChAdOx1 nCov-19- BNT162b2. Geometric mean of 50% inhibitory dose against alpha and beta variants were highest in recipients of ChAdOx1 nCov-19-BNT162b2 (956·6, 95% CI 835·6-1095, against alpha and 417·1, 349·3-498·2, against beta) compared with those in recipients of homologous ChAdOx1 nCov-19 (212·5, 131·2-344·4, against alpha and 48·5, 28·4-82·8, against beta; both p<0·0001) or homologous BNT162b2 (369·2, 310·7-438·6, against alpha and 72·4, 60·5-86·5, against beta; both p<0·0001). SARS-CoV-2 S1 T-cell reactivity 3 weeks after boost immunisation was highest in recipients of ChAdOx1 nCov-19-BNT162b2 (median IFN-γ concentration 4762 mIU/mL, IQR 2723-8403) compared with that in recipients of homologous ChAdOx1 nCov-19 (1061 mIU/mL, 599-2274, p<0·0001) and homologous BNT162b2 (2026 mIU/mL, 1459-4621, p=0·0008) vaccination. INTERPRETATION The heterologous ChAdOx1 nCov-19-BNT162b2 immunisation with 10-12-week interval, recommended in Germany, is well tolerated and improves immunogenicity compared with homologous ChAdOx1 nCov-19 vaccination with 10-12-week interval and BNT162b2 vaccination with 3-week interval. Heterologous prime-boost immunisation strategies for COVID-19 might be generally applicable. FUNDING Forschungsnetzwerk der Universitätsmedizin zu COVID-19, the German Ministry of Education and Research, Zalando SE.
Collapse
Affiliation(s)
- David Hillus
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research, partner site Charité, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hana Hastor
- Clinical Study Center, Berlin Institute of Health, and Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefanie Jentzsch
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisa T Helbig
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lena J Lippert
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patricia Tscheak
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research, partner site Charité, Berlin, Germany
| | - Marie Luisa Schmidt
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research, partner site Charité, Berlin, Germany
| | - Johanna Riege
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research, partner site Charité, Berlin, Germany
| | - André Solarek
- Medical Directorate, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christof von Kalle
- Clinical Study Center, Berlin Institute of Health, and Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Study Center, Berlin Institute of Health, and Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Piotr Kopankiewicz
- Center for Occupational Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research, partner site Charité, Berlin, Germany
| | - Harald Bias
- Center for Occupational Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joachim Seybold
- Medical Directorate, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Victor Max Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research, partner site Charité, Berlin, Germany.
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
73
|
Keikha R, Hashemi-Shahri SM, Jebali A. The evaluation of novel oral vaccines based on self-amplifying RNA lipid nanparticles (saRNA LNPs), saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum to neutralize SARS-CoV-2 variants alpha and delta. Sci Rep 2021; 11:21308. [PMID: 34716391 PMCID: PMC8556360 DOI: 10.1038/s41598-021-00830-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to present and evaluate novel oral vaccines, based on self-amplifying RNA lipid nanparticles (saRNA LNPs), saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum, to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) variants alpha and delta. After invitro evaluation of the oral vaccines on HEK293T/17 cells, we found that saRNA LNPs, saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum could express S-protein at both mRNA and protein levels. In the next step, BALB/c mice were orally vaccinated with saRNA LNPs, saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum at weeks 1 and 3. Importantly, a high titer of IgG and IgA was observed by all of them, sharply in week 6 (P < 0.05). In all study groups, their ratio of IgG2a/IgG1 was upper 1, indicating Th1-biased responses. Wild-type viral neutralization assay showed that the secreted antibodies in vaccinated mice and recovered COVID-19 patients could neutralize SARS-COV-2 variants alpha and delta. After oral administration of oral vaccines, biodistribution assay was done. It was found that all of them had the same biodistribution pattern. The highest concentration of S-protein was seen in the small intestine, followed by the large intestine and liver.
Collapse
MESH Headings
- Administration, Oral
- Adult
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/blood
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/pharmacokinetics
- Female
- HEK293 Cells
- Humans
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Intestine, Small/metabolism
- Lactobacillus plantarum/genetics
- Lactobacillus plantarum/metabolism
- Lipids/chemistry
- Male
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Models, Animal
- Nanoparticles/chemistry
- Neutralization Tests
- RNA, Messenger/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Tissue Distribution
- Transfection/methods
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- mRNA Vaccines
Collapse
Affiliation(s)
- Reza Keikha
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Pathology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mohammad Hashemi-Shahri
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Jebali
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
74
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
75
|
Immunogenicity and efficacy of heterologous ChAdOx1-BNT162b2 vaccination. Nature 2021; 600:701-706. [PMID: 34673755 DOI: 10.1038/s41586-021-04120-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023]
Abstract
Following severe adverse reactions to the AstraZeneca ChAdOx1-S-nCoV-19 vaccine1,2, European health authorities recommended that patients under the age of 55 years who received one dose of ChAdOx1-S-nCoV-19 receive a second dose of the Pfizer BNT162b2 vaccine as a booster. However, the effectiveness and the immunogenicity of this vaccination regimen have not been formally tested. Here we show that the heterologous ChAdOx1-S-nCoV-19 and BNT162b2 combination confers better protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than the homologous BNT162b2 and BNT162b2 combination in a real-world observational study of healthcare workers (n = 13,121). To understand the underlying mechanism, we conducted a longitudinal survey of the anti-spike immunity conferred by each vaccine combination. Both combinations induced strong anti-spike antibody responses, but sera from heterologous vaccinated individuals displayed a stronger neutralizing activity regardless of the SARS-CoV-2 variant. This enhanced neutralizing potential correlated with increased frequencies of switched and activated memory B cells that recognize the SARS-CoV-2 receptor binding domain. The ChAdOx1-S-nCoV-19 vaccine induced a weaker IgG response but a stronger T cell response than the BNT162b2 vaccine after the priming dose, which could explain the complementarity of both vaccines when used in combination. The heterologous vaccination regimen could therefore be particularly suitable for immunocompromised individuals.
Collapse
|
76
|
Chiu NC, Chi H, Tu YK, Huang YN, Tai YL, Weng SL, Chang L, Huang DTN, Huang FY, Lin CY. To mix or not to mix? A rapid systematic review of heterologous prime-boost covid-19 vaccination. Expert Rev Vaccines 2021; 20:1211-1220. [PMID: 34415818 PMCID: PMC8425437 DOI: 10.1080/14760584.2021.1971522] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has had an enormous impact worldwide, and vaccination is believed to be the method that will control the pandemic. Several types of vaccines developed using different platforms have been authorized, but the immunogenicity and reactogenicity of heterologous prime-boost vaccination with different vaccines remain largely unclear. AREAS COVERED Electronic databases including PubMed, Embase, medRxiv, Research Square, and SSRN were searched to investigate the immunogenicity and reactogenicity associated with heterologous vaccination.As of 30 June 2021, four trials including 1,862 participants were identified. Heterologous administration of BNT162b2 (BNT) in ChAdOx1 (ChAd)-primed participants (ChAd/BNT) showed noninferior immunogenicity to homologous BNT administration (both prime and booster were BNT vaccines, BNT/BNT) with tolerable reactogenicity and higher T cell responses. Compared with homologous ChAdOX1 vaccination (ChAd/ChAd), heterologous ChAd/BNT was found to elicit higher immunogenicity (ChAd/BNT vs. ChAd/ChAd, antibody titer ratio: 9.2). EXPERT OPINION Our systematic review found robust immunogenicity and tolerable reactogenicity of heterologous administration of a BNT162b2 boost in ChAdOx1-primed participants. An additional benefit of stronger T cellular immunity was also observed. Heterologous vaccination is a reasonable and feasible strategy to combat COVID-19. Further studies are warranted to confirm the benefits and identify the optimal combinations, doses, and intervals.
Collapse
Affiliation(s)
- Nan-Chang Chiu
- Department of Pediatrics, MacKay Children’s Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hsin Chi
- Department of Pediatrics, MacKay Children’s Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ya-Ning Huang
- Department of Pediatrics, MacKay Children’s Hospital, Taipei, Taiwan
| | - Yu-Lin Tai
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Shun-Long Weng
- Department of Obsterics and Genecology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Lung Chang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, Tamshui MacKay Memorial Hospital,New Taipei City, Taiwan
| | - Daniel Tsung-Ning Huang
- Department of Pediatrics, MacKay Children’s Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Fu-Yuan Huang
- Department of Pediatrics, MacKay Children’s Hospital, Taipei, Taiwan
| | - Chien-Yu Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| |
Collapse
|
77
|
Acute Transverse Myelitis after COVID-19 Vaccination. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57101010. [PMID: 34684047 PMCID: PMC8540274 DOI: 10.3390/medicina57101010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022]
Abstract
The adverse effects of the COVID-19 vaccine have been discovered as the rapid application of the vaccines continues. Neurological complications such as transverse myelitis raise concerns as cases were observed in clinical trials. Transverse myelitis is a rare immune-mediated disease with spinal cord neural injury, resulting in neurological deficits in the motor, sensory, and autonomic system. Vaccine-related transverse myelitis is even rarer. We present a case of acute transverse myelitis after vaccination against COVID-19 with the ChAdOx1 nCOV-19 vaccine (AZD1222), which was the first case reported in Taiwan. Although it rarely occurs, post-vaccination neurological complications should not be ignored. As the pandemic of SARS-CoV-2 continues to spread and concern about vaccination efficacy and safety rises, heterologous vaccination were implemented in health public policy in several countries. A literature review of several clinical trials shows promising effects of mix-and-match vaccination. Further study on different combinations of vaccines can be expected.
Collapse
|
78
|
Sablerolles RSG, Goorhuis A, GeurtsvanKessel CH, de Vries RD, Huckriede ALW, Koopmans MPG, Lafeber M, Postma DF, van Baarle D, Visser LG, Dalm VASH, Kootstra NA, Rietdijk WJR, van der Kuy PHM. Heterologous Ad26.COV2.S Prime and mRNA-Based Boost COVID-19 Vaccination Regimens: The SWITCH Trial Protocol. Front Immunol 2021; 12:753319. [PMID: 34691071 PMCID: PMC8529966 DOI: 10.3389/fimmu.2021.753319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Roos S. G. Sablerolles
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, Netherlands
| | | | - Rory D. de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anke L. W. Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Melvin Lafeber
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Douwe F. Postma
- Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Leo G. Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology and Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Neeltje A. Kootstra
- Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Wim J. R. Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - P. Hugo M. van der Kuy
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
79
|
Liu X, Shaw RH, Stuart ASV, Greenland M, Aley PK, Andrews NJ, Cameron JC, Charlton S, Clutterbuck EA, Collins AM, Dinesh T, England A, Faust SN, Ferreira DM, Finn A, Green CA, Hallis B, Heath PT, Hill H, Lambe T, Lazarus R, Libri V, Long F, Mujadidi YF, Plested EL, Provstgaard-Morys S, Ramasamy MN, Ramsay M, Read RC, Robinson H, Singh N, Turner DPJ, Turner PJ, Walker LL, White R, Nguyen-Van-Tam JS, Snape MD. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. Lancet 2021; 398:856-869. [PMID: 34370971 PMCID: PMC8346248 DOI: 10.1016/s0140-6736(21)01694-9] [Citation(s) in RCA: 346] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Use of heterologous prime-boost COVID-19 vaccine schedules could facilitate mass COVID-19 immunisation. However, we have previously reported that heterologous schedules incorporating an adenoviral vectored vaccine (ChAdOx1 nCoV-19, AstraZeneca; hereafter referred to as ChAd) and an mRNA vaccine (BNT162b2, Pfizer-BioNTech; hereafter referred to as BNT) at a 4-week interval are more reactogenic than homologous schedules. Here, we report the safety and immunogenicity of heterologous schedules with the ChAd and BNT vaccines. METHODS Com-COV is a participant-blinded, randomised, non-inferiority trial evaluating vaccine safety, reactogenicity, and immunogenicity. Adults aged 50 years and older with no or well controlled comorbidities and no previous SARS-CoV-2 infection by laboratory confirmation were eligible and were recruited at eight sites across the UK. The majority of eligible participants were enrolled into the general cohort (28-day or 84-day prime-boost intervals), who were randomly assigned (1:1:1:1:1:1:1:1) to receive ChAd/ChAd, ChAd/BNT, BNT/BNT, or BNT/ChAd, administered at either 28-day or 84-day prime-boost intervals. A small subset of eligible participants (n=100) were enrolled into an immunology cohort, who had additional blood tests to evaluate immune responses; these participants were randomly assigned (1:1:1:1) to the four schedules (28-day interval only). Participants were masked to the vaccine received but not to the prime-boost interval. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentration (measured by ELISA) at 28 days after boost, when comparing ChAd/BNT with ChAd/ChAd, and BNT/ChAd with BNT/BNT. The heterologous schedules were considered non-inferior to the approved homologous schedules if the lower limit of the one-sided 97·5% CI of the GMR of these comparisons was greater than 0·63. The primary analysis was done in the per-protocol population, who were seronegative at baseline. Safety analyses were done among participants receiving at least one dose of a study vaccine. The trial is registered with ISRCTN, 69254139. FINDINGS Between Feb 11 and Feb 26, 2021, 830 participants were enrolled and randomised, including 463 participants with a 28-day prime-boost interval, for whom results are reported here. The mean age of participants was 57·8 years (SD 4·7), with 212 (46%) female participants and 117 (25%) from ethnic minorities. At day 28 post boost, the geometric mean concentration of SARS-CoV-2 anti-spike IgG in ChAd/BNT recipients (12 906 ELU/mL) was non-inferior to that in ChAd/ChAd recipients (1392 ELU/mL), with a GMR of 9·2 (one-sided 97·5% CI 7·5 to ∞). In participants primed with BNT, we did not show non-inferiority of the heterologous schedule (BNT/ChAd, 7133 ELU/mL) against the homologous schedule (BNT/BNT, 14 080 ELU/mL), with a GMR of 0·51 (one-sided 97·5% CI 0·43 to ∞). Four serious adverse events occurred across all groups, none of which were considered to be related to immunisation. INTERPRETATION Despite the BNT/ChAd regimen not meeting non-inferiority criteria, the SARS-CoV-2 anti-spike IgG concentrations of both heterologous schedules were higher than that of a licensed vaccine schedule (ChAd/ChAd) with proven efficacy against COVID-19 disease and hospitalisation. Along with the higher immunogenicity of ChAd/BNT compared with ChAD/ChAd, these data support flexibility in the use of heterologous prime-boost vaccination using ChAd and BNT COVID-19 vaccines. FUNDING UK Vaccine Task Force and National Institute for Health Research.
Collapse
Affiliation(s)
- Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Robert H Shaw
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Arabella S V Stuart
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Melanie Greenland
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nick J Andrews
- Statistics, Modelling and Economics Department, Public Health England, London, UK; Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, UK
| | | | - Sue Charlton
- Public Health England, Porton Down, Salisbury, UK
| | | | | | - Tanya Dinesh
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna England
- Public Health England, Porton Down, Salisbury, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Adam Finn
- School of Population Health Sciences and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Christopher A Green
- NIHR/Wellcome Trust Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Paul T Heath
- The Vaccine Institute, St George's University of London, London, UK
| | - Helen Hill
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, UK
| | | | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Fei Long
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Yama F Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emma L Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Maheshi N Ramasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mary Ramsay
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, UK
| | - Robert C Read
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nisha Singh
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - David P J Turner
- University of Nottingham, Nottingham, UK; Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Paul J Turner
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Laura L Walker
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rachel White
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jonathan S Nguyen-Van-Tam
- Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
80
|
D’Amelio R, Asero R, Cassatella MA, Laganà B, Lunardi C, Migliorini P, Nisini R, Parronchi P, Quinti I, Racanelli V, Senna G, Vacca A, Maggi E. Anti-COVID-19 Vaccination in Patients with Autoimmune-Autoinflammatory Disorders and Primary/Secondary Immunodeficiencies: The Position of the Task Force on Behalf of the Italian Immunological Societies. Biomedicines 2021; 9:1163. [PMID: 34572349 PMCID: PMC8465958 DOI: 10.3390/biomedicines9091163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has represented an unprecedented challenge for humankind from health, economic, and social viewpoints. In February 2020, Italy was the first western country to be deeply hit by the pandemic and suffered the highest case/fatality rate among western countries. Brand new anti-COVID-19 vaccines have been developed and made available in <1-year from the viral sequence publication. Patients with compromised immune systems, such as autoimmune-autoinflammatory disorders (AIAIDs), primary (PIDs) and secondary (SIDs) immunodeficiencies, have received careful attention for a long time regarding their capacity to safely respond to traditional vaccines. The Italian Immunological Societies, therefore, have promptly faced the issues of safety, immunogenicity, and efficacy/effectiveness of the innovative COVID-19 vaccines, as well as priority to vaccine access, in patients with AIADs, PIDs, and SIDs, by organizing an ad-hoc Task Force. Patients with AIADs, PIDs, and SIDs: (1) Do not present contraindications to COVID-19 vaccines if a mRNA vaccine is used and administered in a stabilized disease phase without active infection. (2) Should usually not discontinue immunosuppressive therapy, which may be modulated depending on the patient's clinical condition. (3) When eligible, should have a priority access to vaccination. In fact, immunizing these patients may have relevant social/health consequences, since these patients, if infected, may develop chronic infection, which prolongs viral spread and facilitates the emergence of viral variants.
Collapse
Affiliation(s)
- Raffaele D’Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Rome, Italy;
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica S. Carlo di Paderno Dugnano, Via Ospedale 21, 20037 Milano, Italy;
| | - Marco Antonio Cassatella
- Sezione di Patologia Generale, Dipartimento di Medicina, Università di Verona, Strada Le Grazie 4, 37134 Verona, Italy;
| | - Bruno Laganà
- UOC Medicina Interna, Dipartimento di Medicina Clinica e Molecolare, AOU S. Andrea, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Rome, Italy;
| | - Claudio Lunardi
- Responsabile Unità di Malattie Autoimmunitarie, Dipartimento di Medicina, AOU Policlinico G.B. Rossi, Borgo Roma, Università di Verona, Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Paola Migliorini
- Direttore Unità Operativa di Immunoallergologia Clinica, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliero Universitaria Pisana, Università di Pisa, Via Roma 67, 56126 Pisa, Italy;
| | - Roberto Nisini
- Direttore Reparto Immunologia, Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Parronchi
- Direttore SOD Immunologia e Terapie Cellulari, Dipartimento di Medicina Sperimentale e Clinica, AOU Careggi, Università di Firenze, Largo Brambilla 3, 50134 Firenze, Italy;
| | - Isabella Quinti
- Responsabile UOD Centro di Riferimento Regionale per le Immunodeficienze, Dipartimento di Medicina Molecolare, AOU Policlinico Umberto I, Sapienza Università di Roma, Viale dell’Università 37, 00161 Rome, Italy;
| | - Vito Racanelli
- UOC Medicina Interna “Guido Baccelli”, Dipartimento di Scienze Biomediche ed Oncologia Umana, AOU Policlinico, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Gianenrico Senna
- Direttore USD Allergologia, Dipartimento di Medicina, AOU Policlinico G.B. Rossi, Borgo Roma, Università di Verona, Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Angelo Vacca
- Direttore UOC Medicina Interna “Guido Baccelli”, Dipartimento di Scienze Biomediche ed Oncologia Umana, AOU Policlinico, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Enrico Maggi
- Unità di Immunità Traslazionale, Dipartimento di Immunologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di S. Paolo 15, 00146 Rome, Italy
| |
Collapse
|
81
|
Affiliation(s)
- Meagan E Deming
- The Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- The Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
82
|
Schmidt T, Klemis V, Schub D, Mihm J, Hielscher F, Marx S, Abu-Omar A, Ziegler L, Guckelmus C, Urschel R, Schneitler S, Becker SL, Gärtner BC, Sester U, Sester M. Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat Med 2021; 27:1530-1535. [PMID: 34312554 PMCID: PMC8440177 DOI: 10.1038/s41591-021-01464-w] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
Heterologous priming with the ChAdOx1 nCoV-19 vector vaccine followed by boosting with a messenger RNA vaccine (BNT162b2 or mRNA-1273) is currently recommended in Germany, although data on immunogenicity and reactogenicity are not available. In this observational study we show that, in healthy adult individuals (n = 96), the heterologous vaccine regimen induced spike-specific IgG, neutralizing antibodies and spike-specific CD4 T cells, the levels of which which were significantly higher than after homologous vector vaccine boost (n = 55) and higher or comparable in magnitude to homologous mRNA vaccine regimens (n = 62). Moreover, spike-specific CD8 T cell levels after heterologous vaccination were significantly higher than after both homologous regimens. Spike-specific T cells were predominantly polyfunctional with largely overlapping cytokine-producing phenotypes in all three regimens. Recipients of both the homologous vector regimen and the heterologous vector/mRNA combination reported greater reactogenicity following the priming vector vaccination, whereas heterologous boosting was well tolerated and comparable to homologous mRNA boosting. Taken together, heterologous vector/mRNA boosting induces strong humoral and cellular immune responses with acceptable reactogenicity profiles.
Collapse
Affiliation(s)
- Tina Schmidt
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Verena Klemis
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - David Schub
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Janine Mihm
- Department of Internal Medicine IV, Saarland University, Homburg, Germany
| | - Franziska Hielscher
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Amina Abu-Omar
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Laura Ziegler
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Candida Guckelmus
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Rebecca Urschel
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Sophie Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Barbara C Gärtner
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Urban Sester
- Department of Internal Medicine IV, Saarland University, Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany.
| |
Collapse
|
83
|
Gómez CE, Perdiguero B, Usero L, Marcos-Villar L, Miralles L, Leal L, Sorzano CÓS, Sánchez-Corzo C, Plana M, García F, Esteban M. Enhancement of the HIV-1-Specific Immune Response Induced by an mRNA Vaccine through Boosting with a Poxvirus MVA Vector Expressing the Same Antigen. Vaccines (Basel) 2021; 9:vaccines9090959. [PMID: 34579196 PMCID: PMC8473054 DOI: 10.3390/vaccines9090959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Development of a vaccine against HIV remains a major target goal in the field. The recent success of mRNA vaccines against the coronavirus SARS-CoV-2 is pointing out a new era of vaccine designs against pathogens. Here, we have generated two types of mRNA vaccine candidates against HIV-1; one based on unmodified vectors and the other on 1-methyl-3′-pseudouridylyl modified vectors expressing a T cell multiepitopic construct including protective conserved epitopes from HIV-1 Gag, Pol and Nef proteins (referred to as RNA-TMEP and RNA-TMEPmod, respectively) and defined their biological and immunological properties in cultured cells and in mice. In cultured cells, both mRNA vectors expressed the corresponding protein, with higher levels observed in the unmodified mRNA, leading to activated macrophages with differential induction of innate immune molecules. In mice, intranodal administration of the mRNAs induced the activation of specific T cell (CD4 and CD8) responses, and the levels were markedly enhanced after a booster immunization with the poxvirus vector MVA-TMEP expressing the same antigen. This immune activation was maintained even three months later. These findings revealed a potent combined immunization regimen able to enhance the HIV-1-specific immune responses induced by an mRNA vaccine that might be applicable to human vaccination programs with mRNA and MVA vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Centro Nacional de Biotecnología (CNB), Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (B.P.); (L.M.-V.); (C.S.-C.)
- Correspondence: (C.E.G.); (M.E.)
| | - Beatriz Perdiguero
- Centro Nacional de Biotecnología (CNB), Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (B.P.); (L.M.-V.); (C.S.-C.)
| | - Lorena Usero
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (L.U.); (L.M.); (L.L.); (M.P.); (F.G.)
| | - Laura Marcos-Villar
- Centro Nacional de Biotecnología (CNB), Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (B.P.); (L.M.-V.); (C.S.-C.)
| | - Laia Miralles
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (L.U.); (L.M.); (L.L.); (M.P.); (F.G.)
| | - Lorna Leal
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (L.U.); (L.M.); (L.L.); (M.P.); (F.G.)
| | | | - Cristina Sánchez-Corzo
- Centro Nacional de Biotecnología (CNB), Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (B.P.); (L.M.-V.); (C.S.-C.)
| | - Montserrat Plana
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (L.U.); (L.M.); (L.L.); (M.P.); (F.G.)
| | - Felipe García
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (L.U.); (L.M.); (L.L.); (M.P.); (F.G.)
| | - Mariano Esteban
- Centro Nacional de Biotecnología (CNB), Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (B.P.); (L.M.-V.); (C.S.-C.)
- Correspondence: (C.E.G.); (M.E.)
| |
Collapse
|
84
|
Borobia AM, Carcas AJ, Pérez-Olmeda M, Castaño L, Bertran MJ, García-Pérez J, Campins M, Portolés A, González-Pérez M, García Morales MT, Arana-Arri E, Aldea M, Díez-Fuertes F, Fuentes I, Ascaso A, Lora D, Imaz-Ayo N, Barón-Mira LE, Agustí A, Pérez-Ingidua C, Gómez de la Cámara A, Arribas JR, Ochando J, Alcamí J, Belda-Iniesta C, Frías J. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 2021; 398:121-130. [PMID: 34181880 PMCID: PMC8233007 DOI: 10.1016/s0140-6736(21)01420-3] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND To date, no immunological data on COVID-19 heterologous vaccination schedules in humans have been reported. We assessed the immunogenicity and reactogenicity of BNT162b2 (Comirnaty, BioNTech, Mainz, Germany) administered as second dose in participants primed with ChAdOx1-S (Vaxzevria, AstraZeneca, Oxford, UK). METHODS We did a phase 2, open-label, randomised, controlled trial on adults aged 18-60 years, vaccinated with a single dose of ChAdOx1-S 8-12 weeks before screening, and no history of SARS-CoV-2 infection. Participants were randomly assigned (2:1) to receive either BNT162b2 (0·3 mL) via a single intramuscular injection (intervention group) or continue observation (control group). The primary outcome was 14-day immunogenicity, measured by immunoassays for SARS-CoV-2 trimeric spike protein and receptor binding domain (RBD). Antibody functionality was assessed using a pseudovirus neutralisation assay, and cellular immune response using an interferon-γ immunoassay. The safety outcome was 7-day reactogenicity, measured as solicited local and systemic adverse events. The primary analysis included all participants who received at least one dose of BNT162b2 and who had at least one efficacy evaluation after baseline. The safety analysis included all participants who received BNT162b2. This study is registered with EudraCT (2021-001978-37) and ClinicalTrials.gov (NCT04860739), and is ongoing. FINDINGS Between April 24 and 30, 2021, 676 individuals were enrolled and randomly assigned to either the intervention group (n=450) or control group (n=226) at five university hospitals in Spain (mean age 44 years [SD 9]; 382 [57%] women and 294 [43%] men). 663 (98%) participants (n=441 intervention, n=222 control) completed the study up to day 14. In the intervention group, geometric mean titres of RBD antibodies increased from 71·46 BAU/mL (95% CI 59·84-85·33) at baseline to 7756·68 BAU/mL (7371·53-8161·96) at day 14 (p<0·0001). IgG against trimeric spike protein increased from 98·40 BAU/mL (95% CI 85·69-112·99) to 3684·87 BAU/mL (3429·87-3958·83). The interventional:control ratio was 77·69 (95% CI 59·57-101·32) for RBD protein and 36·41 (29·31-45·23) for trimeric spike protein IgG. Reactions were mild (n=1210 [68%]) or moderate (n=530 [30%]), with injection site pain (n=395 [88%]), induration (n=159 [35%]), headache (n=199 [44%]), and myalgia (n=194 [43%]) the most commonly reported adverse events. No serious adverse events were reported. INTERPRETATION BNT162b2 given as a second dose in individuals prime vaccinated with ChAdOx1-S induced a robust immune response, with an acceptable and manageable reactogenicity profile. FUNDING Instituto de Salud Carlos III. TRANSLATIONS For the French and Spanish translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Alberto M Borobia
- Servicio de Farmacología Clínica, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio J Carcas
- Servicio de Farmacología Clínica, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Luis Castaño
- Hospital Universitario de Cruces, Biocruces Bizkaia HRI, UPV/EHU, OSAKIDETZA, CIBERDEM, CIBERER, Endo-ERN, Barakaldo-Bilbao, Spain
| | - María Jesús Bertran
- Servicio de Medicina Preventiva y Epidemiología, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Javier García-Pérez
- Unidad de Inmunopatología del SIDA, Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena Campins
- Servicio de Medicina Preventiva y Epidemiología, Servicio de Farmacología Clínica, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Portolés
- Servicio de Farmacología Clínica, Hospital Clínico San Carlos, IdISSC, Departamento de Farmacología y Toxicología, Universidad Complutense de Madrid, Madrid, Spain
| | - María González-Pérez
- Laboratorio de Referencia en Inmunología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa García Morales
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, CIBER de Epidemiología y Salud Pública, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Eunate Arana-Arri
- Hospital Universitario de Cruces, Biocruces Bizkaia HRI, UPV/EHU, OSAKIDETZA, CIBERDEM, CIBERER, Endo-ERN, Barakaldo-Bilbao, Spain
| | - Marta Aldea
- Servicio de Medicina Preventiva y Epidemiología, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Inmaculada Fuentes
- Unidad de Soporte a la Investigación Clínica, Vall d'Hebron Institut de Recerca, Servicio de Farmacología Clínica, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Ascaso
- Servicio de Farmacología Clínica, Hospital Clínico San Carlos, IdISSC, Departamento de Farmacología y Toxicología, Universidad Complutense de Madrid, Madrid, Spain
| | - David Lora
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, CIBER de Epidemiología y Salud Pública, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Natale Imaz-Ayo
- Hospital Universitario de Cruces, Biocruces Bizkaia HRI, UPV/EHU, OSAKIDETZA, CIBERDEM, CIBERER, Endo-ERN, Barakaldo-Bilbao, Spain
| | - Lourdes E Barón-Mira
- Servicio de Medicina Preventiva y Epidemiología, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antonia Agustí
- Departmento de Farmacología, Terapéutica y Toxicología, Servicio de Farmacología Clínica, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carla Pérez-Ingidua
- Servicio de Farmacología Clínica, Hospital Clínico San Carlos, IdISSC, Departamento de Farmacología y Toxicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Agustín Gómez de la Cámara
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, CIBER de Epidemiología y Salud Pública, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José Ramón Arribas
- Servicio de Medicina Interna, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jordi Ochando
- Laboratorio de Referencia en Inmunología, Instituto de Salud Carlos III, Madrid, Spain
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristóbal Belda-Iniesta
- Centro Nacional de Microbiología, and Evaluation and Promotion of Research, Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús Frías
- Servicio de Farmacología Clínica, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
85
|
Affiliation(s)
- Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, 08007, Barcelona, Spain.
| | - Daniel Prieto-Alhambra
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK; Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
86
|
Powell AA, Power L, Westrop S, McOwat K, Campbell H, Simmons R, Ramsay ME, Brown K, Ladhani SN, Amirthalingam G. Real-world data shows increased reactogenicity in adults after heterologous compared to homologous prime-boost COVID-19 vaccination, March-June 2021, England. Euro Surveill 2021; 26:2100634. [PMID: 34269172 PMCID: PMC8284043 DOI: 10.2807/1560-7917.es.2021.26.28.2100634] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023] Open
Abstract
Adults receiving heterologous COVID-19 immunisation with mRNA (Comirnaty) or adenoviral-vector (Vaxzevria) vaccines had higher reactogenicity rates and sought medical attention more often after two doses than homologous schedules. Reactogenicity was higher among ≤ 50 than > 50 year-olds, women and those with prior symptomatic/confirmed COVID-19. Adults receiving heterologous schedules on clinical advice after severe first-dose reactions had lower reactogenicity after dose 2 following Vaxzevria/Comirnaty (93.4%; 95% confidence interval: 90.5-98.1 vs 48% (41.0-57.7) but not Comirnaty/Vaxzevria (91.7%; (77.5-98.2 vs 75.0% (57.8-87.9).
Collapse
Affiliation(s)
- Annabel A Powell
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
| | - Linda Power
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
| | - Samantha Westrop
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
| | - Kelsey McOwat
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
| | - Helen Campbell
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
| | - Ruth Simmons
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
| | - Mary E Ramsay
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin Brown
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
| | - Shamez N Ladhani
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
- Paediatric Infectious Diseases Research Group, St. George's University of London, London, United Kingdom
| | - Gayatri Amirthalingam
- Immunisation and Countermeasures Division, Public Health England, London, United Kingdom
| |
Collapse
|
87
|
García-Montero C, Fraile-Martínez O, Bravo C, Torres-Carranza D, Sanchez-Trujillo L, Gómez-Lahoz AM, Guijarro LG, García-Honduvilla N, Asúnsolo A, Bujan J, Monserrat J, Serrano E, Álvarez-Mon M, De León-Luis JA, Álvarez-Mon MA, Ortega MA. An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times. Vaccines (Basel) 2021; 9:vaccines9050433. [PMID: 33925526 PMCID: PMC8146241 DOI: 10.3390/vaccines9050433] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Since the worldwide COVID-19 pandemic was declared a year ago, the search for vaccines has become the top priority in order to restore normalcy after 2.5 million deaths worldwide, overloaded sanitary systems, and a huge economic burden. Vaccine development has represented a step towards the desired herd immunity in a short period of time, owing to a high level of investment, the focus of researchers, and the urge for the authorization of the faster administration of vaccines. Nevertheless, this objective may only be achieved by pursuing effective strategies and policies in various countries worldwide. In the present review, some aspects involved in accomplishing a successful vaccination program are addressed, in addition to the importance of vaccination in a pandemic in the face of unwillingness, conspiracy theories, or a lack of information among the public. Moreover, we provide some updated points related to the landscape of the clinical development of vaccine candidates, specifically, the top five vaccines that are already being assessed in Phase IV clinical trials (BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, and CoronaVac).
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | | | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Luis G. Guijarro
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Encarnación Serrano
- Los fresnos of Health Centre, Health Area III, Torrejon de Ardoz, 28850 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Juan A De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- First of May Health Centre, Health Area I, Rivas Vaciamadrid, 28521 Madrid, Spain;
- Correspondence:
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| |
Collapse
|
88
|
Li R, Liu J, Zhang H. The challenge of emerging SARS-CoV-2 mutants to vaccine development. J Genet Genomics 2021; 48:102-106. [PMID: 33994322 PMCID: PMC8056881 DOI: 10.1016/j.jgg.2021.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Rong Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|