51
|
Wang X, Lin J, Wang Z, Li Z, Wang M. Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer. Discov Oncol 2023; 14:93. [PMID: 37300757 DOI: 10.1007/s12672-023-00701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Junyi Lin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhe Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
52
|
Cui J, Hong P, Li Z, Lin J, Wu X, Nie K, Zhang X, Wan J. Chloroquine inhibits NLRP3 inflammasomes activation and alleviates renal fibrosis in mouse model of hyperuricemic nephropathy with aggravation by a high-fat-diet. Int Immunopharmacol 2023; 120:110353. [PMID: 37276828 DOI: 10.1016/j.intimp.2023.110353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
Numerous epidemiological studies have demonstrated that hyperuricemia (HUA) is a risk factor for renal diseases and renal fibrosis. Dietary patterns can influence serum urate levels and hyperuricemic nephropathy (HN). NLRP3 inflammasomes play a crucial role in various inflammatory responses and contribute to HN progression. Chloroquine (CQ) is an anti-inflammatory and disease-modifying anti-rheumatic drug (DMARD) utilized in treating autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. In this study, we examined the effects and underlying mechanisms of CQ in a high-fat-diet (HFD) exacerbated mouse model of HN. C57BL/6 mice were randomized into either a control group or an HN group (induced by adenine/potassium oxonate treatment), followed by a normal diet or HFD, with or without CQ treatment. Our findings revealed that the HN group exhibited elevated serum levels of blood urea nitrogen (BUN) and creatinine compared to the control group. Additionally, the HN + HFD group displayed increased serum levels of uric acid, BUN, and creatinine relative to the control + HFD group. Moreover, the HFD exacerbated renal uric acid crystal deposition and fibrosis in HN mice compared to a normal diet. CQ ameliorated renal dysfunction, as evidenced by reduced serum creatinine levels, renal fibrosis, and renal tubular injury scores, and significantly decreased NLRP3, ASC, caspase-1, and IL-1β levels in HN mice. These findings suggest that CQ inhibits the activation of NLRP3 inflammasomes and may serve as a potential therapeutic strategy for HN treatment.
Collapse
Affiliation(s)
- Jiong Cui
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Pianpian Hong
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Zhenzhou Li
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jiaqun Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Kun Nie
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiaohong Zhang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
53
|
Kounatidis D, Vallianou N, Evangelopoulos A, Vlahodimitris I, Grivakou E, Kotsi E, Dimitriou K, Skourtis A, Mourouzis I. SGLT-2 Inhibitors and the Inflammasome: What's Next in the 21st Century? Nutrients 2023; 15:nu15102294. [PMID: 37242177 DOI: 10.3390/nu15102294] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome in the kidney and the heart is increasingly being suggested to play a key role in mediating inflammation. In the kidney, NLRP3 activation was associated with the progression of diabetic kidney disease. In the heart, activation of the NLRP3 inflammasome was related to the enhanced release of interleukin-1β (IL-1β) and the subsequent induction of atherosclerosis and heart failure. Apart from their glucose-lowering effects, SGLT-2 inhibitors were documented to attenuate activation of the NLRP3, thus resulting in the constellation of an anti-inflammatory milieu. In this review, we focus on the interplay between SGLT-2 inhibitors and the inflammasome in the kidney, the heart and the neurons in the context of diabetes mellitus and its complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Iordanis Mourouzis
- Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
54
|
Firoz A, Malik A, Ali HM, Akhter Y, Manavalan B, Kim CB. PRR-HyPred: A two-layer hybrid framework to predict pattern recognition receptors and their families by employing sequence encoded optimal features. Int J Biol Macromol 2023; 234:123622. [PMID: 36773859 DOI: 10.1016/j.ijbiomac.2023.123622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Pattern recognition receptors (PRRs) recognize distinct features on the surface of pathogens or damaged cells and play key roles in the innate immune system. PRRs are divided into various families, including Toll-like receptors, retinoic acid-inducible gene-I-like receptors, nucleotide oligomerization domain-like receptors, and C-type lectin receptors. As these are implicated in host health and several diseases, their accurate identification is indispensable for their functional characterization and targeted therapeutic approaches. Here, we construct PRR-HyPred, a novel two-layer hybrid framework in which the first layer predicts whether a given sequence is PRR or non-PRR using a support vector machine, and in the second, the predicted PRR sequence is assigned to a specific family using a random forest-based classifier. Based on a 10-fold cross-validation test, PRR-HyPred achieved 83.4 % accuracy in the first layer and 95 % in the second, with Matthew's correlation coefficient values of 0.639 and 0.816, respectively. This is the first study that can simultaneously predict and classify PRRs into specific families. PRR-HyPred is available as a web portal at https://procarb.org/PRRHyPred/. We hope that it could be a valuable tool for the large-scale prediction and classification of PRRs and subsequently facilitate future studies.
Collapse
Affiliation(s)
- Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul, 03016, Republic of Korea.
| | - Hani Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea.
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
55
|
Li J, Li T, Li Z, Song Z, Gong X. Potential therapeutic effects of Chinese meteria medica in mitigating drug-induced acute kidney injury. Front Pharmacol 2023; 14:1153297. [PMID: 37077810 PMCID: PMC10106589 DOI: 10.3389/fphar.2023.1153297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Drug-induced acute kidney injury (DI-AKI) is one of the leading causes of kidney injury, is associated with high mortality and morbidity, and limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressants, non-steroidal anti-inflammatory drugs, and contrast media. In recent years, numerous studies have shown that many Chinese meteria medica, metabolites derived from botanical drugs, and Chinese medicinal formulas confer protective effects against DI-AKI by targeting a variety of cellular or molecular mechanisms, such as oxidative stress, inflammatory, cell necrosis, apoptosis, and autophagy. This review summarizes the research status of common DI-AKI with Chinese meteria medica interventions, including cisplatin, gentamicin, contrast agents, methotrexate, and acetaminophen. At the same time, this review introduces the metabolites with application prospects represented by ginseng saponins, tetramethylpyrazine, panax notoginseng saponins, and curcumin. Overall, this review provides a reference for the development of promising nephroprotectants.
Collapse
|
56
|
Wang Y, Song D, Tang L. Mitophagy, Inflammasomes and Their Interaction in Kidney Diseases: A Comprehensive Review of Experimental Studies. J Inflamm Res 2023; 16:1457-1469. [PMID: 37042016 PMCID: PMC10083013 DOI: 10.2147/jir.s402290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Mitophagy is an important mechanism for mitochondrial quality control by regulating autophagosome-specific phagocytosis, degradation and clearance of damaged mitochondria, and involved in cell damage and diseases. Inflammasomes are important inflammation-related factors newly discovered in recent years, which are involved in cell innate immunity and inflammatory response, and play an important role in kidney diseases. Based on the current studies, we reviewed the progress of mitophagy, inflammasomes and their interaction in kidney diseases.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Dongxu Song
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Lin Tang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
- Correspondence: Lin Tang, Department of Nephrology, Zhengzhou University First Affiliated Hospital, 1 Jianshe Road, Zhengzhou, Henan, 450052, People’s Republic of China, Email
| |
Collapse
|
57
|
Liu P, Zhang Z, Cai Y, Yang Y, Yuan J, Chen Q. Inhibition of the pyroptosis-associated inflammasome pathway: The important potential mechanism of ginsenosides in ameliorating diabetes and its complications. Eur J Med Chem 2023; 253:115336. [PMID: 37031528 DOI: 10.1016/j.ejmech.2023.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Diabetes mellitus (DM) and its complications have become an important global public health issue, affecting human health and negatively impacting life and lifespan. Pyroptosis is a recently discovered form of pro-inflammatory programmed cell death (PCD). To date, pyroptosis-associated inflammasome pathways have been identified primarily in the canonical and non-canonical inflammasome pathway, apoptotic caspase-mediated pathway, granzyme-mediated pathway, and streptococcal pyrogenic exotoxin B (SpeB)-mediated pathway. The activation of diabetes-mediated pyroptosis-associated factors play an important role in the pathophysiology of DM and its complications. Studies have shown that ginsenosides exert significant protective effects on DM and its complications. Through inhibiting the activation of pyroptosis-associated inflammasome pathways, and then the DM and its complications are improved. This review summarizes the subtypes of ginsenosides and their chemical characteristics, pharmacokinetics and side effects, the main pyroptosis-associated inflammasome pathways that have been discovered to date, and the potential mechanism of different subtypes of ginsenosides in the treatment of DM and its complications (such as diabetic cardiomyopathy, diabetic nephropathy, diabetic liver injury, diabetic retinopathy, and diabetic ischemic stroke) via anti-pyroptosis-associated inflammasome pathways. These findings may provide ideas for further research to explore ginsenoside mechanism in improving DM and its complications. However, many pyroptosis-associated inflammasome pathways and targets involved in the occurrence and development of DM and its complications are still unknown. In the future, further studies using in vitro cell models, in vivo animal models, and human disease models can be used to further elucidate the mechanism of ginsenosides in the treatment of DM and its complications.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China
| | - Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yunjiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
58
|
(Stămat) LRB, Dinescu S, Costache M. Regulation of Inflammasome by microRNAs in Triple-Negative Breast Cancer: New Opportunities for Therapy. Int J Mol Sci 2023; 24:ijms24043245. [PMID: 36834660 PMCID: PMC9963301 DOI: 10.3390/ijms24043245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
59
|
Afsar B, Afsar RE. Sodium-glucose cotransporter inhibitors and kidney fibrosis: review of the current evidence and related mechanisms. Pharmacol Rep 2023; 75:44-68. [PMID: 36534320 DOI: 10.1007/s43440-022-00442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter inhibitors (SGLT2i) are a new class of anti-diabetic drugs that have beneficial cardiovascular and renal effects. These drugs decrease proximal tubular glucose reabsorption and decrease blood glucose levels as a main anti-diabetic action. Furthermore, SGLT2i decreases glomerular hyperfiltration by a tubuloglomerular feedback mechanism. However, the renal benefits of these agents are independent of glucose-lowering and hemodynamic factors, and SGLT2i also impacts the kidney structure including kidney fibrosis. Renal fibrosis is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), and amelioration of renal fibrosis is of utmost importance to reduce the progression of CKD. Recent studies have shown that SGLT2i impact many cellular processes including inflammation, hypoxia, oxidative stress, metabolic functions, and renin-angiotensin system (RAS) which all are related with kidney fibrosis. Indeed, most but not all studies showed that renal fibrosis was ameliorated by SGLT2i through the reduction of inflammation, hypoxia, oxidative stress, and RAS activation. In addition, less known effects on SGLT2i on klotho expression, capillary rarefaction, signal transducer and activator of transcription signaling and peptidylprolyl cis/trans isomerase (Pin1) levels may partly explain the anti-fibrotic effects of SGLT2i in kidneys. It is important to remember that some studies have not shown any beneficial effects of SGLT2i on kidney fibrosis. Given this background, in the current review, we have summarized the studies and pathophysiologic aspects of SGL2 inhibition on renal fibrosis in various CKD models and tried to explain the potential reasons for contrasting findings.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
60
|
Hyperoside attenuates Cd-induced kidney injury via inhibiting NLRP3 inflammasome activation and ROS/MAPK/NF-κB signaling pathway in vivo and in vitro. Food Chem Toxicol 2023; 172:113601. [PMID: 36610472 DOI: 10.1016/j.fct.2023.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Cadmium accumulates in the kidney and causes inflammation. The NLRP3 inflammasome has been linked to the pathogenesis of inflammation. Hyperoside (HYP) possesses potent nephroprotective properties against of kidney injury. This study aimed to research the effects and related mechanism of HYP on Cd-induced kidney damage. Wide-type and NLRP3-/- mice were used to determine the role of NLRP3 inflammasome in Cd-induced renal dysfunction. Female C57BL/6 were treated with Cd (50 m,g/L) and HYP (25, 50 mg/kg) for 12 weeks. In vitro experiments, the human renal proximal-tubule epithelial cells (RPTEC/TERT1) were pretreated with HYP (50-200 μM) before exposure to Cd. NLRP3 deficiency attenuated Cd-induced NLRP3 activation, inflammation and kidney injury in mice. HYP treatment significantly alleviated Cd-induced kidney injury by decreasing indexes of kidney function, reducing pro-inflammatory cytokines release, decreasing ROS production and suppressing NLRP3 inflammasome activation. Moreover, treatment with siRNA targeting NLRP3 blocked the anti-inflammatory protective effect of HYP in Cd-treated cells. Additionally, HYP markedly inhibited Cd-induced MAPK/NF-κB pathway stimulation in vitro and in vivo. The findings indicated HYP conferred protection against Cd-induced kidney inflammation via suppression of NLRP3 inflammasome mediated by ROS/MAPK/NF-κB signaling. Our results thus support the notion of developing HYP as promising therapeutic candidate for Cd-induced kidney injury.
Collapse
|
61
|
Liang RN, Yan DQ, Zhang XP, Chen X, Zhang WH, Jia HL. Kidney Mesenchymal stem cells alleviate cisplatin-induced kidney injury and apoptosis in rats. Tissue Cell 2023; 80:101998. [PMID: 36529038 DOI: 10.1016/j.tice.2022.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This experiment was designed to demonstrate Mesenchymal stem cells (MSCs) derived from kidney can alleviate cisplatin-induced kidney injury and renal cell apoptosis through paracrine pathway. METHODS Firstly, MSCs were isolated from kidney of young rats, and their surface-specific markers were identified by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunofluorescence staining. Self-renewal ability of Kidney Mesenchymal Stem Cells (KMSCs) was observed by cell counting and 5-Bromo-2'-deoxyuridine (BrdU) fluorescence staining. KMSCs at logarithmic growth stage were traced and injected into rat through tail vein. RESULTS The results showed that KMSCs homed in the kidney tissues, decreased the secretion of inflammatory factors (CRP, TNFα, IL-1β, IL-6), and alleviated renal function. Hematoxylin and Eosin (H&E), Masson and Periodic Acid-silver Methenamine (PASM) staining showed that KMSCs could alleviate pathological damage in rats. Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) assay showed that KMSCs could reduce the apoptosis of rat kidney cells induced by cisplatin. Finally, Immunohistochemistry (IHC) results showed that cisplatin could induce higher expression of the pro-apoptotic protein Bax and lower expression of anti-apoptotic Bcl-2 in kidney tissues. However, KMSCs could reverse the pro-apoptotic effect of cisplatin on kidney cells and improve the survival rate of rats. CONCLUSIONS In conclusion, KMSCs were successfully isolated from kidney tissues, and KMSCs have therapeutic effects on rat kidney injury induced by cisplatin.
Collapse
Affiliation(s)
- Rui-Ning Liang
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China.
| | - De-Qi Yan
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China
| | - Xing-Ping Zhang
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China.
| | - Xu Chen
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China
| | - Wen-Hui Zhang
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China
| | - Hong-Lin Jia
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang 830099, PR China; Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
62
|
Macrophages and Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24021367. [PMID: 36674887 PMCID: PMC9863885 DOI: 10.3390/ijms24021367] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.
Collapse
|
63
|
Kattan D, Barsa C, Mekhijian S, Shakkour Z, Jammoul M, Doumit M, Zabala MCP, Darwiche N, Eid AH, Mechref Y, Wang KK, de Rivero Vaccari JP, Munoz Pareja JC, Kobeissy F. Inflammasomes as biomarkers and therapeutic targets in traumatic brain injury and related-neurodegenerative diseases: A comprehensive overview. Neurosci Biobehav Rev 2023; 144:104969. [PMID: 36423707 PMCID: PMC9805531 DOI: 10.1016/j.neubiorev.2022.104969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Given the ambiguity surrounding traumatic brain injury (TBI) pathophysiology and the lack of any Food and Drug Administration (FDA)-approved neurotherapeutic drugs, there is an increasing need to better understand the mechanisms of TBI. Recently, the roles of inflammasomes have been highlighted as both potential therapeutic targets and diagnostic markers in different neurodegenerative disorders. Indeed, inflammasome activation plays a pivotal function in the central nervous system (CNS) response to many neurological conditions, as well as to several neurodegenerative disorders, specifically, TBI. This comprehensive review summarizes and critically discusses the mechanisms that govern the activation and assembly of inflammasome complexes and the major methods used to study inflammasome activation in TBI and its implication for other neurodegenerative disorders. Also, we will review how inflammasome activation is critical in CNS homeostasis and pathogenesis, and how it can impact chronic TBI sequalae and increase the risk of developing neurodegenerative diseases. Additionally, we discuss the recent updates on inflammasome-related biomarkers and the potential to utilize inflammasomes as putative therapeutic targets that hold the potential to better diagnose and treat subjects with TBI.
Collapse
Affiliation(s)
- Dania Kattan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Sarin Mekhijian
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Program for Interdisciplinary Neuroscience, Department of Child Health, School of Medicine, University of Missouri, USA
| | - Maya Jammoul
- Department of Anatomy, Cell Biology, and Physiology, American University of Beirut, Beirut, Lebanon
| | - Mark Doumit
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Maria Camila Pareja Zabala
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K Wang
- Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jennifer C Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA.
| |
Collapse
|
64
|
Chi YN, Hai DM, Ma L, Cui YH, Hu HT, Liu N, Juan-Du, Lan XB, Yu JQ, Yang JM. Protective effects of leonurine hydrochloride on pyroptosis in premature ovarian insufficiency via regulating NLRP3/GSDMD pathway. Int Immunopharmacol 2023; 114:109520. [PMID: 36513022 DOI: 10.1016/j.intimp.2022.109520] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Premature ovarian insufficiency is common in clinically infertile patients. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)/Gasdermin D (GSDMD) signaling pathway plays a key role in premature ovarian insufficiency. Leonurine (Leo) is one of the important active ingredients extracted from Leonurus japonicus Houttuyn, which can inhibit NLRP3 activation. However, whether leonurine hydrochloride plays a protective role in premature ovarian insufficiency through actions on NLRP3/GSDMD signaling is not yet known. METHODS After cyclophosphamide-induced premature ovarian insufficiency was established in female mice, Leo was injected intraperitoneally over four weeks to evaluate the ovarian function and anti-pyroptosis effects using the metrics of fertility, serum hormone level, ovary weight, follicle number, expression of NLRP3/GSDMD pathway-related proteins, and serum IL-18 and IL-1β levels. RESULTS Intraperitoneal administration of leonurine hydrochloride was found to significantly protect fertility and maintain both serum hormone levels and follicle number in mice with premature ovarian insufficiency. Mice treated with leonurine hydrochloride consistently resisted cyclophosphamide-induced ovarian damage by inhibiting the activation of NLRP3 inflammasome, Caspase-1 and GSDMD in both ovarian tissue and granulosa cells, which led to lower levels of IL-18 and IL-1β in the serum (p < 0.05, p < 0.01, p < 0.001). CONCLUSION Intraperitoneal administration of leonurine hydrochloride prevents cyclophosphamide-induced premature ovarian insufficiency in mice by inhibiting NLRP3/GSDMD-mediated pyroptosis.
Collapse
Affiliation(s)
- Yan-Nan Chi
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Dong-Mei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yan-Hong Cui
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Hai-Tao Hu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Key Laboratory of Hui Ethnic Medicine Modernization, the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Juan-Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
65
|
Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 2022:10.1007/s11010-022-04652-5. [PMID: 36586092 DOI: 10.1007/s11010-022-04652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.
Collapse
|
66
|
Liu T, Zhuang XX, Qin XJ, Wei LB, Gao JR. Identifying effective diagnostic biomarkers and immune infiltration features in chronic kidney disease by bioinformatics and validation. Front Pharmacol 2022; 13:1069810. [PMID: 36642989 PMCID: PMC9838551 DOI: 10.3389/fphar.2022.1069810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Chronic kidney disease (CKD), characterized by sustained inflammation and immune dysfunction, is highly prevalent and can eventually progress to end-stage kidney disease. However, there is still a lack of effective and reliable diagnostic markers and therapeutic targets for CKD. Methods: First, we merged data from GEO microarrays (GSE104948 and GSE116626) to identify differentially expressed genes (DEGs) in CKD and healthy patient samples. Then, we conducted GO, KEGG, HPO, and WGCNA analyses to explore potential functions of DEGs and select clinically significant modules. Moreover, STRING was used to analyse protein-protein interactions. CytoHubba and MCODE algorithms in the cytoscape plug-in were performed to screen hub genes in the network. We then determined the diagnostic significance of the obtained hub genes by ROC and two validation datasets. Meanwhile, the expression level of the biomarkers was verified by IHC. Furthermore, we examined immunological cells' relationships with hub genes. Finally, GSEA was conducted to determine the biological functions that biomarkers are significantly enriched. STITCH and AutoDock Vina were used to predict and validate drug-gene interactions. Results: A total of 657 DEGs were screened and functional analysis emphasizes their important role in inflammatory responses and immunomodulation in CKD. Through WGCNA, the interaction network, ROC curves, and validation set, four hub genes (IL10RA, CD45, CTSS, and C1QA) were identified. Furthermore, IHC of CKD patients confirmed the results above. Immune infiltration analysis indicated that CKD had a significant increase in monocytes, M0 macrophages, and M1 macrophages but a decrease in regulatory T cells, activated dendritic cells, and so on. Moreover, four hub genes were statistically correlated with them. Further analysis exhibited that IL10RA, which obtained the highest expression level in hub genes, was involved in abnormalities in various immune cells and regulated a large number of immune system responses and inflammation-related pathways. In addition, the drug-gene interaction network contained four potential therapeutic drugs targeting IL10RA, and molecular docking might make this relationship viable. Conclusion: IL10RA and its related hub molecules might play a key role in the development of CKD and could be potential biomarkers in CKD.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xing Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Xiu Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Liang Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China,*Correspondence: Jia Rong Gao,
| |
Collapse
|
67
|
Jiang Y, Yue R, Liu G, Liu J, Peng B, Yang M, Zhao L, Li Z. Garlic ( Allium sativum L.) in diabetes and its complications: Recent advances in mechanisms of action. Crit Rev Food Sci Nutr 2022; 64:5290-5340. [PMID: 36503329 DOI: 10.1080/10408398.2022.2153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia and impaired islet secretion that places a heavy burden on the global health care system due to its high incidence rate, long disease course and many complications. Fortunately, garlic (Allium sativum L.), a well-known medicinal plant and functional food without the toxicity and side effects of conventional drugs, has shown positive effects in the treatment of diabetes and its complications. With interdisciplinary development and in-depth exploration, we offer a clear and comprehensive summary of the research from the past ten years, focusing on the mechanisms and development processes of garlic in the treatment of diabetes and its complications, aiming to provide a new perspective for the treatment of diabetes and promote the efficient development of this field.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Liu
- People's Hospital of NanJiang, Bazhong, China
| | - Bo Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianxue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
68
|
Liu YL, Ding KN, Shen XL, Liu HX, Zhang YA, Liu YQ, He YM, Tang LP. Chronic heat stress promotes liver inflammation in broilers via enhancing NF-κB and NLRP3 signaling pathway. BMC Vet Res 2022; 18:289. [PMID: 35871002 PMCID: PMC9308265 DOI: 10.1186/s12917-022-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background This study investigated the effects of chronic heat stress on liver inflammatory injury and its potential mechanisms in broilers. Chickens were randomly assigned to the 1-week control group (Control 1), 1-week heat stress group (HS1), 2-week control group (Control 2), and a 2-week heat stress group (HS2) with 15 replicates per group. Broilers in the heat stress groups were exposed to heat stress (35 ± 2 °C) for 8 h/d for 7 or 14 consecutive days, and the rest of 26 hours/day were kept at 23 ± 2 °C like control group broilers. Growth performance and liver inflammatory injury were examined for the analysis of liver injury. Results The results showed that heat stress for 2 weeks decreased the growth performance, reduced the liver weight (P < 0.05) and liver index (P < 0.05), induced obvious bleeding and necrosis points. Liver histological changes found that the heat stress induced the liver infiltration of neutrophils and lymphocytes in broilers. Serum levels of AST and SOD were enhanced in HS1 (P < 0.01, P < 0.05) and HS2 (P < 0.01, P < 0.05) group, compared with control 1 and 2 group broilers. The MDA content in HS1 group was higher than that of in control 1 group broilers (P < 0.05). Both the gene and protein expression levels of HSP70, TLR4 and NF-κB in the liver were significantly enhanced by heat stress. Furthermore, heat stress obviously enhanced the expression of IL-6, TNF-α, NF-κB P65, IκB and their phosphorylated proteins in the livers of broilers. In addition, heat stress promoted the activation of NLRP3 with increased NLRP3, caspase-1 and IL-1β levels. Conclusions These results suggested that heat stress can cause liver inflammation via activation of the TLR4-NF-κB and NLRP3 signaling pathways in broilers. With the extension of heat stress time, the effect of heat stress on the increase of NF-κB and NLRP3 signaling pathways tended to slow down. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03388-0.
Collapse
|
69
|
Jena AB, Dash UC, Duttaroy AK. An in silico investigation on the interactions of curcumin and epigallocatechin-3-gallate with NLRP3 Inflammasome complex. Biomed Pharmacother 2022; 156:113890. [DOI: 10.1016/j.biopha.2022.113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022] Open
|
70
|
Song C, Zhang Y, Pei Q, Zheng L, Wang M, Shi Y, Wu S, Ni W, Fu X, Peng Y, Zhang W, Yao M. HSP70 alleviates sepsis-induced cardiomyopathy by attenuating mitochondrial dysfunction-initiated NLRP3 inflammasome-mediated pyroptosis in cardiomyocytes. BURNS & TRAUMA 2022; 10:tkac043. [PMID: 36439706 PMCID: PMC9684341 DOI: 10.1093/burnst/tkac043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is an identified serious complication of sepsis that is associated with adverse outcomes and high mortality. Heat shock proteins (HSPs) have been implicated in suppressing septic inflammation. The aim of this study was to investigate whether HSP70 can attenuate cellular mitochondrial dysfunction, exuberated inflammation and inflammasome-mediated pyroptosis for SIC intervention. METHODS Mice with cecal ligation plus perforation (CLP) and lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes were used as models of SIC. The mouse survival rate, gross profile, cardiac function, pathological changes and mitochondrial function were observed by photography, echocardiography, hematoxylin-eosin staining and transmission electron microscopy. In addition, cell proliferation and the levels of cardiac troponin I (cTnI), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were determined by Cell Counting Kit-8, crystal violet staining and enzyme-linked immunosorbent assay. Moreover, mitochondrial membrane potential was assessed by immunofluorescence staining, and dynamin-related protein 1 and pyroptosis-related molecules [nucleotide-binding domain, leucine-rich-repeat containing family pyrin domain-containing 3 (NLRP3), caspase-1, gasdermin-D (GSDMD), gasdermin-D N-terminal (GSDMD-N)] were measured by western blotting, immunoprecipitation and immunoblotting. Finally, hsp70.1 knockout mice with CLP were used to verify the effects of HSP70 on SIC and the underlying mechanism. RESULTS Models of SIC were successfully established, as reduced consciousness and activity with liparotrichia in CLP mice were observed, and the survival rate and cardiac ejection fraction (EF) were decreased; conversely, the levels of cTnI, TNF-α and IL-1β and myocardial tissue damage were increased in CLP mice. In addition, LPS stimulation resulted in a reduction in cell viability, mitochondrial destabilization and activation of NLRP3-mediated pyroptosis molecules in vitro. HSP70 treatment improved myocardial tissue damage, survival rate and cardiac dysfunction caused by CLP. Additionally, HSP70 intervention reversed LPS-induced mitochondrial destabilization, inhibited activation of the NLRP3 inflammasome, caspase-1, GSDMD and GSDMD-N, and decreased pyroptosis. Finally, knockout of hsp70.1 mice with CLP aggravated cardiac dysfunction and upregulated NLRP3 inflammasome activity, and exogenous HSP70 significantly rescued these changes. It was further confirmed that HSP70 plays a protective role in SIC by attenuating mitochondrial dysfunction and inactivating pyroptotic molecules. CONCLUSIONS Our study demonstrated that mitochondrial destabilization and NLRP3 inflammasome activation-mediated pyroptosis are attributed to SIC. Interestingly, HSP70 ameliorates sepsis-induced myocardial dysfunction by improving mitochondrial dysfunction and inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis, and such a result may provide approaches for novel therapies for SIC.
Collapse
Affiliation(s)
| | | | - Qing Pei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Li Zheng
- Department of Ultrasound, Baoshan Integrated Traditional Chinese and Western Medicine Hospital, 28 Tuanjie Road, Shanghai, 201999, China
| | - Meiyu Wang
- Department of Ultrasound, Baoshan Integrated Traditional Chinese and Western Medicine Hospital, 28 Tuanjie Road, Shanghai, 201999, China
| | - Youzhen Shi
- Department of Ultrasound, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Shan Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wei Ni
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu road, Wuhan, 430000, China
| | - Xiujun Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wen Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | | |
Collapse
|
71
|
Chi M, Tian Z, Ma K, Li Y, Wang L, Nasser MI, Liu C. The diseased kidney: aging and senescent immunology. IMMUNITY & AGEING 2022; 19:58. [PMCID: PMC9666969 DOI: 10.1186/s12979-022-00313-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
Abstract
AbstractImmunosenescence is the deterioration of the innate and adaptive immune systems associated with aging and is primarily characterized by a reduction in T cell production and accumulation of atypical subsets. Age-related immunological dysfunction leads to impaired immune protection and persistent low-grade chronic inflammation, resulting in a decreased vaccination response and increased vulnerability to infection, cancer, cardiovascular disease, and autoimmune disease in the elderly. As the elderly constitute a growing proportion of the population with renal disease, immunosenescence is a normal aging process that is prevalent among older people. In addition, immunosenescence seems to be more pronounced in patients with kidney diseases than in healthy controls, as shown by severe chronic inflammation, accumulation of immune cells with the senescent phenotype (CD28− T cells, CD14+CD16+ monocytes), and proinflammatory cytokine production. Immunosenescence inhibits immunological clearance and renal tissue regeneration, thereby increasing the risk of permanent renal damage, infection, and cardiovascular events in patients with kidney disease, lowering the prognosis, and even influencing the efficacy of renal replacement treatment. Biological drugs (senomorphics and senolytics) target the aging immune system and exert renoprotective effects. This review aims to emphasize the features of immunosenescence and its influence on kidney diseases and immunotherapy, highlighting the future directions of kidney disease treatment using senescence-focused techniques.
Collapse
|
72
|
Oda K, Miyamoto S, Kodera R, Wada J, Shikata K. Suramin prevents the development of diabetic kidney disease by inhibiting NLRP3 inflammasome activation in KK-Ay mice. J Diabetes Investig 2022; 14:205-220. [PMID: 36308062 PMCID: PMC9889613 DOI: 10.1111/jdi.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 02/04/2023] Open
Abstract
AIMS/INTRODUCTION Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes produce IL-18 upon being activated by various stimuli via the P2 receptors. Previously, we showed that serum and urine IL-18 levels are positively associated with albuminuria in patients with type 2 diabetes, indicating the involvement of inflammasome activation in the pathogenesis of diabetic kidney disease (DKD). In the present study, we investigated whether the administration of suramin, a nonselective antagonist of the P2 receptors, protects diabetic KK.Cg-Ay /TaJcl (KK-Ay) mice against DKD progression. MATERIALS AND METHODS Suramin or saline was administered i.p. to KK-Ay and C57BL/6J mice once every 2 weeks for a period of 8 weeks. Mouse mesangial cells (MMCs) were stimulated with ATP in the presence or absence of suramin. RESULTS Suramin treatment significantly suppressed the increase in the urinary albumin-to-creatinine ratio, glomerular hypertrophy, mesangial matrix expansion, and glomerular fibrosis in KK-Ay mice. Suramin also suppressed the upregulation of NLRP3 inflammasome-related genes and proteins in the renal cortex of KK-Ay mice. P2X4 and P2X7 receptors were significantly upregulated in the isolated glomeruli of KK-Ay mice and mainly distributed in the glomerular mesangial cells of KK-Ay mice. Although neither ATP nor suramin affected NLRP3 expression in MMCs, suramin inhibited ATP-induced NLRP3 complex formation and the downstream expression of caspase-1 and IL-18 in MMCs. CONCLUSIONS These results suggest that the NLRP3 inflammasome is activated in a diabetic kidney and that inhibition of the NLRP3 inflammasome with suramin protects against the progression of early stage DKD.
Collapse
Affiliation(s)
- Kaori Oda
- Department of Nephrology, Rheumatology, Endocrinology and MetabolismOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Satoshi Miyamoto
- Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
| | | | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and MetabolismOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kenichi Shikata
- Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
| |
Collapse
|
73
|
Zhang X, Li B, Huo S, Du J, Zhang J, Song M, Cui Y, Li Y. T-2 Toxin Induces Kidney Fibrosis via the mtROS-NLRP3-Wnt/β-Catenin Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13765-13777. [PMID: 36239691 DOI: 10.1021/acs.jafc.2c05816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T-2 toxin causes kidney fibrosis. Wnt/β-catenin signaling promotes kidney fibrosis when sustained and activated. However, whether T-2-induced kidney fibrosis involves Wnt/β-catenin signaling activation has not been explored yet. T-2 toxin causes renal mitochondrial damage, leading to mitochondrial reactive oxygen species (mtROS) overproduction and NLRP3-inflammasome activation. The activated NLRP3-inflammasome can mediate fibrosis. However, whether the NLRP3-inflammasome can be mediated by mtROS and further regulate T-2-induced kidney fibrosis through Wnt/β-catenin signaling is unclear. In this study, first, we confirmed that T-2 toxin caused Wnt/β-catenin signaling activation in mice kidneys and HK-2 cells. Second, we confirmed that mtROS activated the NLRP3-inflammasome in T-2-exposed mice kidneys and HK-2 cells. Third, we confirmed that the NLRP3-inflammasome regulated the Wnt/β-catenin signaling in T-2 toxin-exposed mice kidneys and HK-2 cells. Finally, we confirmed that Wnt/β-catenin signaling regulated fibrosis in T-2 toxin-exposed mice kidneys and HK-2 cells. The above results confirm that T-2 toxin induces kidney fibrosis via the mtROS-NLRP3-Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, 028000 Tongliao, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
74
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
75
|
Tan SM, Snelson M, Østergaard JA, Coughlan MT. The Complement Pathway: New Insights into Immunometabolic Signaling in Diabetic Kidney Disease. Antioxid Redox Signal 2022; 37:781-801. [PMID: 34806406 PMCID: PMC9587781 DOI: 10.1089/ars.2021.0125] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The metabolic disorder, diabetes mellitus, results in microvascular complications, including diabetic kidney disease (DKD), which is partly believe to involve disrupted energy generation in the kidney, leading to injury that is characterized by inflammation and fibrosis. An increasing body of evidence indicates that the innate immune complement system is involved in the pathogenesis of DKD; however, the precise mechanisms remain unclear. Recent Advances: Complement, traditionally thought of as the prime line of defense against microbial intrusion, has recently been recognized to regulate immunometabolism. Studies have shown that the complement activation products, Complement C5a and C3a, which are potent pro-inflammatory mediators, can mediate an array of metabolic responses in the kidney in the diabetic setting, including altered fuel utilization, disrupted mitochondrial respiratory function, and reactive oxygen species generation. In diabetes, the lectin pathway is activated via autoreactivity toward altered self-surfaces known as danger-associated molecular patterns, or via sensing altered carbohydrate and acetylation signatures. In addition, endogenous complement inhibitors can be glycated, whereas diet-derived glycated proteins can themselves promote complement activation, worsening DKD, and lending support for environmental influences as an additional avenue for propagating complement-induced inflammation and kidney injury. Critical Issues: Recent evidence indicates that conventional renoprotective agents used in DKD do not target the complement, leaving this web of inflammatory stimuli intact. Future Directions: Future studies should focus on the development of novel pharmacological agents that target the complement pathway to alleviate inflammation, oxidative stress, and kidney fibrosis, thereby reducing the burden of microvascular diseases in diabetes. Antioxid. Redox Signal. 37, 781-801.
Collapse
Affiliation(s)
- Sih Min Tan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Jakob A Østergaard
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia.,Baker Heart & Diabetes Institute, Melbourne, Australia
| |
Collapse
|
76
|
Franchon Marques Tejada N, Ziroldo Lopes JV, Duarte Gonçalves LE, Mamede Costa Andrade da Conceição I, Franco GR, Ghirotto B, Câmara NOS. AIM2 as a putative target in acute kidney graft rejection. Front Immunol 2022; 13:839359. [PMID: 36248890 PMCID: PMC9561248 DOI: 10.3389/fimmu.2022.839359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acute rejection (AR) is a process triggered via the recognition of grafted organ-derived antigens by the immune system, which could present as a life-threatening condition. In the context of a kidney transplant, despite improvement with immunosuppressive therapies, AR maintains a significant incidence of 10%, and currently available drugs generally act in similar and canonical pathways of lymphocyte activation. This prompted the research for different approaches to identify potential novel targets that could improve therapeutic interventions. Here, we conducted a transcriptome analysis comparing groups of acute rejection (including T cell-mediated rejection and antibody-mediated rejection) to stable grafts that included differentially expressed genes, transcription factor and kinase enrichment, and Gene Set Enrichment Analysis. These analyses revealed inflammasome enhancement in rejected grafts and AIM2 as a potential component linked to acute rejection, presenting a positive correlation to T-cell activation and a negative correlation to oxidative phosphorylation metabolism. Also, the AIM2 expression showed a global accuracy in discerning acute rejection grafts (area under the curve (AUC) = 0.755 and 0.894, p < 0.0001), and meta-analysis comprising different studies indicated a considerable enhancement of AIM2 in rejection (standardized mean difference (SMD) = 1.45, [CI 95%, 1.18 to 1.71]), especially for T cell-mediated rejection (TCMR) (SMD = 2.01, [CI 95%, 1.58 to 2.45]). These findings could guide future studies of AIM2 as either an adjuvant target for immunosuppression or a potential biomarker for acute rejection and graft survival.
Collapse
Affiliation(s)
- Nathália Franchon Marques Tejada
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - João Vitor Ziroldo Lopes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Duarte Gonçalves
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Izabela Mamede Costa Andrade da Conceição
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Glória Regina Franco
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Ghirotto
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Niels Olsen Saraiva Câmara, ;
| |
Collapse
|
77
|
Su X, Liu B, Wang S, Wang Y, Zhang Z, Zhou H, Li F. NLRP3 inflammasome: A potential therapeutic target to minimize renal ischemia/reperfusion injury during transplantation. Transpl Immunol 2022; 75:101718. [PMID: 36126906 DOI: 10.1016/j.trim.2022.101718] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022]
Abstract
Renal transplantation is currently the best treatment option for patients with end-stage kidney disease. Ischemia/reperfusion injury (IRI), which is an inevitable event during renal transplantation, has a profound impact on the function of transplanted kidneys. It has been well demonstrated that innate immune system plays an important role in the process of renal IRI. As a critical component of innate immune system, Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has received great attention from scientific community over the past decade. The main function of NLRP3 inflammasome is mediating activation of caspase-1 and maturation of interleukin (IL)-1β and IL-18. In this review, we summarize the associated molecular signaling events about NLRP3 inflammasome in renal IRI, and highlight the possibility of targeting NLRP3 inflammasome to minimize renal IRI during transplantation.
Collapse
Affiliation(s)
- Xiaochen Su
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Bin Liu
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shangguo Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yuxiong Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zehua Zhang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Faping Li
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
78
|
Yifan Z, Luming S, Wei C, Luwei X, Zheng X, Ruipeng J. Cystine crystal-induced reactive oxygen species associated with NLRP3 inflammasome activation: implications for the pathogenesis of cystine calculi. Int Urol Nephrol 2022; 54:3097-3106. [PMID: 36085346 DOI: 10.1007/s11255-022-03347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE To investigate whether cystine crystal-induced production of reactive oxygen species (ROS) and activation of NLRP3 inflammasome contribute to cystine calculi formation. METHODS Slc7a9-knockout rats were created as cystine calculi animal models. Kidney histological examination using TEM and immunohistochemistry were performed. The protein expression of NLRP3 and IL-1β and the concentrations of oxidative stress markers such as ROS, MDA and H2O2 in kidney tissues were estimated. In parallel, HK-2 human renal proximal tubule cells were exposed to cystine crystals and NAC treatment. The protein and mRNA expression levels of NLRP3 were evaluated. Finally, cell apoptosis and cystine crystal adherence were also assessed. RESULTS Activation of the NLRP3 inflammasome and marked elevations in MDA, H2O2 and ROS levels were observed both in vivo and in vitro. In particular, the protein and mRNA expression of NLRP3 was significantly increased by cystine crystals, but could be restored by an inhibitor of ROS. In addition, cell apoptosis and cystine crystal adherence were promoted by the NLRP3 inflammasome. The expression of CD44, OPN and HA in HK-2 cells was markedly increased by cystine crystals, but could be decreased by NLRP3 siRNA treatment. CONCLUSION Notably, we found that the activation of NLRP3 by cystine crystal-induced ROS production was of major importance in the pathogenesis of cystine calculi formation.
Collapse
Affiliation(s)
- Zhang Yifan
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Shen Luming
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121#, Jiangjiayuan, Nanjing, 210000, China
| | - Chen Wei
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Xu Luwei
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Xu Zheng
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jia Ruipeng
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
79
|
Kim H, Nam BY, Park J, Song S, Kim WK, Lee K, Nam TW, Park JT, Yoo TH, Kang SW, Ko G, Han SH. Lactobacillus acidophilus KBL409 reduces kidney fibrosis via immune modulatory effects in mice with chronic kidney disease. Mol Nutr Food Res 2022; 66:e2101105. [PMID: 36059191 DOI: 10.1002/mnfr.202101105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/10/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD. METHODS AND RESULTS An animal model of CKD was established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice were administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria were improved by administration of KBL409. Ade-CKD mice also exhibited a disrupted intestinal barrier and elevated levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes were attenuated by KBL409. Administration of KBL409 significantly reduced macrophage infiltration and promoted a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway was activated in the kidneys of Ade-CKD and decreased by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increased M2 macrophage polarization factors and decreased profibrotic markers. CONCLUSIONS These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea.,Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | | | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | | | | | - Jung Tak Park
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Tae-Hyun Yoo
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Shin-Wook Kang
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - GwangPyo Ko
- KoBiolabs, Inc., Seoul, Korea.,Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Seung Hyeok Han
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| |
Collapse
|
80
|
Fu Y, Xiang Y, Li H, Chen A, Dong Z. Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther 2022; 237:108240. [PMID: 35803367 DOI: 10.1016/j.pharmthera.2022.108240] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
The kidney has a remarkable ability of repair after acute kidney injury (AKI). However, when injury is severe or persistent, the repair is incomplete or maladaptive and may lead to chronic kidney disease (CKD). Maladaptive kidney repair involves multiple cell types and multifactorial processes, of which inflammation is a key component. In the process of inflammation, there is a bidirectional interplay between kidney parenchymal cells and the immune system. The extensive and complex crosstalk between renal tubular epithelial cells and interstitial cells, including immune cells, fibroblasts, and endothelial cells, governs the repair and recovery of the injured kidney. Further research in this field is imperative for the discovery of biomarkers and promising therapeutic targets for kidney repair. In this review, we summarize the latest progress in the immune response and inflammation during maladaptive kidney repair, analyzing the interaction between immune cells and intrinsic kidney cells, pointing out the potentialities of inflammation-related pathways as therapeutic targets, and discussing the challenges and future research prospects in this field.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
81
|
Paul Owens E, Grania Healy H, Andrew Vesey D, Elizabeth Hoy W, Carolyn Gobe G. Targeted biomarkers of progression in chronic kidney disease. Clin Chim Acta 2022; 536:18-28. [PMID: 36041551 DOI: 10.1016/j.cca.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is an increasingly significant health issue worldwide. Early stages of CKD can be asymptomatic and disease trajectory difficult to predict. Not everyone with CKD progresses to kidney failure, where kidney replacement therapy is the only life-sustaining therapy. Predicting which patients will progress to kidney failure would allow better use of targeted treatments and more effective allocation of health resources. Current diagnostic tests to identify patients with progressive disease perform poorly but there is a suite of new and emerging predictive biomarkers with great clinical promise. METHODS This narrative review describes new and emerging biomarkers of pathophysiologic processes of CKD development and progression, accessible in blood or urine liquid biopsies. Biomarkers were selected based on their reported pathobiological functions in kidney injury, inflammation, oxidative stress, repair and fibrosis. Biomarker function and evidence of involvement in CKD development and progression are reported. CONCLUSION Many biomarkers reviewed here have received little attention to date, perhaps because of conflicting conclusions of their utility in CKD. The functional roles of the selected biomarkers in the underlying pathobiology of progression of CKD are a powerful rationale for advancing and validating these molecules as prognosticators and predictors of CKD trajectory.
Collapse
Affiliation(s)
- Evan Paul Owens
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - Helen Grania Healy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | - David Andrew Vesey
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Wendy Elizabeth Hoy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Centre for Chronic Disease, The University of Queensland, Brisbane 4072, Australia
| | - Glenda Carolyn Gobe
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia.
| |
Collapse
|
82
|
You D, Weng M, Wu X, Nie K, Cui J, Chen Y, Yang L, Wan J. C3aR contributes to unilateral ureteral obstruction-induced renal interstitial fibrosis via the activation of the NLRP3 inflammasome. Life Sci 2022; 308:120905. [PMID: 36041502 DOI: 10.1016/j.lfs.2022.120905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
AIMS Complement component 3a and its receptor (C3a/C3aR) and nucleotide-binding oligomerization domain-like receptor protein-3 (NLRP3) inflammasome are involved in the pathogenesis of renal interstitial fibrosis (RIF). However, the mechanisms have not been clearly illuminated. This study aimed to elucidate the roles of C3aR and the NLRP3 inflammasome involved in unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MAIN METHODS UUO models were established using male C57BL/6 wild-type (WT) mice and age-matched C3aR-deficient mice. MCC950, an inhibitor of the NLRP3 inflammasome, was intraperitoneally injected in UUO mice. Blood samples were collected to quantify serum creatinine and urea. Kidney samples were collected for hematoxylin-eosin (HE), Masson, and immunohistochemistry staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, and Western blotting. KEY FINDINGS Renal function, renal fibrosis, and renal inflammation in WT mice were aggravated with longer periods of UUO. C3aR deficiency improved renal function and attenuated renal fibrosis and the activation of the NLRP3 inflammasome in UUO mice. Renal function and renal fibrosis in UUO mice were attenuated after NLRP3 inflammasome inhibition; however, the expression of C3aR did not change. SIGNIFICANCE Our data revealed that C3aR may aggravate RIF by regulating the activation of the NLRP3 inflammasome (particularly regulating inflammasome assembly) in renal tubular epithelial cells in the UUO model.
Collapse
Affiliation(s)
- Danyu You
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Kun Nie
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jiong Cui
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yi Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Liyan Yang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
83
|
Erythropoietin prevented the decreased expression of aquaporin1-3 in ureteral obstructive kidneys in juvenile rats. Pediatr Res 2022; 93:1258-1266. [PMID: 35986150 DOI: 10.1038/s41390-022-02224-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Urinary tract obstruction is associated with impaired renal urinary concentration; even after the release of the obstruction, patients still suffer from polyuria. It has been reported that the decreased expression of aquaporins (AQPs) is associated with postobstructive polyuria, and erythropoietin (EPO) can promote the recovery of decreased AQP2 expression induced by bilateral ureteral obstruction. However, whether EPO can promote the recovery of the expression of AQP1-3 after the release of unilateral ureteral obstruction (UUO) has not yet been reported. AIMS To investigate the effects of EPO treatment on the expression of renal AQP1-3 after the release of UUO. METHODS UUO was established in rats by 24-h temporary unilateral obstruction of renal ureters. Three days following EPO treatment, the kidneys were removed to determine the expression levels of AQP1-3, NLRP3, caspase-1, and IL-1β via semiquantitative immunoblotting and immunohistochemistry. RESULTS EPO inhibited the expression of NLRP3, caspase-1, and IL-1β; reduced plasma creatinine and urea; and promoted the recovery of AQP1-3 expression in UUO rats. CONCLUSIONS EPO treatment prevented the decreased expression of renal AQPs and the development of impaired urinary concentration capacity after the release of UUO, which may partially occur by way of anti-inflammasome effects. IMPACT EPO treatment could prevent the decreased expression of renal water transporter proteins AQP1-3 and the development of impaired renal functions, which may be associated with its anti-inflammasome effects. EPO regulated the expression of renal water transporter proteins AQP1-3, which could provide the potential for the treatment of postobstructive polyuresis. EPO treatment could be one of the effective methods by participating in multiple dimensions for patients with obstructive nephropathy.
Collapse
|
84
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
85
|
Liu B, Wang D, Cao Y, Wu J, Zhou Y, Wu W, Wu J, Zhou J, Qiu J. MitoTEMPO protects against podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy. Eur J Pharmacol 2022; 929:175136. [DOI: 10.1016/j.ejphar.2022.175136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022]
|
86
|
Liu T, Lu X, Gao W, Zhai Y, Li H, Li S, Yang L, Ma F, Zhan Y, Mao H. Cardioprotection effect of Yiqi-Huoxue-Jiangzhuo formula in a chronic kidney disease mouse model associated with gut microbiota modulation and NLRP3 inflammasome inhibition. Biomed Pharmacother 2022; 152:113159. [PMID: 35661533 DOI: 10.1016/j.biopha.2022.113159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The pathogenesis and treatment of cardiovascular disease mediated by chronic kidney disease (CKD) are key research questions. Specifically, the mechanisms underlying the cardiorenal protective effect of Yiqi-Huoxue-Jiangzhuo formula (YHJF), a traditional Chinese herbal medicine, have not yet been clarified. METHODS A classical CKD mouse model was constructed by 5/6 nephrectomy (Nx) to study the effects of YHJF intervention on 5/6 Nx mice cardiorenal function, gut microbial composition, gut-derived metabolites, and NLRP3 inflammasome pathways. RESULTS YHJF improved cardiac dysfunction and reversed left ventricular hypertrophy, myocardial hypertrophy, and interstitial fibrosis in 5/6 Nx mice. In addition, YHJF inhibited activation of the NLRP3 inflammasome and downregulated the expression of TNF-α and IL-1β both in the heart and serum; reconstitution of the intestinal flora imbalance was also found in 5/6 Nx mice treated with YHJF. Spearman's correlation and redundancy analyses showed that changes in the intestinal flora of 5/6 Nx mice were related to clinical phenotype and serum inflammatory levels. CONCLUSIONS Treatment with YHJF effectively protected the heart function of 5/6 Nx mice; this effect was attributed to inhibition of NLRP3 inflammasome activation and regulation of intestinal microbial composition and derived metabolites. YHJF has potential for improving intestinal flora imbalance and gut-derived toxin accumulation in patients with CKD, thereby preventing cardiovascular complications.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoguang Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wenya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Zhai
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing 100029, China
| | - Han Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shangheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
87
|
Sun C, Zhao H, Han Y, Wang Y, Sun X. The Role of Inflammasomes in COVID-19: Potential Therapeutic Targets. J Interferon Cytokine Res 2022; 42:406-420. [PMID: 35984324 DOI: 10.1089/jir.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 disease (COVID-19) pandemic has caused massive morbidity and mortality worldwide. In severe cases, it is mainly associated with acute pneumonia, cytokine storm, and multi-organ dysfunction. Inflammasomes play a primary role in various pathological processes such as infection, injury, and cancer. However, their role in COVID-19-related complications has not been explored. In addition, the role of underlying medical conditions on COVID-19 disease severity remains unclear. Therefore, this review expounds on the mechanisms of inflammasomes following COVID-19 infection and provides recent evidence on the potential double-edged sword effect of inflammasomes during COVID-19 pathogenesis. The assembly and activation of inflammasomes are critical for inducing effective antiviral immune responses and disease resolution. However, uncontrolled activation of inflammasomes causes excessive production of proinflammatory cytokines (cytokine storm), increased risk of acute respiratory distress syndrome, and death. Therefore, discoveries in the role of the inflammasome in mediating organ injury are key to identifying therapeutic targets and treatment modifications to prevent or reduce COVID-19-related complications.
Collapse
Affiliation(s)
- Chen Sun
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hangyuan Zhao
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunze Han
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiqing Wang
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Sun
- Department of Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
88
|
An J, Cao X, Feng M, Hu B, Wu J, Gang Y, Jian S, Wen C. MAPK/MAK/MRK overlapping kinase mediated apoptosis through caspase signaling pathway from Cristaria plicata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104427. [PMID: 35460761 DOI: 10.1016/j.dci.2022.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
MAPK/MAK/MRK Overlapping Kinase (MOK) belongs to MAP kinase superfamily, which plays an important role in regulating cell growth, division, and differentiation. Caspase-3, as the final executor of apoptosis, has an important position in the caspase-mediated apoptotic signaling pathway. The full-length cDNA of MOK and caspase-3 were cloned from Cristaria plicata (designated CpMOK and CpCaspase-3). The CpMOK gene was sequence with a full-length of 1413 bp, encoding a total of 470 amino acids, and containing an S_TKc structural domain. CpCaspase-3 has a sequence of 2425 bp, encoding 322 amino acids, containing a CASc domain. Real-time fluorescence quantitative PCR analysis showed that CpMOK and CpCaspase-3 distributed in various tissues of C. plicata, and the highest expression of CpMOK and CpCaspase-3 mRNA was in hepatopancreas. The expression of CpMOK was significantly changed in hepatopancreas, gills, and kidneys by the construction of wound model as well as stimulation of LPS, PGN, Poly I: C and Aeromonas hydrophila. Subcellular localization experiments confirmed that CpMOK was localized in the nucleus. Furthermore, the double-stranded RNA (dsRNA) of CpMOK was constructed for interference experiment, and the results showed that the mRNA expression of apoptotic gene signals caspase-1, caspase-3, caspase-7, caspase-8, and caspase-9 were increased. The expression of caspase-1, -3, -7, -9, cytochrome C (Cyt-c) and tumor necrosis factor-α (TNF-α) was detected by ELISA. Fluorescent staining of apoptotic cells using the Tunnel method revealed an increase in the number of apoptotic cells after interference. These results suggested that CpMOK knockdown could induce caspase-mediated apoptosis in C. plicata, and the phosphorylation of the kinase was disrupted during the process.
Collapse
Affiliation(s)
- Jinhua An
- Department of Zoology, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Xinying Cao
- Department of Zoology, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Maolin Feng
- Department of Zoology, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Zoology, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Jielian Wu
- Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, 11318, China
| | - Yang Gang
- Department of Zoology, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Zoology, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Chungen Wen
- Department of Zoology, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
89
|
Liu Y, Li Y, Niu J, Liu H, Jiao N, Huang L, Jiang S, Yan L, Yang W. Effects of Dietary Macleaya cordata Extract Containing Isoquinoline Alkaloids Supplementation as an Alternative to Antibiotics in the Diets on Growth Performance and Liver Health of Broiler Chickens. Front Vet Sci 2022; 9:950174. [PMID: 35968000 PMCID: PMC9363708 DOI: 10.3389/fvets.2022.950174] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of dietary supplementation with Macleaya cordata extract (MCE) containing protopine and allotypotopine on the growth performance and liver health in broiler chickens. A total of 486 1-day-old male AA broiler chickens were randomly assigned to the following three groups: (1) control (CON) group, broiler chickens fed a basal diet; (2) AGP group (positive control), broiler chickens fed a basal diet supplemented with 50 mg/kg aureomycin; (3) MCE group, broiler chickens fed a basal diet supplemented with 0.6 mg/kg MCE including 0.4 mg/kg protopine and 0.2 mg/kg allotypotopine. The results showed that the MCE group had significantly higher final body weight and average daily gain from d 0 to 42 than the other groups (p < 0.05), and groups MCE and AGP both had significantly lower feed-to-gain ratio from d 0 to 42 than the CON group (p < 0.05). Serum total protein, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, glucose, immunoglobulin A, immunoglobulin M, and complements (C3, C4) concentrations in the MCE group were significantly higher than in the CON group (p < 0.05). Dietary MCE or aureomycin supplementation significantly reduced the hepatic contents of 8-hydroxy-2'-deoxyguanosine, malondialdehyde, interleukin (IL)-1β, IL-6, NLRs family pyrin domain containing 3 (NLRP3), and caspase-1 in the liver (p < 0.05). Moreover, MCE or aureomycin supplementation significantly inhibited mRNA expressions of Toll-like receptor 4, myeloid differentiation factor 88, nuclear factor-κB, and NLRP3, as well as the expression ratio of Bax to Bcl-2 mRNA (p < 0.05). Therefore, our study suggested that dietary supplementation with 0.6 mg/kg MCE containing protopine and allocryptopine improved growth performance and benefited liver health in broiler chickens possibly through inhibiting caspase-1-induced pyroptosis by inactivating TLR4/MyD88/NF-κB/NLRP3 signaling pathway, and provided support for the application of MCE containing protopine and allocryptopine as an alternative to antibiotics in the feed industry.
Collapse
Affiliation(s)
- Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
- *Correspondence: Yang Li
| | - Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hua Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Lei Yan
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
- Weiren Yang
| |
Collapse
|
90
|
Liu C, Yang M, Li L, Luo S, Yang J, Li C, Liu H, Sun L. A Glimpse of Inflammation and Anti-Inflammation Therapy in Diabetic Kidney Disease. Front Physiol 2022; 13:909569. [PMID: 35874522 PMCID: PMC9298824 DOI: 10.3389/fphys.2022.909569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and not completely understood. Recently, accumulated evidence from in vitro and in vivo studies has demonstrated that inflammation plays an important role in the pathogenesis and the development of DKD. It has been well known that a variety of pro-inflammatory cytokines and related signaling pathways are involved in the procession of DKD. Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-inflammatory properties, which might have beneficial effects on delaying the progression of DKD. However, there is currently a lack of systematic overviews. In this review, we focus on the novel pro-inflammatory signaling pathways in the development of DKD, including the nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors, Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor agonist and traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases & Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
91
|
Hou Q, Kan S, Wang Z, Shi J, Zeng C, Yang D, Jiang S, Liu Z. Inhibition of HDAC6 With CAY10603 Ameliorates Diabetic Kidney Disease by Suppressing NLRP3 Inflammasome. Front Pharmacol 2022; 13:938391. [PMID: 35910382 PMCID: PMC9332914 DOI: 10.3389/fphar.2022.938391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diabetic nephropathy (DN) is one of the leading causes of chronic kidney disease (CKD) worldwide, tubular injury is the driving force during the pathogenesis and progression of DN. Thus, we aim to utilize the connectivity map (CMap) with renal tubulointerstitial transcriptomic profiles of biopsy-proven DN to identify novel drugs for treating DN. Methods: We interrogated the CMap profile with tubulointerstitial transcriptomic data from renal biopsy-proven early- and late-stage DN patients to screen potential drugs for DN. Therapeutic effects of candidate drug were assessed in Murine model of diabetic kidney disease (STZ-induced CD-1 mice), and HK-2 cells and immortalized bone marrow-derived macrophages (iBMDMs). Results: We identified CAY10603, a specific inhibitor of histone deacetylase 6 (HDAC6), as a potential drug that could significantly reverse the altered genes in the tubulointerstitial component. In DN patients and mice, upregulation of HDAC6 was mainly observed in renal tubular cells and infiltrated macrophages surrounding the diluted tubules. In both early- and late-onset diabetic mice, daily CAY10603 administration effectively alleviated renal dysfunction and reduced macrophage infiltration, tubular injury and tubulointerstitial fibrosis. Mechanistically, CAY10603 suppressed NLRP3 activation in both HK-2 cells and iBMDMs. Conclusion: CAY10603 exhibited therapeutic potential for DN by suppressing NLRP3 inflammasome activation in both tubular cells and macrophages.
Collapse
Affiliation(s)
- Qing Hou
- National Clinical Research Center for Kidney Diseases, Jinling Clinical College, Southeast University School of Medicine, Nanjing, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuyan Kan
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Song Jiang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Song Jiang, ; Zhihong Liu,
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Clinical College, Southeast University School of Medicine, Nanjing, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Song Jiang, ; Zhihong Liu,
| |
Collapse
|
92
|
Xiong J, Ran L, Zhu Y, Wang Y, Wang S, Wang Y, Lan Q, Han W, Liu Y, Huang Y, He T, Li Y, Liu L, Zhao J, Yang K. DUSP2-mediated inhibition of tubular epithelial cell pyroptosis confers nephroprotection in acute kidney injury. Am J Cancer Res 2022; 12:5069-5085. [PMID: 35836796 PMCID: PMC9274747 DOI: 10.7150/thno.72291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
Rationale: Acute kidney injury (AKI) is pathologically characterized by renal tubular epithelial cell (RTEC) death and interstitial inflammation, while their pathogenesis remains incompletely understood. Dual-specificity phosphatase 2 (DUSP2) recently emerges as a crucial regulator of cell death and inflammation in a wide range of diseases, but its roles in renal pathophysiology are largely unknown. Methods: The expression of DUSP2 in the kidney was characterized by histological analysis in renal tissues from patients and mice with AKI. The role and mechanism of DUSP2-mediated inhibition of tubular epithelial cell pyroptosis in AKI were evaluated both in vivo and in vitro, and confirmed in RTEC-specific deletion of DUSP2 mice. Results: Here, we show that DUSP2 is enriched in RTECs in the renal tissue of both human and mouse and mainly positions in the nucleus. Further, we reveal that loss-of-DUSP2 in RTECs not only is a common feature of human and murine AKI but also positively contributes to AKI pathogenesis. Especially, RTEC-specific deletion of DUSP2 sensitizes mice to AKI by promoting RTEC pyroptosis and the resultant interstitial inflammation. Mechanistic studies show that gasdermin D (GSDMD), which mediates RTEC pyroptosis, is identified as a transcriptional target of activated STAT1 during AKI, whereas DUSP2 as a nuclear phosphatase deactivates STAT1 to restrict GSDMD-mediated RTEC pyroptosis. Importantly, DUSP2 overexpression in RTECs via adeno-associated virus-mediated gene transfer significantly ameliorates AKI. Conclusion: Our findings demonstrate a hitherto unrecognized role of DUSP2-STAT1 axis in regulating RTEC pyroptosis in AKI, highlighting that DUSP2-STAT1 axis is an attractive therapeutic target for AKI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jinghong Zhao
- ✉ Corresponding authors: Ke Yang, PhD, or Jinghong Zhao, MD, PhD, Department of Nephrology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China. E-mail: or . Tel: +86-023- 68774321; Fax: +86-023- 68774321
| | - Ke Yang
- ✉ Corresponding authors: Ke Yang, PhD, or Jinghong Zhao, MD, PhD, Department of Nephrology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China. E-mail: or . Tel: +86-023- 68774321; Fax: +86-023- 68774321
| |
Collapse
|
93
|
Wang H, Hao W, Yang L, Yan P, Wei S. Preconditioning with procyanidin B2 protects MAC-T cells against heat exposure-induced mitochondrial dysfunction and inflammation. Mol Immunol 2022; 147:126-135. [DOI: 10.1016/j.molimm.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
|
94
|
Lan J, Xu B, Shi X, Pan Q, Tao Q. WTAP-mediated N 6-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy. Cell Mol Biol Lett 2022; 27:51. [PMID: 35761192 PMCID: PMC9235192 DOI: 10.1186/s11658-022-00350-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background Diabetic nephropathy (DN) is prevalent in patients with diabetes. N6-methyladenosine (m6A) methylation has been found to cause modification of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) 3, which is involved in cell pyroptosis and inflammation. WTAP is a key gene in modulating NLRP3 m6A. Methods In this study, WTAP was silenced or overexpressed in high glucose (HG)-treated HK-2 cells to determine its influence on pyroptosis, NLRP3 inflammasome-related proteins, and the release of pro-inflammatory cytokines. NLRP3 expression and m6A levels were assessed in the presence of WTAP shRNA (shWTAP). WTAP expression in HK-2 cells was examined with the introduction of C646, a histone acetyltransferase p300 inhibitor. Results We found that WTAP expression was enhanced in patients with DN and in HG-treated HK-2 cells. Knockdown of WTAP attenuated HG-induced cell pyroptosis and NLRP3-related pro-inflammatory cytokines in both HK-2 cells and db/db mice, whereas WTAP overexpression promoted these cellular processes in HK-2 cells. WTAP mediated the m6A of NLRP3 mRNA that was stabilized by insulin-like growth factor 2 mRNA binding protein 1. Histone acetyltransferase p300 regulated WTAP expression. WTAP mRNA levels were positively correlated with NLRP3 inflammasome components and pro-inflammatory cytokines. Conclusion Taken together, WTAP promotes the m6A methylation of NLRP3 mRNA to upregulate NLRP3 inflammasome activation, which further induces cell pyroptosis and inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00350-8.
Collapse
Affiliation(s)
- Jianzi Lan
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China.
| | - Bowen Xu
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Xin Shi
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Qi Pan
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Qing Tao
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| |
Collapse
|
95
|
Huang W, Wang BO, Hou Y, Fu Y, Cui S, Zhu J, Zhan X, Li R, Tang W, Wu J, Wang Z, Wang M, Wang X, Zhang Y, Liu M, Xie Y, Sun Y, Yi F. JAML promotes acute kidney injury mainly through a macrophage-dependent mechanism. JCI Insight 2022; 7:158571. [PMID: 35708906 PMCID: PMC9431718 DOI: 10.1172/jci.insight.158571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Although macrophages are undoubtedly attractive therapeutic targets for acute kidney injury (AKI) because of their critical roles in renal inflammation and repair, the underlying mechanisms of macrophage phenotype switching and efferocytosis in the regulation of inflammatory responses during AKI are still largely unclear. The present study elucidated the role of junctional adhesion molecule–like protein (JAML) in the pathogenesis of AKI. We found that JAML was significantly upregulated in kidneys from 2 different murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI. By generation of bone marrow chimeric mice, macrophage-specific and tubular cell–specific Jaml conditional knockout mice, we demonstrated JAML promoted AKI mainly via a macrophage-dependent mechanism and found that JAML-mediated macrophage phenotype polarization and efferocytosis is one of the critical signal transduction pathways linking inflammatory responses to AKI. Mechanistically, the effects of JAML on the regulation of macrophages were, at least in part, associated with a macrophage-inducible C-type lectin–dependent mechanism. Collectively, our studies explore for the first time to our knowledge new biological functions of JAML in macrophages and conclude that JAML is an important mediator and biomarker of AKI. Pharmacological targeting of JAML-mediated signaling pathways at multiple levels may provide a novel therapeutic strategy for patients with AKI.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bi-Ou Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yunfeng Hou
- Intensive Care Unit, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yi Fu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sijia Cui
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University., Jinan, China
| | - Jinghan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xinyu Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Rongkun Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Tang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jichao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
96
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
97
|
Jiang J, Liu D, Wang Y, Li W, Hong Z, An J, Qiao S, Xie Z. Glaucocalyxin a protect liver function via inhibiting platelet over-activation during sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154089. [PMID: 35398736 DOI: 10.1016/j.phymed.2022.154089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) is a perennial herb, and is traditionally used as folk medicine for treating inflammatory diseases and cancer. Gaucocalyxin A (GLA) is an ent‑kaurane diterpenoid that is isolated from the aerial parts of R. japonica (Burm. f.) var. glaucocalyx (Maxim.). In a recent study, we found that GLA protects against acute liver dysfunction induced by Escherichia coli, which is likely related to its anti-inflammatory effects. However, the mechanism by which GLA protects liver injury during sepsis is unknown. AIM To evaluate the anti-inflammatory function of GLA and its regulatory effect on platelet function. METHOD An in vivo model of sepsis was established by inoculating mice with E. coli. Live function and platelet activation were evaluated through standard assays. The levels of pro-inflammatory factors were measured through ELISA and qRT-PCR. RESULTS GLA alleviated liver dysfunction in the mouse model of sepsis. GLA-treated mice displayed lower complement activation and liver dysfunction after E. coli infection. GLA alleviated the decrease in peripheral platelet counts by inhibiting their clearance by Kupffer cells in liver. Furthermore, GLA inhibited platelet activation through the RIP1/RIP3/AKT pathway and downregulated C3aR expression on the platelets, thereby inhibiting liver injury and dysfunction due to excessive complement activation. CONCLUSION GLA can inhibit platelet activation by reducing surface expression of C3aR, which protect the liver from injury induced by excessive complement activation. GLA is a novel therapeutic agent for controlling sepsis-related liver dysfunction.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dengping Liu
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuanyuan Wang
- Department of Intensive Care Unit, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Zhihui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China; Faculty of Anesthesiology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhanli Xie
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
98
|
Oe Y, Vallon V. The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1. KIDNEY AND DIALYSIS 2022; 2:349-368. [PMID: 36380914 PMCID: PMC9648862 DOI: 10.3390/kidneydial2020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes mellitus and slow the progression towards end-stage kidney disease. Blocking tubular SGLT2 and spilling glucose into the urine, which triggers a metabolic counter-regulation similar to fasting, provides unique benefits, not only as an anti-hyperglycemic strategy. These include a low hypoglycemia risk and a shift from carbohydrate to lipid utilization and mild ketogenesis, thereby reducing body weight and providing an additional energy source. SGLT2 inhibitors counteract hyperreabsorption in the early proximal tubule, which acutely lowers glomerular pressure and filtration and thereby reduces the physical stress on the filtration barrier, the filtration of tubule-toxic compounds, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity and improved mitochondrial function and autophagy, can reduce pro-inflammatory, pro-senescence, and pro-fibrotic signaling and preserve tubular function and GFR in the long-term. By shifting transport downstream, SGLT2 inhibitors more equally distribute the transport burden along the nephron and may mimic systemic hypoxia to stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs. SGLT1 inhibition improves glucose homeostasis by delaying intestinal glucose absorption and by increasing the release of gastrointestinal incretins. Combined SGLT1 and SGLT2 inhibition has additive effects on renal glucose excretion and blood glucose control. SGLT1 in the macula densa senses luminal glucose, which affects glomerular hemodynamics and has implications for blood pressure control. More studies are needed to better define the therapeutic potential of SGLT1 inhibition to protect the kidney, alone or in combination with SGLT2 inhibition.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
99
|
Ding X, Han C, Hu W, Fu C, Zhou Y, Wang Z, Xu Q, Lv R, He C, Zuo Z, Huang J. Acute and Subacute Safety Evaluation of Black Tea Extract (Herbt Tea Essences) in Mice. TOXICS 2022; 10:toxics10060286. [PMID: 35736895 PMCID: PMC9228953 DOI: 10.3390/toxics10060286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
Theabrownin (TB) is a heterogeneous biomacromolecule, extracted from tea, with many functional groups. Importantly, TB possesses diverse health benefits, such as antitumor activity and blood lipid-lowering effects. Presently, the content of TB in tea extract is relatively low. Here, we obtained a deep-processed black tea extract with a high content of TB (close to 80%), which was named Herbt Tea Essences (HTE). Currently, this study was designed to evaluate the biosafety of high-content TB products on mice. We implemented acute and subacute toxic experiments to assess its safety on organs, the serum biochemical and molecular levels. In the acute exposure study, we found that the median lethal dose (LD50) value of HTE was 21.68 g/kg (21.06–24.70 g/kg, greater than 5 g/kg), suggesting that HTE had a low acute toxicity. In the 28-day subacute exposure study, our results showed that no abnormal effects were observed in the 40 and 400 mg/kg/day HTE-treated groups. However, we observed slight nephrotoxicity in the 4000 mg/kg/day HTE-treated group. The HTE-induced nephrotoxic effect might involve the inflammatory response activation mediated by the nuclear transcription factor kappa-B (NF-κB) signaling pathway. This study would provide valuable data for the TB safety assessment and promote this natural biomacromolecule application in daily drinking.
Collapse
Affiliation(s)
- Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
| | - Weiping Hu
- First Affiliated Hospital of Xiamen University, Xiamen 361003, China;
| | - Chengqing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
| | - Rongfu Lv
- Xiamen Herbt Biotechnology Company Limited, Xiamen 361005, China;
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
- Correspondence: (Z.Z.); (J.H.)
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang’an Branch of the First Affiliated Hospital, Xiamen University, Xiamen 361102, China; (X.D.); (C.H.); (C.F.); (Y.Z.); (Z.W.); (Q.X.); (C.H.)
- Correspondence: (Z.Z.); (J.H.)
| |
Collapse
|
100
|
Li D, Li B, Rui Y, Xie H, Zhang X, Liu R, Zeng N. Piperazine ferulate attenuates gentamicin-induced acute kidney injury via the NF-κB/NLRP3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154021. [PMID: 35286937 DOI: 10.1016/j.phymed.2022.154021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Piperazine ferulate (PF) is widely used in chronic nephritis and nephrotic syndrome in clinic. PF can improve diseases related inflammation by inhibiting the activation of nuclear factor kappa-B (NF-κB) signal. Acute kidney injury (AKI) is usually associated with the occurrence and development of renal inflammation. However, the nephroprotective effect and anti-inflammatory mechanisms of PF on AKI are not clear. PURPOSE This study aimed to investigate the nephroprotective effects of PF on gentamicin (GM) induced AKI in rats and its potential mechanisms. METHODS Male Sprague Dawley (SD) rats were intraperitoneally injected with GM (100 mg/kg/day) with or without PF (50 and 100 mg/kg/day) for 7 consecutive days. In vitro, the NRK-52e cells were exposed to GM (7 mg/ml) with or without PF (62.5 μg/ml) treatment. The renal injury and cell damage were assessed subsequently. RESULTS Our findings showed that PF treatment can significantly improve renal function, reduce renal pathological changes, and attenuate inflammatory response in rats treated with gentamicin. Besides, PF could significantly reduce the cell damage and cellular inflammatory response. In terms of mechanisms, our study revealed that PF can evidently inhibit the activation of NF-κB and nod-like receptor family pyrin domain protein 3 (NLRP3) inflammasome. Meanwhile, it could down regulate the expressions of protein and gene of p-IKKα, p-IKKβ, p-p65, p65, p50, p105, NLRP3 and IL-1β. CONCLUSION Our findings showed that PF may improve inflammation by inhibiting the NF-κB/NLRP3 pathway, so as to attenuate AKI.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Bo Li
- Chengdu Hanpharm Pharmaceutical Co., Ltd, Pengzhou, Sichuan 611930, China
| | - Yixin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|