51
|
Wallau GL, Barbier E, Tomazatos A, Schmidt-Chanasit J, Bernard E. The Virome of Bats Inhabiting Brazilian Biomes: Knowledge Gaps and Biases towards Zoonotic Viruses. Microbiol Spectr 2023; 11:e0407722. [PMID: 36625641 PMCID: PMC9927472 DOI: 10.1128/spectrum.04077-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Bats host a large variety of viruses, including some that may infect other vertebrates and humans. Research on bat-borne viruses attracted significant attention in recent years mainly due to epizootics caused by viruses having bats as hosts. The characterization of the viral communities of bats was then prioritized, but despite increasing efforts, there are large disparities in the geographical ranges covered and the methodologies employed around the world. As a result, large gaps remain in our current understanding of bat viromes and their role in disease emergence. This is particularly true for megadiverse regions in Latin America. This review aims to summarize the current understanding about bat viruses that inhabit Brazilian biomes, one of the most bat species-rich and diverse regions of the globe. Taking into account all known bat-associated viral families studied in Brazilian biomes, we found that almost half of all bat species (86/181 species) were not investigated for viruses at all. Moreover, only a small fraction of viral lineages or families have been studied more in depth, usually employing targeted methods with limited power to characterize a broad virus diversity. Additionally, these studies relied on limited spatiotemporal sampling and small sample sizes. Therefore, our current understanding of bat viral communities in the Brazilian biomes is limited and biased at different levels, limiting zoonotic risk assessments of bat-borne viruses. Considering these limitations, we propose strategies to bridge the existing gaps in the near future. IMPORTANCE Bat-borne viruses have attracted much attention due to zoonotic outbreaks with large consequences to humans. Because of that, virus characterization in bats has been prioritized in tropical regions of the globe. However, bat-virus research in Latin America and particularly in Brazil, which are among the most bat species-rich regions of the world, are highly biased toward zoonotic viruses and known bat reservoir species. These results have direct implication for virus studies in general but also for new zoonotic virus and spillover events characterization. The limited knowledge we currently have about the virome of Brazilian bats drastically limits any broad assessment of zoonotic viruses they carry and calls for coordinated and large-scale studies to fill this crucial knowledge gap.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Departamento de Entomologia and Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM) - Fundação Oswaldo Cruz (Fiocruz), Cidade Universitária, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | - Eder Barbier
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Brazil
| | - Alexandru Tomazatos
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Enrico Bernard
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Brazil
| |
Collapse
|
52
|
Iwama RE, Moran Y. Origins and diversification of animal innate immune responses against viral infections. Nat Ecol Evol 2023; 7:182-193. [PMID: 36635343 DOI: 10.1038/s41559-022-01951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023]
Abstract
Immune systems are of pivotal importance to any living organism on Earth, as they protect the organism against deleterious effects of viral infections. Though the current knowledge about these systems is still biased towards the immune response in vertebrates, some studies have focused on the identification and characterization of components of invertebrate antiviral immune systems. Two classic model organisms, the insect Drosophila melanogaster and the nematode Caenorhabditis elegans, were instrumental in the discovery of several important components of the innate immune system, such as the Toll-like receptors and the RNA interference pathway. However, these two model organisms provide only a limited view of the evolutionary history of the immune system, as they both are ecdysozoan protostomes. Recent functional studies in non-classic models such as unicellular holozoans (for example, choanoflagellates), lophotrochozoans (for example, oysters) and cnidarians (for example, sea anemones) have added crucial information for understanding the evolution of antiviral systems, as they revealed unexpected ancestral complexity. This Review aims to summarize this information and present the ancestral nature of the antiviral immune response in animals. We also discuss lineage-specific adaptations and future perspectives for the comparative study of the innate immune system that are essential for understanding its evolution.
Collapse
Affiliation(s)
- Rafael E Iwama
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
53
|
Miranda TDS, Schiffler FB, D'arc M, Moreira FRR, Cosentino MAC, Coimbra A, Mouta R, Medeiros G, Girardi DL, Wanderkoke V, Soares CFA, Francisco TM, Henry MD, Afonso BC, Soffiati FL, Ferreira SS, Ruiz-Miranda CR, Soares MA, Santos AFA. Metagenomic analysis reveals novel dietary-related viruses in the gut virome of marmosets hybrids (Callithrix jacchus x Callithrix penicillata), Brazil. Virus Res 2023; 325:199017. [PMID: 36565815 DOI: 10.1016/j.virusres.2022.199017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
Viral metagenomics has contributed enormously to the characterization of a wide range of viruses infecting animals of all phyla in the last decades. Among Neotropical primates, especially those introduced, knowledge about viral diversity remains poorly studied. Therefore, using metagenomics based on virus enrichment, we explored the viral microbiota present in the feces of introduced common marmosets (Callithrix sp.) in three locations from the Silva Jardim region in the State of Rio de Janeiro, Brazil. Fecal samples were collected from nine marmosets, pooled into three sample pools, and sequenced on Illumina MiSeq platform. Sequence reads were analyzed using a viral metagenomic analysis pipeline and two novel insect viruses belonging to the Parvoviridae and Baculoviridae families were identified. The complete genome of a densovirus (Parvoviridae family) of 5,309 nucleotides (nt) was obtained. The NS1 and VP1 proteins share lower than 32% sequence identity with the corresponding proteins of known members of the subfamily Densovirinae. Phylogenetic analysis suggests that this virus represents a new genus, provisionally named Afoambidensovirus due to its discovery in the Brazilian Atlantic Forest. The novel species received the name Afoambidensovirus incertum 1. The complete circular genome of a baculovirus of 107,191 nt was also obtained, showing 60.8% sequence identity with the most closely related member of the Baculoviridae family. Phylogenetic analysis suggests that this virus represents a new species in the Betabaculovirus genus, provisionally named Betabaculovirus incertum 1. In addition, sequences from several families of arthropods in the three pools evaluated were characterized (contigs ranging from 244 to 6,750 nt), corroborating the presence of possible insect hosts with which these new viruses may be associated. Our study expands the knowledge about two viral families known to infect insects, an important component of the marmosets' diet. This identification in hosts' feces samples demonstrates one of the many uses of this type of data and could serve as a basis for future research characterizing viruses in wildlife using noninvasive samples.
Collapse
Affiliation(s)
- Thamiris Dos Santos Miranda
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Mirela D'arc
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Filipe Romero Rebello Moreira
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | - Amanda Coimbra
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ricardo Mouta
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gabriel Medeiros
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Déa Luiza Girardi
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Victor Wanderkoke
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Caique Ferreira Amaral Soares
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, RJ, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Talitha Mayumi Francisco
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, RJ, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Malinda Dawn Henry
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Bianca Cardozo Afonso
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, RJ, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | | | | | - Carlos Ramon Ruiz-Miranda
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, RJ, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Marcelo Alves Soares
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - André Felipe Andrade Santos
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
54
|
Dwyer DE. The Origins of Severe Acute Respiratory Syndrome-Coronavirus-2. Semin Respir Crit Care Med 2023; 44:3-7. [PMID: 36646081 DOI: 10.1055/s-0042-1759564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An outbreak of severe pneumonia of unknown cause was identified in Wuhan, China in December 2019: the causative agent was a novel betacoronavirus, severe acute respiratory syndrome-cotonavirus-2 (SARS-CoV-2), a virus that joins a list of coronaviruses causing severe (e.g., SARS and Middle East respiratory syndrome) or milder (e.g., 229E, OC43, NL63, and HKU1) respiratory tract infection. The World Health Organization (WHO) classified the spreading outbreak as a pandemic on March 11, 2020. Many SARS-related coronaviruses (SARSr-CoVs) have been identified in bats, particularly in Rhinolophus horseshoe bats, animals that are common in southern China and Southeast Asia. Many of the features of SARS-CoV-2 that facilitate human infection-the furin cleavage site, the receptor binding domain that binds to the human ACE2 receptor-can be identified in SARSr-CoVs. Related coronaviruses can be detected in pangolins and other animals, and human SARS-CoV-2 itself can infect various animals, some of which can transmit SARS-CoV-2 back to humans. Investigation by the WHO and others pointed to the initial outbreak being centered on the Huanan wet market in Wuhan where wild and farmed animals were sold, and where environmental testing revealed widespread SARS-CoV-2 contamination. This supports the hypothesis that bats, probably via an intermediate animal, are the origin of SARS-CoV-2. Other possible origins have been postulated, such as an accidental or deliberate laboratory leak, or virus present in frozen foods, but evidence for these ideas has not surfaced. Study of the origins of SARS-CoV-2 have been complicated by intense media and political commentary, features that may slow the studies required to understand the viral origins. Such studies are complex and may be slow: international openness and co-operation is vital. Origins explanations are needed to predict or prevent future pandemics and support the "One Health" approach to disease.
Collapse
Affiliation(s)
- Dominic E Dwyer
- Public Health Pathology, New South Wales Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
55
|
Zeineldin M, Elolimy A, Alharthi A, Abdelmegeid M. Editorial: The role of the bacteriome, mycobiome, archaeome and virome in animal health and disease. Front Vet Sci 2023; 9:1130187. [PMID: 36704710 PMCID: PMC9872131 DOI: 10.3389/fvets.2022.1130187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mohamed Zeineldin
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Banha, Egypt,*Correspondence: Mohamed Zeineldin ✉
| | - Ahmed Elolimy
- Department of Animal Production, National Research Centre, Giza, Egypt
| | - Abdulrahman Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Abdelmegeid
- Department of Animal Medicine, College of Veterinary Medicine, Kafr-Elsheikh University, Kafr El-Shaikh, Egypt,Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
56
|
Simons D, Attfield LA, Jones KE, Watson-Jones D, Kock R. Rodent trapping studies as an overlooked information source for understanding endemic and novel zoonotic spillover. PLoS Negl Trop Dis 2023; 17:e0010772. [PMID: 36689474 PMCID: PMC9894545 DOI: 10.1371/journal.pntd.0010772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/02/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Rodents, a diverse, globally distributed and ecologically important order of mammals are nevertheless important reservoirs of known and novel zoonotic pathogens. Ongoing anthropogenic land use change is altering these species' abundance and distribution, which among zoonotic host species may increase the risk of zoonoses spillover events. A better understanding of the current distribution of rodent species is required to guide attempts to mitigate against potentially increased zoonotic disease hazard and risk. However, available species distribution and host-pathogen association datasets (e.g. IUCN, GBIF, CLOVER) are often taxonomically and spatially biased. Here, we synthesise data from West Africa from 127 rodent trapping studies, published between 1964-2022, as an additional source of information to characterise the range and presence of rodent species and identify the subgroup of species that are potential or known pathogen hosts. We identify that these rodent trapping studies, although biased towards human dominated landscapes across West Africa, can usefully complement current rodent species distribution datasets and we calculate the discrepancies between these datasets. For five regionally important zoonotic pathogens (Arenaviridae spp., Borrelia spp., Lassa mammarenavirus, Leptospira spp. and Toxoplasma gondii), we identify host-pathogen associations that have not been previously reported in host-association datasets. Finally, for these five pathogen groups, we find that the proportion of a rodent hosts range that have been sampled remains small with geographic clustering. A priority should be to sample rodent hosts across a greater geographic range to better characterise current and future risk of zoonotic spillover events. In the interim, studies of spatial pathogen risk informed by rodent distributions must incorporate a measure of the current sampling biases. The current synthesis of contextually rich rodent trapping data enriches available information from IUCN, GBIF and CLOVER which can support a more complete understanding of the hazard of zoonotic spillover events.
Collapse
Affiliation(s)
- David Simons
- Centre for Emerging, Endemic and Exotic Diseases, The Royal Veterinary College, London, United Kingdom
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Lauren A. Attfield
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Deborah Watson-Jones
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Richard Kock
- Centre for Emerging, Endemic and Exotic Diseases, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
57
|
Botosso VF, Durigon EL, de Souza EE. Editorial: Emerging human viruses with pandemic potential: Diagnostics, pathogenesis, and therapeutics. Front Cell Infect Microbiol 2023; 13:1182522. [PMID: 37033481 PMCID: PMC10076870 DOI: 10.3389/fcimb.2023.1182522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Viviane Fongaro Botosso
- Virology Laboratory, Butantan Institute, São Paulo, Brazil
- *Correspondence: Viviane Fongaro Botosso, ; Edison Luiz Durigon, ; Edmarcia Elisa de Souza,
| | - Edison Luiz Durigon
- Scientific Platform Pasteur-University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Viviane Fongaro Botosso, ; Edison Luiz Durigon, ; Edmarcia Elisa de Souza,
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Viviane Fongaro Botosso, ; Edison Luiz Durigon, ; Edmarcia Elisa de Souza,
| |
Collapse
|
58
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
59
|
Qian J, Wu Z, Zhu Y, Liu C. One Health: a holistic approach for food safety in livestock. SCIENCE IN ONE HEALTH 2022; 1:100015. [PMID: 39076604 PMCID: PMC11262287 DOI: 10.1016/j.soh.2023.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/07/2023] [Indexed: 07/31/2024]
Abstract
The food safety of livestock is a critical issue between animals and humans due to their complex interactions. Pathogens have the potential to spread at every stage of the animal food handling process, including breeding, processing, packaging, storage, transportation, marketing and consumption. In addition, application of the antibiotic usage in domestic animals is a controversial issue because, while they can combat food-borne zoonotic pathogens and promote animal growth and productivity, they can also lead to the transmission of antibiotic-resistant microorganisms and antibiotic-resistant genes across species and habitats. Coevolution of microbiomes may occur in humans and animals as well which may alter the structure of the human microbiome through animal food consumption. One Health is a holistic approach to systematically understand the complex relationships among humans, animals and environments which may provide effective countermeasures to solve food safety problems aforementioned. This paper depicts the main pathogen spectrum of livestock and animal products, summarizes the flow of antibiotic-resistant bacteria and genes between humans and livestock along the food-chain production, and the correlation of their microbiome is reviewed as well to advocate for deeper interdisciplinary communication and collaboration among researchers in medicine, epidemiology, veterinary medicine and ecology to promote One Health approaches to address the global food safety challenges.
Collapse
Affiliation(s)
- Jing Qian
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheyuan Wu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
60
|
Farooq T, Hussain MD, Shakeel MT, Riaz H, Waheed U, Siddique M, Shahzadi I, Aslam MN, Tang Y, She X, He Z. Global genetic diversity and evolutionary patterns among Potato leafroll virus populations. Front Microbiol 2022; 13:1022016. [PMID: 36590416 PMCID: PMC9801716 DOI: 10.3389/fmicb.2022.1022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 01/04/2023] Open
Abstract
Potato leafroll virus (PLRV) is a widespread and one of the most damaging viral pathogens causing significant quantitative and qualitative losses in potato worldwide. The current knowledge of the geographical distribution, standing genetic diversity and the evolutionary patterns existing among global PLRV populations is limited. Here, we employed several bioinformatics tools and comprehensively analyzed the diversity, genomic variability, and the dynamics of key evolutionary factors governing the global spread of this viral pathogen. To date, a total of 84 full-genomic sequences of PLRV isolates have been reported from 22 countries with most genomes documented from Kenya. Among all PLRV-encoded major proteins, RTD and P0 displayed the highest level of nucleotide variability. The highest percentage of mutations were associated with RTD (38.81%) and P1 (31.66%) in the coding sequences. We detected a total of 10 significantly supported recombination events while the most frequently detected ones were associated with PLRV genome sequences reported from Kenya. Notably, the distribution patterns of recombination breakpoints across different genomic regions of PLRV isolates remained variable. Further analysis revealed that with exception of a few positively selected codons, a major part of the PLRV genome is evolving under strong purifying selection. Protein disorder prediction analysis revealed that CP-RTD had the highest percentage (48%) of disordered amino acids and the majority (27%) of disordered residues were positioned at the C-terminus. These findings will extend our current knowledge of the PLRV geographical prevalence, genetic diversity, and evolutionary factors that are presumably shaping the global spread and successful adaptation of PLRV as a destructive potato pathogen to geographically isolated regions of the world.
Collapse
Affiliation(s)
- Tahir Farooq
- Guangdong Academy of Agricultural Sciences, Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hasan Riaz
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yafei Tang
- Guangdong Academy of Agricultural Sciences, Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Xiaoman She
- Guangdong Academy of Agricultural Sciences, Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China,*Correspondence: Xiaoman She, ; Zifu He,
| | - Zifu He
- Guangdong Academy of Agricultural Sciences, Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China,*Correspondence: Xiaoman She, ; Zifu He,
| |
Collapse
|
61
|
Ortiz-Baez AS, Holmes EC, Charon J, Pettersson JHO, Hesson JC. Meta-transcriptomics reveals potential virus transfer between Aedes communis mosquitoes and their parasitic water mites. Virus Evol 2022; 8:veac090. [PMID: 36320615 PMCID: PMC9604308 DOI: 10.1093/ve/veac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Arthropods harbor a largely undocumented diversity of RNA viruses. Some arthropods, like mosquitoes, can transmit viruses to vertebrates but are themselves parasitized by other arthropod species, such as mites. Very little is known about the viruses of these ectoparasites and how they move through the host-parasite relationship. To address this, we determined the virome of both mosquitoes and the mites that feed on them. The mosquito Aedes communis is an abundant and widely distributed species in Sweden, in northern Europe. These dipterans are commonly parasitized by water mite larvae (Trombidiformes: Mideopsidae) that are hypothesized to impose negative selection pressures on the mosquito by reducing fitness. In turn, viruses are dual-host agents in the mosquito-mite interaction. We determined the RNA virus diversity of mite-free and mite-detached mosquitoes, as well as their parasitic mites, using meta-transcriptomic sequencing. Our results revealed an extensive RNA virus diversity in both mites and mosquitoes, including thirty-seven putative novel RNA viruses that cover a wide taxonomic range. Notably, a high proportion of viruses (20/37) were shared between mites and mosquitoes, while a limited number of viruses were present in a single host. Comparisons of virus composition and abundance suggest potential virus transfer between mosquitoes and mites during their symbiotic interaction. These findings shed light on virome diversity and ecology in the context of arthropod host-parasite-virus relationships.
Collapse
Affiliation(s)
- Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Justine Charon
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - John H-O Pettersson
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Dag Hammarskjölds väg 38, Uppsala SE-751 85, Sweden
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, C8:3, Uppsala SE-751 23, Sweden
| | - Jenny C Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, C8:3, Uppsala SE-751 23, Sweden
- Biologisk Myggkontroll, Nedre Dalälven Utvecklings AB, Vårdsätravägen 5, Uppsala SE 75646, Sweden
| |
Collapse
|
62
|
Comprehensive Evaluation of RNA and DNA Viromic Methods Based on Species Richness and Abundance Analyses Using Marmot Rectal Samples. mSystems 2022; 7:e0043022. [PMID: 35862817 PMCID: PMC9426427 DOI: 10.1128/msystems.00430-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral metagenomics is the most powerful tool to profile viromic composition for a given sample. Different viromic methods, including amplification-free ones, have been developed, but choosing them for different purposes requires comprehensive benchmarks. Here, we assessed the performance of four routinely used methods, i.e., multiple displacement amplification (MDA), direct metagenomic sequencing (MTG), sequence-independent single-primer amplification (SIA), and metatranscriptomic sequencing (MTT), using marmot rectal samples as the templates spiked with five known viruses of different genome types. The obtained clean data were differently contaminated by host and bacterial genomes, resulting in MDA having the most, with ~72.1%, but MTT had only ~7.5% data, useful for follow-up viromic analysis. MDA showed a broader spectrum with higher efficiency to profile the DNA virome, and MTT captured almost all RNA viruses with extraordinary sensitivity; hence, they are advisable in richness-based viromic studies. MTG was weak in capturing single-stranded DNA viruses, and SIA could detect both RNA and DNA viruses but with high randomness. Due to biases to certain types of viruses, the four methods caused different alterations to species abundance compared to the initial virus composition. SIA and MDA introduced greater stochastic errors to relative abundances of species, genus, and family taxa, whereas the two amplification-free methods were more tolerant toward such errors and thus are recommendable in abundance-based analyses. In addition, genus taxon is a compromising analytic level that ensures technically supported and biologically and/or ecologically meaningful viromic conclusions. IMPORTANCE Viral metagenomics can be roughly divided into species richness-based studies and species abundance-based analyses. Viromic methods with different principles have been developed, but rational selection of these techniques according to different purposes requires comprehensive understanding of their properties. By assessing the four most widely used methods using template samples, we found that multiple displacement amplification (MDA) and metatranscriptomic sequencing (MTT) are advisable for species richness-based viromic studies, as they show excellent efficiency to detect DNA and RNA viruses. Meanwhile, metagenomic sequencing (MTG) and MTT are more compatible with stochastic errors of methods introduced into relative abundance of viromic taxa and hence are rational choices in species abundance-based analyses. This study also highlights that MTG needs to tackle host genome contamination and ameliorate the capacity to detect single-stranded DNA viruses in the future, and the MTT method requires an improvement in bacterial rRNA depletion prior to library preparation.
Collapse
|
63
|
Sun Y, Xing J, Xu ZY, Gao H, Xu SJ, Liu J, Zhu DH, Guo YF, Yang BS, Chen XN, Zheng ZZ, Wang H, Lang G, C Holmes E, Zhang GH. Re-emergence of Severe Acute Diarrhea Syndrome Coronavirus (SADS-CoV) in Guangxi, China, 2021. J Infect 2022; 85:e130-e133. [PMID: 36002051 PMCID: PMC9393104 DOI: 10.1016/j.jinf.2022.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Affiliation(s)
- Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Zhi-Ying Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Han Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Si-Jia Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Di-Hua Zhu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yi-Fan Guo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Bin-Shuo Yang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Xiong-Nan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Ze-Zhong Zheng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Gong Lang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia.
| | - Gui-Hong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| |
Collapse
|
64
|
Nieuwenhuijse DF, van der Linden A, Kohl RHG, Sikkema RS, Koopmans MPG, Oude Munnink BB. Towards reliable whole genome sequencing for outbreak preparedness and response. BMC Genomics 2022; 23:569. [PMID: 35945497 PMCID: PMC9361258 DOI: 10.1186/s12864-022-08749-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To understand the dynamics of infectious diseases, genomic epidemiology is increasingly advocated, with a need for rapid generation of genetic sequences during outbreaks for public health decision making. Here, we explore the use of metagenomic sequencing compared to specific amplicon- and capture-based sequencing, both on the Nanopore and the Illumina platform for generation of whole genomes of Usutu virus, Zika virus, West Nile virus, and Yellow Fever virus. RESULTS We show that amplicon-based Nanopore sequencing can be used to rapidly obtain whole genome sequences in samples with a viral load up to Ct 33 and capture-based Illumina is the most sensitive method for initial virus determination. CONCLUSIONS The choice of sequencing approach and platform is important for laboratories wishing to start whole genome sequencing. Depending on the purpose of genome sequencing the best choice can differ. The insights presented in this work and the shown differences in data characteristics can guide labs to make a well informed choice.
Collapse
Affiliation(s)
| | | | - Robert H G Kohl
- Departement of Virology of the Vaccination Programme, RIVM, Bilthoven, the Netherlands
| | - Reina S Sikkema
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Bas B Oude Munnink
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
65
|
Qian C, Ma J, Liang J, Zhang L, Liang X. Comprehensive deciphering prophages in genus Acetobacter on the ecology, genomic features, toxin–antitoxin system, and linkage with CRISPR-Cas system. Front Microbiol 2022; 13:951030. [PMID: 35983328 PMCID: PMC9379143 DOI: 10.3389/fmicb.2022.951030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acetobacter is the predominant microbe in vinegar production, particularly in those natural fermentations that are achieved by complex microbial communities. Co-evolution of prophages with Acetobacter, including integration, release, and dissemination, heavily affects the genome stability and production performance of industrial strains. However, little has been discussed yet about prophages in Acetobacter. Here, prophage prediction analysis using 148 available genomes from 34 Acetobacter species was carried out. In addition, the type II toxin–antitoxin systems (TAs) and CRISPR-Cas systems encoded by prophages or the chromosome were analyzed. Totally, 12,000 prophage fragments were found, of which 350 putatively active prophages were identified in 86.5% of the selected genomes. Most of the active prophages (83.4%) belonged to the order Caudovirales dominated by the families Siphoviridae and Myroviridae prophages (71.4%). Notably, Acetobacter strains survived in complex environments that frequently carried multiple prophages compared with that in restricted habits. Acetobacter prophages showed high genome diversity and horizontal gene transfer across different bacterial species by genomic feature characterization, average nucleotide identity (ANI), and gene structure visualization analyses. About 31.14% of prophages carry type II TAS, suggesting its important role in addiction, bacterial defense, and growth-associated bioprocesses to prophages and hosts. Intriguingly, the genes coding for Cse1, Cse2, Cse3, Cse4, and Cas5e involved in type I-E and Csy4 involved in type I-F CRISPR arrays were firstly found in two prophages. Type II-C CRISPR-Cas system existed only in Acetobacter aceti, while the other Acetobacter species harbored the intact or eroded type I CRISPR-Cas systems. Totally, the results of this study provide fundamental clues for future studies on the role of prophages in the cell physiology and environmental behavior of Acetobacter.
Collapse
|
66
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|
67
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a profound impact on human health, economic well-being, and societal function. It is essential that we use this generational experience to better understand the processes that underpin the emergence of COVID-19 and other zoonotic diseases. Herein, I review the mechanisms that determine why and how viruses emerge in new hosts, as well as the barriers to this process. I show that traditional studies of virus emergence have an inherent anthropocentric bias, with disease in humans considered the inevitable outcome of virus emergence, when in reality viruses are integral components of a global ecosystem characterized by continual host jumping with humans also transmitting their viruses to other animals. I illustrate these points using coronaviruses, including severe acute respiratory syndrome coronavirus 2, as a case study. I also outline the potential steps that can be followed to help mitigate and prevent future pandemics, with combating climate change a central component. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
68
|
Multitude of viruses in game animals. Nat Rev Microbiol 2022; 20:253. [PMID: 35236931 PMCID: PMC8889867 DOI: 10.1038/s41579-022-00716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A large survey in Chinese game animals identifies a multitude of potentially pathogenic viruses and evidence for spillover events.
Collapse
|