51
|
Millar-Wilson A, Ward Ó, Duffy E, Hardiman G. Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studies. iScience 2022; 25:105421. [DOI: 10.1016/j.isci.2022.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
52
|
Mu X, He W, Rivera VAM, De Alba RAD, Newman DJ, Zhang YS. Small tissue chips with big opportunities for space medicine. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:150-157. [PMID: 36336360 PMCID: PMC11016463 DOI: 10.1016/j.lssr.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The spaceflight environment, including microgravity and radiation, may have considerable effects on the health and performance of astronauts, especially for long-duration and Martian missions. Conventional on-ground and in-space experimental approaches have been employed to investigate the comprehensive biological effects of the spaceflight environment. As a class of recently emerging bioengineered in vitro models, tissue chips are characterized by a small footprint, potential automation, and the recapitulation of tissue-level physiology, thus promising to help provide molecular and cellular insights into space medicine. Here, we briefly review the technical advantages of tissue chips and discuss specific on-chip physiological recapitulations. Several tissue chips have been launched into space, and more are poised to come through multi-agency collaborations, implying an increasingly important role of tissue chips in space medicine.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, IA 52242, USA
| | - Weishen He
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Raul Armando Duran De Alba
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Dava J Newman
- MIT Media Lab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
53
|
Mochi F, Scatena E, Rodriguez D, Ginebra MP, Del Gaudio C. Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications. NPJ Microgravity 2022; 8:45. [PMID: 36309540 PMCID: PMC9617896 DOI: 10.1038/s41526-022-00236-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
One of humanity's greatest challenges is space exploration, which requires an in-depth analysis of the data continuously collected as a necessary input to fill technological gaps and move forward in several research sectors. Focusing on space crew healthcare, a critical issue to be addressed is tissue regeneration in extreme conditions. In general, it represents one of the hottest and most compelling goals of the scientific community and the development of suitable therapeutic strategies for the space environment is an urgent need for the safe planning of future long-term manned space missions. Osteopenia is a commonly diagnosed disease in astronauts due to the physiological adaptation to altered gravity conditions. In order to find specific solutions to bone damage in a reduced gravity environment, bone tissue engineering is gaining a growing interest. With the aim to critically investigate this topic, the here presented review reports and discusses bone tissue engineering scenarios in microgravity, from scaffolding to bioreactors. The literature analysis allowed to underline several key points, such as the need for (i) biomimetic composite scaffolds to better mimic the natural microarchitecture of bone tissue, (ii) uniform simulated microgravity levels for standardized experimental protocols to expose biological materials to the same testing conditions, and (iii) improved access to real microgravity for scientific research projects, supported by the so-called democratization of space.
Collapse
Affiliation(s)
- Federico Mochi
- E. Amaldi Foundation, Via del Politecnico snc, 00133, Rome, Italy
| | - Elisa Scatena
- E. Amaldi Foundation, Via del Politecnico snc, 00133, Rome, Italy
| | - Daniel Rodriguez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10, 08019, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10, 08019, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | | |
Collapse
|
54
|
Baran R, Wehland M, Schulz H, Heer M, Infanger M, Grimm D. Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. Int J Mol Sci 2022; 23:ijms23158650. [PMID: 35955775 PMCID: PMC9369243 DOI: 10.3390/ijms23158650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Space travelers are exposed to microgravity (µg), which induces enhanced bone loss compared to the age-related bone loss on Earth. Microgravity promotes an increased bone turnover, and this obstructs space exploration. This bone loss can be slowed down by exercise on treadmills or resistive apparatus. The objective of this systematic review is to provide a current overview of the state of the art of the field of bone loss in space and possible treatment options thereof. A total of 482 unique studies were searched through PubMed and Scopus, and 37 studies met the eligibility criteria. The studies showed that, despite increased bone formation during µg, the increase in bone resorption was greater. Different types of exercise and pharmacological treatments with bisphosphonates, RANKL antibody (receptor activator of nuclear factor κβ ligand antibody), proteasome inhibitor, pan-caspase inhibitor, and interleukin-6 monoclonal antibody decrease bone resorption and promote bone formation. Additionally, recombinant irisin, cell-free fat extract, cyclic mechanical stretch-treated bone mesenchymal stem cell-derived exosomes, and strontium-containing hydroxyapatite nanoparticles also show some positive effects on bone loss.
Collapse
Affiliation(s)
- Ronni Baran
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Martina Heer
- IU International University of Applied Sciences, 99084 Erfurt, Germany;
- Institute of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
55
|
Mammarella N, Gatti M, Ceccato I, Di Crosta A, Di Domenico A, Palumbo R. The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081176. [PMID: 36013355 PMCID: PMC9410359 DOI: 10.3390/life12081176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Fighting stress-related effects during spaceflight is crucial for a successful mission. Emotional, motivational, and cognitive mechanisms have already been shown to be involved in the decrease of negative emotions. However, emerging evidence is pointing to a neurogenetic profile that may render some individuals more prone than others to focusing on positive information in memory and increasing affective health. The relevance for adaptation to the space environment and the interaction with other stressors such as ionizing radiations is discussed. In particular, to clarify this approach better, we will draw from the psychology and aging literature data. Subsequently, we report on studies on candidate genes for sensitivity to positive memories. We review work on the following candidate genes that may be crucial in adaptation mechanisms: ADRA2B, COMT, 5HTTLPR, CB1, and TOMM40. The final aim is to show how the study of genetics and cell biology of positive memory can help us to reveal the underlying bottom-up pathways to also increasing positive effects during a space mission.
Collapse
Affiliation(s)
- Nicola Mammarella
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
- Correspondence:
| | - Matteo Gatti
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Irene Ceccato
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adolfo Di Crosta
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Alberto Di Domenico
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Rocco Palumbo
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| |
Collapse
|
56
|
Al KF, Chmiel JA, Stuivenberg GA, Reid G, Burton JP. Long-Duration Space Travel Support Must Consider Wider Influences to Conserve Microbiota Composition and Function. Life (Basel) 2022; 12:1163. [PMID: 36013342 PMCID: PMC9409767 DOI: 10.3390/life12081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
The microbiota is important for immune modulation, nutrient acquisition, vitamin production, and other aspects for long-term human health. Isolated model organisms can lose microbial diversity over time and humans are likely the same. Decreasing microbial diversity and the subsequent loss of function may accelerate disease progression on Earth, and to an even greater degree in space. For this reason, maintaining a healthy microbiome during spaceflight has recently garnered consideration. Diet, lifestyle, and consumption of beneficial microbes can shape the microbiota, but the replenishment we attain from environmental exposure to microbes is important too. Probiotics, prebiotics, fermented foods, fecal microbiota transplantation (FMT), and other methods of microbiota modulation currently available may be of benefit for shorter trips, but may not be viable options to overcome the unique challenges faced in long-term space travel. Novel fermented food products with particular impact on gut health, immune modulation, and other space-targeted health outcomes are worthy of exploration. Further consideration of potential microbial replenishment to humans, including from environmental sources to maintain a healthy microbiome, may also be required.
Collapse
Affiliation(s)
- Kait F. Al
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - John A. Chmiel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gerrit A. Stuivenberg
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gregor Reid
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| |
Collapse
|
57
|
Mian A, Aamir Mian M. Space Medicine: Inspiring a new generation of physicians. Postgrad Med J 2022:7150864. [PMID: 37137531 DOI: 10.1136/pmj-2022-141875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Space medicine is critical in enabling safe human exploration of space. The discipline focuses on supporting human survival, health, and performance in the austere environment of space. It is set to grow ever more important as significant transitions in the standard of space operations in the suborbital, low earth orbit (LEO) and beyond LEO domains will take place in the coming years. NASA along with their international and commercial partners have committed to returning to the Moon through the Artemis missions in this decade with the aim of achieving a permanent sustainable human presence on the lunar surface. Additionally, the development of reusable rockets is set to increase the number and frequency of humans going to space by making space travel more accessible. Commercial spaceflight and missions beyond LEO present many new challenges which space medicine physicians and researchers will need to address. Space medicine operates at the frontier of exploration, engineering, science and medicine. Aviation and Space Medicine (ASM) is the latest specialty to be recognised by the Royal College of Physicians and the General Medical Council in the UK. In this paper, we provide an introduction to space medicine, review the effects of spaceflight on human physiology and health along with countermeasures, medical and surgical issues in space, the varied roles of the ASM physician, challenges to UK space medicine practice and related research, and finally we explore the current representation of space medicine within the undergraduate curriculum.
Collapse
Affiliation(s)
- Areeb Mian
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
58
|
Joint Cartilage in Long-Duration Spaceflight. Biomedicines 2022; 10:biomedicines10061356. [PMID: 35740378 PMCID: PMC9220015 DOI: 10.3390/biomedicines10061356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current literature available on joint cartilage alterations in long-duration spaceflight. Evidence from spaceflight participants is currently limited to serum biomarker data in only a few astronauts. Findings from analogue model research, such as bed rest studies, as well as data from animal and cell research in real microgravity indicate that unloading and radiation exposure are associated with joint degeneration in terms of cartilage thinning and changes in cartilage composition. It is currently unknown how much the individual cartilage regions in the different joints of the human body will be affected on long-term missions beyond the Low Earth Orbit. Given the fact that, apart from total joint replacement or joint resurfacing, currently no treatment exists for late-stage osteoarthritis, countermeasures might be needed to avoid cartilage damage during long-duration missions. To plan countermeasures, it is important to know if and how joint cartilage and the adjacent structures, such as the subchondral bone, are affected by long-term unloading, reloading, and radiation. The use of countermeasures that put either load and shear, or other stimuli on the joints, shields them from radiation or helps by supporting cartilage physiology, or by removing oxidative stress possibly help to avoid OA in later life following long-duration space missions. There is a high demand for research on the efficacy of such countermeasures to judge their suitability for their implementation in long-duration missions.
Collapse
|
59
|
Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23105593. [PMID: 35628403 PMCID: PMC9146119 DOI: 10.3390/ijms23105593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simulated microgravity (SMG) inhibits osteoblast differentiation (OBD) and induces bone loss via the inhibition of the Wnt/β-catenin pathway. However, the mechanism by which SMG alters the Wnt/β-catenin pathway is unknown. We previously demonstrated that SMG altered the focal adhesion kinase (FAK)-regulated mTORC1, AMPK and ERK1/2 pathways, leading to the inhibition of tumor cell proliferation/metastasis and promoting cell apoptosis. To examine whether FAK similarly mediates SMG-dependent changes to Wnt/β-catenin in osteoblasts, we characterized mouse MC3T3-E1 cells cultured under clinostat-modeled SMG (µg) conditions. Compared to cells cultured under ground (1 g) conditions, SMG reduces focal adhesions, alters cytoskeleton structures, and down-regulates FAK, Wnt/β-catenin and Wnt/β-catenin-regulated molecules. Consequently, protein-2 (BMP2), type-1 collagen (COL1), alkaline-phosphatase activity and matrix mineralization are all inhibited. In the mouse hindlimb unloading (HU) model, SMG-affected tibial trabecular bone loss is significantly reduced, according to histological and micro-computed tomography analyses. Interestingly, the FAK activator, cytotoxic necrotizing factor-1 (CNF1), significantly suppresses all of the SMG-induced alterations in MC3T3-E1 cells and the HU model. Therefore, our data demonstrate the critical role of FAK in the SMG-induced inhibition of OBD and bone loss via the Wnt/β-catenin pathway, offering FAK signaling as a new therapeutic target not only for astronauts at risk of OBD inhibition and bone loss, but also osteoporotic patients.
Collapse
|
60
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
61
|
Detection of Target Genes for Drug Repurposing to Treat Skeletal Muscle Atrophy in Mice Flown in Spaceflight. Genes (Basel) 2022; 13:genes13030473. [PMID: 35328027 PMCID: PMC8953707 DOI: 10.3390/genes13030473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle atrophy is a common condition in aging, diabetes, and in long duration spaceflights due to microgravity. This article investigates multi-modal gene disease and disease drug networks via link prediction algorithms to select drugs for repurposing to treat skeletal muscle atrophy. Key target genes that cause muscle atrophy in the left and right extensor digitorum longus muscle tissue, gastrocnemius, quadriceps, and the left and right soleus muscles are detected using graph theoretic network analysis, by mining the transcriptomic datasets collected from mice flown in spaceflight made available by GeneLab. We identified the top muscle atrophy gene regulators by the Pearson correlation and Bayesian Markov blanket method. The gene disease knowledge graph was constructed using the scalable precision medicine knowledge engine. We computed node embeddings, random walk measures from the networks. Graph convolutional networks, graph neural networks, random forest, and gradient boosting methods were trained using the embeddings, network features for predicting links and ranking top gene-disease associations for skeletal muscle atrophy. Drugs were selected and a disease drug knowledge graph was constructed. Link prediction methods were applied to the disease drug networks to identify top ranked drugs for therapeutic treatment of skeletal muscle atrophy. The graph convolution network performs best in link prediction based on receiver operating characteristic curves and prediction accuracies. The key genes involved in skeletal muscle atrophy are associated with metabolic and neurodegenerative diseases. The drugs selected for repurposing using the graph convolution network method were nutrients, corticosteroids, anti-inflammatory medications, and others related to insulin.
Collapse
|
62
|
Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines? Biomedicines 2022; 10:biomedicines10020342. [PMID: 35203551 PMCID: PMC8961781 DOI: 10.3390/biomedicines10020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. Despite in-flight exercise countermeasures, muscle wasting and bone loss occur, which are associated with spaceflight duration. Nevertheless, countermeasures can be effective, especially by preventing muscle wasting to rescue both postural and dynamic as well as muscle performance. Thus far, it is largely unknown how changes in bone microarchitecture evolve over the long term in the absence of a gravity vector and whether bone loss incurred in space or following the return to the Earth fully recovers or partly persists. In this review, we highlight the different mechanisms and factors that regulate the humoral crosstalk between the muscle and the bone. Further we focus on the interplay between currently known myokines and osteokines and their mutual regulation.
Collapse
|
63
|
Schulz H, Strauch SM, Richter P, Wehland M, Krüger M, Sahana J, Corydon TJ, Wise P, Baran R, Lebert M, Grimm D. Latest knowledge about changes in the proteome in microgravity. Expert Rev Proteomics 2022; 19:43-59. [PMID: 35037812 DOI: 10.1080/14789450.2022.2030711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION : A long-term stay of humans in space causes a large number of well-known health problems and changes in protists and plants. Deep space exploration will increase the time humans or rodents will spend in microgravity (µg). Moreover, they are exposed to cosmic radiation, hypodynamia, and isolation. OMICS investigations will increase our knowledge of the underlying mechanisms of µg-induced alterations in vivo and in vitro. AREAS COVERED : We summarize the findings over the recent 3 years on µg-induced changes in the proteome of protists, plants, rodent and human cells. Considering the thematic orientation of microgravity-related publications in that time frame, we focus on medicine-associated findings such as the µg-induced antibiotic resistance of bacteria, the myocardial consequences of µg-induced calpain activation and the role of MMP13 in osteoarthritis. All these point to the fact that µg is an extreme stressor that could not be evolutionarily addressed on Earth. EXPERT COMMENTARY : In conclusion, when interpreting µg-experiments, the direct, mostly unspecific stress response, must be distinguished from specific µg-effects. For this reason, recent studies often do not consider single protein findings but place them in the context of protein-protein interactions. This enables an estimation of functional relationships, especially if these are supported by epigenetic and transcriptional data (multi-omics).
Collapse
Affiliation(s)
- Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Research Group 'Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen' (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Sebastian M Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89219-710, Brazil
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Research Group 'Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen' (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Research Group 'Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen' (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark
| | - Petra Wise
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, USA
| | - Ronni Baran
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany.,Space Biology Unlimited SAS, 24 Cours de l'Intendance, 33000 Bordeaux, France
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Research Group 'Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen' (MARS), Otto-von-Guericke University, Magdeburg, Germany.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
64
|
Pollock RD, Hodkinson PD, Smith TG. Oh G: The x, y and z of human physiological responses to acceleration. Exp Physiol 2021; 106:2367-2384. [PMID: 34730860 DOI: 10.1113/ep089712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review focuses on the main physiological challenges associated with exposure to acceleration in the Gx, Gy and Gz directions and to microgravity. What advances does it highlight? Our current understanding of the physiology of these environments and latest strategies to protect against them are discussed in light of the limited knowledge we have in some of these areas. ABSTRACT The desire to go higher, faster and further has taken us to environments where the accelerations placed on our bodies far exceed or are much lower than that attributable to Earth's gravity. While on the ground, racing drivers of the fastest cars are exposed to high degrees of lateral acceleration (Gy) during cornering. In the air, while within the confines of the lower reaches of Earth's atmosphere, fast jet pilots are routinely exposed to high levels of acceleration in the head-foot direction (Gz). During launch and re-entry of suborbital and orbital spacecraft, astronauts and spaceflight participants are exposed to high levels of chest-back acceleration (Gx), whereas once in space the effects of gravity are all but removed (termed microgravity, μG). Each of these environments has profound effects on the homeostatic mechanisms within the body and can have a serious impact, not only for those with underlying pathology but also for healthy individuals. This review provides an overview of the main challenges associated with these environments and our current understanding of the physiological and pathophysiological adaptations to them. Where relevant, protection strategies are discussed, with the implications of our future exposure to these environments also being considered.
Collapse
Affiliation(s)
- Ross D Pollock
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Peter D Hodkinson
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Thomas G Smith
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.,Department of Anaesthesia, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
65
|
Characterizing SERCA Function in Murine Skeletal Muscles after 35-37 Days of Spaceflight. Int J Mol Sci 2021; 22:ijms222111764. [PMID: 34769190 PMCID: PMC8584217 DOI: 10.3390/ijms222111764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well established that microgravity exposure causes significant muscle weakness and atrophy via muscle unloading. On Earth, muscle unloading leads to a disproportionate loss in muscle force and size with the loss in muscle force occurring at a faster rate. Although the exact mechanisms are unknown, a role for Ca2+ dysregulation has been suggested. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump actively brings cytosolic Ca2+ into the SR, eliciting muscle relaxation and maintaining low intracellular Ca2+ ([Ca2+]i). SERCA dysfunction contributes to elevations in [Ca2+]i, leading to cellular damage, and may contribute to the muscle weakness and atrophy observed with spaceflight. Here, we investigated SERCA function, SERCA regulatory protein content, and reactive oxygen/nitrogen species (RONS) protein adduction in murine skeletal muscle after 35–37 days of spaceflight. In male and female soleus muscles, spaceflight led to drastic impairments in Ca2+ uptake despite significant increases in SERCA1a protein content. We attribute this impairment to an increase in RONS production and elevated total protein tyrosine (T) nitration and cysteine (S) nitrosylation. Contrarily, in the tibialis anterior (TA), we observed an enhancement in Ca2+ uptake, which we attribute to a shift towards a faster muscle fiber type (i.e., increased myosin heavy chain IIb and SERCA1a) without elevated total protein T-nitration and S-nitrosylation. Thus, spaceflight affects SERCA function differently between the soleus and TA.
Collapse
|