51
|
Grigalunas M, Patil S, Krzyzanowski A, Pahl A, Flegel J, Schölermann B, Xie J, Sievers S, Ziegler S, Waldmann H. Unprecedented Combination of Polyketide Natural Product Fragments Identifies the New Hedgehog Signaling Pathway Inhibitor Grismonone. Chemistry 2022; 28:e202202164. [PMID: 36083197 PMCID: PMC10091983 DOI: 10.1002/chem.202202164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity. We report the combination of fragments from biosynthetically related NPs in novel arrangements to yield a novel chemotype with activity not shared by the guiding fragments. We describe the synthesis of the polyketide pseudo-NP grismonone and identify it as a structurally novel and potent inhibitor of Hedgehog signaling. The insight that the de novo combination of fragments derived from biosynthetically related NPs may also yield new biologically relevant compound classes with unexpected bioactivity may be considered a chemical extension or diversion of existing biosynthetic pathways and greatly expands the opportunities for exploration of biologically relevant chemical space by means of the pseudo-NP principle.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sohan Patil
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Adrian Krzyzanowski
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Jana Flegel
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Beate Schölermann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Jianing Xie
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| |
Collapse
|
52
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
53
|
Chen J, Xu Y, Shao W, Ji J, Wang B, Yang M, Mao G, Xiao F, Deng GJ. Pd-Catalyzed C–O Bond Formation Enabling the Synthesis of Congested N, N, O-Trisubstituted Hydroxylamines. Org Lett 2022; 24:8271-8276. [DOI: 10.1021/acs.orglett.2c02975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiaxing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yongzhuo Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Jianhua Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Boqiang Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Muyang Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| |
Collapse
|
54
|
Inverse hydride shuttle catalysis enables the stereoselective one-step synthesis of complex frameworks. Nat Chem 2022; 14:1306-1310. [PMID: 36266571 DOI: 10.1038/s41557-022-00991-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
The rapid assembly of complex scaffolds in a single step from simple precursors identifies as an ideal reaction in terms of efficiency and sustainability. Indeed, the direct single-step synthesis of complex alkaloid frameworks remains an unresolved problem at the heart of organic chemistry in spite of the tremendous progress of the discipline. Herein, we present a broad strategy in which dynamically assembled ternary complexes are converted into valuable azabicyclic scaffolds based on the concept of inverse hydride shuttle catalysis. The ternary complexes are readily constructed in situ from three simple precursors and enable a highly modular installation of various substitution patterns. Upon subjection to a unique dual-catalytic system, the transient intermediates undergo an unusual hydride shuttle process that is initiated by a hydride donation event. Furthermore, we show that, in combination with asymmetric organocatalysis, the product alkaloid frameworks are obtained in excellent optical purity.
Collapse
|
55
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo-Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022; 61:e202209374. [PMID: 35959923 DOI: 10.1002/anie.202209374] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Natural product (NP)-inspired design principles provide invaluable guidance for bioactive compound discovery. Pseudo-natural products (PNPs) are de novo combinations of NP fragments to target biologically relevant chemical space not covered by NPs. We describe the design and synthesis of apoxidoles, a novel pseudo-NP class, whereby indole- and tetrahydropyridine fragments are linked in monopodal connectivity not found in nature. Apoxidoles are efficiently accessible by an enantioselective [4+2] annulation reaction. Biological evaluation revealed that apoxidoles define a new potent type IV inhibitor chemotype of indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme considered a target for the treatment of neurodegeneration, autoimmunity and cancer. Apoxidoles target apo-IDO1, prevent heme binding and induce unique amino acid positioning as revealed by crystal structure analysis. Novel type IV apo-IDO1 inhibitors are in high demand, and apoxidoles may provide new opportunities for chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Lara Dötsch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Gessica Ciulla
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Elisabeth Hennes
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kei Yoshida
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kamal Kumar
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
56
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
57
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
58
|
Li Y, Cheng S, Tian Y, Zhang Y, Zhao Y. Recent ring distortion reactions for diversifying complex natural products. Nat Prod Rep 2022; 39:1970-1992. [PMID: 35972343 DOI: 10.1039/d2np00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2013-2022.Chemical diversification of natural products is an efficient way to generate natural product-like compounds for modern drug discovery programs. Utilizing ring-distortion reactions for diversifying natural products would directly alter the core ring systems of small molecules and lead to the production of structurally complex and diverse compounds for high-throughput screening. We review the ring distortion reactions recently used in complexity-to-diversity (CtD) and pseudo natural products (pseudo-NPs) strategies for diversifying complex natural products. The core ring structures of natural products are altered via ring expansion, ring cleavage, ring edge-fusion, ring spiro-fusion, ring rearrangement, and ring contraction. These reactions can rapidly provide natural product-like collections with properties suitable for a wide variety of biological and medicinal applications. The challenges and limitations of current ring distortion reactions are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We also provide a toolbox for chemists for the application of ring distortion reactions to access natural product-like molecules.
Collapse
Affiliation(s)
- Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yun Tian
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
59
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo‐Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caitlin Davies
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Lara Dötsch
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Maria Gessica Ciulla
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Elisabeth Hennes
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Kei Yoshida
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Crystallography and Biophysics Facility GERMANY
| | - Rebecca Scheel
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Sonja Sievers
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Compound Management and Screening Center GERMANY
| | - Carsten Strohmann
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology: Max-Planck-Institut fur molekulare Physiologie Chemical Biology Otto-Hahn-Str. 11 44227 Dortmund GERMANY
| |
Collapse
|
60
|
Sirirungruang S, Ad O, Privalsky TM, Ramesh S, Sax JL, Dong H, Baidoo EEK, Amer B, Khosla C, Chang MCY. Engineering site-selective incorporation of fluorine into polyketides. Nat Chem Biol 2022; 18:886-893. [PMID: 35817967 PMCID: PMC10030150 DOI: 10.1038/s41589-022-01070-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
Although natural products and synthetic small molecules both serve important medicinal functions, their structures and chemical properties are relatively distinct. To expand the molecular diversity available for drug discovery, one strategy is to blend the effective attributes of synthetic and natural molecules. A key feature found in synthetic compounds that is rare in nature is the use of fluorine to tune drug behavior. We now report a method to site-selectively incorporate fluorine into complex structures to produce regioselectively fluorinated full-length polyketides. We engineered a fluorine-selective trans-acyltransferase to produce site-selectively fluorinated erythromycin precursors in vitro. We further demonstrated that these analogs could be produced in vivo in Escherichia coli on engineering of the fluorinated extender unit pool. By using engineered microbes, elaborate fluorinated compounds can be produced by fermentation, offering the potential for expanding the identification and development of bioactive fluorinated small molecules.
Collapse
Affiliation(s)
| | - Omer Ad
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Swetha Ramesh
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Joel L Sax
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Edward E K Baidoo
- Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Bashar Amer
- Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Michelle C Y Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
61
|
Wu G, Qian X, Huang Y, Liu Y, Zhou L, Wang W, Li J, Zhu T, Gu Q, Li D. Nonenzymatic Self-Assembly Access to Diverse ortho-Quinone Methide-Based Pseudonatural Products. Org Lett 2022; 24:5235-5239. [DOI: 10.1021/acs.orglett.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
| | - Yeqiang Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, People’s Republic of China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, People’s Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 26003, People’s Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, People’s Republic of China
| |
Collapse
|
62
|
Chen Y, Rosenkranz C, Hirte S, Kirchmair J. Ring systems in natural products: structural diversity, physicochemical properties, and coverage by synthetic compounds. Nat Prod Rep 2022; 39:1544-1556. [PMID: 35708009 DOI: 10.1039/d2np00001f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2021The structural core of most small-molecule drugs is formed by a ring system, often derived from natural products. However, despite the importance of natural product ring systems in bioactive small molecules, there is still a lack of a comprehensive overview and understanding of natural product ring systems and how their full potential can be harnessed in drug discovery and related fields. Herein, we present a comprehensive cheminformatic analysis of the structural and physicochemical properties of 38 662 natural product ring systems, and the coverage of natural product ring systems by readily purchasable, synthetic compounds that are commonly explored in virtual screening and high-throughput screening. The analysis stands out by the use of comprehensive, curated data sets, the careful consideration of stereochemical information, and a robust analysis of the 3D molecular shape and electrostatic properties of ring systems. Among the key findings of this study are the facts that only about 2% of the ring systems observed in NPs are present in approved drugs but that approximately one in two NP ring systems are represented by ring systems with identical or related 3D shape and electrostatic properties in compounds that are typically used in (high-throughput) screening.
Collapse
Affiliation(s)
- Ya Chen
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
| | - Cara Rosenkranz
- Center for Bioinformatics (ZBH), Universität Hamburg, 20146 Hamburg, Germany
| | - Steffen Hirte
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria. .,Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, 1090 Vienna, Austria
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
63
|
Cotman AE, Dub PA, Sterle M, Lozinšek M, Dernovšek J, Zajec Ž, Zega A, Tomašič T, Cahard D. Catalytic Stereoconvergent Synthesis of Homochiral β-CF 3, β-SCF 3, and β-OCF 3 Benzylic Alcohols. ACS ORGANIC & INORGANIC AU 2022; 2:396-404. [PMID: 36217345 PMCID: PMC9542724 DOI: 10.1021/acsorginorgau.2c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
We describe an efficient
catalytic strategy for enantio- and diastereoselective
synthesis of homochiral β-CF3, β-SCF3, and β-OCF3 benzylic alcohols. The approach is
based on dynamic kinetic resolution (DKR) with Noyori–Ikariya
asymmetric transfer hydrogenation leading to simultaneous construction
of two contiguous stereogenic centers with up to 99.9% ee, up to 99.9:0.1
dr, and up to 99% isolated yield. The origin of the stereoselectivity
and racemization mechanism of DKR is rationalized by density functional
theory calculations. Applicability of the previously inaccessible
chiral fluorinated alcohols obtained by this method in two directions
is further demonstrated: As building blocks for pharmaceuticals, illustrated
by the synthesis of heat shock protein 90 inhibitor with in vitro
anticancer activity, and in particular, needle-shaped crystals of
representative stereopure products that exhibit either elastic or
plastic flexibility, which opens the door to functional materials
based on mechanically responsive chiral molecular crystals.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maša Sterle
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
64
|
Saldívar-González FI, Medina-Franco JL. Approaches for enhancing the analysis of chemical space for drug discovery. Expert Opin Drug Discov 2022; 17:789-798. [PMID: 35640229 DOI: 10.1080/17460441.2022.2084608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Chemical space is a powerful, general, and practical conceptual framework in drug discovery and other areas in chemistry that addresses the diversity of molecules and it has various applications. Moreover, chemical space is a cornerstone of chemoinformatics as a scientific discipline. In response to the increase in the set of chemical compounds in databases, generators of chemical structures, and tools to calculate molecular descriptors, novel approaches to generate visual representations of chemical space in low dimensions are emerging and evolving. Such approaches include a wide range of commercial and free applications, software, and open-source methods. AREAS COVERED The current state of chemical space in drug design and discovery is reviewed. The topics discussed herein include advances for efficient navigation in chemical space, the use of this concept in assessing the diversity of different data sets, exploring structure-property/activity relationships for one or multiple endpoints, and compound library design. Recent advances in methodologies for generating visual representations of chemical space have been highlighted, thereby emphasizing open-source methods. EXPERT OPINION Quantitative and qualitative generation and analysis of chemical space require novel approaches for handling the increasing number of molecules and their information available in chemical databases (including emerging ultra-large libraries). In addition, it is of utmost importance to note that chemical space is a conceptual framework that goes beyond visual representation in low dimensions. However, the graphical representation of chemical space has several practical applications in drug discovery and beyond.
Collapse
Affiliation(s)
- Fernanda I Saldívar-González
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
65
|
Foley DJ, Waldmann H. Ketones as strategic building blocks for the synthesis of natural product-inspired compounds. Chem Soc Rev 2022; 51:4094-4120. [PMID: 35506561 DOI: 10.1039/d2cs00101b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Natural product-inspired compound collections serve as excellent sources for the identification of new bioactive compounds to treat disease. However, such compounds must necessarily be more structurally-enriched than traditional screening compounds, therefore inventive synthetic strategies and reliable methods are needed to prepare them. Amongst the various possible starting materials that could be considered for the synthesis of natural product-inspired compounds, ketones can be especially valuable due to the vast variety of complexity-building synthetic transformations that they can take part in, their high prevalence as commercial building blocks, and relative ease of synthesis. With a view towards developing a unified synthetic strategy for the preparation of next generation bioactive compound collections, this review considers whether ketones could serve as general precursors in this regard, and summarises the opulence of synthetic transformations available for the annulation of natural product ring-systems to ketone starting materials.
Collapse
Affiliation(s)
- Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand. .,Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
66
|
Akbarzadeh M, Flegel J, Patil S, Shang E, Narayan R, Buchholzer M, Kazemein Jasemi NS, Grigalunas M, Krzyzanowski A, Abegg D, Shuster A, Potowski M, Karatas H, Karageorgis G, Mosaddeghzadeh N, Zischinsky M, Merten C, Golz C, Brieger L, Strohmann C, Antonchick AP, Janning P, Adibekian A, Goody RS, Ahmadian MR, Ziegler S, Waldmann H. The Pseudo-Natural Product Rhonin Targets RHOGDI. Angew Chem Int Ed Engl 2022; 61:e202115193. [PMID: 35170181 PMCID: PMC9313812 DOI: 10.1002/anie.202115193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/18/2022]
Abstract
For the discovery of novel chemical matter generally endowed with bioactivity, strategies may be particularly efficient that combine previous insight about biological relevance, e.g., natural product (NP) structure, with methods that enable efficient coverage of chemical space, such as fragment-based design. We describe the de novo combination of different 5-membered NP-derived N-heteroatom fragments to structurally unprecedented "pseudo-natural products" in an efficient complexity-generating and enantioselective one-pot synthesis sequence. The pseudo-NPs inherit characteristic elements of NP structure but occupy areas of chemical space not covered by NP-derived chemotypes, and may have novel biological targets. Investigation of the pseudo-NPs in unbiased phenotypic assays and target identification led to the discovery of the first small-molecule ligand of the RHO GDP-dissociation inhibitor 1 (RHOGDI1), termed Rhonin. Rhonin inhibits the binding of the RHOGDI1 chaperone to GDP-bound RHO GTPases and alters the subcellular localization of RHO GTPases.
Collapse
Affiliation(s)
- Mohammad Akbarzadeh
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Institute of Biochemistry and Molecular Biology IIMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfUniversitätsstrasse 1, Building 22.03.0540225DüsseldorfGermany
| | - Jana Flegel
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Sumersing Patil
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Erchang Shang
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Rishikesh Narayan
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- School of Chemical and Materials SciencesIIT Goa, FarmagudiPondaGoa-403401India
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology IIMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfUniversitätsstrasse 1, Building 22.03.0540225DüsseldorfGermany
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology IIMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfUniversitätsstrasse 1, Building 22.03.0540225DüsseldorfGermany
| | - Michael Grigalunas
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Adrian Krzyzanowski
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644221DortmundGermany
| | - Daniel Abegg
- Department of ChemistryThe Scripps Research Institute130 Scripps WayJupiterFL 33458USA
| | - Anton Shuster
- Department of ChemistryThe Scripps Research Institute130 Scripps WayJupiterFL 33458USA
| | - Marco Potowski
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Hacer Karatas
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - George Karageorgis
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology IIMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfUniversitätsstrasse 1, Building 22.03.0540225DüsseldorfGermany
| | | | - Christian Merten
- Faculty of Chemistry and BiochemistryOrganic Chemistry IIRuhr-University BochumUniversitätsstrasse 15044780BochumGermany
| | - Christopher Golz
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644221DortmundGermany
| | - Lucas Brieger
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644221DortmundGermany
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644221DortmundGermany
| | - Andrey P. Antonchick
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Petra Janning
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Alexander Adibekian
- Department of ChemistryThe Scripps Research Institute130 Scripps WayJupiterFL 33458USA
| | - Roger S. Goody
- Max Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology IIMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfUniversitätsstrasse 1, Building 22.03.0540225DüsseldorfGermany
| | - Slava Ziegler
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Herbert Waldmann
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundOtto-Hahn-Straße 644221DortmundGermany
| |
Collapse
|
67
|
Simonetti SO, Kaufman TS, Larghi EL. Conjugation of Carbohydrates with Quinolines: A Powerful Synthetic Tool. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastián O. Simonetti
- Instituto de Química Rosario: Instituto de Quimica Rosario Química Orgánica Suipacha 531 S2002LRK Rosario ARGENTINA
| | - Teodoro S. Kaufman
- Instituto de Química Rosario: Instituto de Quimica Rosario Química Orgánica Suipacha 531 S2002LRK Rosario ARGENTINA
| | | |
Collapse
|
68
|
Awasthi BP, Lee H, Jeong BS. Synthesis of Pyridoxine-Derived Dimethylpyridinols Fused with Aminooxazole, Aminoimidazole, and Aminopyrrole. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072075. [PMID: 35408475 PMCID: PMC9000659 DOI: 10.3390/molecules27072075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Described in this paper are studies on the preparation of three classes of dimethylpyridinols derived from pyridoxine fused with aminooxazole, aminoimidazole, and aminopyrrole. The key feature of this synthetic strategy is the manipulation of hydroxymethyl moiety of C(5)-position of the pyridoxine starting material along with the installation of an amino group at C(6)-position. Efficient and practical synthesis for the oxazole- and imidazole-fused targets was accomplished, while the instability of the pyrrole-fused one was observed.
Collapse
Affiliation(s)
| | - Hyunji Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea;
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
- Correspondence: (H.L.); (B.-S.J.)
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (H.L.); (B.-S.J.)
| |
Collapse
|
69
|
Kalaitzakis D, Bosveli A, Montagnon T, Vassilikogiannakis G. Sequential Visible Light‐Induced Reactions Using Different Photocatalysts: Transformation of Furans into 2‐Pyridones via γ‐Lactams Using a New Ring Expansion Reaction. Chemistry 2022; 28:e202200322. [DOI: 10.1002/chem.202200322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion, Crete Greece
| | - Artemis Bosveli
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion, Crete Greece
| | - Tamsyn Montagnon
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion, Crete Greece
| | | |
Collapse
|
70
|
Biosynthesis of Fungal Natural Products Involving Two Separate Pathway Crosstalk. J Fungi (Basel) 2022; 8:jof8030320. [PMID: 35330322 PMCID: PMC8948627 DOI: 10.3390/jof8030320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/21/2023] Open
Abstract
Fungal natural products (NPs) usually possess complicated structures, exhibit satisfactory bioactivities, and are an outstanding source of drug leads, such as the cholesterol-lowering drug lovastatin and the immunosuppressive drug mycophenolic acid. The fungal NPs biosynthetic genes are always arranged within one single biosynthetic gene cluster (BGC). However, a rare but fascinating phenomenon that a crosstalk between two separate BGCs is indispensable to some fungal dimeric NPs biosynthesis has attracted increasing attention. The hybridization of two separate BGCs not only increases the structural complexity and chemical diversity of fungal NPs, but also expands the scope of bioactivities. More importantly, the underlying mechanism for this hybridization process is poorly understood and needs further exploration, especially the determination of BGCs for each building block construction and the identification of enzyme(s) catalyzing the two biosynthetic precursors coupling processes such as Diels–Alder cycloaddition and Michael addition. In this review, we summarized the fungal NPs produced by functional crosstalk of two discrete BGCs, and highlighted their biosynthetic processes, which might shed new light on genome mining for fungal NPs with unprecedented frameworks, and provide valuable insights into the investigation of mysterious biosynthetic mechanisms of fungal dimeric NPs which are constructed by collaboration of two separate BGCs.
Collapse
|
71
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20-Membered Macrocyclic Pseudo-Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022; 61:e202114328. [PMID: 34978373 PMCID: PMC9303634 DOI: 10.1002/anie.202114328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 01/02/2023]
Abstract
Design and synthesis of pseudo-natural products (PNPs) through recombination of natural product (NP) fragments in unprecedented arrangements enables the discovery of novel biologically relevant chemical matter. With a view to wider coverage of NP-inspired chemical and biological space, we describe the combination of this principle with macrocycle formation. PNP-macrocycles were synthesized efficiently in a stereoselective one-pot procedure including the 1,3-dipolar cycloadditions of different dipolarophiles with dimeric cinchona alkaloid-derived azomethine ylides formed in situ. The 20-membered bis-cycloadducts embody 18 stereocenters and an additional fragment-sized NP-structure. After further functionalization, a collection of 163 macrocyclic PNPs was obtained. Biological investigation revealed potent inducers of the lipidation of the microtubule associated protein 1 light chain 3 (LC3) protein, which plays a prominent role in various autophagy-related processes.
Collapse
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Anastasia Knyazeva
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Raphael Gasper
- Max Planck Institute of Molecular PhysiologyCrystallography and Biophysics UnitOtto-Hahn-Strasse 1144227DortmundGermany
| | - Dale Corkery
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Julian J. Holstein
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
- Technical University DortmundFaculty of Chemistry, Inorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS)Otto-Hahn-Strasse 1144221DortmundGermany
| | - Yao‐Wen Wu
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
72
|
Akbarzadeh M, Flegel J, Patil S, Shang E, Narayan R, Buchholzer M, Kazemein Jasemi NS, Grigalunas M, Krzyzanowski A, Abegg D, Shuster A, Potowski M, Karatas H, Karageorgis G, Mosaddeghzadeh N, Zischinsky M, Merten C, Golz C, Brieger L, Strohmann C, Antonchick AP, Janning P, Adibekian A, Goody RS, Ahmadian MR, Ziegler S, Waldmann H. The Pseudo‐Natural Product Rhonin Targets RHOGDI. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad Akbarzadeh
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Institute of Biochemistry and Molecular Biology II Medical Faculty and University Hospital Düsseldorf Heinrich Heine University Düsseldorf Universitätsstrasse 1, Building 22.03.05 40225 Düsseldorf Germany
| | - Jana Flegel
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Sumersing Patil
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Erchang Shang
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Rishikesh Narayan
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- School of Chemical and Materials Sciences IIT Goa, Farmagudi Ponda Goa-403401 India
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II Medical Faculty and University Hospital Düsseldorf Heinrich Heine University Düsseldorf Universitätsstrasse 1, Building 22.03.05 40225 Düsseldorf Germany
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II Medical Faculty and University Hospital Düsseldorf Heinrich Heine University Düsseldorf Universitätsstrasse 1, Building 22.03.05 40225 Düsseldorf Germany
| | - Michael Grigalunas
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Adrian Krzyzanowski
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44221 Dortmund Germany
| | - Daniel Abegg
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Anton Shuster
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Marco Potowski
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Hacer Karatas
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - George Karageorgis
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II Medical Faculty and University Hospital Düsseldorf Heinrich Heine University Düsseldorf Universitätsstrasse 1, Building 22.03.05 40225 Düsseldorf Germany
| | | | - Christian Merten
- Faculty of Chemistry and Biochemistry Organic Chemistry II Ruhr-University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Christopher Golz
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44221 Dortmund Germany
| | - Lucas Brieger
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44221 Dortmund Germany
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44221 Dortmund Germany
| | - Andrey P. Antonchick
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Petra Janning
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Alexander Adibekian
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Roger S. Goody
- Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II Medical Faculty and University Hospital Düsseldorf Heinrich Heine University Düsseldorf Universitätsstrasse 1, Building 22.03.05 40225 Düsseldorf Germany
| | - Slava Ziegler
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6 44221 Dortmund Germany
| |
Collapse
|
73
|
Discovery of 3H-pyrrolo[2,3-c]quinolines with activity against Mycobacterium tuberculosis by allosteric inhibition of the glutamate-5-kinase enzyme. Eur J Med Chem 2022; 232:114206. [DOI: 10.1016/j.ejmech.2022.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
|
74
|
Abstract
![]()
Natural products
are the result of Nature’s exploration
of biologically relevant chemical space through evolution and an invaluable
source of bioactive small molecules for chemical biology and medicinal
chemistry. Novel concepts for the discovery of new bioactive compound
classes based on natural product structure may enable exploration
of wider biologically relevant chemical space. The pseudo-natural
product concept merges the relevance of natural product structure
with efficient exploration of chemical space by means of fragment-based
compound development to inspire the discovery of new bioactive chemical
matter through de novo combination of natural product
fragments in unprecedented arrangements. The novel scaffolds retain
the biological relevance of natural products but are not obtainable
through known biosynthetic pathways which can lead to new chemotypes
that may have unexpected or unprecedented bioactivities. Herein, we
cover the workflow of pseudo-natural product design and development,
highlight recent examples, and discuss a cheminformatic analysis in
which a significant portion of biologically active synthetic compounds
were found to be pseudo-natural products. We compare the concept to
natural evolution and discuss pseudo-natural products as the human-made
equivalent, i.e. the chemical evolution of natural product structure.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
75
|
Saldívar-González FI, Aldas-Bulos VD, Medina-Franco JL, Plisson F. Natural product drug discovery in the artificial intelligence era. Chem Sci 2022; 13:1526-1546. [PMID: 35282622 PMCID: PMC8827052 DOI: 10.1039/d1sc04471k] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Natural products (NPs) are primarily recognized as privileged structures to interact with protein drug targets. Their unique characteristics and structural diversity continue to marvel scientists for developing NP-inspired medicines, even though the pharmaceutical industry has largely given up. High-performance computer hardware, extensive storage, accessible software and affordable online education have democratized the use of artificial intelligence (AI) in many sectors and research areas. The last decades have introduced natural language processing and machine learning algorithms, two subfields of AI, to tackle NP drug discovery challenges and open up opportunities. In this article, we review and discuss the rational applications of AI approaches developed to assist in discovering bioactive NPs and capturing the molecular "patterns" of these privileged structures for combinatorial design or target selectivity.
Collapse
Affiliation(s)
- F I Saldívar-González
- DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
| | - V D Aldas-Bulos
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico
| | - J L Medina-Franco
- DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
| | - F Plisson
- CONACYT - Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico
| |
Collapse
|
76
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20‐Membered Macrocyclic Pseudo‐Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Anastasia Knyazeva
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology Crystallography and Biophysics Unit Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Dale Corkery
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Julian J. Holstein
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS) Otto-Hahn-Strasse 11 44221 Dortmund Germany
| | - Yao‐Wen Wu
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
77
|
Srinivasulu V, Srikanth G, Khanfar MA, Abu-Yousef IA, Majdalawieh AF, Mazitschek R, Setty SC, Sebastian A, Al-Tel TH. Stereodivergent Complexity-to-Diversity Strategy en Route to the Synthesis of Nature-Inspired Skeleta. J Org Chem 2022; 87:1377-1397. [PMID: 35014258 DOI: 10.1021/acs.joc.1c02698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complexity-to-diversity (CtD) strategy has become one of the most powerful tools used to transform complex natural products into diverse skeleta. However, the reactions utilized in this process are often limited by their compatibility with existing functional groups, which in turn restricts access to the desired skeletal diversity. In the course of employing a CtD strategy en route to the synthesis of natural product-inspired compounds, our group has developed several stereodivergent strategies employing indoloquinolizine natural product analogues as starting materials. These transformations led to the rapid and diastereoselective synthesis of diverse classes of natural product-like architectures, including camptothecin-inspired analogues, azecane medium-sized ring systems, arborescidine-inspired systems, etc. This manifestation required a drastic modification of the synthetic design that ultimately led to modular and diastereoselective access to a diverse collection of various classes of biologically significant natural product analogues. The reported strategies provide a unique platform that will be broadly applicable to other late-stage natural product transformation approaches.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Gourishetty Srikanth
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Monther A Khanfar
- College of Science, Department of Chemistry, Pure and Applied Chemistry Group, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Subbaiah Chennam Setty
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| |
Collapse
|
78
|
Morphological profiling by means of the Cell Painting assay enables identification of tubulin-targeting compounds. Cell Chem Biol 2021; 29:1053-1064.e3. [PMID: 34968420 DOI: 10.1016/j.chembiol.2021.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022]
Abstract
In phenotypic compound discovery, conclusive identification of cellular targets and mode of action are often impaired by off-target binding. In particular, microtubules are frequently targeted in cellular assays. However, in vitro tubulin binding assays do not correctly reflect the cellular context, and conclusive high-throughput phenotypic assays monitoring tubulin binding are scarce, such that tubulin binding is rarely identified. We report that morphological profiling using the Cell Painting assay (CPA) can efficiently detect tubulin modulators in compound collections with a high throughput, including annotated reference compounds and unannotated compound classes with unrelated chemotypes and scaffolds. Small-molecule tubulin binders share similar CPA fingerprints, which enables prediction and experimental validation of microtubule-binding activity. Our findings suggest that CPA or a related morphological profiling approach will be an invaluable addition to small-molecule discovery programs in chemical biology and medicinal chemistry, enabling early identification of one of the most frequently observed off-target activities.
Collapse
|
79
|
Whitmarsh-Everiss T, Olsen AH, Laraia L. Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterol-Inspired Compound Collection. Angew Chem Int Ed Engl 2021; 60:26755-26761. [PMID: 34626154 DOI: 10.1002/anie.202111639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cholesterol transport proteins regulate a vast array of cellular processes including lipid metabolism, vesicular and non-vesicular trafficking, organelle contact sites, and autophagy. Despite their undoubted importance, the identification of selective modulators of this class of proteins has been challenging due to the structural similarities in the cholesterol-binding site. Herein we report a general strategy for the identification of selective inhibitors of cholesterol transport proteins via the synthesis of a diverse sterol-inspired compound collection. Fusion of a primary sterol fragment to an array of secondary privileged scaffolds led to the identification of potent and selective inhibitors of the cholesterol transport protein Aster-C, which displayed a surprising preference for the unnatural-sterol AB-ring stereochemistry and new inhibitors of Aster-A. We propose that this strategy can and should be applied to any therapeutically relevant sterol-binding protein.
Collapse
Affiliation(s)
- Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| | - Asger Hegelund Olsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
80
|
Whitmarsh‐Everiss T, Olsen AH, Laraia L. Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterol‐Inspired Compound Collection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Whitmarsh‐Everiss
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Asger Hegelund Olsen
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Luca Laraia
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| |
Collapse
|
81
|
Chávez-Hernández AL, Juárez-Mercado KE, Saldívar-González FI, Medina-Franco JL. Towards the De Novo Design of HIV-1 Protease Inhibitors Based on Natural Products. Biomolecules 2021; 11:1805. [PMID: 34944448 PMCID: PMC8698858 DOI: 10.3390/biom11121805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/14/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) continues to be a public health problem. In 2020, 680,000 people died from HIV-related causes, and 1.5 million people were infected. Antiretrovirals are a way to control HIV infection but not to cure AIDS. As such, effective treatment must be developed to control AIDS. Developing a drug is not an easy task, and there is an enormous amount of work and economic resources invested. For this reason, it is highly convenient to employ computer-aided drug design methods, which can help generate and identify novel molecules. Using the de novo design, novel molecules can be developed using fragments as building blocks. In this work, we develop a virtual focused compound library of HIV-1 viral protease inhibitors from natural product fragments. Natural products are characterized by a large diversity of functional groups, many sp3 atoms, and chiral centers. Pseudo-natural products are a combination of natural products fragments that keep the desired structural characteristics from different natural products. An interactive version of chemical space visualization of virtual compounds focused on HIV-1 viral protease inhibitors from natural product fragments is freely available in the supplementary material.
Collapse
Affiliation(s)
| | | | | | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (A.L.C.-H.); (K.E.J.-M.); (F.I.S.-G.)
| |
Collapse
|
82
|
Gally JM, Pahl A, Czodrowski P, Waldmann H. Pseudonatural Products Occur Frequently in Biologically Relevant Compounds. J Chem Inf Model 2021; 61:5458-5468. [PMID: 34669418 PMCID: PMC8611719 DOI: 10.1021/acs.jcim.1c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
A new methodology
for classifying fragment combinations and characterizing
pseudonatural products (PNPs) is described. The source code is based
on open-source tools and is organized as a Python package. Tasks can
be executed individually or within the context of scalable, robust
workflows. First, structures are standardized and duplicate entries
are filtered out. Then, molecules are probed for the presence of predefined
fragments. For molecules with more than one match, fragment combinations
are classified. The algorithm considers the pairwise relative position
of fragments within the molecule (fused atoms, linkers, intermediary
rings), resulting in 18 different possible fragment combination categories.
Finally, all combinations for a given molecule are assembled into
a fragment combination graph, with fragments as nodes and combination
types as edges. This workflow was applied to characterize PNPs in
the ChEMBL database via comparison of fragment combination graphs
with natural product (NP) references, represented by the Dictionary
of Natural Products. The Murcko fragments extracted from 2000 structures
previously described were used to define NP fragments. The results
indicate that ca. 23% of the biologically relevant compounds listed
in ChEMBL comply to the PNP definition and that, therefore, PNPs occur
frequently among known biologically relevant small molecules. The
majority (>95%) of PNPs contain two to four fragments, mainly (>95%)
distributed in five different combination types. These findings may
provide guidance for the design of new PNPs.
Collapse
Affiliation(s)
- José-Manuel Gally
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Axel Pahl
- Compound Management and Screening Center, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Paul Czodrowski
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
83
|
Kim KE, Kim AN, McCormick CJ, Stoltz BM. Late-Stage Diversification: A Motivating Force in Organic Synthesis. J Am Chem Soc 2021; 143:16890-16901. [PMID: 34614361 PMCID: PMC9285880 DOI: 10.1021/jacs.1c08920] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interest in therapeutic discovery typically drives the preparation of natural product analogs, but these undertakings contribute significant advances for synthetic chemistry as well. The need for a highly efficient and scalable synthetic route to a complex molecular scaffold for diversification frequently inspires new methodological development or unique application of existing methods on structurally intricate systems. Additionally, synthetic planning with an aim toward late-stage diversification can provide access to otherwise unavailable compounds or facilitate preparation of complex molecules with diverse patterns of substitution around a shared carbon framework. For these reasons among others, programs dedicated to the diversification of natural product frameworks and other complex molecular scaffolds have been increasing in popularity, a trend likely to continue given their fruitfulness and breadth of impact. In this Perspective, we discuss our experience using late-stage diversification as a guiding principle for the synthesis of natural product analogs and reflect on the impact such efforts have on the future of complex molecule synthesis.
Collapse
Affiliation(s)
- Kelly E Kim
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Alexia N Kim
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Carter J McCormick
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
84
|
Burhop A, Bag S, Grigalunas M, Woitalla S, Bodenbinder P, Brieger L, Strohmann C, Pahl A, Sievers S, Waldmann H. Synthesis of Indofulvin Pseudo-Natural Products Yields a New Autophagy Inhibitor Chemotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102042. [PMID: 34346568 PMCID: PMC8498912 DOI: 10.1002/advs.202102042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Indexed: 06/01/2023]
Abstract
Chemical and biological limitations in bioactive compound design based on natural product (NP) structure can be overcome by the combination of NP-derived fragments in unprecedented arrangements to afford "pseudo-natural products" (pseudo-NPs). A new pseudo-NP design principle is described, i.e., the combination of NP-fragments by transformations that are not part of current biosynthesis pathways. A collection of indofulvin pseudo-NPs is obtained from 2-hydroxyethyl-indoles and ketones derived from the fragment-sized NP griseofulvin by means of an iso-oxa-Pictet-Spengler reaction. Cheminformatic analysis indicates that the indofulvins reside in an area of chemical space sparsely covered by NPs, drugs, and drug-like compounds and they may combine favorable properties of these compound classes. Biological evaluation of the compound collection in different cell-based assays and the unbiased high content cell painting assay reveal that the indofulvins define a new autophagy inhibitor chemotype that targets mitochondrial respiration.
Collapse
Affiliation(s)
- Annina Burhop
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Sukdev Bag
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sophie Woitalla
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Lukas Brieger
- Technical University DortmundFaculty of ChemistryInorganic ChemistryDortmund44227Germany
| | - Carsten Strohmann
- Technical University DortmundFaculty of ChemistryInorganic ChemistryDortmund44227Germany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| |
Collapse
|
85
|
Liu Y, Mathis C, Bajczyk MD, Marshall SM, Wilbraham L, Cronin L. Exploring and mapping chemical space with molecular assembly trees. SCIENCE ADVANCES 2021; 7:eabj2465. [PMID: 34559562 PMCID: PMC8462901 DOI: 10.1126/sciadv.abj2465] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/03/2021] [Indexed: 06/01/2023]
Abstract
The rule-based search of chemical space can generate an almost infinite number of molecules, but exploration of known molecules as a function of the minimum number of steps needed to build up the target graphs promises to uncover new motifs and transformations. Assembly theory is an approach to compare the intrinsic complexity and properties of molecules by the minimum number of steps needed to build up the target graphs. Here, we apply this approach to prebiotic chemistry, gene sequences, plasticizers, and opiates. This allows us to explore molecules connected to the assembly tree, rather than the entire space of molecules possible. Last, by developing a reassembly method, based on assembly trees, we found that in the case of the opiates, a new set of drug candidates could be generated that would not be accessible via conventional fragment-based drug design, thereby demonstrating how this approach might find application in drug discovery.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| | - Cole Mathis
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| | | | - Stuart M. Marshall
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| | - Liam Wilbraham
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, University Avenue,
Glasgow G12 8QQ, UK
| |
Collapse
|
86
|
Liu J, Flegel J, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Combination of Pseudo-Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudo-Sesquiterpenoid Alkaloids. Angew Chem Int Ed Engl 2021; 60:21384-21395. [PMID: 34297473 PMCID: PMC8518946 DOI: 10.1002/anie.202106654] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/28/2022]
Abstract
We describe the synthesis and biological evaluation of a new natural product-inspired compound class obtained by combining the conceptually complementary pseudo-natural product (pseudo-NP) design strategy and a formal adaptation of the complexity-to-diversity ring distortion approach. Fragment-sized α-methylene-sesquiterpene lactones, whose scaffolds can formally be viewed as related to each other or are obtained by ring distortion, were combined with alkaloid-derived pyrrolidine fragments by means of highly selective stereocomplementary 1,3-dipolar cycloaddition reactions. The resulting pseudo-sesquiterpenoid alkaloids were found to be both chemically and biologically diverse, and their biological performance distinctly depends on both the structure of the sesquiterpene lactone-derived scaffolds and the stereochemistry of the pyrrolidine fragment. Biological investigation of the compound collection led to the discovery of a novel chemotype inhibiting Hedgehog-dependent osteoblast differentiation.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Jana Flegel
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Felix Otte
- Technical University DortmundFaculty of ChemistryInorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Compound Management and Screening CenterDortmundGermany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Compound Management and Screening CenterDortmundGermany
| | - Carsten Strohmann
- Technical University DortmundFaculty of ChemistryInorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
87
|
Liu J, Flegel J, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Combination of Pseudo‐Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudo‐Sesquiterpenoid Alkaloids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Jana Flegel
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Felix Otte
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Carsten Strohmann
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
88
|
Srinivasulu V, Sieburth SM, Khanfar MA, Abu-Yousef IA, Majdalawieh A, Ramanathan M, Sebastian A, Al-Tel TH. Stereoselective Late-Stage Transformations of Indolo[2,3- a]quinolizines Skeleta to Nature-Inspired Scaffolds. J Org Chem 2021; 86:12872-12885. [PMID: 34477383 DOI: 10.1021/acs.joc.1c01523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The indolo[2,3-a]quinolizines, canthines, and arborescidines natural products exhibit a wide range of bioactivities including anticancer, antiviral, antibacterial, and anti-inflammatory, among others. Therefore, the development of modular and efficient strategies to access the core scaffolds of these classes of natural products is a remarkable achievement. The Complexity-to-Diversity (CtD) strategy has become a powerful tool that transforms natural products into skeletal and stereochemical diversity. However, many of the reactions that could be utilized in this process are limited by the type of functional groups present in the starting material, which restrict transformations into a variety of products to achieve the desired diversity. In the course of employing a (CtD) strategy en route to the synthesis of nature-inspired compounds, unexpected stereoelectronic-driven rearrangement reactions have been discovered. These reactions provided a rapid access to indolo[2,3-a]quinolizines-, canthines-, and arborescidines-inspired alkaloids in a modular and diastereoselective manner. The disclosed strategies will be widely applicable to other late-stage natural product transformation programs and drug discovery initiatives.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE
| | - Scott McN Sieburth
- Temple University, Department of Chemistry, 201 Beury Hall, Philadelphia, Pennsylvania 19122, United States
| | - Monther A Khanfar
- College of Science, Department of Chemistry, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Amin Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Mani Ramanathan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah 00000, UAE
| |
Collapse
|
89
|
Greiner LC, Inuki S, Arichi N, Oishi S, Suzuki R, Iwai T, Sawamura M, Hashmi ASK, Ohno H. Access to Indole-Fused Benzannulated Medium-Sized Rings through a Gold(I)-Catalyzed Cascade Cyclization of Azido-Alkynes. Chemistry 2021; 27:12992-12997. [PMID: 34110644 DOI: 10.1002/chem.202101824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Because benzannulated and indole-fused medium-sized rings are found in many bioactive compounds, combining these fragments might lead to unexplored areas of biologically relevant and uncovered chemical space. Herein is shown that α-imino gold carbene chemistry can play an important role in solving the difficulty in the formation of medium-sized rings. Namely, phenylene-tethered azido-alkynes undergo arylative cyclization through the formation of a gold carbene intermediate to afford benzannulated indole-fused medium-sized tetracycles. The reactions allow a range of different aryl substitution patterns and efficient access to these otherwise difficult-to-obtain medium-sized rings. This study also demonstrates the feasibility of the semihollow-shaped C-dtbm ligand for the construction of a nine-membered ring.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Current Address: Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yashima-ku, Kyoto, 607-8412, Japan
| | - Rikito Suzuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Current Address: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
90
|
Greiner LC, Matsuoka J, Inuki S, Ohno H. Azido-Alkynes in Gold(I)-Catalyzed Indole Syntheses. CHEM REC 2021; 21:3897-3910. [PMID: 34498385 DOI: 10.1002/tcr.202100202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Indexed: 12/20/2022]
Abstract
The exploitation of nitrogen-functionalized reactive intermediates plays an important role in the synthesis of biologically relevant scaffolds in the field of pharmaceutical sciences. Those based on gold carbenes carry a strong potential for the design of highly efficient cascade processes toward the synthesis of compounds containing a fused indole core structure. This personal account gives a detailed explanation of our contribution to this sector, and embraces the reaction development of efficient gold-catalyzed cascade processes based on diversely functionalized azido-alkynes. Challenging cyclizations and their subsequent application in the synthesis of pharmaceutically relevant scaffolds and natural products conducted in an intra- or intermolecular fashion are key features of our research.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Current address: Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, 610-0395, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
91
|
Yildirim O, Grigalunas M, Brieger L, Strohmann C, Antonchick AP, Waldmann H. Dynamic Catalytic Highly Enantioselective 1,3-Dipolar Cycloadditions. Angew Chem Int Ed Engl 2021; 60:20012-20020. [PMID: 34236754 PMCID: PMC8456807 DOI: 10.1002/anie.202108072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Indexed: 11/06/2022]
Abstract
In dynamic covalent chemistry, reactions follow a thermodynamically controlled pathway through equilibria. Reversible covalent‐bond formation and breaking in a dynamic process enables the interconversion of products formed under kinetic control to thermodynamically more stable isomers. Notably, enantioselective catalysis of dynamic transformations has not been reported and applied in complex molecule synthesis. We describe the discovery of dynamic covalent enantioselective metal‐complex‐catalyzed 1,3‐dipolar cycloaddition reactions. We have developed a stereodivergent tandem synthesis of structurally and stereochemically complex molecules that generates eight stereocenters with high diastereo‐ and enantioselectivity through asymmetric reversible bond formation in a dynamic process in two consecutive Ag‐catalyzed 1,3‐dipolar cycloadditions of azomethine ylides with electron‐poor olefins. Time‐dependent reversible dynamic covalent‐bond formation gives enantiodivergent and diastereodivergent access to structurally complex double cycloadducts with high selectivity from a common set of reagents.
Collapse
Affiliation(s)
- Okan Yildirim
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Lukas Brieger
- Technichal University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Carsten Strohmann
- Technichal University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany.,Nottingham Trent University, Department of Chemistry and Forensics, Cifton Lane, NG11 8NS, Nottingham, UK
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| |
Collapse
|
92
|
Yildirim O, Grigalunas M, Brieger L, Strohmann C, Antonchick AP, Waldmann H. Dynamic Catalytic Highly Enantioselective 1,3‐Dipolar Cycloadditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Okan Yildirim
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Lukas Brieger
- Technichal University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Carsten Strohmann
- Technichal University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Andrey P. Antonchick
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Nottingham Trent University Department of Chemistry and Forensics Cifton Lane NG11 8NS Nottingham UK
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technichal University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
93
|
Friedrich L, Cingolani G, Ko Y, Iaselli M, Miciaccia M, Perrone MG, Neukirch K, Bobinger V, Merk D, Hofstetter RK, Werz O, Koeberle A, Scilimati A, Schneider G. Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenase-1 Inhibitors by Automated De Novo Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100832. [PMID: 34176236 PMCID: PMC8373093 DOI: 10.1002/advs.202100832] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/16/2021] [Indexed: 05/03/2023]
Abstract
The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.
Collapse
Affiliation(s)
- Lukas Friedrich
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 4Zurich8093Switzerland
| | - Gino Cingolani
- Department of Biochemistry and Molecular BiologySidney Kimmel Cancer CenterThomas Jefferson University1020 Locust StreetPhiladelphiaPA19107USA
| | - Ying‐Hui Ko
- Department of Biochemistry and Molecular BiologySidney Kimmel Cancer CenterThomas Jefferson University1020 Locust StreetPhiladelphiaPA19107USA
| | - Mariaclara Iaselli
- Department of Pharmacy – Pharmaceutical SciencesUniversity of BariVia E. Orabona 4Bari70125Italy
| | - Morena Miciaccia
- Department of Pharmacy – Pharmaceutical SciencesUniversity of BariVia E. Orabona 4Bari70125Italy
| | - Maria Grazia Perrone
- Department of Pharmacy – Pharmaceutical SciencesUniversity of BariVia E. Orabona 4Bari70125Italy
| | - Konstantin Neukirch
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruck6020Austria
| | - Veronika Bobinger
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 4Zurich8093Switzerland
| | - Daniel Merk
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 4Zurich8093Switzerland
- Institute of Pharmaceutical ChemistryGoethe‐UniversityMax‐von‐Laue Straße 9Frankfurt am Main60438Germany
| | - Robert Klaus Hofstetter
- Department of Pharmaceutical/Medicinal ChemistryFriedrich‐Schiller‐University JenaPhilosophenweg 14Jena07743Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryFriedrich‐Schiller‐University JenaPhilosophenweg 14Jena07743Germany
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruck6020Austria
| | - Antonio Scilimati
- Department of Pharmacy – Pharmaceutical SciencesUniversity of BariVia E. Orabona 4Bari70125Italy
| | - Gisbert Schneider
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 4Zurich8093Switzerland
- ETH Singapore SEC Ltd1 CREATE Way, #06‐01 CREATE TowerSingapore138602Singapore
| |
Collapse
|
94
|
Menke J, Massa J, Koch O. Natural product scores and fingerprints extracted from artificial neural networks. Comput Struct Biotechnol J 2021; 19:4593-4602. [PMID: 34584636 PMCID: PMC8445839 DOI: 10.1016/j.csbj.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022] Open
Abstract
Due to their desirable properties, natural products are an important ligand class for medicinal chemists. However, due to their structural distinctiveness, traditional cheminformatic approaches, like ligand-based virtual screening, often perform worse for natural products. Based on our recent work, we evaluated the ability of neural networks to generate fingerprints more appropriate for use with natural products. A manually curated dataset of natural products and synthetic decoys was used to train a multi-layer perceptron network and an autoencoder-like network. In-depth analysis showed that the extracted natural product-specific neural fingerprint outperforms traditional as well as natural product-specific fingerprints on three datasets. Further, we explored how the activations from the output layer of a network can work as a novel natural product likeness score. Overall, two natural product-specific datasets were generated, which are publicly available together with the code to create the fingerprints and the novel natural product likeness score.
Collapse
Affiliation(s)
- Janosch Menke
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Joana Massa
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Oliver Koch
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
95
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products-Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021; 60:15705-15723. [PMID: 33644925 PMCID: PMC8360037 DOI: 10.1002/anie.202016575] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/05/2023]
Abstract
Pseudo-natural products (PNPs) combine natural product (NP) fragments in novel arrangements not accessible by current biosynthesis pathways. As such they can be regarded as non-biogenic fusions of NP-derived fragments. They inherit key biological characteristics of the guiding natural product, such as chemical and physiological properties, yet define small molecule chemotypes with unprecedented or unexpected bioactivity. We iterate the design principles underpinning PNP scaffolds and highlight their syntheses and biological investigations. We provide a cheminformatic analysis of PNP collections assessing their molecular properties and shape diversity. We propose and discuss how the iterative analysis of NP structure, design, synthesis, and biological evaluation of PNPs can be regarded as a human-driven branch of the evolution of natural products, that is, a chemical evolution of natural product structure.
Collapse
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: Department of ChemistryTechnical University of Denmark, kemitorvet 2072800 Kgs.LyngbyDenmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| |
Collapse
|
96
|
Almeida AF, Ataíde FAP, Loureiro RMS, Moreira R, Rodrigues T. Augmenting Adaptive Machine Learning with Kinetic Modeling for Reaction Optimization. J Org Chem 2021; 86:14192-14198. [PMID: 34235919 DOI: 10.1021/acs.joc.1c01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We combine random sampling and active machine learning (ML) to optimize the synthesis of isomacroin, executing only 3% of all possible Friedländer reactions. Employing kinetic modeling, we augment machine intuition by extracting mechanistic knowledge and verify that a global optimum was obtained with ML. Our study contributes evidence on the potential of multiscale approaches to expedite the access to chemical matter, further democratizing organic chemistry in a data-motivated fashion.
Collapse
Affiliation(s)
- A Filipa Almeida
- R&D, Process Chemistry Development, Hovione FarmaCiência S.A, Campus do Lumiar, Building S 1649-038 Lisboa, Portugal.,Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Filipe A P Ataíde
- R&D, Process Chemistry Development, Hovione FarmaCiência S.A, Campus do Lumiar, Building S 1649-038 Lisboa, Portugal
| | - Rui M S Loureiro
- R&D, Process Chemistry Development, Hovione FarmaCiência S.A, Campus do Lumiar, Building S 1649-038 Lisboa, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Tiago Rodrigues
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
97
|
|
98
|
Umedera K, Morita T, Yoshimori A, Yamada K, Katoh A, Kouji H, Nakamura H. Synthesis of Three-Dimensional (Di)Azatricyclododecene Scaffold and Its Application to Peptidomimetics. Chemistry 2021; 27:11888-11894. [PMID: 34060167 DOI: 10.1002/chem.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/07/2022]
Abstract
A novel sp3 carbon-rich tricyclic 3D scaffold-based peptide mimetic compound library was constructed to target protein-protein interactions. Tricyclic framework 7 was synthesized from 9-azabicyclo[3,3,1]nonan-3-one (11) via a gold(I)-catalyzed Conia-ene reaction. The electron-donating group on the pendant alkyne of cyclization precursor 12 b-e was the key to forming 6-endo-dig cyclized product 7 with complete regioselectivity. Using the synthetic strategy for regioselective construction of bridged tricyclic framework 7, a diazatricyclododecene 3D-scaffold 8 a, which enables the introduction of substituents into the scaffold to mimic amino acid side chains, was designed and synthesized. The peptide mimetics 21 a-u were synthesized via step-by-step installation of three substituents on diazatricyclododecene scaffold 8 a. Compounds 21 a-h were synthesized as α-helix peptide mimics of hydrophobic ZZxxZ and ZxxZZ sequences (Z=Leu or Phe) and subjected to cell-based assays: antiproliferative activity, HIF-1 transcriptional activity which is considered to affect cancer malignancy, and antiviral activity against rabies virus. Compound 21 a showed the strongest inhibitory activity of HIF-1 transcriptional activity (IC50 =4.1±0.8 μM), whereas compounds 21 a-g showed antiviral activity with IC50 values of 4.2-12.4 μM, suggesting that the 3D-scaffold 8 a has potential as a versatile peptide mimic skeleton.
Collapse
Affiliation(s)
- Kohei Umedera
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Taiki Morita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, 251-0012, Japan
| | - Kentaro Yamada
- Faculty of Agriculture Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan.,Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan
| | - Akira Katoh
- Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan.,Institute of Advanced Medcine, Inc., Oita University, 17-20, Higashi kasuga-machi, Oita-city, Oita, 870-0037, Japan
| | - Hiroyuki Kouji
- Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan.,Institute of Advanced Medcine, Inc., Oita University, 17-20, Higashi kasuga-machi, Oita-city, Oita, 870-0037, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| |
Collapse
|
99
|
Hoxha S, Kalaitzakis D, Bosveli A, Montagnon T, Vassilikogiannakis G. One-Pot Transformation of Furans into 1-Azaspirocyclic Alkaloid Frameworks Induced by Visible Light. Org Lett 2021; 23:5354-5358. [PMID: 34180682 DOI: 10.1021/acs.orglett.1c01661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-value 1-azaspirocyclic scaffolds have been made from simple and readily accessible furan precursors in a single operation. The protocol is a one-pot sequence using highly sustainable conditions (oxygen, visible light, and a favored green solvent) that leads to a dramatic increase in molecular complexity. The initial substrates can include functionalities that are suitable for further elaboration; in this way, the pruned polycyclic skeletons of the stemonamine, cylindricine, and lepadiformine natural products were rapidly accessed.
Collapse
Affiliation(s)
- Stela Hoxha
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | | |
Collapse
|
100
|
Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021; 11:200390. [PMID: 33906413 PMCID: PMC8080017 DOI: 10.1098/rsob.200390] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.
Collapse
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Sohrabi
- Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|