51
|
Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M, Bainar P, Heckmann S, Tomancak P, Riha K. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. eLife 2020; 9:52546. [PMID: 32041682 DOI: 10.7554/elife.52546.sa2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/04/2020] [Indexed: 05/27/2023] Open
Abstract
In higher plants, germline differentiation occurs during a relatively short period within developing flowers. Understanding of the mechanisms that govern germline differentiation lags behind other plant developmental processes. This is largely because the germline is restricted to relatively few cells buried deep within floral tissues, which makes them difficult to study. To overcome this limitation, we have developed a methodology for live imaging of the germ cell lineage within floral organs of Arabidopsis using light sheet fluorescence microscopy. We have established reporter lines, cultivation conditions, and imaging protocols for high-resolution microscopy of developing flowers continuously for up to several days. We used multiview imagining to reconstruct a three-dimensional model of a flower at subcellular resolution. We demonstrate the power of this approach by capturing male and female meiosis, asymmetric pollen division, movement of meiotic chromosomes, and unusual restitution mitosis in tapetum cells. This method will enable new avenues of research into plant sexual reproduction.
Collapse
Affiliation(s)
- Sona Valuchova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavlina Mikulkova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jana Pecinkova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jana Klimova
- IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Michal Krumnikl
- IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czech Republic
- Department of Computer Science, FEECS VSB - Technical University of Ostrava, Ostrava, Czech Republic
| | - Petr Bainar
- IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karel Riha
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
52
|
Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M, Bainar P, Heckmann S, Tomancak P, Riha K. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. eLife 2020; 9:e52546. [PMID: 32041682 PMCID: PMC7012603 DOI: 10.7554/elife.52546] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/04/2020] [Indexed: 12/21/2022] Open
Abstract
In higher plants, germline differentiation occurs during a relatively short period within developing flowers. Understanding of the mechanisms that govern germline differentiation lags behind other plant developmental processes. This is largely because the germline is restricted to relatively few cells buried deep within floral tissues, which makes them difficult to study. To overcome this limitation, we have developed a methodology for live imaging of the germ cell lineage within floral organs of Arabidopsis using light sheet fluorescence microscopy. We have established reporter lines, cultivation conditions, and imaging protocols for high-resolution microscopy of developing flowers continuously for up to several days. We used multiview imagining to reconstruct a three-dimensional model of a flower at subcellular resolution. We demonstrate the power of this approach by capturing male and female meiosis, asymmetric pollen division, movement of meiotic chromosomes, and unusual restitution mitosis in tapetum cells. This method will enable new avenues of research into plant sexual reproduction.
Collapse
Affiliation(s)
- Sona Valuchova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Pavlina Mikulkova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Jana Pecinkova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Jana Klimova
- IT4InnovationsVSB–Technical University of OstravaOstravaCzech Republic
| | - Michal Krumnikl
- IT4InnovationsVSB–Technical University of OstravaOstravaCzech Republic
- Department of Computer ScienceFEECS VSB – Technical University of OstravaOstravaCzech Republic
| | - Petr Bainar
- IT4InnovationsVSB–Technical University of OstravaOstravaCzech Republic
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Karel Riha
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
53
|
de Bang L, Paez-Garcia A, Cannon AE, Chin S, Kolape J, Liao F, Sparks JA, Jiang Q, Blancaflor EB. Brassinosteroids Inhibit Autotropic Root Straightening by Modifying Filamentous-Actin Organization and Dynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:5. [PMID: 32117357 PMCID: PMC7010715 DOI: 10.3389/fpls.2020.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/06/2020] [Indexed: 05/12/2023]
Abstract
When positioned horizontally, roots grow down toward the direction of gravity. This phenomenon, called gravitropism, is influenced by most of the major plant hormones including brassinosteroids. Epi-brassinolide (eBL) was previously shown to enhance root gravitropism, a phenomenon similar to the response of roots exposed to the actin inhibitor, latrunculin B (LatB). This led us to hypothesize that eBL might enhance root gravitropism through its effects on filamentous-actin (F-actin). This hypothesis was tested by comparing gravitropic responses of maize (Zea mays) roots treated with eBL or LatB. LatB- and eBL-treated roots displayed similar enhanced downward growth compared with controls when vertical roots were oriented horizontally. Moreover, the effects of the two compounds on root growth directionality were more striking on a slowly-rotating two-dimensional clinostat. Both compounds inhibited autotropism, a process in which the root straightened after the initial gravistimulus was withdrawn by clinorotation. Although eBL reduced F-actin density in chemically-fixed Z. mays roots, the impact was not as strong as that of LatB. Modification of F-actin organization after treatment with both compounds was also observed in living roots of barrel medic (Medicago truncatula) seedlings expressing genetically encoded F-actin reporters. Like in fixed Z. mays roots, eBL effects on F-actin in living M. truncatula roots were modest compared with those of LatB. Furthermore, live cell imaging revealed a decrease in global F-actin dynamics in hypocotyls of etiolated M. truncatula seedlings treated with eBL compared to controls. Collectively, our data indicate that eBL-and LatB-induced enhancement of root gravitropism can be explained by inhibited autotropic root straightening, and that eBL affects this process, in part, by modifying F-actin organization and dynamics.
Collapse
Affiliation(s)
- Louise de Bang
- Noble Research Institute LLC, Ardmore, OK, United States
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ashley E. Cannon
- Noble Research Institute LLC, Ardmore, OK, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Sabrina Chin
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Jaydeep Kolape
- Noble Research Institute LLC, Ardmore, OK, United States
- Center for Biotechnology, University of Nebraska—Lincoln, Lincoln, NE, United States
| | - Fuqi Liao
- Noble Research Institute LLC, Ardmore, OK, United States
| | - J. Alan Sparks
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Qingzhen Jiang
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Elison B. Blancaflor
- Noble Research Institute LLC, Ardmore, OK, United States
- *Correspondence: Elison B. Blancaflor,
| |
Collapse
|
54
|
Ovečka M, Luptovčiak I, Komis G, Šamajová O, Samakovli D, Šamaj J. Spatiotemporal Pattern of Ectopic Cell Divisions Contribute to Mis-Shaped Phenotype of Primary and Lateral Roots of katanin1 Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:734. [PMID: 32582258 PMCID: PMC7296145 DOI: 10.3389/fpls.2020.00734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 05/04/2023]
Abstract
Pattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast. By focusing on the tractable example of primary root development and lateral root emergence in Arabidopsis thaliana, genetic studies have highlighted the importance of mechanisms underlying microtubule reorganization in the establishment of the root system. In this regard, severe alterations of root growth, and development found in extensively studied katanin1 mutants of A. thaliana (fra2, lue1, and ktn1-2), were previously attributed to defective rearrangements of cortical microtubules and aberrant cell division plane reorientation. How KATANIN1-mediated microtubule severing contributes to tissue patterning and organ morphogenesis, ultimately leading to anisotropy in microtubule organization is a trending topic under vigorous investigation. Here we addressed this issue during root development, using advanced light-sheet fluorescence microscopy (LSFM) and long-term imaging of ktn1-2 mutant expressing the GFP-TUA6 microtubule marker. This method allowed spatial and temporal monitoring of cell division patterns in growing roots. Analysis of acquired multidimensional data sets revealed the occurrence of ectopic cell divisions in various tissues including the calyptrogen and the protoxylem of the main root, as well as in lateral root primordia. Notably the ktn1-2 mutant exhibited excessive longitudinal cell divisions (parallel to the root axis) at ectopic positions. This suggested that changes in the cell division pattern and the occurrence of ectopic cell divisions contributed significantly to pleiotropic root phenotypes of ktn1-2 mutant. LSFM provided evidence that KATANIN1 is required for the spatiotemporal control of cell divisions and establishment of tissue patterns in living A. thaliana roots.
Collapse
|
55
|
Tichá M, Richter H, Ovečka M, Maghelli N, Hrbáčková M, Dvořák P, Šamaj J, Šamajová O. Advanced Microscopy Reveals Complex Developmental and Subcellular Localization Patterns of ANNEXIN 1 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1153. [PMID: 32849711 PMCID: PMC7419693 DOI: 10.3389/fpls.2020.01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Annexin 1 (ANN1) is the most abundant member of the evolutionary conserved multigene protein superfamily of annexins in plants. Generally, annexins participate in diverse cellular processes, such as cell growth, differentiation, vesicle trafficking, and stress responses. The expression of annexins is developmentally regulated, and it is sensitive to the external environment. ANN1 is expressed in almost all Arabidopsis tissues, while the most abundant is in the root, root hairs, and in the hypocotyl epidermal cells. Annexins were also occasionally proposed to associate with cytoskeleton and vesicles, but they were never developmentally localized at the subcellular level in diverse plant tissues and organs. Using advanced light-sheet fluorescence microscopy (LSFM), we followed the developmental and subcellular localization of GFP-tagged ANN1 in post-embryonic Arabidopsis organs. By contrast to conventional microscopy, LSFM allowed long-term imaging of ANN1-GFP in Arabidopsis plants at near-environmental conditions without affecting plant viability. We studied developmental regulation of ANN1-GFP expression and localization in growing Arabidopsis roots: strong accumulation was found in the root cap and epidermal cells (preferentially in elongating trichoblasts), but it was depleted in dividing cells localized in deeper layers of the root meristem. During root hair development, ANN1-GFP accumulated at the tips of emerging and growing root hairs, which was accompanied by decreased abundance in the trichoblasts. In aerial plant parts, ANN1-GFP was localized mainly in the cortical cytoplasm of trichomes and epidermal cells of hypocotyls, cotyledons, true leaves, and their petioles. At the subcellular level, ANN1-GFP was enriched at the plasma membrane (PM) and vesicles of non-dividing cells and in mitotic and cytokinetic microtubular arrays of dividing cells. Additionally, an independent immunolocalization method confirmed ANN1-GFP association with mitotic and cytokinetic microtubules (PPBs and phragmoplasts) in dividing cells of the lateral root cap. Lattice LSFM revealed subcellular accumulation of ANN1-GFP around the nuclear envelope of elongating trichoblasts. Massive relocation and accumulation of ANN1-GFP at the PM and in Hechtian strands and reticulum in plasmolyzed cells suggest a possible osmoprotective role of ANN1-GFP during plasmolysis/deplasmolysis cycle. This study shows complex developmental and subcellular localization patterns of ANN1 in living Arabidopsis plants.
Collapse
Affiliation(s)
- Michaela Tichá
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Hendrik Richter
- Institute of Celullar and Molecular Botany, University of Bonn, Bonn, Germany
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, Advanced Imaging Facility, Dresden, Germany
| | - Miroslava Hrbáčková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Petr Dvořák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Olga Šamajová,
| |
Collapse
|
56
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
57
|
Wan Y, McDole K, Keller PJ. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu Rev Cell Dev Biol 2019; 35:655-681. [PMID: 31299171 DOI: 10.1146/annurev-cellbio-100818-125311] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to visualize and quantitatively measure dynamic biological processes in vivo and at high spatiotemporal resolution is of fundamental importance to experimental investigations in developmental biology. Light-sheet microscopy is particularly well suited to providing such data, since it offers exceptionally high imaging speed and good spatial resolution while minimizing light-induced damage to the specimen. We review core principles and recent advances in light-sheet microscopy, with a focus on concepts and implementations relevant for applications in developmental biology. We discuss how light-sheet microcopy has helped advance our understanding of developmental processes from single-molecule to whole-organism studies, assess the potential for synergies with other state-of-the-art technologies, and introduce methods for computational image and data analysis. Finally, we explore the future trajectory of light-sheet microscopy, discuss key efforts to disseminate new light-sheet technology, and identify exciting opportunities for further advances.
Collapse
Affiliation(s)
- Yinan Wan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
58
|
Yang Y, Huang W, Wu E, Lin C, Chen B, Lin D. Cortical Microtubule Organization during Petal Morphogenesis in Arabidopsis. Int J Mol Sci 2019; 20:E4913. [PMID: 31623377 PMCID: PMC6801907 DOI: 10.3390/ijms20194913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Cortical microtubules guide the direction and deposition of cellulose microfibrils to build the cell wall, which in turn influences cell expansion and plant morphogenesis. In the model plant Arabidopsis thaliana (Arabidopsis), petal is a relatively simple organ that contains distinct epidermal cells, such as specialized conical cells in the adaxial epidermis and relatively flat cells with several lobes in the abaxial epidermis. In the past two decades, the Arabidopsis petal has become a model experimental system for studying cell expansion and organ morphogenesis, because petals are dispensable for plant growth and reproduction. Recent advances have expanded the role of microtubule organization in modulating petal anisotropic shape formation and conical cell shaping during petal morphogenesis. Here, we summarize recent studies showing that in Arabidopsis, several genes, such as SPIKE1, Rho of plant (ROP) GTPases, and IPGA1, play critical roles in microtubule organization and cell expansion in the abaxial epidermis during petal morphogenesis. Moreover, we summarize the live-confocal imaging studies of Arabidopsis conical cells in the adaxial epidermis, which have emerged as a new cellular model. We discuss the microtubule organization pattern during conical cell shaping. Finally, we propose future directions regarding the study of petal morphogenesis and conical cell shaping.
Collapse
Affiliation(s)
- Yanqiu Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weihong Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Endian Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
59
|
Vigani G, Costa A. Harnessing the new emerging imaging technologies to uncover the role of Ca 2+ signalling in plant nutrient homeostasis. PLANT, CELL & ENVIRONMENT 2019; 42:2885-2901. [PMID: 31286524 DOI: 10.1111/pce.13611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 05/26/2023]
Abstract
Increasing crop yields by using ecofriendly practices is of high priority to tackle problems regarding food security and malnutrition worldwide. A sustainable crop production requires a limited use of fertilizer and the employment of plant varieties with improved ability to acquire nutrients from soil. To reach these goals, the scientific community aims to understand plant nutrients homeostasis by deciphering the nutrient sensing and signalling mechanisms of plants. Several lines of evidence about the involvement of Ca2+ as the signal of an impaired nutrient availability have been reported. Ca2+ signalling is a tightly regulated process that requires specific protein toolkits to perceive external stimuli and to induce the specific responses in the plant needed to survive. Here, we summarize both older and recent findings concerning the involvement of Ca2+ signalling in the homeostasis of nutrients. In this review, we present new emerging technologies, based on the use of genetically encoded Ca2+ sensors and advanced microscopy, which offer the chance to perform in planta analyses of Ca2+ dynamics at cellular resolution. The harnessing of these technologies with different genetic backgrounds and subjected to different nutritional stresses will provide important insights to the still little-known mechanisms of nutrient sensing in plants.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10135, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| |
Collapse
|
60
|
Banda J, Bellande K, von Wangenheim D, Goh T, Guyomarc'h S, Laplaze L, Bennett MJ. Lateral Root Formation in Arabidopsis: A Well-Ordered LRexit. TRENDS IN PLANT SCIENCE 2019; 24:826-839. [PMID: 31362861 DOI: 10.1016/j.tplants.2019.06.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 05/04/2023]
Abstract
Lateral roots (LRs) are crucial for increasing the surface area of root systems to explore heterogeneous soil environments. Major advances have recently been made in the model plant arabidopsis (Arabidopsis thaliana) to elucidate the cellular basis of LR development and the underlying gene regulatory networks (GRNs) that control the morphogenesis of the new root organ. This has provided a foundation for understanding the sophisticated adaptive mechanisms that regulate how plants pattern their root branching to match the spatial availability of resources such as water and nutrients in their external environment. We review new insights into the molecular, cellular, and environmental regulation of LR development in arabidopsis.
Collapse
Affiliation(s)
- Jason Banda
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, UK
| | - Kevin Bellande
- Unité Mixte de Recherche (UMR) Diversité, Adaptation, et Developpement des Plantes (DIADE), Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Daniel von Wangenheim
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, UK
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Soazig Guyomarc'h
- Unité Mixte de Recherche (UMR) Diversité, Adaptation, et Developpement des Plantes (DIADE), Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Laurent Laplaze
- Unité Mixte de Recherche (UMR) Diversité, Adaptation, et Developpement des Plantes (DIADE), Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France.
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, UK.
| |
Collapse
|
61
|
Hesse L, Bunk K, Leupold J, Speck T, Masselter T. Structural and functional imaging of large and opaque plant specimens. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3659-3678. [PMID: 31188449 DOI: 10.1093/jxb/erz186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
Three- and four-dimensional imaging techniques are a prerequisite for spatially resolving the form-structure-function relationships in plants. However, choosing the right imaging method is a difficult and time-consuming process as the imaging principles, advantages and limitations, as well as the appropriate fields of application first need to be compared. The present study aims to provide an overview of three imaging methods that allow for imaging opaque, large and thick (>5 mm, up to several centimeters), hierarchically organized plant samples that can have complex geometries. We compare light microscopy of serial thin sections followed by 3D reconstruction (LMTS3D) as an optical imaging technique, micro-computed tomography (µ-CT) based on ionizing radiation, and magnetic resonance imaging (MRI) which uses the natural magnetic properties of a sample for image acquisition. We discuss the most important imaging principles, advantages, and limitations, and suggest fields of application for each imaging technique (LMTS, µ-CT, and MRI) with regard to static (at a given time; 3D) and dynamic (at different time points; quasi 4D) structural and functional plant imaging.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Katharina Bunk
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
| | - Tom Masselter
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| |
Collapse
|
62
|
Hesse L, Leupold J, Poppinga S, Wick M, Strobel K, Masselter T, Speck T. Resolving Form–Structure–Function Relationships in Plants with MRI for Biomimetic Transfer. Integr Comp Biol 2019; 59:1713-1726. [DOI: 10.1093/icb/icz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
In many biomimetic approaches, a deep understanding of the form–structure–function relationships in living and functionally intact organisms, which act as biological role models, is essential. This knowledge is a prerequisite for the identification of parameters that are relevant for the desired technical transfer of working principles. Hence, non-invasive and non-destructive techniques for static (3D) and dynamic (4D) high-resolution plant imaging and analysis on multiple hierarchical levels become increasingly important. In this study we demonstrate that magnetic resonance imaging (MRI) can be used to resolve the plants inner tissue structuring and functioning on the example of four plant concept generators with sizes larger than 5 mm used in current biomimetic research projects: Dragon tree (Dracaena reflexa var. angustifolia), Venus flytrap (Dionaea muscipula), Sugar pine (Pinus lambertiana) and Chinese witch hazel (Hamamelis mollis). Two different MRI sequences were applied for high-resolution 3D imaging of the differing material composition (amount, distribution, and density of various tissues) and condition (hydrated, desiccated, and mechanically stressed) of the four model organisms. Main aim is to better understand their biomechanics, development, and kinematics. The results are used as inspiration for developing novel design and fabrication concepts for bio-inspired technical fiber-reinforced branchings and smart biomimetic actuators.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | | | | | - Tom Masselter
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS—FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
63
|
Torres-Martínez HH, Rodríguez-Alonso G, Shishkova S, Dubrovsky JG. Lateral Root Primordium Morphogenesis in Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:206. [PMID: 30941149 PMCID: PMC6433717 DOI: 10.3389/fpls.2019.00206] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
Morphogenetic processes are the basis of new organ formation. Lateral roots (LRs) are the building blocks of the root system. After LR initiation and before LR emergence, a new lateral root primordium (LRP) forms. During this period, the organization and functionality of the prospective LR is defined. Thus, proper LRP morphogenesis is a decisive process during root system formation. Most current studies on LRP morphogenesis have been performed in the model species Arabidopsis thaliana; little is known about this process in other angiosperms. To understand LRP morphogenesis from a wider perspective, we review both contemporary and earlier studies. The latter are largely forgotten, and we attempted to integrate them into present-day research. In particular, we consider in detail the participation of parent root tissue in LRP formation, cell proliferation and timing during LRP morphogenesis, and the hormonal and genetic regulation of LRP morphogenesis. Cell type identity acquisition and new stem cell establishement during LRP morphogenesis are also considered. Within each of these facets, unanswered or poorly understood questions are identified to help define future research in the field. Finally, we discuss emerging research avenues and new technologies that could be used to answer the remaining questions in studies of LRP morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
64
|
Cui Y, Zhang X, Yu M, Zhu Y, Xing J, Lin J. Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress. SCIENCE CHINA-LIFE SCIENCES 2019; 62:619-632. [DOI: 10.1007/s11427-018-9500-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
|
65
|
Van Eeckhout A, Garcia-Caurel E, Garnatje T, Durfort M, Escalera JC, Vidal J, Gil JJ, Campos J, Lizana A. Depolarizing metrics for plant samples imaging. PLoS One 2019; 14:e0213909. [PMID: 30870523 PMCID: PMC6417720 DOI: 10.1371/journal.pone.0213909] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Optical methods, as fluorescence microscopy or hyperspectral imaging, are commonly used for plants visualization and characterization. Another powerful collection of optical techniques is the so-called polarimetry, widely used to enhance image contrast in multiple applications. In the botanical applications framework, in spite of some works have already highlighted the depolarizing print that plant structures left on input polarized beams, the potential of polarimetric methods has not been properly exploited. In fact, among the few works dealing with polarization and plants, most of them study light scattered by plants using the Degree of Polarization (DoP) indicator. Other more powerful depolarization metrics are nowadays neglected. In this context, we highlight the potential of different depolarization metrics obtained using the Mueller matrix (MM) measurement: the Depolarization Index and the Indices of Polarimetric Purity. We perform a qualitative and quantitative comparison between DoP- and MM-based images by studying a particular plant, the Hedera maroccana. We show how Mueller-based metrics are generally more suitable in terms of contrast than DoP-based measurements. The potential of polarimetric measurements in the study of plants is highlighted in this work, suggesting they can be applied to the characterization of plants, plant taxonomy, water stress in plants, and other botanical studies.
Collapse
Affiliation(s)
- Albert Van Eeckhout
- Grup d’Òptica, Physics Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Enric Garcia-Caurel
- LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France
| | - Teresa Garnatje
- Botanical Institute of Barcelona (IBB, CSIC-ICUB), Barcelona, Spain
| | - Mercè Durfort
- Departament de Biologia Cel·lular, Fisiologia & Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Juan Carlos Escalera
- Grup d’Òptica, Physics Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Vidal
- Grup d’Òptica, Physics Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Juan Campos
- Grup d’Òptica, Physics Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Angel Lizana
- Grup d’Òptica, Physics Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
66
|
Vavrdová T, Šamajová O, Křenek P, Ovečka M, Floková P, Šnaurová R, Šamaj J, Komis G. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. PLANT METHODS 2019; 15:22. [PMID: 30899319 PMCID: PMC6408805 DOI: 10.1186/s13007-019-0406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the present work, we provide an account of structured illumination microscopy (SIM) imaging of fixed and immunolabeled plant probes. We take advantage of SIM, to superresolve intracellular structures at a considerable z-range and circumvent its low temporal resolution capacity during the study of living samples. Further, we validate the protocol for the imaging of fixed transgenic material expressing fluorescent protein-based markers of different subcellular structures. RESULTS Focus is given on 3D imaging of bulky subcellular structures, such as mitotic and cytokinetic microtubule arrays as well as on the performance of SIM using multichannel imaging and the quantitative correlations that can be deduced. As a proof of concept, we provide a superresolution output on the organization of cortical microtubules in wild-type and mutant Arabidopsis cells, including aberrant preprophase microtubule bands and phragmoplasts in a cytoskeletal mutant devoid of the p60 subunit of the microtubule severing protein KATANIN and refined details of cytoskeletal aberrations in the mitogen activated protein kinase (MAPK) mutant mpk4. We further demonstrate, in a qualitative and quantitative manner, colocalizations between MPK6 and unknown dually phosphorylated and activated MAPK species and we follow the localization of the microtubule associated protein 65-3 (MAP65-3) in telophase and cytokinetic microtubular arrays. CONCLUSIONS 3D SIM is a powerful, versatile and adaptable microscopy method for elucidating spatial relationships between subcellular compartments. Improved methods of sample preparation aiming to the compensation of refractive index mismatches, allow the use of 3D SIM in the documentation of complex plant cell structures, such as microtubule arrays and the elucidation of their interactions with microtubule associated proteins.
Collapse
Affiliation(s)
- T. Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - O. Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Křenek
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - M. Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Floková
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - R. Šnaurová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - J. Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - G. Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
67
|
Buckner E, Madison I, Chou H, Matthiadis A, Melvin CE, Sozzani R, Williams C, Long TA. Automated Imaging, Tracking, and Analytics Pipeline for Differentiating Environmental Effects on Root Meristematic Cell Division. FRONTIERS IN PLANT SCIENCE 2019; 10:1487. [PMID: 31803217 PMCID: PMC6877711 DOI: 10.3389/fpls.2019.01487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/28/2019] [Indexed: 05/04/2023]
Abstract
Exposure of plants to abiotic stresses, whether individually or in combination, triggers dynamic changes to gene regulation. These responses induce distinct changes in phenotypic characteristics, enabling the plant to adapt to changing environments. For example, iron deficiency and heat stress have been shown to alter root development by reducing primary root growth and reducing cell proliferation, respectively. Currently, identifying the dynamic temporal coordination of genetic responses to combined abiotic stresses remains a bottleneck. This is, in part, due to an inability to isolate specific intervals in developmental time where differential activity in plant stress responses plays a critical role. Here, we observed that iron deficiency, in combination with temporary heat stress, suppresses the expression of iron deficiency-responsive pPYE::LUC (POPEYE::luciferase) and pBTS::LUC (BRUTUS::luciferase) reporter genes. Moreover, root growth was suppressed less under combined iron deficiency and heat stress than under either single stress condition. To further explore the interaction between pathways, we also created a computer vision pipeline to extract, analyze, and compare high-dimensional dynamic spatial and temporal cellular data in response to heat and iron deficiency stress conditions at high temporal resolution. Specifically, we used fluorescence light sheet microscopy to image Arabidopsis thaliana roots expressing CYCB1;1:GFP, a marker for cell entry into mitosis, every 20 min for 24 h exposed to either iron sufficiency, iron deficiency, heat stress, or combined iron deficiency and heat stress. Our pipeline extracted spatiotemporal metrics from these time-course data. These metrics showed that the persistency and timing of CYCB1;1:GFP signal were uniquely different under combined iron deficiency and heat stress conditions versus the single stress conditions. These metrics also indicated that the spatiotemporal characteristics of the CYCB1;1:GFP signal under combined stress were more dissimilar to the control response than the response seen under iron deficiency for the majority of the 24-h experiment. Moreover, the combined stress response was less dissimilar to the control than the response seen under heat stress. This indicated that pathways activated when the plant is exposed to both iron deficiency and heat stress affected CYCB1;1:GFP spatiotemporal function antagonistically.
Collapse
Affiliation(s)
- Eli Buckner
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, United States
| | - Imani Madison
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Hsuan Chou
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Anna Matthiadis
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Charles E. Melvin
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Cranos Williams
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Cranos Williams, ; Terri A. Long,
| | - Terri A. Long
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Cranos Williams, ; Terri A. Long,
| |
Collapse
|
68
|
Krysan PJ, Colcombet J. Cellular Complexity in MAPK Signaling in Plants: Questions and Emerging Tools to Answer Them. FRONTIERS IN PLANT SCIENCE 2018; 9:1674. [PMID: 30538711 PMCID: PMC6277691 DOI: 10.3389/fpls.2018.01674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
Mitogen activated protein kinase (MAPK) cascades play an important role in many aspects of plant growth, development, and environmental response. Because of their central role in many important processes, MAPKs have been extensively studied using biochemical and genetic approaches. This work has allowed for the identification of the MAPK genes and proteins involved in a number of different signaling pathways. Less well developed, however, is our understanding of how MAPK cascades and their corresponding signaling pathways are organized at subcellular levels. In this review, we will provide an overview of plant MAPK signaling, including a discussion of what is known about cellular mechanisms for achieving signaling specificity. Then we will explore what is currently known about the subcellular localization of MAPK proteins in resting conditions and after pathway activation. Finally, we will discuss a number of new experimental methods that have not been widely deployed in plants that have the potential to provide a deeper understanding of the spatial and temporal dynamics of MAPK signaling.
Collapse
Affiliation(s)
- Patrick J. Krysan
- Horticulture Department, University of Wisconsin–Madison, Madison, WI, United States
| | - Jean Colcombet
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
- *Correspondence: Jean Colcombet,
| |
Collapse
|