51
|
Zeng M, Wang Y, Liu M, Wei Y, Wen J, Zhang Y, Chen T, He N, Fan P, Dai X. Potential Efficacy of Herbal Medicine-Derived Carbon Dots in the Treatment of Diseases: From Mechanism to Clinic. Int J Nanomedicine 2023; 18:6503-6525. [PMID: 37965279 PMCID: PMC10642355 DOI: 10.2147/ijn.s431061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Carbon dots (CDs), a crucial component of nanomaterials, are zero-dimensional nanomaterials with carbon as the backbone structure and smaller than 10 nm. Due to their beneficial characteristics, they are widely used in biomedical fields such as biosensors, drug delivery, bio-imaging, and interactions with DNA. Interestingly, a novel type of carbon dot, generated by using herbal medicines as synthetic raw materials, has emerged as the most recent incomer in the family of CDs with the extensive growth in the number of materials selected for carbon dots synthesis. Herbal medicine-derived carbon dots (HM-CDs) have been employed in the biomedical industry, and are rapidly emerging as "modern nanomaterials" due to their unique structures and exceptional capabilities. Emerging trends suggest that their specific properties can be used in bleeding disorders, gastrointestinal disorders, inflammation-related diseases, and other common intractable diseases including cancer, menopausal syndrome, central nervous system disorders, and pain of various forms and causes. In addition, HM-CDs have been found to have organ-protective and antioxidant properties, as evidenced by extensive studies. This research provides a more comprehensive understanding of the biomedical applications of HM-CDs for the aforementioned disorders and investigates the intrinsic pharmacological activities and mechanisms of these HM-CDs to further advance their clinical applications.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yuxun Wei
- Department of Pharmacy, Zhongjiang County People’s Hospital, Deyang, 618000, People’s Republic of China
| | - Jie Wen
- Department of Pharmacy, Shehong Municipal Hospital of Traditional Chinese Medicine, Shehong, 629600, People’s Republic of China
| | - Yuchen Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Nianyu He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
52
|
Zhong M, Liang P, Feng Z, Yang X, Li G, Sun R, He L, Tan J, Xiao Y, Yu Z, Yi M, Wang X. A nanocomposite competent to overcome cascade drug resistance in ovarian cancer via mitochondria dysfunction and NO gas synergistic therapy. Asian J Pharm Sci 2023; 18:100872. [PMID: 38161785 PMCID: PMC10755721 DOI: 10.1016/j.ajps.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is one of the most common and recurring malignancies in gynecology. Patients with relapsed OC always develop "cascade drug resistance" (CDR) under repeated chemotherapy, leading to subsequent failure of chemotherapy. To overcome this challenge, amphiphiles (P1) carrying a nitric oxide (NO) donor (Isosorbide 5-mononitrate, ISMN) and high-density disulfide are synthesized for encapsulating mitochondria-targeted tetravalent platinum prodrug (TPt) to construct a nanocomposite (INP@TPt). Mechanism studies indicated that INP@TPt significantly inhibited drug-resistant cells by increasing cellular uptake and mitochondrial accumulation of platinum, depleting glutathione, and preventing apoptosis escape through generating highly toxic peroxynitrite anion (ONOO-). To better replicate the microenvironmental and histological characteristics of the drug resistant primary tumor, an OC patient-derived tumor xenograft (PDXOC) model in BALB/c nude mice was established. INP@TPt showed the best therapeutic effects in the PDXOC model. The corresponding tumor tissues contained high ONOO- levels, which were attributed to the simultaneous release of O2•- and NO in tumor tissues. Taken together, INP@TPt-based systematic strategy showed considerable potential and satisfactory biocompatibility in overcoming platinum CDR, providing practical applications for ovarian therapy.
Collapse
Affiliation(s)
- Min Zhong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Peiqin Liang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Zhenzhen Feng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Guang Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Rui Sun
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan 523018, China
| | - Lijuan He
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Jinxiu Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Yangpengcheng Xiao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan 523018, China
| | - Muhua Yi
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| |
Collapse
|
53
|
Zhang A, Gao A, Zhou C, Xue C, Zhang Q, Fuente JMDL, Cui D. Confining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303722. [PMID: 37748441 DOI: 10.1002/adma.202303722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Indexed: 09/27/2023]
Abstract
Nanozymes with inherent enzyme-mimicking catalytic properties combat malignant tumor progression via catalytic therapy, while the therapeutic efficacy still needs to be improved. In this work, ultrasmall platinum nanozymes (nPt) in a confined domain of a wormlike pore channel in gold nanobipyramidal-mesoporous silica dioxide nanocomposites, producing nanozyme carriers AP-mSi with photoenhanced peroxidase ability, are innovatively synthesized. Afterward, based on the prepared AP-mSi, a lung-cancer nanozymes probe (AP-HAI) is ingeniously produced by removing the SiO2 template, modifying human serum albumin, and loading atovaquone molecules (ATO) as well as IR780. Under NIR light irradiation, inner AuP and IR780 collaborate for photothermal process, thus facilitating the peroxidase-like catalytic process of H2 O2 . Additionally, loaded ATO, a cell respiration inhibitor, can impair tumor respiration metabolism and cause oxygen retention, hence enhancing IR780's photodynamic therapy (PDT) effectiveness. As a result, IR780's PDT and nPt nanozymes' photoenhanced peroxidase-like ability endow probes a high ROS productivity, eliciting antitumor immune responses to destroy tumor tissue. Systematic studies reveal that the obvious reactive oxygen species (ROS) generation is obtained by the strategy of using nPt nanozymes and reducing oxygen consumption by ATO, which in turn enables lung-cancer synergetic catalytic therapy/immunogenic-cell-death-based immunotherapy. The results of this work would provide theoretical justification for the practical use of photoenhanced nanozyme probes.
Collapse
Affiliation(s)
- Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jesus M De La Fuente
- Institute of Nano Science and Technology, University of Zaragoza, Zaragoza, 50018, Spain
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
54
|
Dutta SD, Moniruzzaman M, Hexiu J, Sarkar S, Ganguly K, Patel DK, Mondal J, Lee YK, Acharya R, Kim J, Lim KT. Polyphenolic Carbon Quantum Dots with Intrinsic Reactive Oxygen Species Amplification for Two-Photon Bioimaging and In Vivo Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37905899 DOI: 10.1021/acsami.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Recent studies indicate that mitochondrial dysfunctions and DNA damage have a critical influence on cell survival, which is considered one of the therapeutic targets for cancer therapy. In this study, we demonstrated a comparative study of the effect of polyphenolic carbon quantum dots (CQDs) on in vitro and in vivo antitumor efficacy. Dual emissive (green and yellow) shape specific polyphenolic CQDs (G-CQDs and Y-CQDs) were synthesized from easily available nontoxic precursors (phloroglucinol), and the antitumor property of the as-synthesized probe was investigated as compared to round-shaped blue emissive CQDs (B-CQDs) derived from well-reported precursor citric acid and urea. The B-CQDs had a nuclei-targeting property, and G-CQDs and Y-CQDs had mitochondria-targeting properties. We have found that the polyphenol containing CQDs (at a dose of 100 μg mL-1) specifically attack mitochondria by excess accumulation, altering the metabolism, inhibiting branching pattern, imbalanced Bax/Bcl-2 homeostasis, and ultimately generating oxidative stress levels, leading to oxidative stress-induced cell death in cancer cells in vitro. We show that G-CQDs are the main cause of oxidative stress in cancer cells because of their ability to produce sufficient •OH- and 1O2 radicals, evidenced by electron paramagnetic resonance spectroscopy and a terephthalic acid test. Moreover, the near-infrared absorption properties of the CQDs were exhibited in two-photon (TP) emission, which was utilized for TP cellular imaging of cancer cells without photobleaching. The in vivo antitumor test further discloses that intratumoral injection of G-CQDs can significantly augment the treatment efficacy of subcutaneous tumors without any adverse effects on BalB/c nude mice. We believe that shape-specific polyphenolic CQD-based nanotheranostic agents have a potential role in tumor therapy, thus proving an insight on treatment of malignant cancers.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 1342, Republic of Korea
| | - Jin Hexiu
- Department of Plastic and Traumatic Surgery, Capital Medical University, Fengtai, Beijing 100069, China
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk 37673, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Rumi Acharya
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 1342, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
55
|
Mi J, Cui D, Zhang Z, Mu G, Shi Y. NIR-II femtosecond laser ignites MXene as photoacoustic bomb for continuous high-precision tumor blasting. NANOSCALE 2023; 15:16539-16551. [PMID: 37791688 DOI: 10.1039/d3nr03665k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Recently, photoacoustic (PA) cavitation-mediated therapy has become the focus of research owing to its advantage of inhibiting drug or radiation resistance; however, its application is limited because it relies on nanodroplets with one-time action. Herein, we demonstrate a femtosecond-laser-pumped ultrafast PA cavitation technique for highly efficient shockwave theranostics using niobium carbide (Nb2C) coated with polyvinylpyrrolidone-40000 (PVP), producing sustainable PA cavitation with non-phase-change nanoprobes, which effectively gets rid of the dependence on nanodroplets, guaranteeing multiple treatments. Under femtosecond (fs) laser irradiation, given that the thermal confinement regime could be well satisfied, the Nb2C-PVP nanosheets (NSs) were quickly heated, forming localized overheated nanospots with the temperature exceeding the phase-transition threshold of the surroundings, leading to precise cavitation and explosion at the tumor sites. The experiments at the cellular level showed the significant anti-tumor effects of this method. Notably, the mouse model experiments showed a relative tumor volume inhibition rate of more than 90%, demonstrating the high precision and good efficacy of the proposed anti-tumor method. This method provides a sustainable and highly effective strategy for PA theranostics, indicating its great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Mi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Dandan Cui
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhui Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Gen Mu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yujiao Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
56
|
Ding H, Ren F, Liu P, Feng Y, Ma X, Shen Z, Shi Q, Xu M, Li W, Chen H. Cu 2+ -Anchored Carbon Nano-Photocatalysts for Visible Water Splitting to Boost Hydrogen Cuproptosis. Angew Chem Int Ed Engl 2023; 62:e202311549. [PMID: 37715322 DOI: 10.1002/anie.202311549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Both hydrogen (H2 ) and copper ions (Cu+ ) can be used as anti-cancer treatments. However, the continuous generation of H2 molecules and Cu+ in specific sites of tumors is challenging. Here we anchored Cu2+ on carbon photocatalyst (Cu@CDCN) to allow the continuous generation of H2 and hydrogen peroxide (H2 O2 ) in tumors using the two-electron process of visible water splitting. The photocatalytic process also generated redox-active Cu-carbon centers. Meanwhile, the Cu2+ residues reacted with H2 O2 (the obstacle to the photocatalytic process) to accelerate the two-electron process of water splitting and cuprous ion (Cu+ ) generation, in which the Cu2+ residue promoted a pro-oxidant effect with glutathione through metal-reducing actions. Both H2 and Cu+ induced mitochondrial dysfunction and intracellular redox homeostasis destruction, which enabled hydrogen therapy and cuproptosis to inhibit cancer cell growth and suppress tumor growth. Our research is the first attempt to integrate hydrogen therapy and cuproptosis using metal-enhanced visible solar water splitting in nanomedicine, which may provide a safe and effective cancer treatment.
Collapse
Affiliation(s)
- Haizhen Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Fangfang Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Peifei Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Yushuo Feng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Xiaoqian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Zhiyang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Qianqian Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Mengjiao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Wenle Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
57
|
Lu X, Kuai L, Huang F, Jiang J, Song J, Liu Y, Chen S, Mao L, Peng W, Luo Y, Li Y, Dong H, Li B, Shi J. Single-atom catalysts-based catalytic ROS clearance for efficient psoriasis treatment and relapse prevention via restoring ESR1. Nat Commun 2023; 14:6767. [PMID: 37880231 PMCID: PMC10600197 DOI: 10.1038/s41467-023-42477-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Psoriasis is a common inflammatory disease of especially high recurrence rate (90%) which is suffered by approximately 3% of the world population. The overexpression of reactive oxygen species (ROS) plays a critical role in psoriasis progress. Here we show that biomimetic iron single-atom catalysts (FeN4O2-SACs) with broad-spectrum ROS scavenging capability can be used for psoriasis treatment and relapse prevention via related gene restoration. FeN4O2-SACs demonstrate attractive multiple enzyme-mimicking activities based on atomically dispersed Fe active structures, which are analogous to those of natural antioxidant enzymes, iron superoxide dismutase, human erythrocyte catalase, and ascorbate peroxidase. Further, in vitro and in vivo experiments show that FeN4O2-SACs can effectively ameliorate psoriasis-like symptoms and prevent the relapse with augmented efficacy compared with the clinical drug calcipotriol. Mechanistically, estrogen receptor 1 (ESR1) is identified as the core protein upregulated in psoriasis treatment through RNA sequencing and bioinformatic analysis. Together, this study provides a proof of concept of psoriasis catalytic therapy (PCT) and multienzyme-inspired bionics (MIB).
Collapse
Affiliation(s)
- Xiangyu Lu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fang Huang
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Si Chen
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| | - Lijie Mao
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| | - Wei Peng
- Institute of Waste Treatment and Reclamation, College of Environment Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Bin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China.
| |
Collapse
|
58
|
Sui B, Zhu Y, Jiang X, Wang Y, Zhang N, Lu Z, Yang B, Li Y. Recastable assemblies of carbon dots into mechanically robust macroscopic materials. Nat Commun 2023; 14:6782. [PMID: 37880261 PMCID: PMC10600192 DOI: 10.1038/s41467-023-42516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Assembly of nanoparticles into macroscopic materials with mechanical robustness, green processability, and recastable ability is an important and challenging task in materials science and nanotechnology. As an emerging nanoparticle with superior properties, macroscopic materials assembled from carbon dots will inherit their properties and further offer collective properties; however, macroscopic materials assembled from carbon dots solely remain unexplored. Here we report macroscopic films assembled from carbon dots modified by ureido pyrimidinone. These films show tunable fluorescence inherited from carbon dots. More importantly, these films exhibit collective properties including self-healing, re-castability, and superior mechanical properties, with Young's modulus over 490 MPa and breaking strength over 30 MPa. The macroscopic films maintain original mechanical properties after several cycles of recasting. Through scratch healing and welding experiments, these films show good self-healing properties under mild conditions. Moreover, the molecular dynamics simulation reveals that the interplay of interparticle and intraparticle hydrogen bonding controls mechanical properties of macroscopic films. Notably, these films are processed into diverse shapes by an eco-friendly hydrosetting method. The methodology and results in this work shed light on the exploration of functional macroscopic materials assembled from nanoparticles and will accelerate innovative developments of nanomaterials in practical applications.
Collapse
Affiliation(s)
- Bowen Sui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuemei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yifan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Niboqia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
59
|
Han J, Gu Y, Yang C, Meng L, Ding R, Wang Y, Shi K, Yao H. Single-atom nanozymes: classification, regulation strategy, and safety concerns. J Mater Chem B 2023; 11:9840-9866. [PMID: 37822275 DOI: 10.1039/d3tb01644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanozymes, nanomaterials possessing enzymatic activity, have been studied extensively by researchers. However, their complex composition, low density of active sites, and inadequate substrate selectivity have hindered the maturation and widespread acceptance of nanozymes. Single-atom nanozymes (SAzymes) with atomically dispersed active sites are leading the field of catalysis due to their exceptional performance. The maximum utilization rate of atoms, low cost, well-defined coordination structure, and active sites are the most prominent advantages of SAzymes that researchers favor. This review systematically categorizes SAzymes based on their support type and describes their specific applications. Additionally, we discuss regulation strategies for SAzyme activity and provide a comprehensive summary of biosafety challenges associated with these enzymes.
Collapse
Affiliation(s)
- Jiping Han
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yaohua Gu
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Changyi Yang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lingchen Meng
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Runmei Ding
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yifan Wang
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Huiqin Yao
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
60
|
Chan MH, Chen BG, Li CH, Huang WT, Su TY, Yin L, Hsiao M, Liu RS. Amplification of oxidative stress by lipid surface-coated single-atom Au nanozymes for oral cancer photodynamic therapy. NANOSCALE 2023; 15:15558-15572. [PMID: 37721121 DOI: 10.1039/d3nr02088f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Single-atom nanozymes (SANs) are the latest trend in biomaterials research and promote the application of single atoms in biological fields and the realization of protein catalysis in vivo with inorganic nanoparticles. Carbon quantum dots (CDs) have excellent biocompatibility and fluorescence properties as a substrate carrying a single atom. It is difficult to break through pure-phase single-atom materials with quantum dots as carriers. In addition, there is currently no related research in the single-atom field in the context of oral cancer, especially head and neck squamous cell carcinoma. This research developed a lipid surface-coated nanozyme combined with CDs, single-atomic gold, and modified lipid ligands (DSPE-PEG) with transferrin (Tf) to treat oral squamous cell carcinoma. The study results have demonstrated that surface-modified single-atom carbon quantum dots (m-SACDs) exhibit excellent therapeutic effects and enable in situ image tracking for diagnosing and treating head and neck squamous carcinoma (HNSCC).
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, 11221, Taipei, Taiwan
| | - Bo-Gu Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
61
|
Gupta A, Singhmar R, Sood A, Bhardwaj D, Kumaran SS, Chaturvedi S, Agrawal G. Gd/hafnium oxide@gold@chitosan core-shell nanoparticles as a platform for multimodal theranostics in oncology research. Chem Commun (Camb) 2023; 59:11819-11822. [PMID: 37721201 DOI: 10.1039/d3cc02971a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In the current study, we synthesized thiolated chitosan-stabilized gold-coated, gadolinium-doped hafnium oxide nanoparticles (CAuGH NPs) with the capability of acting as a multifunctional system to deliver anticancer drug doxorubicin (DOX), to enhance radiosensitization by ROS generation, and to provide magnetic resonance (MR) imaging contrast for biomedical applications.
Collapse
Affiliation(s)
- Aastha Gupta
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Ritu Singhmar
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Ankur Sood
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - S Senthil Kumaran
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Shubhra Chaturvedi
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, New Delhi, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| |
Collapse
|
62
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
63
|
Ye Z, Hu C, Wang J, Liu H, Li L, Yuan J, Ha JW, Li Z, Xiao L. Burst of hopping trafficking correlated reversible dynamic interactions between lipid droplets and mitochondria under starvation. EXPLORATION (BEIJING, CHINA) 2023; 3:20230002. [PMID: 37933279 PMCID: PMC10582609 DOI: 10.1002/exp.20230002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/27/2023] [Indexed: 11/08/2023]
Abstract
Dynamic membrane contacts between lipid droplets (LDs) and mitochondria play key roles in lipid metabolism and energy homeostasis. Understanding the dynamics of LDs under energy stimulation is thereby crucial to disclosing the metabolic mechanism. Here, the reversible interactions between LDs and mitochondria are tracked in real-time using a robust LDs-specific fluorescent probe (LDs-Tags). Through tracking the dynamics of LDs at the single-particle level, spatiotemporal heterogeneity is revealed. LDs in starved cells communicate and integrate their activities (i.e., lipid exchange) through a membrane contact site-mediated mechanism. Thus the diffusion is intermittently alternated between active and confined states. Statistical analysis shows that the translocation of LDs in response to starvation stress is non-Gaussian, and obeys nonergodic-like behavior. These results provide deep understanding of the anomalous diffusion of LDs in living cells, and also afford guidance for rationally designing efficient transporter.
Collapse
Affiliation(s)
- Zhongju Ye
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Chengyuan Hu
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Junli Wang
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Hua Liu
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
| | - Luping Li
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Jie Yuan
- School of Chemistry and Chemical EngineeringSchool of EnvironmentHenan Normal UniversityXinxiangChina
| | - Ji Won Ha
- Department of ChemistryUniversity of UlsanNam‐guRepublic of Korea
| | - Zhaohui Li
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Lehui Xiao
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
| |
Collapse
|
64
|
Huang J, Sun X, Wang Y, Su J, Li G, Wang X, Yang Y, Zhang Y, Li B, Zhang G, Li J, Du J, Nanjundappa RH, Umeshappa CS, Shao K. Biological interactions of polystyrene nanoplastics: Their cytotoxic and immunotoxic effects on the hepatic and enteric systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115447. [PMID: 37690176 DOI: 10.1016/j.ecoenv.2023.115447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
As emerging pollutants in the environment, nanoplastics (NPs) can cross biological barriers and be enriched in organisms, posing a greatest threat to the health of livestock and humans. However, the size-dependent toxic effects of NPs in higher mammals remain largely unknown. To determine the size-dependent potential toxicities of NPs, we exposed mouse (AML-12) and human (L02) liver cell lines in vitro, and 6-week-old C57BL/6 mice (well-known preclinical model) in vivo to five different sizes of polystyrene NPs (PS-NPs) (20, 50, 100, 200 and 500 nm). We found that ultra-small NPs (20 nm) induced the highest cytotoxicity in mouse and human liver cell lines, causing oxidative stress and mitochondrial membrane potential loss on AML-12 cells. Unexpectedly in vivo, after long-term oral exposure to PS-NPs (75 mg/kg), medium NPs (200 nm) and large NPs (500 nm) induced significant hepatotoxicity, evidenced by increased oxidative stress, liver dysfunction, and lipid metabolism disorders. Most importantly, medium or large NPs generated local immunotoxic effects via recruiting and activating more numbers of neutrophils and monocytes in the liver or intestine, which potentially resulted in increased proinflammatory cytokine secretion and the tissue damage. The discrepancy in in vitro-in vivo toxic results might be attributed to the different properties of biodistribution and tissue accumulation of different sized NPs in vivo. Our study provides new insights regarding the hepatotoxicity and immunotoxicity of NPs on human and livestock health, warranting us to take immense measures to prevent these NPs-associated health damage.
Collapse
Affiliation(s)
- Jiahao Huang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinbo Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianlong Su
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuning Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuxuan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bangjian Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinrong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jing Du
- Liaoning Ocean and Fisheries Science Research Institute, 50# Heishijiao Road, Shahekou District, Dalian 116023, China
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
65
|
Tian X, Chen Z, Yang L, Liu Q, Zheng Z, Gao Z, Wang X, Lin C, Xie W, Wan Y, Yang J, Hou Z. Low-Temperature Photothermal Therapy Platform Based on Pd Nanozyme-Modified Hydrogenated TiO 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44631-44640. [PMID: 37706663 DOI: 10.1021/acsami.3c07130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In photothermal treatments (PTTs), normal tissues around cancerous tumors get injured by excessive heat, whereas damaged cancer cells are easily restored by stress-induced heat shock proteins (HSPs) at low temperatures. Therefore, to achieve a unique tumor microenvironment (TME), it is imperative to increase PTT efficiency and reduce normal tissue injury by adopting appropriate reactive oxygen species (ROS) and lipid peroxides (LPO) cross-linked with HSPs. In the present research, a potential strategy for mild photothermal treatments (mPTTs) was proposed by initiating localized catalytic chemical reactions in TME based on Pd nanozyme-modified hydrogenated TiO2 (H-TiO2@Pd). In vitro and in vivo evaluations demonstrated that H-TiO2@Pd had good peroxidase-like activities (POD), glutathione oxidase-like activities (GSHOx), and photodynamic properties and also satisfactory biocompatibility for 4T1 cells. Localized catalytic chemical reactions in H-TiO2@Pd significantly depleted GSH to downregulate the protein expression of GPX4 and promoted the accumulation of LPO and ROS, which consumed HSP70 or inhibited its function in 4T1 cells. Hence, the as-constructed low-temperature photothermal therapeutic platform based on Pd nanozyme-modified H-TiO2 can be a promising candidate to develop a safe and effective mPTT for cancer treatments.
Collapse
Affiliation(s)
- Xiumei Tian
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
| | - Zhankun Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
| | - Longcui Yang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
| | - Qianqian Liu
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
| | - Zhaocong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xiaozhao Wang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Chen Lin
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Wenyu Xie
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yuchi Wan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jingwen Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Zhiyao Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
66
|
Chen HY, Xu HB, Lv J, Chang S, Wu MS, Chen ZC, Zhu SC, He Y, Qian RC, Li DW. Smart Nanoplatform for Visualizing Hydrogen Sulfide and Amplifying Oxidative Stress to Tumor Apoptosis. ACS Sens 2023; 8:3555-3562. [PMID: 37607401 DOI: 10.1021/acssensors.3c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Oxidative stress is involved in various signaling pathways and serves a key role in inducing cell apoptosis. Therefore, it is significant to monitor oxidative stress upon drug release for the assessment of therapeutic effects in cancer cells. Herein, a glutathione (GSH)-responsive surface-enhanced Raman scattering (SERS) nanoplatform is proposed for ultra-sensitively monitoring the substance related with oxidative stress (hydrogen sulfide, H2S), depleting reactive sulfur species and releasing anticancer drugs to amplify oxidative stress for tumor apoptosis. The Au@Raman reporter@Ag (Au@M@Ag) nanoparticles, where a 4-mercaptobenzonitrile molecule as a Raman reporter was embedded between layers of gold and silver to obtain sensitive SERS response, were coated with a covalent organic framework (COF) shell to form a core-shell structure (Au@M@Ag@COFs) as the SERS nanoplatform. The COF shell loading doxorubicin (DOX) of Au@M@Ag@COFs exhibited the GSH-responsive degradation capacity to release DOX, and its Ag layer as the sensing agent was oxidized to Ag2S by H2S to result in its prominent changes in SERS signals with a low detection limit of 0.33 nM. Moreover, the releasing DOX can inhibit the generation of H2S to promote the production of reactive oxygen species, and the depletion of reactive sulfur species (GSH and H2S) in cancer cells can further enhance the oxidative stress to induce tumor apoptosis. Overall, the SERS strategy could provide a powerful tool to monitor the dynamic changes of oxidative stress during therapeutic processes in a tumor microenvironment.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Man-Sha Wu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhen-Chi Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shi-Cheng Zhu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
67
|
Zhu L, Li W, Liu C, Yue S, Qiao Y, Cui Y, Cheng J, Zhang M, Zhang P, Zhang B, Hou Y. Glutathione-sensitive mesoporous nanoparticles loaded with cinnamaldehyde for chemodynamic and immunological therapy of cancer. J Mater Chem B 2023; 11:8717-8731. [PMID: 37646819 DOI: 10.1039/d3tb01094e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Chemodynamic therapy as a novel type of chemotherapy can damage the DNA structures and induce cell apoptosis and immunogenic cell death (ICD) through generating reactive oxygen species (ROS) to aggravate oxidative stress. Nonetheless, as an intrinsic antioxidative response of tumor cells, the expression of glutathione (GSH) can be upregulated to maintain the cellular redox balance and protect the tumor cells from ROS-mediated damage. In this context, it is feasible to simultaneously boost ROS generation and GSH depletion in tumor cells; however, the precise delivery and release of GSH scavengers at specific subcellular sites is of great importance. Herein, we propose a GSH-responsive mesoporous organosilica nanoparticle (MON)-based nanomedicine MON-CA-TPP@HA through sequentially covalently attaching triphenylphosphine (TPP) and electrostatically coating hyaluronic acid (HA) onto the surface of cinnamaldehyde (CA)-loaded MONs, known as MON-CA-TPP@HA, which has been demonstrated to be an extremely effective therapeutic strategy for cancer treatment through inducing ICD and apoptosis of breast cancer cells. Systematic in vitro experimental results clearly revealed that the nanomedicine can actively target the tumor cells with the help of HA, subsequently enter the tumor cells, and precisely bind with the mitochondria through TPP residues. Upon cleavaging the disulfide bond in the MONs triggered by over-expressed GSH within tumors, the CA molecules can be released inducing the excessive ROS in situ surrounding the mitochondria to activate oxidative stress to induce apoptosis and ICD of breast cancer cells. The results of the in vivo experiments confirm that the MON-CA-TPP@HA nanomedicine can effectively promote dendritic cell (DC) maturation and CD 8+ T cell activation and regulate the ratio of M1/M2 macrophages, which improve tumor immunosuppressive microenvironment. It is thus believed that the current nanomedicine has paved a new way for future cancer therapy.
Collapse
Affiliation(s)
- Lichong Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wenyue Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chuang Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yingying Cui
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Junwei Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Beibei Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
68
|
Wang H, Chen T, Ren H, Liu W, Nan F, Ge J, Wang P. Metal-Organic Frameworks@Au Nanoreactor as an Oxidative Stress Amplifier for Enhanced Tumor Photodynamic Therapy through the Alleviation of Hypoxemia and the Depletion of Glutathione. ACS APPLIED BIO MATERIALS 2023; 6:3376-3386. [PMID: 36912885 DOI: 10.1021/acsabm.2c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Recently, photodynamic therapy (PDT) based on the generation of cytotoxic reactive oxygen species (ROS) has drawn great attention in tumor treatment. However, the hypoxia tumor microenvironment (TME) inhibits the generation efficacy of ROS, and the high glutathione (GSH) level in TME could neutralize the generated ROS, both of which strongly reduce the therapeutic efficiency of PDT. In this work, we first constructed the porphyrinic metal-organic framework PCN-224. Then Au nanoparticles were decorated on the PCN-224 to obtain the PCN-224@Au. The decorated Au nanoparticles could not only produce O2 through the decomposition of H2O2 in tumor sites for enhancing the generation of 1O2 in PDT but also deplete glutathione through the strong interactions between Au and sulfhydryl groups on glutathione to weaken the antioxidant ability of tumor cells, thus amplifying the 1O2 damage to cancer cells. The in vitro and in vivo experiments totally exhibited that the as-prepared PCN-224@Au nanoreactor can be used as an oxidative stress amplifier for enhanced PDT, which provides a promising candidate to conquer the limitation of intratumor hypoxia and high GSH level on PDT of cancer.
Collapse
Affiliation(s)
- Haoran Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tiejin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, P. R. China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
69
|
Yu H, Li JM, Deng K, Zhou W, Li KH, Wang CX, Wang Q, Wu M, Huang SW. GPX4 inhibition synergistically boosts mitochondria targeting nanoartemisinin-induced apoptosis/ferroptosis combination cancer therapy. Biomater Sci 2023; 11:5831-5845. [PMID: 37439624 DOI: 10.1039/d3bm00601h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Artemisinin, originally used for its antimalarial activity, has received much attention in recent years for cancer therapy. The anticancer mechanisms of artemisinin are complicated and debatable. Challenges in the delivery of artemisinin also persist because the anticancer effect of artemisinin alone is often not satisfactory when used with traditional nanocarriers. We herein report the mitochondrial delivery of artemisinin with extremely high anticancer capacity. The action mode of artemisinin in the mitochondria of cancer cells includes heme-participating and oxygen-independent conversion of artemisinin into a carbon-centered radical, which is partly converted into ROS in the presence of molecular oxygen. We reveal that artemisinin alone in the mitochondria can induce strong cancer cell apoptosis. In addition, due to the weak inhibition of GPX4 activity by artemisinin, weak ferroptosis is also observed. We further discover that GPX4 activity in MCF-7 cells is greatly inhibited by RSL3 to synergistically enhance the anticancer capacity of artemisinin via enhancing ferroptosis. The synergistic anticancer activity of artemisinin and RSL3 in the mitochondria not only improves cancer cell-killing ability, but also inhibits the re-proliferation of residual cancer cells. This study provides a new insight into developing highly efficient and practical artemisinin nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jia-Mi Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Kai Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Kun-Heng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Cai-Xia Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Qian Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
70
|
Fooladi S, Nematollahi MH, Iravani S. Nanophotocatalysts in biomedicine: Cancer therapeutic, tissue engineering, biosensing, and drug delivery applications. ENVIRONMENTAL RESEARCH 2023; 231:116287. [PMID: 37263475 DOI: 10.1016/j.envres.2023.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Photocatalysis can be considered as a green technology owing to its excellent potential for sustainability and fulfilling several principles of green chemistry. This process uses light radiation as the primary energy source, preventing or reducing the requirement for artificial light sources and exogenous catalytic entities. Photocatalysis has promising applications in biomedicine such as drug delivery, biosensing, tissue engineering, cancer therapeutics, etc. In targeted cancer therapeutics, photocatalysis can be employed in photodynamic therapy to form reactive oxygen species that damage cancerous cells' structure. Nanophotocatalysts can be used in targeted drug delivery, showing potential applications in nuclear-targeted drug delivery along with specific delivery of chemotherapeutics to cancer cells or tumor sites. On the other hand, in tissue engineering, nanophotocatalysts can be employed in designing scaffolds that promote cell growth and tissue regeneration. However, some important challenges pertaining to the performance of photocatalysis, large-scale production of nanophotocatalysts, optimization of reaction/synthesis conditions, long-term biosafety issues, stability, clinical translation, etc. still need further explorations. Herein, the most recent advancements pertaining to the biomedical applications of nanophotocatalysts are reflected, focusing on drug delivery, tissue engineering, biosensing, and cancer therapeutic potentials.
Collapse
Affiliation(s)
- Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
71
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
72
|
Song WF, Zeng JY, Ji P, Han ZY, Sun YX, Zhang XZ. Self-Assembled Copper-Based Nanoparticles for Glutathione Activated and Enzymatic Cascade-Enhanced Ferroptosis and Immunotherapy in Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301148. [PMID: 37118853 DOI: 10.1002/smll.202301148] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
As an emerging cancer treatment strategy, ferroptosis is greatly restricted by excessive glutathione (GSH) in tumor microenvironment (TME) and low reactive oxygen species (ROS) generation efficiency. Here, this work designs self-assembled copper-alanine nanoparticles (CACG) loaded with glucose oxidase (GOx) and cinnamaldehyde (Cin) for in situ glutathione activated and enzymatic cascade-enhanced ferroptosis and immunotherapy. In response to GSH-rich and acidic TME, CACG allows to effectively co-deliver Cu2+ , Cin, and GOx into tumors. Released Cin consumes GSH through Michael addition, accompanying with the reduction of Cu2+ into Cu+ for further GSH depletion. With the cascade of Cu+ -catalyzed Fenton reactions and enzyme-catalyzed reactions by GOx, CACG could get rid of the restriction of insufficient hydrogen peroxide in TME, leading to a robust and constant generation of ROS. With the high efficiency of GSH depletion and ROS production, ferroptosis is significantly enhanced by CACG in vivo. Moreover, elevated oxidative stress triggers robust immune responses by promoting dendritic cells maturation and T cell infiltration. The in vivo results prove that CACG could efficiently inhibit tumor growth in 4T1 tumor-bearing mouse model without causing obvious systemic toxicity, suggesting the great potential of CACG in enhancing ferroptosis and immunotherapy for effective cancer treatment.
Collapse
Affiliation(s)
- Wen-Fang Song
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yun-Xia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, P. R. China
| |
Collapse
|
73
|
Cai J, Peng J, Feng J, Li R, Ren P, Zang X, Wu Z, Lu Y, Luo L, Hu Z, Wang J, Dai X, Zhao P, Wang J, Yan M, Liu J, Deng R, Wang D. Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles. Nat Commun 2023; 14:3643. [PMID: 37339977 DOI: 10.1038/s41467-023-39423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| | - Jie Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Feng
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Ruocheng Li
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Peng Ren
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zezong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Yi Lu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Lin Luo
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhenzhen Hu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Jiaying Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
74
|
Zhang H, Feng H, Yu T, Zhang M, Liu Z, Ma L, Liu H. Construction of an oxidative stress-related lncRNAs signature to predict prognosis and the immune response in gastric cancer. Sci Rep 2023; 13:8822. [PMID: 37258567 DOI: 10.1038/s41598-023-35167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
Oxidative stress, as a characteristic of cellular aerobic metabolism, plays a crucial regulatory role in the development and metastasis of gastric cancer (GC). Long noncoding RNAs (lncRNAs) are important regulators in GC development. However, research on the prognostic patterns of oxidative stress-related lncRNAs (OSRLs) and their functions in the immune microenvironment is currently insufficient. We identified the OSRLs signature (DIP2A-IT1, DUXAP8, TP53TG1, SNHG5, AC091057.1, AL355001.1, ARRDC1-AS1, and COLCA1) from 185 oxidative stress-related genes in The Cancer Genome Atlas (TCGA) cohort via random survival forest and Cox analyses, and the results were subsequently validated in the Gene Expression Omnibus (GEO) dataset. The patients were divided into high- and low-risk groups by the risk score of the OSRLs signature. Longer overall survival was detected in the low-risk group than in the high-risk group in both the TCGA cohort (P < 0. 001, HR = 0.43, 95% CI 0.31-0.62) and the GEO cohort (P = 0.014, HR = 0.67, 95% CI 0.48-0.93). Next, multivariate Cox analysis identified that the risk model was an independent prognostic characteristic (HR > 1, P = 0.005), and time-dependent receiver operating characteristic (ROC) curve analysis and nomogram analysis were utilized to evaluate the predictive ability of the risk model. Next, gene set enrichment analysis revealed that the immune-related pathway, Wnt/[Formula: see text]-catenin signature, mammalian target of rapamycin complex 1 signature, and cytokine‒cytokine receptor interaction was enriched. High-risk patients were more responsive to CD200, TNFSF4, TNFSF9, and BTNL2 immune checkpoint blockade. The results of qRT‒PCR further proved the accuracy of our bioinformatic analysis. Overall, our study identified a novel OSRLs signature that can serve as a promising biomarker and prognostic indicator, which provides a personalized predictive approach for patient prognosis evaluation and treatment.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Huawei Feng
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, 110036, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, 110036, China
- Key Laboratory for Simulating Computation and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China
| | - Tiansong Yu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Man Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co, Shenyang, 110036, China
| | - Lidan Ma
- Dandong Customs Integrated Technical Service Center, Dandong, 118000, China
| | - Hongsheng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, 110036, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, 110036, China.
- Key Laboratory for Simulating Computation and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China.
| |
Collapse
|
75
|
Wang D, Liu J, Wang C, Zhang W, Yang G, Chen Y, Zhang X, Wu Y, Gu L, Chen H, Yuan W, Chen X, Liu G, Gao B, Chen Q, Zhao Y. Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy. Nat Commun 2023; 14:2943. [PMID: 37221237 DOI: 10.1038/s41467-023-38796-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023] Open
Abstract
Cancer immunotherapy is revolutionizing oncology. The marriage of nanotechnology and immunotherapy offers a great opportunity to amplify antitumor immune response in a safe and effective manner. Here, electrochemically active Shewanella oneidensis MR-1 can be applied to produce FDA-approved Prussian blue nanoparticles on a large-scale. We present a mitochondria-targeting nanoplatform, MiBaMc, which consists of Prussian blue decorated bacteria membrane fragments having further modifications with chlorin e6 and triphenylphosphine. We find that MiBaMc specifically targets mitochondria and induces amplified photo-damages and immunogenic cell death of tumor cells under light irradiation. The released tumor antigens subsequently promote the maturation of dendritic cells in tumor-draining lymph nodes, eliciting T cell-mediated immune response. In two tumor-bearing mouse models using female mice, MiBaMc triggered phototherapy synergizes with anti-PDL1 blocking antibody for enhanced tumor inhibition. Collectively, the present study demonstrates biological precipitation synthetic strategy of targeted nanoparticles holds great potential for the preparation of microbial membrane-based nanoplatforms to boost antitumor immunity.
Collapse
Affiliation(s)
- Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Jiawei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
- The Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, P.R. China
| | - Changlai Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Weiyun Zhang
- School of Biomedical Engineering, Shenzhen University, 518060, Shenzhen, P.R. China
| | - Guangbao Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Long Gu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hongzhong Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Guofeng Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bin Gao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
76
|
Yu J, Li Y, Yan A, Gao Y, Xiao F, Xu Z, Xu J, Yu S, Liu J, Sun H. Self-Propelled Enzymatic Nanomotors from Prodrug-Skeletal Zeolitic Imidazolate Frameworks for Boosting Multimodel Cancer Therapy Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301919. [PMID: 37189219 PMCID: PMC10401186 DOI: 10.1002/advs.202301919] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Self-propelled nanomotors, which can autonomous propelled by harnessing others type of energy, have shown tremendous potential as drug delivery systems for cancer therapy. However, it remains challenging for nanomotors in tumor theranostics because of their structural complexity and deficient therapeutic model. Herein, glucose-fueled enzymatic nanomotors (GC6@cPt ZIFs) are developed through encapsulation of glucose oxidase (GOx), catalase (CAT), and chlorin e6 (Ce6) using cisplatin-skeletal zeolitic imidazolate frameworks (cPt ZIFs) for synergetic photochemotherapy. The GC6@cPt ZIFs nanomotors can produce O2 through enzymatic cascade reactions for propelling the self-propulsion. Trans-well chamber and multicellular tumor spheroids experiments demonstrate the deep penetration and high accumulation of GC6@cPt nanomotors. Importantly, the glucose-fueled nanomotor can release the chemotherapeutic cPt and generate reactive oxygen species under laser irradiation, and simultaneously consume intratumoral over-expressed glutathione. Mechanistically, such processes can inhibit cancer cell energy and destroy intratumoral redox balance to synergistically damage DNA and induce tumor cell apoptosis. Collectively, this work demonstrates that the self-propelled prodrug-skeleton nanomotors with oxidative stress activation can highlight a robust therapeutic capability of oxidants amplification and glutathione depletion to boost the synergetic cancer therapy efficiency.
Collapse
Affiliation(s)
- Jieyu Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - An Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Yuwei Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Fei Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Zhengwei Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| |
Collapse
|
77
|
Li J, You Z, Zhai S, Zhao J, Lu K. Mitochondria-Targeted Nanosystem Enhances Radio-Radiodynamic-Chemodynamic Therapy on Triple Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21941-21952. [PMID: 37099714 DOI: 10.1021/acsami.3c02361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Radiodynamic therapy (RDT), which produces 1O2 and other reactive oxygen species (ROS) in response to X-rays, can be used in conjunction with radiation therapy (RT) to drastically lower X-ray dosage and reduce radio resistance associated with conventional radiation treatment. However, radiation-radiodynamic therapy (RT-RDT) is still impotent in a hypoxic environment in solid tumors due to its oxygen-dependent nature. Chemodynamic therapy (CDT) can generate reactive oxygen species and O2 by decomposing H2O2 in hypoxic cells and thus potentiate RT-RDT to achieve synergy. Herein, we developed a multifunctional nanosystem, AuCu-Ce6-TPP (ACCT), for RT-RDT-CDT. Ce6 photosensitizers were conjugated to AuCu nanoparticles via Au-S bonds to realize radiodynamic sensitization. Cu can be oxidized by H2O2 and catalyze the degradation of H2O2 to generate •OH through the Fenton-like reaction to realize CDT. Meanwhile, the degradation byproduct oxygen can alleviate hypoxia while Au can consume glutathione to increase the oxidative stress. We then attached mercaptoethyl-triphenylphosphonium (TPP-SH) to the nanosystem, targeting ACCT to mitochondria (colocalization Pearson coefficient 0.98) to directly disrupt mitochondrial membranes and more efficiently induce apoptosis. We confirmed that ACCT efficiently generates 1O2 and •OH upon X-ray irradiation, resulting in strong anticancer efficacy in both normoxic and hypoxic 4T1 cells. The down-regulation of hypoxia-inducible factor 1α expression and reduction of intracellular H2O2 concentrations suggested that ACCT could significantly alleviate hypoxia in 4T1 cells. ACCT-enhanced RT-RDT-CDT can successfully shrink or remove tumors in radioresistant 4T1 tumor-bearing mice upon 4 Gy of X-ray irradiation. Our work thus presents a new strategy to treat radioresistant hypoxic tumors.
Collapse
Affiliation(s)
- Jiangsheng Li
- Biomedical Engineering Department, Peking University, Beijing 100191, P. R. China
- College of Future Technology, Peking University, Beijing 100091, P. R. China
| | - Zhu You
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China
- Biomedical Engineering Department, Peking University, Beijing 100191, P. R. China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing 100191, P. R. China
| | - Shiyi Zhai
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China
- Biomedical Engineering Department, Peking University, Beijing 100191, P. R. China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing 100191, P. R. China
| | - Junxuan Zhao
- College of Future Technology, Peking University, Beijing 100091, P. R. China
| | - Kuangda Lu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China
- Biomedical Engineering Department, Peking University, Beijing 100191, P. R. China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing 100191, P. R. China
| |
Collapse
|
78
|
Kim K, Lee J, Park OK, Kim J, Kim J, Lee D, Paidi VK, Jung E, Lee HS, Lee B, Lee CW, Ko W, Lee K, Jung Y, Lee C, Lee N, Back S, Choi SH, Hyeon T. Geometric Tuning of Single-Atom FeN 4 Sites via Edge-Generation Enhances Multi-Enzymatic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207666. [PMID: 36854306 DOI: 10.1002/adma.202207666] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/22/2023] [Indexed: 05/12/2023]
Abstract
Single-atom nanozymes (SAzymes) are considered promising alternatives to natural enzymes. The catalytic performance of SAzymes featuring homogeneous, well-defined active structures can be enhanced through elucidating structure-activity relationship and tailoring physicochemical properties. However, manipulating enzymatic properties through structural variation is an underdeveloped approach. Herein, the synthesis of edge-rich Fe single-atom nanozymes (FeNC-edge) via an H2 O2 -mediated edge generation is reported. By controlling the number of edge sites, the peroxidase (POD)- and oxidase (OXD)-like performance is significantly enhanced. The activity enhancement results from the presence of abundant edges, which provide new anchoring sites to mononuclear Fe. Experimental results combined with density functional theory (DFT) calculations reveal that FeN4 moieties in the edge sites display high electron density of Fe atoms and open N atoms. Finally, it is demonstrated that FeNC-edge nanozyme effectively inhibits tumor growth both in vitro and in vivo, suggesting that edge-tailoring is an efficient strategy for developing artificial enzymes as novel catalytic therapeutics.
Collapse
Affiliation(s)
- Kang Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaewoo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jongseung Kim
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Jiheon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghyun Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Vinod K Paidi
- European Synchrotron Radiation Facility, Grenoble, 38043 Cedex 9, France
| | - Euiyeon Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeon Seok Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bowon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonjae Ko
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
79
|
Bai Y, Wu J, Liu K, Wang X, Shang Q, Zhang H. Integrated supramolecular nanovalves for photothermal augmented chemodynamic therapy through strengthened amplification of oxidative stress. J Colloid Interface Sci 2023; 637:399-407. [PMID: 36716664 DOI: 10.1016/j.jcis.2023.01.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The amplified oxidative stress strategy has been emerged as one promising method to enhance the chemodynamic therapy (CDT) efficacy due to the H2O2 up-regulation and glutathione (GSH) down-regulation behavior in tumor cells. However, how to further achieve the satisfied CDT efficacy is still a big challenge. In this paper, the supramolecular nanovalves (SNs) with oxidative amplification agents cinnamaldehyde-(phenylboronic acid pinacol ester) conjugates (CA-BE) encapsulated inside were developed to accelerate and amplify the generation of ·OH and consumption of GSH while augmenting the CDT efficacy. SNs were obtained through ferrocene/Au modified mesoporous silica nanoparticles (MSN@Au-Fc) and active targeting β-cyclodextrin modified hyaluromic acid (HA-CD). After CD44 receptor-mediated cellular internalization, the CA-BE were released to elevate H2O2 amount and consume GSH for the desired generation of higher cytotoxic hydroxyl radicals (·OH). Moreover, the NIR-activated MSN@Au-Fc can increase the temperature for the accelerated and amplified oxidative stress. As such, the therapeutic efficacy of our synthesized CA-BE and the accompanied hyperthermia were augmented toward synergistically inhibiting tumor growth.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kun Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoning Wang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Qingqing Shang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haitao Zhang
- School of Light Industry Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
80
|
Selva Sharma A, Suresh Nair S, Varghese AW, Usha A, Varghese RE, Joseph R, Thekkuveettil A. Dual-Emissive Carbon Dots: Exploring Their Fluorescence Properties for Sensitive Turn-Off-On Recognition of Ferric and Pyrophosphate Ions and Its Application in Fluorometric Detection of the Loop-Mediated Isothermal Amplification Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5779-5792. [PMID: 37042262 DOI: 10.1021/acs.langmuir.3c00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, dual-emissive carbon dots (CDs) were prepared using p-phenylenediamine (pPDA) and phytic acid (PA) precursors via a one-pot-hydrothermal method. The photophysical, morphological, and structural characterization of CDs was carried out using absorption, fluorescence, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR), and high-resolution transmission electron microscopy (HR-TEM) analysis. The as-prepared CDs displayed dual-fluorescence peaks at 525 and 620 nm upon excitation at 450 nm. The CDs showed good photostability and exhibited solvent-dependent fluorescence properties. The solvatochromic behavior of CDs was utilized to detect water content in organic solvents. Furthermore, the dual-emissive property of CDs was utilized for the sequential detection of ferric (Fe3+) and pyrophosphate ions (PPi) by a fluorescence turn-off-on mechanism. The proposed assay showed appreciable fluorescence response toward Fe3+ and PPi with high selectivity and good tolerance for common interfering ions. The potential practical application of the CD probe was ascertained by carrying out the fluorometric detection of PPi to affirm the loop-mediated isothermal amplification (LAMP) reaction specific for Mycobacterium tuberculosis (negative and positive clinical samples).
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Swathy Suresh Nair
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Anjana Usha
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Ria Elza Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Roy Joseph
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| |
Collapse
|
81
|
Zhu Y, Liao Y, Zou J, Cheng J, Pan Y, Lin L, Chen X. Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300750. [PMID: 37058076 DOI: 10.1002/smll.202300750] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials with enzyme-mimicking properties, coined as nanozymes, are a promising alternative to natural enzymes owing to their remarkable advantages, such as high stability, easy preparation, and favorable catalytic performance. Recently, with the rapid development of nanotechnology and characterization techniques, single atom nanozymes (SAzymes) with atomically dispersed active sites, well-defined electronic and geometric structures, tunable coordination environment, and maximum metal atom utilization are developed and exploited. With superior catalytic performance and selectivity, SAzymes have made impressive progress in biomedical applications and are expected to bridge the gap between artificial nanozymes and natural enzymes. Herein, the recent advances in SAzyme preparation methods, catalytic mechanisms, and biomedical applications are systematically summarized. Their biomedical applications in cancer therapy, oxidative stress cytoprotection, antibacterial therapy, and biosensing are discussed in depth. Furthermore, to appreciate these advances, the main challenges, and prospects for the future development of SAzymes are also outlined and highlighted in this review.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yaxin Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Junjie Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
82
|
Xing Y, Xiu J, Zhou M, Xu T, Zhang M, Li H, Li X, Du X, Ma T, Zhang X. Copper Single-Atom Jellyfish-like Nanomotors for Enhanced Tumor Penetration and Nanocatalytic Therapy. ACS NANO 2023; 17:6789-6799. [PMID: 36988101 DOI: 10.1021/acsnano.3c00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single-atom catalysts with extraordinary catalytic activity have been receiving great attention in tumor therapy. However, most single-atom catalysts lack self-propulsion properties, restricting them from actively approaching cancer cells or penetrating the interior of tumors. Herein, we design N-doped jellyfish-like mesoporous carbon nanomotors coordinated with single-atom copper (Cu-JMCNs). It is a combination of single-atom nanocatalytic medicine and nanomotor self-propulsion for cancer therapy. The Cu single atom can catalyze H2O2 into toxic hydroxyl radical (•OH) for chemodynamic therapy (CDT). Near-infrared light triggers Cu-JMCNs to achieve self-thermophoretic motion because of the jellyfish-like asymmetric structure and photothermal property of carbon, which significantly improves the cellular uptake and the penetration of three-dimensional tumors. In vivo experiments indicate that the combination of single-atom Cu for CDT and near-infrared light propulsion can achieve over 85% tumor inhibition rate. This work sheds light on the development of advanced nanomotors with single-atom catalysts for biomedical applications.
Collapse
Affiliation(s)
- Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Jidong Xiu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Mengyun Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Hui Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoyu Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, University of Chinese Academic of Sciences, Beijing 100190, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| |
Collapse
|
83
|
Ma Y, Zhang M, Wu J, Zhao Y, Du X, Huang H, Zhou Y, Liu Y, Kang Z. The Key Effect of Carboxyl Group and CuN 2 O 2 Coordinate Structure for Cu, N Co-Doped Carbon Dots with Peroxidase-Like Property. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300883. [PMID: 37029573 DOI: 10.1002/smll.202300883] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Carbon dots (CDs) with good water solubility and biocompatibility have become a research hotspot in the nano-enzyme and biomedical field. However, the problems of low catalytic activity and ambiguous catalytic site of CDs as nanozymes still need to be addressed. In this work, CDs loaded with Cu single atoms are obtained through pyrolysis, and the coordination structure and surface functional groups are regulated by adjusting the pyrolysis temperature. CDs obtained at 300 °C (named Cu-CDs-300) have the most carboxyl content and Cu is coordinated in the form of CuN2 O2 , which can better decompose H2 O2 to produce free radical and is beneficial to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The vmax is 6.56*10-7 m s-1 , 6.56 times higher than that of horseradish peroxidase (HRP). Moreover, Cu-CDs-300 can effectively lead to CT26 apoptosis by generating much free radicals. This work demonstrates the synergistic effect of oxygen-containing functional groups and metal coordination structures on peroxide-like activity of CDs and provides new ideas for the design of clear active structure and high efficiency peroxide-like single atom CDs catalyst.
Collapse
Affiliation(s)
- Yurong Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Macao, Taipa, 999078, P. R. China
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yajie Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xin Du
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yunjie Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Macao, Taipa, 999078, P. R. China
| |
Collapse
|
84
|
Liu A, Cai H, Xu Z, Li J, Weng X, Liao C, He J, Liu L, Wang Y, Qu J, Li H, Song J, Guo J. Multifunctional carbon dots for glutathione detection and Golgi imaging. Talanta 2023; 259:124520. [PMID: 37058943 DOI: 10.1016/j.talanta.2023.124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Glutathione (GSH) is present in almost every cell in the body and plays various integral roles in many biological processes. The Golgi apparatus is a eukaryotic organelle for the biosynthesis, intracellular distribution, and secretion of various macromolecules; however, the mechanism of GSH in the Golgi apparatus has not been fully elucidated. Here, specific and sensitive sulfur-nitrogen co-doped carbon dots (SNCDs) with orange-red fluorescence was synthesized for the detection of GSH in the Golgi apparatus. The SNCDs have a Stokes shift of 147 nm and excellent fluorescence stability, and they exhibited excellent selectivity and high sensitivity to GSH. The linear response of the SNCDs to GSH was in the range of 10-460 μM (LOD = 0.25 μΜ). More importantly, we used SNCDs with excellent optical properties and low cytotoxicity as probes, and successfully realized golgi imaging in HeLa cells and GSH detection at the same time.
Collapse
Affiliation(s)
- Aikun Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Haojie Cai
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhibing Xu
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Jinlei Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Hao Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
85
|
Zhang Q, Wang F, Wang R, Liu J, Ma Y, Qin X, Zhong X. Activating One/Two-Photon Excited Red Fluorescence on Carbon Dots: Emerging n→π Photon Transition Induced by Amino Protonation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207566. [PMID: 36739601 PMCID: PMC10104635 DOI: 10.1002/advs.202207566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Due to the complicated nature of carbon dots (CDs), fluorescence mechanism of red fluorescent CDs is still unrevealed and features highly controversial. Reliable and effective strategies for manipulating the red fluorescence of CDs are urgently needed. Herein, CDs with one-photon excited (622 nm, QYs ≈ 17%) and two-photon (629 nm) excited red fluorescence are prepared by acidifying o-phenylenediamine-based reaction sediments. Systematic analysis reveals that the protonation of amino groups increases the particle surface potential, disperse the bulk sediments into nano-scale CDs. In the meanwhile, amino protonation of pyridinic nitrogen (-N=) structure inserts numerous n orbital energy levels between the π → π* transition, narrows the gap distance for photon transition, and induces red fluorescence emission on CDs. Present research reveals an effective pathway to activate CDs reaction sediments and trigger red emission, thus may open a new avenue for developing CDs with ideal optical properties and promising application prospects.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and NetworksKey Laboratory for Laser Plasmas (Ministry of Education)School of Physics and AstronomyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Fengqing Wang
- Department of Food Science and TechnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ruoyu Wang
- State Key Laboratory of Advanced Optical Communication Systems and NetworksKey Laboratory for Laser Plasmas (Ministry of Education)School of Physics and AstronomyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Junlan Liu
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yupengxue Ma
- State Key Laboratory of Advanced Optical Communication Systems and NetworksKey Laboratory for Laser Plasmas (Ministry of Education)School of Physics and AstronomyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Xiaoru Qin
- State Key Laboratory of Advanced Optical Communication Systems and NetworksKey Laboratory for Laser Plasmas (Ministry of Education)School of Physics and AstronomyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Xiaoxia Zhong
- State Key Laboratory of Advanced Optical Communication Systems and NetworksKey Laboratory for Laser Plasmas (Ministry of Education)School of Physics and AstronomyShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
86
|
Peng H, Yao F, Zhao J, Zhang W, Chen L, Wang X, Yang P, Tang J, Chi Y. Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20220115. [PMID: 37324035 PMCID: PMC10191003 DOI: 10.1002/exp.20220115] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Functional subcellular organelle mitochondria are emerging as a crucial player and driver of cancer. For maintaining the sites of cellular respiration, mitochondria experience production, and accumulation of reactive oxygen species (ROS) underlying oxidative damage in electron transport chain carriers. Precision medicine targeting mitochondria can change nutrient availability and redox homeostasis in cancer cells, which might represent a promising strategy for suppressing tumor growth. Herein, this review highlights how the modification capable of manipulating nanomaterials for ROS generation strategies can influence or compensate the state of mitochondrial redox homeostasis. We propose foresight to guide research and innovation with an overview of seminal work and discuss future challenges and our perspective on the commercialization of novel mitochondria-targeting agents.
Collapse
Affiliation(s)
- Haibao Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Feibai Yao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Jiaxu Zhao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Wei Zhang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Xin Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| | - Peng Yang
- Engineering Research Center of Molecular- and Neuro-imaging of Ministry of Education, School of Life Science and Technology Xidian University Xi'an Shaanxi China
| | - Jing Tang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Yudan Chi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science Fudan University Shanghai China
| |
Collapse
|
87
|
Zhou G, Chen Y, Chen W, Wu H, Yu Y, Sun C, Hu B, Liu Y. Renal Clearable Catalytic 2D Au-Porphyrin Coordination Polymer Augmented Photothermal-Gas Synergistic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206749. [PMID: 36599631 DOI: 10.1002/smll.202206749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
As a gasotransmitter, carbon monoxide (CO) possesses antitumor activity by reversing the Warburg effect at higher concentrations. The targeted delivery of carbon monoxide-releasing molecules (CORMs) using nanomaterials is an appealing option for CO administration, but how to maintain CO above the threshold concentration in tumor tissue remains a challenge. Herein, a nanozyme-catalyzed cascade reaction is proposed to promote CO release for high-efficacy photothermal therapy (PTT)-combined CO therapy of cancer. A gold-based porphyrinic coordination polymer nanosheet (Au0 -Por) is synthesized to serve as a carrier for CORM. It also possesses excellent glucose oxygenase-like activity owing to ultrasmall zero-valent gold atoms on the nanosheet. The catalytically generated H2 O2 can efficiently catalyze CORM decomposition, which enables in situ generation of sufficient CO for gas therapy. In vivo, the Au0 -Por nanosheets-enhanced photoacoustic imaging (PAI) and fluorescence imaging collectively demonstrate high tumor-targeting efficiency and nanomaterial retention. Proven to have augmented therapeutic efficacy, the nanoplatform can also be easily degraded and excreted through the kidney, indicating good biocompatibility. Thus, the application of rational designed Au0 -Por nanosheet with facile approach and biodegradable property to PAI-guided synergistic gas therapy can provide a strategy for the development of biocompatible and highly effective gaseous nanomedicine.
Collapse
Affiliation(s)
- Gaoxin Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Wenhao Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Chunlong Sun
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256600, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Liu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
88
|
Ai L, Song Z, Nie M, Yu J, Liu F, Song H, Zhang B, Waterhouse GIN, Lu S. Solid-state Fluorescence from Carbon Dots Widely Tunable from Blue to Deep Red through Surface Ligand Modulation. Angew Chem Int Ed Engl 2023; 62:e202217822. [PMID: 36537873 DOI: 10.1002/anie.202217822] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Carbon dots (CDs) find widespread attention due to their remarkable fluorescent and electronic properties. However, aggregation-caused quenching currently limits the application of CDs in colored displays. The construction of CDs with color-tunable solid-state fluorescence (SSF) is rarely reported, since the preparation of SSF CDs is technically challenging. Herein, through surface ligand modulation, SSF CDs with an emission-color span of almost 300 nm (from blue to deep red) were obtained. In-depth structure-property studies reveal that intra- and inter-molecular hydrogen-bonding inside SSF CDs provokes the emission properties in the aggregated state. Photodynamic characterizations demonstrate emission wavelengths can be switched smoothly by deliberately altering conjugation ability between substituent ligands and CDs core. Three-dimensional printing patterning is used to create a range of emissive objects, demonstrating the commercial potential for use in optical lamps.
Collapse
Affiliation(s)
- Lin Ai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Ziqi Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Mingjun Nie
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Jingkun Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Fukang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haoqiang Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Biao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | | | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
89
|
Zeng X, Wang H, Ma Y, Xu X, Lu X, Hu Y, Xie J, Wang X, Wang Y, Guo X, Zhao L, Li J. Vanadium Oxide Nanozymes with Multiple Enzyme-Mimic Activities for Tumor Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897191 DOI: 10.1021/acsami.2c20878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using tumors containing high concentrations of hydrogen peroxide to design nanozymes is a new and effective strategy, and vanadium-based nanomaterials receive increasing attention. In this paper, four kinds of vanadium oxide nanozymes with different valences of vanadium are synthesized by a simple method to verify the effect of valence on enzyme activity. Vanadium oxide nanozyme-III (Vnps-III) with a low valence of vanadium (V4+) exhibits good peroxidase (POD) and oxidase (OXD) activities, which can effectively produce reactive oxygen species (ROS) in the tumor microenvironment for tumor treatment. In addition, Vnps-III can also consume glutathione (GSH) to reduce ROS consumption. Vanadium oxide nanozyme-I (Vnps-I) containing a high valence of vanadium (V5+) has catalase (CAT) activity, which can catalyze hydrogen peroxide (H2O2) into oxygen (O2), which is beneficial to alleviate the hypoxic environment of solid tumors. Finally, a vanadium oxide nanozyme with both trienzyme simulation activity and GSH consumption ability was screened out by adjusting the ratio of V4+ to V5+ in vanadium oxide nanozymes. In cell and animal experiments, we successfully demonstrate that vanadium oxide nanozymes have excellent antitumor ability and high safety, which may bring great potential for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiangle Zeng
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Hairong Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yating Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xue Xu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xingxi Lu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yujie Hu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Jihong Xie
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xiu Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yushuai Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xuliang Guo
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Li Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, Hubei 430000, China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| |
Collapse
|
90
|
Feng T, Wan Y, Dai B, Liu Y. Anticancer Activity of Bitter Melon-Derived Vesicles Extract against Breast Cancer. Cells 2023; 12:cells12060824. [PMID: 36980165 PMCID: PMC10047160 DOI: 10.3390/cells12060824] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Due to their low immunogenicity, high biocompatibility and ready availability in large quantities, plant-derived vesicles extracts have attracted considerable interest as a novel nanomaterial in tumor therapy. Bitter melon, a medicinal and edible plant, has been reported to exhibit excellent antitumor effects. It is well-documented that breast cancer gravely endangers women’s health, and more effective therapeutic agents must be urgently explored. Therefore, we investigated whether bitter melon-derived vesicles extract (BMVE) has antitumor activity against breast cancer. Ultracentrifugation was used to isolate BMVE with a typical “cup-shaped” structure and an average size of approximately 147 nm from bitter melon juice. The experimental outcomes indicate that 4T1 breast cancer cells could efficiently internalize BMVE, which shows apparent anti-proliferative and migration-inhibiting effects. In addition, BMVE also possesses apoptosis-inducing effects on breast cancer cells, which were achieved by stimulating the production of reactive oxygen species (ROS) and disrupting mitochondrial function. Furthermore, BMVE could dramatically inhibit tumor growth in vivo with negligible adverse effects. In conclusion, BMVE exhibits a pronounced antitumor effect on 4T1 breast cancer cells, which has great potential for use in tumor therapy.
Collapse
Affiliation(s)
| | | | - Bin Dai
- Correspondence: (B.D.); (Y.L.)
| | | |
Collapse
|
91
|
Su W, Tan M, Wang Z, Zhang J, Huang W, Song H, Wang X, Ran H, Gao Y, Nie G, Wang H. Targeted Degradation of PD-L1 and Activation of the STING Pathway by Carbon-Dot-Based PROTACs for Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202218128. [PMID: 36647763 DOI: 10.1002/anie.202218128] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) technology is an emerging approach to degrade disease-associated proteins. Here, we report carbon-dot (CD)-based PROTACs (CDTACs) that degrade membrane proteins via the ubiquitin-proteasome system. CDTACs can bind to programmed cell death ligand 1 (PD-L1), recruit cereblon (CRBN) to induce PD-L1 ubiquitination, and degrade them with proteasomes. Fasting-mimicking diet (FMD) is also used to enhance the cellular uptake and proteasome activity. More than 99 % or 90 % of PD-L1 in CT26 or B16-F10 tumor cells can be degraded by CDTACs, respectively. Furthermore, CDTACs can activate the stimulator of interferon genes (STING) pathway to trigger immune responses. Thus, CDTACs with FMD treatment effectively inhibit the growth of CT26 and B16-F10 tumors. Compared with small-molecule-based PROTACs, CDTACs offer several advantages, such as efficient membrane protein degradation, targeted tumor accumulation, immune system activation, and in vivo detection.
Collapse
Affiliation(s)
- Wen Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Mixiao Tan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhihang Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Haohao Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinye Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
92
|
Chen Z, Li J, Meng L, Li J, Hao Y, Jiang T, Yang X, Li Y, Liu ZP, Gong M. Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organic oxidation with enzyme-like activities. Nat Commun 2023; 14:1184. [PMID: 36864050 PMCID: PMC9981682 DOI: 10.1038/s41467-023-36830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Simultaneously achieving abundant and well-defined active sites with high selectivity has been one of the ultimate goals for heterogeneous catalysis. Herein, we construct a class of Ni hydroxychloride-based inorganic-organic hybrid electrocatalysts with the inorganic Ni hydroxychloride chains pillared by the bidentate N-N ligands. The precise evacuation of N-N ligands under ultrahigh-vacuum forms ligand vacancies while partially retaining some ligands as structural pillars. The high density of ligand vacancies forms the active vacancy channel with abundant and highly-accessible undercoordinated Ni sites, exhibiting 5-25 fold and 20-400 fold activity enhancement compared to the hybrid pre-catalyst and standard β-Ni(OH)2 for the electrochemical oxidation of 25 different organic substrates, respectively. The tunable N-N ligand can also tailor the sizes of the vacancy channels to significantly impact the substrate configuration leading to unprecedented substrate-dependent reactivities on hydroxide/oxide catalysts. This approach bridges heterogenous and homogeneous catalysis for creating efficient and functional catalysis with enzyme-like properties.
Collapse
Affiliation(s)
- Zhe Chen
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jili Li
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Lingshen Meng
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jianan Li
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yaming Hao
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Tao Jiang
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Xuejing Yang
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Zhi-Pan Liu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
93
|
Ci Q, Wang Y, Wu B, Coy E, Li JJ, Jiang D, Zhang P, Wang G. Fe-Doped Carbon Dots as NIR-II Fluorescence Probe for In Vivo Gastric Imaging and pH Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206271. [PMID: 36596672 PMCID: PMC9982550 DOI: 10.1002/advs.202206271] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Indexed: 05/20/2023]
Abstract
Carbon dots (CDs) with excellent cytocompatibility, tunable optical properties, and simple synthesis routes are highly desirable for use in optical bioimaging. However, the majority of existing CDs are triggered by ultraviolet/blue light, presenting emissions in the visible/first near-infrared (NIR-I) regions, which do not allow deep tissue penetration. Emerging research into CDs with NIR-II emission in the red region has generated limited designs with poor quantum yield, restricting their in vivo imaging applications due to low penetration depth. Developing novel CDs with NIR-II emissions and high quantum yield has significant and far-reaching applications in bioimaging and photodynamic therapy. Here, it is developed for the first time Fe-doped CDs (Fe-CDs) exhibiting the excellent linear relationship between 900-1200 nm fluorescence-emission and pH values, and high quantum yield (QY-1.27%), which can be used as effective probes for in vivo NIR-II bioimaging. These findings demonstrate reliable imaging accuracy in tissue as deep as 4 mm, reflecting real-time pH changes comparable to a standard pH electrode. As an important example application, the Fe-CDs probe can non-invasively monitor in vivo gastric pH changes during the digestion process in mice, illustrating its potential applications in aiding imaging-guided diagnosis of gastric diseases or therapeutic delivery.
Collapse
Affiliation(s)
- Qiaoqiao Ci
- Research Center for Human Tissues and Organs DegenerationShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Yuanyuan Wang
- Guangdong Key Laboratory of NanomedicineCAS‐HK Joint Lab of BiomaterialsShenzhen Engineering Laboratory of Nanomedicine and NanoformulationsInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Ben Wu
- Research Center for Human Tissues and Organs DegenerationShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Emerson Coy
- NanoBioMedical CentreAdam Mickiewicz UniversityWszechnicy Piastowskiej 3Poznan61–614Poland
| | - Jiao jiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneyUltimoNSW2007Australia
| | - Daoyong Jiang
- Guangdong Key Laboratory of NanomedicineCAS‐HK Joint Lab of BiomaterialsShenzhen Engineering Laboratory of Nanomedicine and NanoformulationsInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Pengfei Zhang
- Guangdong Key Laboratory of NanomedicineCAS‐HK Joint Lab of BiomaterialsShenzhen Engineering Laboratory of Nanomedicine and NanoformulationsInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs DegenerationShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| |
Collapse
|
94
|
Getachew G, Hsiao CH, Wibrianto A, Rasal AS, Batu Dirersa W, Huang CC, Vijayakameswara Rao N, Chen JH, Chang JY. High performance carbon dots based prodrug Platform: Image-Guided photodynamic and chemotherapy with On-Demand drug release upon laser irradiation. J Colloid Interface Sci 2023; 633:396-410. [PMID: 36459943 DOI: 10.1016/j.jcis.2022.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The design of therapeutic nanoplatforms based on fluorescent carbon dots (CDs) has become a viable strategy because of their aqueous solubility, biocompatibility, and ease of further functionalization. By doping various heteroatoms into pristine CDs structures, we synthesized N-, Cl-, and S-doped CDs (NClS/CDs), as well as Se-, N-, and Cl-doped CDs (NClSe/CDs) with superior optoelectronic properties using rapid and straightforward microwave heating. The quantum efficiencies of these NClS/CDs and NClSe/CDs were enhanced to 30.7 % and 42.9 %, respectively, compared to those of undoped CDs (0.66 %). Owing to their better light absorption properties, NClS/CDs efficiently produced reactive oxygen species (ROS) under 532 nm laser irradiation for photodynamic therapy (PDT). Considering the ROS generation and surface carrier abilities of NClS/CDs, we designed the loading of camptothecin (CPT) drug via a thioketal linker (TL), resulting in h/CDs@CPT nanovesicles (NVs) with a drug-loading efficiency of 46.5 %. Under laser irradiation in an acidic environment, ROS-triggered CPT release was observed, with 50.2 % of CPT released following the breakdown of the ROS-sensitive TL. In vitro cellular studies revealed that h/CDs@CPT NVs possessed minimal cytotoxicity toward HeLa and 4 T1 cancer cells, despite the high clinical efficacy of PDT and ROS-induced chemotherapeutic response under laser treatment. Confocal microscopy of HeLa and 4 T1 cells revealed that h/CDs@CPT NVs produced red-emissive photographs for potential cancer cell detection. Therefore, our study presents an image-guided PDT and chemotherapeutic platform based on h/CDs@CPT NVs, which will be an attractive candidate for future cancer treatment.
Collapse
Affiliation(s)
- Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Chien-Hua Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan, Republic of China
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
| | - Je-Hsin Chen
- Department of Applied Cosmetology, Hwa Hsia Institute of Technology, New Taipei City 23568, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China.
| |
Collapse
|
95
|
Song K, Chen G, He Z, Shen J, Ping J, Li Y, Zheng L, Miao Y, Zhang D. Protoporphyrin-sensitized degradable bismuth nanoformulations for enhanced sonodynamic oncotherapy. Acta Biomater 2023; 158:637-648. [PMID: 36621634 DOI: 10.1016/j.actbio.2022.12.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
Decreasing the scavenging capacity of reactive oxygen species (ROS) and enhancing ROS production are the two principal objectives in the development of novel sonosensitizers for sonodynamic therapy (SDT). Herein, we designed a protoporphyrin-sensitized bismuth-based semiconductor (P-NBOF) as a sonosensitizer to generate ROS and synergistically depleted glutathione for enhanced SDT against tumors. The bismuth-based nanomaterial (NBOF) is a wide-bandgap semiconductor. Sensitization by protoporphyrin made it easier to excite electrons under ultrasonic stimulation, and the energy of the lowest unoccupied electron orbital in protoporphyrin was higher than the conduction-band energy of NBOF. Under ultrasound excitation, the excited electrons in the protoporphyrin were injected into the conduction band of the NBOF, increasing its reducing ability leading to the production of more superoxide anion radicals and also helping to increase the charge separation of protoporphyrin leading to the production of more singlet oxygen. Meanwhile, P-NBOF continuously depleted glutathione, which was not only conducive to breaking the redox balance of the tumor microenvironment to enhance the therapeutic efficacy of SDT, but also promoted its degradation and metabolism. The construction of this P-NBOF sonosensitizer thus provided an effective strategy to enhance SDT for tumors. STATEMENT OF SIGNIFICANCE: To enhance the efficacy of sonodynamic tumor therapy, we developed a degradable protoporphyrin-sensitized bismuth-based nano-semiconductor (P-NBOF) by optimizing the band structure and glutathione-depletion ability. Protoporphyrin in P-NBOF under excitation preferentially generates free electrons, which are then injected into the conduction band of NBOF, improving the reducing ability of NBOF and promoting the separation of electron-hole pairs, thereby enhancing the production capacity of reactive oxygen species. Furthermore, P-NBOF can deplete glutathione, reduce the scavenging of reactive oxygen species, and reactivate and amplify the effect of sonodynamic therapy. The construction of the nanotherapeutic platform provides an option for enhancing sonodynamic therapy.
Collapse
Affiliation(s)
- Kang Song
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zongyan He
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Shen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
96
|
Zhang Q, Sun Z, Sun W, Yu B, Liu J, Jiang C, Lu L. Engineering a synergistic antioxidant inhibition nanoplatform to enhance oxidative damage in tumor treatment. Acta Biomater 2023; 158:625-636. [PMID: 36608895 DOI: 10.1016/j.actbio.2022.12.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
The antioxidant system of tumor cells severely impairs reactive oxygen species (ROS)-mediated tumor therapy. Despite extensive attempts to attenuate the antioxidant capacity by eliminating ROS scavengers such as glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) over-expressed in the tumor microenvironment can regenerate GSH from glutathione disulfide (GSSG), hence weakening ROS-induced oxidative damage. Therefore, engineering a nanoplatform capable of depleting both NADPH and GSH is extremely significant for improving ROS-mediated tumor treatment. Herein, a synergetic antioxidant inhibition strategy is proposed to attenuate intracellular antioxidant capacity for hypoxic tumor therapy. In this context, both porous Prussian blue nanoparticles (PPB NPs) and cisplatin prodrug [cis-Pt (IV)] in the nanoplatform can oxidize GSH to directly reduce GSH levels, while PPB NPs also enable NADPH depletion by peroxidase-mimicking to impair GSH regeneration. Furthermore, PPB NPs with catalase-mimicking activity catalyze H2O2 decomposition to alleviate tumor hypoxia, thus reducing the generation of GSH and boosting singlet oxygen (1O2) production by Chlorin e6 (Ce6) for enhancing oxidative damage. Experimental results prove that the nanoplatform, denoted as PPB-Ce6-Pt, can induce remarkable tumor cells apoptosis and ferroptosis. Importantly, a simple loading method and the use of Food Drug Administration (FDA)-approved materials make PPB-Ce6-Pt have great potential for practical applications. STATEMENT OF SIGNIFICANCE: The antioxidant system in tumor cells disables ROS-mediated tumor therapy. Besides, extensive attempts aim at depleting GSH without considering their regeneration. Therefore, we developed a synergetic strategy to attenuate intracellular antioxidant capacity for hypoxic tumor therapy. PPB-Ce6-Pt nanoplatform could not only directly reduce GSH levels but also deplete NADPH by peroxidase-mimicking to impair GSH regeneration. In addition, PPB-Ce6-Pt nanoplatform could catalyze H2O2 decomposition to alleviate tumor hypoxia, thus reducing the generation of GSH and boosting 1O2 production by Chlorin e6 (Ce6) for increasing oxidative damage. Then, intracellular ROS boost and redox dyshomeostasis induced remarkable tumor cells apoptosis and ferroptosis. Importantly, a simple loading method and the use of biosafety materials made the nanoplatform have great potential for practical applications.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jianhua Liu
- Department of Radiology, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
97
|
Cao D, Chen L, Zhang Z, Luo Y, Zhao L, Yuan C, Lu J, Liu X, Li J. Biodegradable nanomaterials for diagnosis and therapy of tumors. J Mater Chem B 2023; 11:1829-1848. [PMID: 36786439 DOI: 10.1039/d2tb02591d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although degradable nanomaterials have been widely designed and applied for cancer bioimaging and various cancer treatments, few reviews of biodegradable nanomaterials have been reported. Herein, we have summarized the representative research advances of biodegradable nanomaterials with respect to the mechanism of degradation and their application in tumor imaging and therapy. First, four kinds of tumor microenvironment (TME) responsive degradation are presented, including pH, glutathione (GSH), hypoxia and matrix metalloproteinase (MMP) responsive degradation. Second, external stimulation degradation is summarized briefly. Next, we have outlined the applications of nanomaterials in bioimaging. Finally, we have focused on some typical examples of biodegradable nanomaterials in radiotherapy (RT), photothermal therapy (PTT), starvation therapy, photodynamic therapy (PDT), chemotherapy, chemodynamic therapy (CDT), sonodynamic therapy (SDT), gene therapy, immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
98
|
Peng J, Du K, Sun J, Yang X, Wang X, Zhang X, Song G, Feng F. Photocatalytic Generation of Hydrogen Radical (H⋅) with GSH for Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202214991. [PMID: 36537886 DOI: 10.1002/anie.202214991] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
As a reactive hydrogen species, the hydrogen radical (H⋅) scarcely sees applications in tumor biological therapy due to the very limited bio-friendly sources of H⋅. In this work, we report that TAF can act as an organic photosensitizer as well as an efficient photocatalytic H⋅ generator with reduced glutathione (GSH) as a fuel. The photoactivation of TAF leads to cell death in two ways including triple amplification of oxidative stress via ferroptosis-apoptosis under normoxia and apoptosis through biological reductions under hypoxia. TAF presents excellent biosafety with ultrahigh photocytotoxicity index at an order of magnitude of 102 -103 on both normoxic and hypoxic cells. The in vitro data suggest that H⋅ therapy is promising to overcome the challenge of tumor hypoxia at low doses of both photocatalyst and light. In addition, the capability of near-infrared two-photon excitation would benefit broad biological applications.
Collapse
Affiliation(s)
- Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Ke Du
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Jian Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Current address: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xianli Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Xia Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Xiaoran Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Gang Song
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Current address: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| |
Collapse
|
99
|
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023; 11:1182-1214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.
Collapse
Affiliation(s)
- Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
100
|
Ren G, Lu M, Zhao Z, Qin F, Li K, Chen W, Lin Y. Cobalt Single-Atom Nanozyme Co-Administration with Ascorbic Acid Enables Redox Imbalance for Tumor Catalytic Ablation. ACS Biomater Sci Eng 2023; 9:1066-1076. [PMID: 36617740 DOI: 10.1021/acsbiomaterials.2c01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The elevated antioxidant defense system in cancer cells can lead to resistance to treatments involving ROS. Breaking the redox balance of the cell system through a "open up the source and regulate the flow" strategy can inhibit the growth of cancer cells and thus design a cancer treatment strategy. Here, cobalt single atom-supported N-doped carbon nanozymes (Co SA-N/C) were synthesized via a simple sacrificial template method, which can mimic the properties of ascorbate oxidase and glutathione oxidase effectively. The synthesized Co SA-N/C can induce the generation of active oxygen by accelerating the oxidation of ascorbic acid (AA) and destroy the endogenous active oxygen scavenging system by consuming the main antioxidant, glutathione (GSH). In-depth in vitro and in vivo investigations indicate that compared with solo therapy, Co SA-N/C together with AA can significantly enhance the anti-tumor efficiency by simultaneously elevating oxidative stress and consuming the overexpressed glutathione (GSH) through the redox reaction catalyzed by Co SA-N/C. This work provides a promising route for developing nanozyme-guided and ascorbate-based antitumor agents.
Collapse
Affiliation(s)
- Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mingju Lu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Fengjuan Qin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|