51
|
Long F, Li T, Zhang Y, Gao X, Wang H, Huang X. Acute lymphoblastic leukemia with infrequent ARID1B::ZNF384 gene fusion simulating multifocal osteomyelitis. Pediatr Blood Cancer 2023; 70:e30514. [PMID: 37336773 DOI: 10.1002/pbc.30514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Fang Long
- Department of Clinical Laboratory, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Li
- Department of Laboratory Medicine, Beijing Ludaopei Hospital, Beijing, China
| | - Yun Zhang
- Department of Clinical Laboratory, The District People's Hospital of Zhangqiu, Jinan, Shandong, China
| | - Xiaopeng Gao
- Department of Clinical Laboratory, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, Hebei, China
| | - Xingqin Huang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
52
|
Shah K, Nasimian A, Ahmed M, Al Ashiri L, Denison L, Sime W, Bendak K, Kolosenko I, Siino V, Levander F, Palm-Apergi C, Massoumi R, Lock RB, Kazi JU. PLK1 as a cooperating partner for BCL2-mediated antiapoptotic program in leukemia. Blood Cancer J 2023; 13:139. [PMID: 37679323 PMCID: PMC10484999 DOI: 10.1038/s41408-023-00914-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
The deregulation of BCL2 family proteins plays a crucial role in leukemia development. Therefore, pharmacological inhibition of this family of proteins is becoming a prevalent treatment method. However, due to the emergence of primary and acquired resistance, efficacy is compromised in clinical or preclinical settings. We developed a drug sensitivity prediction model utilizing a deep tabular learning algorithm for the assessment of venetoclax sensitivity in T-cell acute lymphoblastic leukemia (T-ALL) patient samples. Through analysis of predicted venetoclax-sensitive and resistant samples, PLK1 was identified as a cooperating partner for the BCL2-mediated antiapoptotic program. This finding was substantiated by additional data obtained through phosphoproteomics and high-throughput kinase screening. Concurrent treatment using venetoclax with PLK1-specific inhibitors and PLK1 knockdown demonstrated a greater therapeutic effect on T-ALL cell lines, patient-derived xenografts, and engrafted mice compared with using each treatment separately. Mechanistically, the attenuation of PLK1 enhanced BCL2 inhibitor sensitivity through upregulation of BCL2L13 and PMAIP1 expression. Collectively, these findings underscore the dependency of T-ALL on PLK1 and postulate a plausible regulatory mechanism.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linn Denison
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Wondossen Sime
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Katerina Bendak
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ramin Massoumi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
53
|
Kurzer JH, Weinberg OK. Advances in Flow Cytometry for Mixed Phenotype and Ambiguous Leukemias. Clin Lab Med 2023; 43:399-410. [PMID: 37481319 DOI: 10.1016/j.cll.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
This review discusses recent updates in the diagnosis of acute leukemias of ambiguous lineage and emphasizes the necessary elements for proper flow cytometric evaluation of these cases. The current emphasis of the classification system is toward interpreting the marker expression in light of the intensity of lineage markers and avoiding a diagnosis of mixed phenotype acute leukemia based solely on immunophenotyping without considering underlying genetic findings. Novel entities including mixed phenotype acute leukemia with ZNF384 rearrangements and acute leukemias of ambiguous lineage with BCL11B rearrangements seem to show characteristic flow cytometric immunophenotypes discussed here.
Collapse
Affiliation(s)
- Jason H Kurzer
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, H1524B, Stanford, CA 94305-5324, USA.
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern, Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9072, USA
| |
Collapse
|
54
|
Xu Z, He L, Wu Y, Yang L, Li C, Wu H. PTEN regulates hematopoietic lineage plasticity via PU.1-dependent chromatin accessibility. Cell Rep 2023; 42:112967. [PMID: 37561626 DOI: 10.1016/j.celrep.2023.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
PTEN loss in fetal liver hematopoietic stem cells (HSCs) leads to alterations in myeloid, T-, and B-lineage potentials and T-lineage acute lymphoblastic leukemia (T-ALL) development. To explore the mechanism underlying PTEN-regulated hematopoietic lineage choices, we carry out integrated assay for transposase-accessible chromatin using sequencing (ATAC-seq), single-cell RNA-seq, and in vitro culture analyses using in vivo-isolated mouse pre-leukemic HSCs and progenitors. We find that PTEN loss alters chromatin accessibility of key lineage transcription factor (TF) binding sites at the prepro-B stage, corresponding to increased myeloid and T-lineage potentials and reduced B-lineage potential. Importantly, we find that PU.1 is an essential TF downstream of PTEN and that altering PU.1 levels can reprogram the chromatin accessibility landscape and myeloid, T-, and B-lineage potentials in Ptennull prepro-B cells. Our study discovers prepro-B as the key developmental stage underlying PTEN-regulated hematopoietic lineage choices and suggests a critical role of PU.1 in modulating the epigenetic state and lineage plasticity of prepro-B progenitors.
Collapse
Affiliation(s)
- Zihan Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China
| | - Libing He
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cheng Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
55
|
Chang Y, Keramatnia F, Ghate PS, Nishiguchi G, Gao Q, Iacobucci I, Yang L, Chepyala D, Mishra A, High AA, Goto H, Akahane K, Peng J, Yang JJ, Fischer M, Rankovic Z, Mullighan CG. The orally bioavailable GSPT1/2 degrader SJ6986 exhibits in vivo efficacy in acute lymphoblastic leukemia. Blood 2023; 142:629-642. [PMID: 37172201 PMCID: PMC10447621 DOI: 10.1182/blood.2022017813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/14/2023] Open
Abstract
Advancing cure rates for high-risk acute lymphoblastic leukemia (ALL) has been limited by the lack of agents that effectively kill leukemic cells, sparing normal hematopoietic tissue. Molecular glues direct the ubiquitin ligase cellular machinery to target neosubstrates for protein degradation. We developed a novel cereblon modulator, SJ6986, that exhibits potent and selective degradation of GSPT1 and GSPT2 and cytotoxic activity against childhood cancer cell lines. Here, we report in vitro and in vivo testing of the activity of this agent in a panel of ALL cell lines and xenografts. SJ6986 exhibited similar cytotoxicity to the previously described GSPT1 degrader CC-90009 in a panel of leukemia cell lines in vitro, resulting in apoptosis and perturbation of cell cycle progression. SJ6986 was more effective than CC-90009 in suppressing leukemic cell growth in vivo, partly attributable to favorable pharmacokinetic properties, and did not significantly impair differentiation of human CD34+ cells ex vivo. Genome-wide CRISPR/Cas9 screening of ALL cell lines treated with SJ6986 confirmed that components of the CRL4CRBN complex, associated adaptors, regulators, and effectors were integral in mediating the action of SJ6986. SJ6986 is a potent, selective, orally bioavailable GSPT1/2 degrader that shows broad antileukemic activity and has potential for clinical development.
Collapse
Affiliation(s)
- Yunchao Chang
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Fatemeh Keramatnia
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Pankaj S. Ghate
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gisele Nishiguchi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Qingsong Gao
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Divyabharathi Chepyala
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hiroaki Goto
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Cancer Biology Program, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
- Cancer Biology Program, St. Jude Children’s Research Hospital, Memphis, TN
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
56
|
Masih KE, Gardner RA, Chou HC, Abdelmaksoud A, Song YK, Mariani L, Gangalapudi V, Gryder BE, Wilson AL, Adebola SO, Stanton BZ, Wang C, Milewski D, Kim YY, Tian M, Cheuk ATC, Wen X, Zhang Y, Altan-Bonnet G, Kelly MC, Wei JS, Bulyk ML, Jensen MC, Orentas RJ, Khan J. A stem cell epigenome is associated with primary nonresponse to CD19 CAR T cells in pediatric acute lymphoblastic leukemia. Blood Adv 2023; 7:4218-4232. [PMID: 36607839 PMCID: PMC10440404 DOI: 10.1182/bloodadvances.2022008977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
CD19 chimeric antigen receptor T-cell therapy (CD19-CAR) has changed the treatment landscape and outcomes for patients with pre-B-cell acute lymphoblastic leukemia (B-ALL). Unfortunately, primary nonresponse (PNR), sustained CD19+ disease, and concurrent expansion of CD19-CAR occur in 20% of the patients and is associated with adverse outcomes. Although some failures may be attributable to CD19 loss, mechanisms of CD19-independent, leukemia-intrinsic resistance to CD19-CAR remain poorly understood. We hypothesize that PNR leukemias are distinct compared with primary sensitive (PS) leukemias and that these differences are present before treatment. We used a multiomic approach to investigate this in 14 patients (7 with PNR and 7 with PS) enrolled in the PLAT-02 trial at Seattle Children's Hospital. Long-read PacBio sequencing helped identify 1 PNR in which 47% of CD19 transcripts had exon 2 skipping, but other samples lacked CD19 transcript abnormalities. Epigenetic profiling discovered DNA hypermethylation at genes targeted by polycomb repressive complex 2 (PRC2) in embryonic stem cells. Similarly, assays of transposase-accessible chromatin-sequencing revealed reduced accessibility at these PRC2 target genes, with a gain in accessibility of regions characteristic of hematopoietic stem cells and multilineage progenitors in PNR. Single-cell RNA sequencing and cytometry by time of flight analyses identified leukemic subpopulations expressing multilineage markers and decreased antigen presentation in PNR. We thus describe the association of a stem cell epigenome with primary resistance to CD19-CAR therapy. Future trials incorporating these biomarkers, with the addition of multispecific CAR T cells targeting against leukemic stem cell or myeloid antigens, and/or combined epigenetic therapy to disrupt this distinct stem cell epigenome may improve outcomes of patients with B-ALL.
Collapse
Affiliation(s)
- Katherine E. Masih
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge, England
- Medical Scientist Training Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | - Rebecca A. Gardner
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Hsien-Chao Chou
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Abdalla Abdelmaksoud
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Young K. Song
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Vineela Gangalapudi
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Berkley E. Gryder
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Ashley L. Wilson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Serifat O. Adebola
- Immunodynamics Group, Cancer and Inflammation Program, Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Benjamin Z. Stanton
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH
| | - Chaoyu Wang
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - David Milewski
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yong Yean Kim
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Meijie Tian
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Adam Tai-Chi Cheuk
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yue Zhang
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Cancer and Inflammation Program, Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael C. Kelly
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD
| | - Jun S. Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Michael C. Jensen
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Rimas J. Orentas
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
57
|
Coorens THH, Collord G, Treger TD, Adams S, Mitchell E, Newman B, Getz G, Godfrey AL, Bartram J, Behjati S. Clonal origin of KMT2A wild-type lineage-switch leukemia following CAR-T cell and blinatumomab therapy. NATURE CANCER 2023; 4:1095-1101. [PMID: 37474833 PMCID: PMC10447231 DOI: 10.1038/s43018-023-00604-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Children with acute lymphoblastic leukemia (ALL) undergoing anti-CD19 therapy occasionally develop acute myeloid leukemia (AML). The clonal origin of such lineage-switch leukemias1-4 remains unresolved. Here, we reconstructed the phylogeny of multiple leukemias in a girl who, following multiply relapsed ALL, received anti-CD19 cellular and antibody treatment and subsequently developed AML. Whole genome sequencing unambiguously revealed the AML derived from the initial ALL, with distinct driver mutations that were detectable before emergence. Extensive prior diversification and subsequent clonal selection underpins this fatal lineage switch. Genomic monitoring of primary leukemias and recurrences may predict therapy resistance, especially regarding anti-CD19 treatment.
Collapse
Affiliation(s)
| | - Grace Collord
- Great Ormond Street Hospital for Children, London, UK
| | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Stuart Adams
- Great Ormond Street Hospital for Children, London, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Barbara Newman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anna L Godfrey
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jack Bartram
- Great Ormond Street Hospital for Children, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
58
|
Hou S, Wang X, Guo T, Lan Y, Yuan S, Yang S, Zhao F, Fang A, Liu N, Yang W, Chu Y, Jiang E, Cheng T, Sun X, Yuan W. PHF6 maintains acute myeloid leukemia via regulating NF-κB signaling pathway. Leukemia 2023; 37:1626-1637. [PMID: 37393343 PMCID: PMC10400421 DOI: 10.1038/s41375-023-01953-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Acute myeloid leukemia (AML) is a major hematopoietic malignancy characterized by the accumulation of immature and abnormally differentiated myeloid cells in bone marrow. Here with in vivo and in vitro models, we demonstrate that the Plant homeodomain finger gene 6 (PHF6) plays an important role in apoptosis and proliferation in myeloid leukemia. Phf6 deficiency could delay the progression of RUNX1-ETO9a and MLL-AF9-induced AML in mice. PHF6 depletion inhibited the NF-κB signaling pathways by disrupting the PHF6-p50 complex and partially inhibiting the nuclear translocation of p50 to suppress the expression of BCL2. Treating PHF6 over-expressed myeloid leukemia cells with NF-κB inhibitor (BAY11-7082) significantly increased their apoptosis and decreased their proliferation. Taken together, in contrast to PHF6 as a tumor suppressor in T-ALL as reported, we found that PHF6 also plays a pro-oncogenic role in myeloid leukemia, and thus potentially to be a therapeutic target for treating myeloid leukemia patients.
Collapse
Affiliation(s)
- Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100039, China.
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Aizhong Fang
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Na Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaojian Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
59
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
60
|
Harmon LM, Triche TJ. Evolutionary genomic analysis for ALL. NATURE CANCER 2023; 4:1058-1059. [PMID: 37620419 DOI: 10.1038/s43018-023-00605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Affiliation(s)
- Lauren M Harmon
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
61
|
Atchley E, Weis TM, Derkach A, Galera PK, Xiao W, Glass J, DeWolf S, Roshal M, Shah R, Stump SE. Outcomes with high dose cytarabine and mitoxantrone induction for adults with mixed phenotype acute leukemia. Leuk Res 2023; 130:107311. [PMID: 37182399 DOI: 10.1016/j.leukres.2023.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
The optimal induction strategy for mixed phenotype acute leukemia (MPAL) is unknown, though retrospective data has shown improved remission rates and overall survival with acute lymphoblastic leukemia (ALL)-based regimens. At Memorial Sloan Kettering Cancer Center (MSKCC), the most utilized induction regimen for MPAL is high dose cytarabine plus mitoxantrone ("ALL-2"), though outcomes with this regimen are not well described. In this study, outcomes to first-line induction chemotherapy in 24 patients at MSKCC with MPAL classified by 2016 World Health Organization criteria are reported. The overall response rate was 94 % (16 of 17) in patients receiving ALL-2, including 86 % (6 of 7) in patients with extramedullary disease. Thirteen patients who received ALL-2 induction proceeded to allogeneic hematopoietic cell transplant (allo-HCT). The most common toxicity associated with ALL-2 was febrile neutropenia, documented in 12 patients. With a median follow-up of 37 months, median overall survival was not reached in the ALL-2 cohort, and 3-year overall survival was 62 %. In multivariate analysis, age ≥ 60 years and MPAL with isolated extramedullary disease were associated with significantly worse overall survival (P = .009 and P = .01, respectively). These results support further prospective investigation of ALL-2 as a front-line induction regimen for adults with MPAL.
Collapse
Affiliation(s)
- Evan Atchley
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA.
| | - Taylor M Weis
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Andriy Derkach
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Pallavi K Galera
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Jacob Glass
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Richa Shah
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Sarah E Stump
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| |
Collapse
|
62
|
Kim JC, Chan-Seng-Yue M, Ge S, Zeng AGX, Ng K, Gan OI, Garcia-Prat L, Flores-Figueroa E, Woo T, Zhang AXW, Arruda A, Chithambaram S, Dobson SM, Khoo A, Khan S, Ibrahimova N, George A, Tierens A, Hitzler J, Kislinger T, Dick JE, McPherson JD, Minden MD, Notta F. Transcriptomic classes of BCR-ABL1 lymphoblastic leukemia. Nat Genet 2023:10.1038/s41588-023-01429-4. [PMID: 37337105 DOI: 10.1038/s41588-023-01429-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
In BCR-ABL1 lymphoblastic leukemia, treatment heterogeneity to tyrosine kinase inhibitors (TKIs), especially in the absence of kinase domain mutations in BCR-ABL1, is poorly understood. Through deep molecular profiling, we uncovered three transcriptomic subtypes of BCR-ABL1 lymphoblastic leukemia, each representing a maturation arrest at a stage of B-cell progenitor differentiation. An earlier arrest was associated with lineage promiscuity, treatment refractoriness and poor patient outcomes. A later arrest was associated with lineage fidelity, durable leukemia remissions and improved patient outcomes. Each maturation arrest was marked by specific genomic events that control different transition points in B-cell development. Interestingly, these events were absent in BCR-ABL1+ preleukemic stem cells isolated from patients regardless of subtype, which supports that transcriptomic phenotypes are determined downstream of the leukemia-initialing event. Overall, our data indicate that treatment response and TKI efficacy are unexpected outcomes of the differentiation stage at which this leukemia transforms.
Collapse
Affiliation(s)
- Jaeseung C Kim
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sabrina Ge
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Karen Ng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Tristan Woo
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrea Arruda
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shivapriya Chithambaram
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Amanda Khoo
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Ann George
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anne Tierens
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John D McPherson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Mark D Minden
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
63
|
Liu YC, Geyer JT. Pediatric Hematopathology in the Era of Advanced Molecular Diagnostics: What We Know and How We Can Apply the Updated Classifications. Pathobiology 2023; 91:30-44. [PMID: 37311434 PMCID: PMC10857803 DOI: 10.1159/000531480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Pediatric hematologic malignancies often show genetic features distinct from their adult counterparts, which reflect the differences in their pathogenesis. Advances in the molecular diagnostics including the widespread use of next-generation sequencing technology have revolutionized the diagnostic workup for hematologic disorders and led to the identification of new disease subgroups as well as prognostic information that impacts the clinical treatment. The increasing recognition of the importance of germline predisposition in various hematologic malignancies also shapes the disease models and management. Although germline predisposition variants can occur in patients with myelodysplastic syndrome/neoplasm (MDS) of all ages, the frequency is highest in the pediatric patient population. Therefore, evaluation for germline predisposition in the pediatric group can have significant clinical impact. This review discusses the recent advances in juvenile myelomonocytic leukemia, pediatric acute myeloid leukemia, B-lymphoblastic leukemia/lymphoma, and pediatric MDS. This review also includes a brief discussion of the updated classifications from the International Consensus Classification (ICC) and the 5th edition World Health Organization (WHO) classification regarding these disease entities.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
64
|
Toner K, Schore R, Cheng J. Mixed-phenotype acute leukemia with BCL11B copy gain: What is the best strategy? Pediatr Blood Cancer 2023:e30441. [PMID: 37243386 DOI: 10.1002/pbc.30441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Keri Toner
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Reuven Schore
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Jinjun Cheng
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
- Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
- Departments of Pathology and Pediatrics, The George Washington, University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
65
|
Chen D, Liu G, Lewis MR, Li X, Ulrickson M, Nath R, Chen W. Myeloid/lymphoid neoplasm with ZMYM2::FGFR1 rearrangement: A complex trilineage phenotypic and clonal evolution with associated genomic alterations. Leuk Res Rep 2023; 19:100370. [PMID: 37275466 PMCID: PMC10236454 DOI: 10.1016/j.lrr.2023.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
We report a case of myeloid/lymphoid neoplasm with ZMYM2::FGFR1 rearrangement (MLNZMYM2::FGFR1) exhibiting a complex disease evolution. This neoplasm initially presented as T-lymphoblastic lymphoma (T-LBL) in lymph node and myeloproliferative neoplasm (MPN) with eosinophilia in bone marrow, then transitioned to systemic mastocytosis (SM) likely accompanied by additional JAK3 and other mutations and finally transformed to acute myeloid leukemia (AML) accompanied by additional/secondary genetic abnormality (gain of chromosome 21, der(13)t(8;13), and RUNX1 mutation). To our knowledge, this is the first case of MLNZMYM2::FGFR1 with a complex trilineage/phenotypic [T-cell (T-LBL), mast cell (SM), and myeloid (MPN and AML)] lineage evolution.
Collapse
Affiliation(s)
- Dong Chen
- Pathology and Laboratory Medicine, University of Connecticut, Farmington, CT, United States
| | - Guang Liu
- Department of Pathology, University of Arizona, College of Medicine, Phoenix, AZ, United States
| | - Michael R. Lewis
- Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, AZ, United States
| | - Xia Li
- Department of Pathology, University of Arizona, College of Medicine, Phoenix, AZ, United States
| | - Matthew Ulrickson
- Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, AZ, United States
| | - Rajneesh Nath
- Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, AZ, United States
| | - Weina Chen
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
66
|
Peretz CAC, Kennedy VE, Walia A, Delley CL, Koh A, Tran E, Clark IC, Hayford CE, D'Amato C, Xue Y, Fontanez KM, Roy R, Logan AC, Perl AE, Abate A, Olshen A, Smith CC. Multiomic Single Cell Sequencing Identifies Stemlike Nature of Mixed Phenotype Acute Leukemia and Provides Novel Risk Stratification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540305. [PMID: 37292835 PMCID: PMC10245585 DOI: 10.1101/2023.05.15.540305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly understood, therapeutic strategy remains unclear, and prognosis is poor. We performed multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. However, progressive acquisition of mutations is associated with increased expression of immunophenotypic markers of immaturity. Using SC transcriptional profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from other acute leukemias and indicative of high differentiation potential. Further, patients with the highest differentiation potential demonstrated inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA sequencing data and was predictive of survival in an independent patient cohort, suggesting utility for clinical risk stratification.
Collapse
Affiliation(s)
- Cheryl A C Peretz
- Divison of Hematology and Oncology, Department of Pediatrics, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anushka Walia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Koh
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Tran
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Iain C Clark
- Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | | | - Yi Xue
- Fluent Biosciences Inc., Watertown, MA
| | | | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Aaron C Logan
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander E Perl
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Abate
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Catherine C Smith
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
67
|
Smith E, Krishnan C. An unusual presentation of a pediatric patient with mixed phenotypic acute leukemia with PICALM::MLLT10 gene rearrangement. Pediatr Hematol Oncol 2023; 40:778-785. [PMID: 37171905 DOI: 10.1080/08880018.2023.2197938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/14/2023]
Abstract
Mixed phenotype leukemia (MPAL) is a rare type of acute leukemia with blasts that co-express antigens of more than one lineage on the same cell or that have separate populations of blasts of different lineages. Here, we report a five-year-old male with inguinal lymphadenopathy diagnosed with MPAL-T/Myeloid MPAL-T/M. The clone demonstrated lineage and immunophenotypically distinct blast populations in the bone marrow and lymph nodes. Bone marrow cytogenetic studies confirmed a rare PICALM::MLLT10 gene fusion. Patients with this fusion gene have been found to have high risk features and poor survival rates in several small case series. Our case report highlights an unusual presentation in medullary and extramedullary sites, within a pediatric patient. At the time of submission of this case report, the patient has shown good response to chemotherapy and continues to be in remission.
Collapse
Affiliation(s)
- Erlyn Smith
- Department of Pediatrics, Studer Family Children's Hospital at Ascension Sacred Heart, University of Florida, Pensacola, Florida, USA
| | - Chandra Krishnan
- Department of Pathology, University of Texas, Dell Children's Medical Center, Austin, Texas, USA
| |
Collapse
|
68
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
69
|
Davis K, Sheikh T, Aggarwal N. Emerging molecular subtypes and therapies in acute lymphoblastic leukemia. Semin Diagn Pathol 2023; 40:202-215. [PMID: 37120350 DOI: 10.1053/j.semdp.2023.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
Tremendous strides have been made in the molecular and cytogenetic classification of acute lymphoblastic leukemia based on gene expression profiling data, leading to an expansion of entities in the recent International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias and 2022 WHO Classification of Tumours: Haematolymphoid Tumors, 5th edition. This increased diagnostic and therapeutic complexity can be overwhelming, and this review compares nomenclature differences between the ICC and WHO 5th edition publications, compiles key features of each entity, and provides a diagnostic algorithmic approach. In covering B-lymphoblastic leukemia (B-ALL), we divided the entities into established (those present in the revised 4th edition WHO) and novel (those added to either the ICC or WHO 5th edition) groups. The established B-ALL entities include B-ALL with BCR::ABL1 fusion, BCR::ABL1-like features, KMT2A rearrangement, ETV6::RUNX1 rearrangement, high hyperdiploidy, hypodiploidy (focusing on near haploid and low hypodiploid), IGH::IL3 rearrangement, TCF3::PBX1 rearrangement, and iAMP21. The novel B-ALL entities include B-ALL with MYC rearrangement; DUX4 rearrangement; MEF2D rearrangement; ZNF384 or ZNF362 rearrangement, NUTM1 rearrangement; HLF rearrangement; UBTF::ATXN7L3/PAN3,CDX2; mutated IKZF1 N159Y; mutated PAX5 P80R; ETV6::RUNX1-like features; PAX5 alteration; mutated ZEB2 (p.H1038R)/IGH::CEBPE; ZNF384 rearranged-like; KMT2A-rearranged-like; and CRLF2 rearrangement (non-Ph-like). Classification of T-ALL is complex with some variability in how the subtypes are defined in recent literature. It was classified as early T-precursor lymphoblastic leukemia/lymphoma and T-ALL, NOS in the WHO revised 4th edition and WHO 5th edition. The ICC added an entity into early T-cell precursor ALL, BCL11B-activated, and also added provisional entities subclassified based on transcription factor families that are aberrantly activated.
Collapse
Affiliation(s)
- Katelynn Davis
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA
| | | | - Nidhi Aggarwal
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA.
| |
Collapse
|
70
|
Lazzarotto D, Tanasi I, Vitale A, Piccini M, Dargenio M, Giglio F, Forghieri F, Fracchiolla N, Cerrano M, Todisco E, Papayannidis C, Leoncin M, Defina M, Guolo F, Pasciolla C, Delia M, Chiusolo P, Mulè A, Candoni A, Bonifacio M, Pizzolo G, Foà R. Multicenter retrospective analysis of clinical outcome of adult patients with mixed-phenotype acute leukemia treated with acute myeloid leukemia-like or acute lymphoblastic leukemia-like chemotherapy and impact of allogeneic stem cell transplantation: a Campus ALL study. Ann Hematol 2023; 102:1099-1109. [PMID: 36959485 DOI: 10.1007/s00277-023-05162-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/04/2023] [Indexed: 03/25/2023]
Abstract
Mixed-phenotype acute leukemia (MPAL) is a rare disease. Treatment is often similar to that of acute lymphoblastic leukemia (ALL), but the outcome in adults and the role of allogeneic stem cell transplantation (AlloSCT) are not well defined. We report on 77 adult patients diagnosed with MPAL over the last 10 years and treated with a curative intent. Median age was 49 years; 7.6% of cases had a BCR::ABL1 rearrangement. Thirty patients (39%) were treated with an acute myeloid leukemia (AML)-like induction and 47 (61%) with an ALL-like scheme. The complete remission (CR) rate was 67.6% and an ALL-like therapy was associated with a better CR rate (P = 0.048). The median OS was 41.9 months; age ≤ 60 years was associated with a better OS (67 vs 26 months, P = 0.014). An AlloSCT was performed in 50 patients (65%). The 5-year OS of transplanted patients was 54%. The OS post-AlloSCT was better in patients who were minimal residual disease (MRD)-negative prior to transplant (75.8% vs 45.2%, P = 0.06). This study shows that MPAL patients respond better to an ALL-like induction therapy; that consolidation therapy should include, whenever possible, an AlloSCT and that MRD negativity should be a primary endpoint of treatment.
Collapse
Affiliation(s)
- Davide Lazzarotto
- Clinica Ematologica-Centro Trapianti e Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy.
| | - Ilaria Tanasi
- Dipartimento Di Medicina, Sezione Di Ematologia, Università Di Verona, Verona, Italy
| | - Antonella Vitale
- Dipartimento Di Medicina Traslazionale E Di Precisione, "Sapienza" Università Di Roma, Rome, Italy
| | - Matteo Piccini
- SODc Ematologia, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | | | - Fabio Giglio
- Unità Di Ematologia E Trapianto Di Midollo Osseo, IRCCS Ospedale San Raffaele Di Milano, Milan, Italy
| | - Fabio Forghieri
- S.C. Ematologia, Azienda Ospedaliero Universitaria Di Modena, Modena, Italy
| | - Nicola Fracchiolla
- U.O. Ematologia, IRCCS Ca' Granda Ospedale Maggiore Policlinico Di Milano, Milan, Italy
| | - Marco Cerrano
- S.C. Ematologia, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Elisabetta Todisco
- Onco-Hematology Division, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Ospedale Di Busto Arsizio, ASST Valle Olona, Busto Arsizio, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | - Matteo Leoncin
- UOC Ematologia, Azienda ULSS 3 Serenissima, Ospedale Dell'Angelo, Venice-Mestre, Italy
| | - Marzia Defina
- UOC Ematologia, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Fabio Guolo
- Clinica Ematologica, Dipartimento Di Medicina Interna (DiMI), Università Degli Studi Di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Mario Delia
- U.O. Ematologia Con Trapianto, Azienda Ospedaliero-Universitaria Consorziale, Policlinico Di Bari, Bari, Italy
| | - Patrizia Chiusolo
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione Di Ematologia, Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonino Mulè
- Divisione Di Ematologia Ad Indirizzo Oncologico, Riuniti Villa Sofia-Cervello, A.O. Ospedali, Palermo, Italy
| | - Anna Candoni
- Clinica Ematologica-Centro Trapianti e Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | | | - Giovanni Pizzolo
- Dipartimento Di Medicina, Sezione Di Ematologia, Università Di Verona, Verona, Italy
| | - Robin Foà
- Dipartimento Di Medicina Traslazionale E Di Precisione, "Sapienza" Università Di Roma, Rome, Italy
| |
Collapse
|
71
|
Polycomb Alterations in Acute Myeloid Leukaemia: From Structure to Function. Cancers (Basel) 2023; 15:cancers15061693. [PMID: 36980579 PMCID: PMC10046783 DOI: 10.3390/cancers15061693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Epigenetic dysregulation is a hallmark of many haematological malignancies and is very frequent in acute myeloid leukaemia (AML). A cardinal example is the altered activity of the Polycomb Repressive Complex 2 (PRC2) due to somatic mutations and deletions in genes encoding PRC2 core factors that are necessary for correct complex assembly. These genetic alterations typically lead to reduced histone methyltransferase activity that, in turn, has been strongly linked to poor prognosis and chemoresistance. In this review, we provide an overview of genetic alterations of PRC components in AML, with particular reference to structural and functional features of PRC2 factors. We further review genetic interactions between these alterations and other AML-associated mutations in both adult and paediatric leukaemias. Finally, we discuss reported prognostic links between PRC2 mutations and deletions and disease outcomes and potential implications for therapy.
Collapse
|
72
|
Semchenkova A, Zerkalenkova E, Demina I, Kashpor S, Volchkov E, Zakharova E, Larin S, Olshanskaya Y, Novichkova G, Maschan A, Maschan M, Popov A. Recognizing Minor Leukemic Populations with Monocytic Features in Mixed-Phenotype Acute Leukemia by Flow Cell Sorting Followed by Cytogenetic and Molecular Studies: Report of Five Exemplary Cases. Int J Mol Sci 2023; 24:ijms24065260. [PMID: 36982331 PMCID: PMC10049081 DOI: 10.3390/ijms24065260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Mixed-phenotype acute leukemia (MPAL), a rare and heterogeneous category of acute leukemia, is characterized by cross-lineage antigen expression. Leukemic blasts in MPAL can be represented either by one population with multiple markers of different lineages or by several single-lineage populations. In some cases, a major blast population may coexist with a smaller population that has minor immunophenotypic abnormalities and may be missed even by an experienced pathologist. To avoid misdiagnosis, we suggest sorting doubtful populations and leukemic blasts and searching for similar genetic aberrations. Using this approach, we examined questionable monocytic populations in five patients with dominant leukemic populations of B-lymphoblastic origin. Cell populations were isolated either for fluorescence in situ hybridization or for clonality assessment by multiplex PCR or next-generation sequencing. In all cases, monocytic cells shared the same gene rearrangements with dominant leukemic populations, unequivocally confirming the same leukemic origin. This approach is able to identify implicit cases of MPAL and therefore leads to the necessary clinical management for patients.
Collapse
Affiliation(s)
- Alexandra Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Correspondence:
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Irina Demina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Svetlana Kashpor
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Egor Volchkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Zakharova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergey Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| |
Collapse
|
73
|
Kovach AE, Raca G. Modern Classification and Management of Pediatric B-cell Leukemia and Lymphoma. Surg Pathol Clin 2023; 16:249-266. [PMID: 37149359 DOI: 10.1016/j.path.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Although pediatric hematopathology overlaps with that of adults, certain forms of leukemia and lymphoma, and many types of reactive conditions affecting the bone marrow and lymph nodes, are unique to children. As part of this series focused on lymphomas, this article (1) details the novel subtypes of lymphoblastic leukemia seen primarily in children and described since the 2017 World Health Organization classification and (2) discusses unique concepts in pediatric hematopathology, including nomenclature changes and evaluation of surgical margins in selected lymphomas.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Division of Laboratory Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Clinical Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| | - Gordana Raca
- Clinical Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; Division of Genomic Medicine, Department of Pathology and Laboratory Medicine, Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
74
|
Ryland GL, Umeda M, Holmfeldt L, Lehmann S, Herlin MK, Ma J, Khanlari M, Rubnitz JE, Ries RE, Kosasih HJ, Ekert PG, Goh HN, Tiong IS, Grimmond SM, Haferlach C, Day RB, Ley TJ, Meshinchi S, Ma X, Blombery P, Klco JM. Description of a novel subtype of acute myeloid leukemia defined by recurrent CBFB insertions. Blood 2023; 141:800-805. [PMID: 36179268 PMCID: PMC10273080 DOI: 10.1182/blood.2022017874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Georgina L. Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Linda Holmfeldt
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- The Beijer Laboratory, Uppsala, Sweden
| | - Sören Lehmann
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mahsa Khanlari
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Paul G. Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Hwee Ngee Goh
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ing S. Tiong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sean M. Grimmond
- Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | | | - Ryan B. Day
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
75
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Parciante E, Coccaro N, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. IKAROS in Acute Leukemia: A Positive Influencer or a Mean Hater? Int J Mol Sci 2023; 24:3282. [PMID: 36834692 PMCID: PMC9961161 DOI: 10.3390/ijms24043282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
One key process that controls leukemogenesis is the regulation of oncogenic gene expression by transcription factors acting as tumor suppressors. Understanding this intricate mechanism is crucial to elucidating leukemia pathophysiology and discovering new targeted treatments. In this review, we make a brief overview of the physiological role of IKAROS and the molecular pathway that contributes to acute leukemia pathogenesis through IKZF1 gene lesions. IKAROS is a zinc finger transcription factor of the Krüppel family that acts as the main character during hematopoiesis and leukemogenesis. It can activate or repress tumor suppressors or oncogenes, regulating the survival and proliferation of leukemic cells. More than 70% of Ph+ and Ph-like cases of acute lymphoblastic leukemia exhibit IKZF1 gene variants, which are linked to worse treatment outcomes in both childhood and adult B-cell precursor acute lymphoblastic leukemia. In the last few years, much evidence supporting IKAROS involvement in myeloid differentiation has been reported, suggesting that loss of IKZF1 might also be a determinant of oncogenesis in acute myeloid leukemia. Considering the complicated "social" network that IKAROS manages in hematopoietic cells, we aim to focus on its involvement and the numerous alterations of molecular pathways it can support in acute leukemias.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Elisa Parciante
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Nicoletta Coccaro
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Angela Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
76
|
Chiaretti S, Taherinasab A, Della Starza I, Canichella M, Ansuinelli M, De Propris MS, Messina M, Spinelli O, Santoro A, De Novi LA, Cardinali D, Schipani M, Arena V, Bassan R, Guarini A, Foà R. ZNF384 rearrangement is the most frequent genetic lesion in adult PH-negative and Ph-like-negative B-other acute lymphoblastic leukemia. Biological and clinical findings. Leuk Lymphoma 2023; 64:483-486. [PMID: 36533589 DOI: 10.1080/10428194.2022.2148217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Akram Taherinasab
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy.,Fondazione GIMEMA Onlus, Rome, Italy
| | - Martina Canichella
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maria Stefania De Propris
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Orietta Spinelli
- Haematology and Bone Marrow Transplant Unit, ASST-Papa Giovanni XXIII, Bergamo
| | - Alessandra Santoro
- Department of Hemato Oncology, AOR "VillaSofia-Cervello", Palermo, Italy
| | - Lucia Anna De Novi
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Deborah Cardinali
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Mattia Schipani
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | | | - Renato Bassan
- Division of Hematology, Ospedale dell'Angelo, Mestre, Venezia, Italy
| | - Anna Guarini
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
77
|
Iacobucci I, Witkowski MT, Mullighan CG. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights. Blood 2023; 141:356-368. [PMID: 35926109 PMCID: PMC10023733 DOI: 10.1182/blood.2022016954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness. There are multiple single-cell techniques for profiling a specific modality, including RNA, DNA, chromatin accessibility and methylation; and an expanding range of approaches for simultaneous analysis of multiple modalities. Single-cell sequencing approaches have also enabled characterization of cell-intrinsic and -extrinsic features of ALL biology. In this review we describe these approaches and highlight the extensive heterogeneity that underpins ALL gene expression, cellular differentiation, and clonal architecture throughout disease pathogenesis and treatment resistance. In addition, we discuss the importance of the dynamic interactions that occur between leukemia cells and the nonleukemia microenvironment. We discuss potential opportunities and limitations of single-cell sequencing for the study of ALL biology and treatment responsiveness.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
78
|
Ziegler N, Cortés-López M, Alt F, Sprang M, Ustjanzew A, Lehmann N, El Malki K, Wingerter A, Russo A, Beck O, Attig S, Roth L, König J, Paret C, Faber J. Analysis of RBP expression and binding sites identifies PTBP1 as a regulator of CD19 expression in B-ALL. Oncoimmunology 2023; 12:2184143. [PMID: 36875548 PMCID: PMC9980455 DOI: 10.1080/2162402x.2023.2184143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Despite massive improvements in the treatment of B-ALL through CART-19 immunotherapy, a large number of patients suffer a relapse due to loss of the targeted epitope. Mutations in the CD19 locus and aberrant splicing events are known to account for the absence of surface antigen. However, early molecular determinants suggesting therapy resistance as well as the time point when first signs of epitope loss appear to be detectable are not enlightened so far. By deep sequencing of the CD19 locus, we identified a blast-specific 2-nucleotide deletion in intron 2 that exists in 35% of B-ALL samples at initial diagnosis. This deletion overlaps with the binding site of RNA binding proteins (RBPs) including PTBP1 and might thereby affect CD19 splicing. Moreover, we could identify a number of other RBPs that are predicted to bind to the CD19 locus being deregulated in leukemic blasts, including NONO. Their expression is highly heterogeneous across B-ALL molecular subtypes as shown by analyzing 706 B-ALL samples accessed via the St. Jude Cloud. Mechanistically, we show that downregulation of PTBP1, but not of NONO, in 697 cells reduces CD19 total protein by increasing intron 2 retention. Isoform analysis in patient samples revealed that blasts, at diagnosis, express increased amounts of CD19 intron 2 retention compared to normal B cells. Our data suggest that loss of RBP functionality by mutations altering their binding motifs or by deregulated expression might harbor the potential for the disease-associated accumulation of therapy-resistant CD19 isoforms.
Collapse
Affiliation(s)
- Nicole Ziegler
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Francesca Alt
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Biozentrum I, Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Lehmann
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Khalifa El Malki
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arthur Wingerter
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexandra Russo
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Olaf Beck
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Attig
- Department of Translational Oncology and Immunology at the Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lea Roth
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Claudia Paret
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Faber
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
79
|
Duffield AS, Mullighan CG, Borowitz MJ. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch 2023; 482:11-26. [PMID: 36422706 PMCID: PMC10646822 DOI: 10.1007/s00428-022-03448-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
The updated International Consensus Classification (ICC) of B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL) includes both revisions to subtypes previously outlined in the 2016 WHO classification and several newly described entities. The ICC classification incorporates recent clinical, cytogenetic, and molecular data, with a particular emphasis on whole transcriptome analysis and gene expression (GEX) clustering studies. B-ALL classification is modified to further subclassify BCR::ABL1-positive B-ALL and hypodiploid B-ALL. Additionally, nine new categories of B-ALL are defined, including seven that contain distinguishing gene rearrangements, as well as two new categories that are characterized by a specific single gene mutation. Four provisional entities are also included in the updated B-ALL classification, although definitive identification of these subtypes requires GEX studies. T-ALL classification is also updated to incorporate BCL11B-activating rearrangements into early T-precursor (ETP) ALL taxonomy. Additionally, eight new provisional entities are added to the T-ALL subclassification. The clinical implications of the new entities are discussed, as are practical approaches to the use of different technologies in diagnosis. The enhanced specificity of the new classification will allow for improved risk stratification and optimized treatment plans for patients with ALL.
Collapse
Affiliation(s)
- Amy S. Duffield
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
80
|
Asaulenko ZP, Spiridonov IN, Baram DV, Krivolapov YA. [WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, 2022 (5th edition): Myeloid and Histiocytic Tumors]. Arkh Patol 2023; 85:36-44. [PMID: 37814848 DOI: 10.17116/patol20238505136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The article reviews the changes in the structure of classification, diagnostic criteria for myeloid and histiocytic neoplasms in the 5th edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues (2022). Information is presented regarding new nosological forms, renaming and abolition of some previously existing ones. The importance of molecular genetic studies in the isolation of myeloid and histiocytic neoplasms and the need to apply these studies in clinical practice are emphasized. Myeloid and histiocytic precancerous and proliferative processes, genetic tumor syndromes, introduced into the classification for the first time, are considered.
Collapse
Affiliation(s)
- Z P Asaulenko
- St. Petersburg City Hospital No 40, St. Petersburg, Russia
| | - I N Spiridonov
- St. Petersburg City Hospital No 40, St. Petersburg, Russia
| | - D V Baram
- Russian Research Institute of Hematology and Transfusiology, St. Petersburg, Russia
| | - Yu A Krivolapov
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| |
Collapse
|
81
|
Weinberg OK, Porwit A, Orazi A, Hasserjian RP, Foucar K, Duncavage EJ, Arber DA. The International Consensus Classification of acute myeloid leukemia. Virchows Arch 2023; 482:27-37. [PMID: 36264379 DOI: 10.1007/s00428-022-03430-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 01/24/2023]
Abstract
Acute myeloid leukemias (AMLs) are overlapping hematological neoplasms associated with rapid onset, progressive, and frequently chemo-resistant disease. At diagnosis, classification and risk stratification are critical for treatment decisions. A group with expertise in the clinical, pathologic, and genetic aspects of these disorders developed the International Consensus Classification (ICC) of acute leukemias. One of the major changes includes elimination of AML with myelodysplasia-related changes group, while creating new categories of AML with myelodysplasia-related cytogenetic abnormalities, AML with myelodysplasia-related gene mutations, and AML with mutated TP53. Most of recurrent genetic abnormalities, including mutations in NPM1, that define specific subtypes of AML have a lower requirement of ≥ 10% blasts in the bone marrow or blood, and a new category of MDS/AML is created for other case types with 10-19% blasts. Prior therapy, antecedent myeloid neoplasms or underlying germline genetic disorders predisposing to the development of AML are now recommended as qualifiers to the initial diagnosis of AML. With these changes, classification of AML is updated to include evolving genetic, clinical, and morphologic findings.
Collapse
Affiliation(s)
- Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, BioCenter, 2230 Inwood Rd, Dallas, TX, EB03.220G75235, USA.
| | - Anna Porwit
- Division of Oncology and Pathology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, El Paso, TX, USA
| | | | - Kathryn Foucar
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
82
|
Wang Q, Cai WZ, Wang QR, Zhu MQ, Yan LZ, Yu Y, Bao XB, Shen HJ, Yao H, Xie JD, Zhang TT, Zhang L, Xu XY, Shan Z, Liu H, Cen JN, Liu DD, Pan JL, Lu DR, Chen J, Xu Y, Zhang R, Wang Y, Xue SL, Miao M, Han Y, Tang XW, Qiu HY, Sun AN, Huang JY, Dai HP, Wu DP, Chen SN. Integrative genomic and transcriptomic profiling reveals distinct molecular subsets in adult mixed phenotype acute leukemia. Am J Hematol 2023; 98:66-78. [PMID: 36219502 DOI: 10.1002/ajh.26758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023]
Abstract
Mixed phenotype acute leukemia (MPAL) is a subtype of leukemia in which lymphoid and myeloid markers are co-expressed. Knowledge regarding the genetic features of MPAL is lacking due to its rarity and heterogeneity. Here, we applied an integrated genomic and transcriptomic approach to explore the molecular characteristics of 176 adult patients with MPAL, including 86 patients with T-lymphoid/myeloid MPAL (T/My MPAL-NOS), 42 with Ph+ MPAL, 36 with B-lymphoid/myeloid MPAL (B/My MPAL-NOS), 4 with t(v;11q23), and 8 with MPAL, NOS, rare types. Genetically, T/My MPAL-NOS was similar to B/T MPAL-NOS but differed from Ph+ MPAL and B/My MPAL-NOS. T/My MPAL-NOS exhibited higher CEBPA, DNMT3A, and NOTCH1 mutations. Ph+ MPAL demonstrated higher RUNX1 mutations. B/T MPAL-NOS showed higher NOTCH1 mutations. By integrating next-generation sequencing and RNA sequencing data of 89 MPAL patients, we defined eight molecular subgroups (G1-G8) with distinct mutational and gene expression characteristics. G1 was associated with CEBPA mutations, G2 and G3 with NOTCH1 mutations, G4 with BCL11B rearrangement and FLT3 mutations, G5 and G8 with BCR::ABL1 fusion, G6 with KMT2A rearrangement/KMT2A rearrangement-like features, and G7 with ZNF384 rearrangement/ZNF384 rearrangement-like characteristics. Subsequently, we analyzed single-cell RNA sequencing data from five patients. Groups G1, G2, G3, and G4 exhibited overexpression of hematopoietic stem cell disease-like and common myeloid progenitor disease-like signatures, G5 and G6 had high expression of granulocyte-monocyte progenitor disease-like and monocyte disease-like signatures, and G7 and G8 had common lymphoid progenitor disease-like signatures. Collectively, our findings indicate that integrative genomic and transcriptomic profiling may facilitate more precise diagnosis and develop better treatment options for MPAL.
Collapse
Affiliation(s)
- Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Wen-Zhi Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Qin-Rong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ming-Qing Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ling-Zhi Yan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yan Yu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Xie-Bing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hong-Jie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hong Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jun-Dan Xie
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Tong-Tong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Xiao-Yu Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zhe Shan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jian-Nong Cen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Dan-Dan Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jin-Lan Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Da-Ru Lu
- Key Laboratory of Birth Defects and Reproductive Health of National Health Commission, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, People's Republic of China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ri Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Miao Miao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Xiao-Wen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hui-Ying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ai-Ning Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jin-Yan Huang
- Biomedical Big Data Center, Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
83
|
Eisa YA, Guo Y, Yang FC. The Role of PHF6 in Hematopoiesis and Hematologic Malignancies. Stem Cell Rev Rep 2023; 19:67-75. [PMID: 36008597 DOI: 10.1007/s12015-022-10447-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/29/2023]
Abstract
Epigenetic regulation of gene expression represents an important mechanism in the maintenance of stem cell function. Alterations in epigenetic regulation contribute to the pathogenesis of hematological malignancies. Plant homeodomain finger protein 6 (PHF6) is a member of the plant homeodomain (PHD)-like zinc finger family of proteins that is involved in transcriptional regulation through the modification of the chromatin state. Germline mutation of PHF6 is the causative genetic alteration of the X-linked mental retardation Borjeson-Forssman-Lehmann syndrome (BFLS). Somatic mutations in PHF6 are identified in human leukemia, such as adult T-cell acute lymphoblastic leukemia (T-ALL, ~ 38%), pediatric T-ALL (~ 16%), acute myeloid leukemia (AML, ~ 3%), chronic myeloid leukemia (CML, ~ 2.5%), mixed phenotype acute leukemia (MPAL, ~ 20%), and high-grade B-cell lymphoma (HGBCL, ~ 3%). More recent studies imply an oncogenic effect of PHF6 in B-cell acute lymphoblastic leukemia (B-ALL) and solid tumors. These data demonstrate that PHF6 could act as a double-edged sword, either a tumor suppressor or an oncogene, in a lineage-dependent manner. However, the underlying mechanisms of PHF6 in normal hematopoiesis and leukemogenesis remain largely unknown. In this review, we summarize current knowledge of PHF6, emphasizing the role of PHF6 in hematological malignancies. Epigenetic regulation of PHF6 in B-ALL. PHF6 maintains a chromatin structure that is permissive to B-cell identity genes, but not T-cell-specific genes (left). Loss of PHF6 leads to aberrant expression of B-cell- and T-cell-specific genes resulting from lineage promiscuity and binding of T-cell transcription factors (right).
Collapse
Affiliation(s)
- Yusra A Eisa
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ying Guo
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Feng-Chun Yang
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA. .,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
84
|
Sudutan T, Erbilgin Y, Hatirnaz Ng O, Karaman S, Karakas Z, Kucukcankurt F, Celkan T, Timur C, Ozdemir GN, Hacısalihoglu S, Gelen SA, Sayitoğlu M. Zinc finger protein 384 ( ZNF384) impact on childhood mixed phenotype acute leukemia and B-cell precursor acute lymphoblastic leukemia. Leuk Lymphoma 2022; 63:2931-2939. [PMID: 35921545 DOI: 10.1080/10428194.2022.2095630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a heterogeneous malignancy and consists of several genetic abnormalities. Some of these abnormalities are used in clinics for risk calculation and treatment decisions. Patients with ZNF384 rearrangements had a distinct expression profile regardless of their diagnosis, BCP-ALL or mixed phenotype acute leukemia (MPAL) and defined as a new subtype of ALL. In this study, we screened 42 MPAL and 91 BCP-ALL patients for the most common ZNF384 fusions; ZNF384::TCF3, ZNF384::EP300 and ZNF384::TAF15 by using PCR. We identified ZNF384 fusions in 9.5% of MPAL and 7.6% of BCP-ALL. A novel breakpoint was identified in ZNF384::TCF3 fusion in one BCP-ALL patient. T-myeloid MPAL patients showed significantly lower ZNF384 expression compared to lymphoid groups. Patients with ZNF384r had intermediate survival rates based on other subtypes. Prognostic and patient-specific treatment evaluation of ZNF384 fusions in both ALL and MPAL might help to improve risk characterization of patients.
Collapse
Affiliation(s)
- Tugce Sudutan
- Genetics Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Yucel Erbilgin
- Genetics Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Genetics Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Medical Biology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Pediatric Hematology Department, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Karakas
- Pediatric Hematology Department, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | | | - Tiraje Celkan
- Faculty of Medicine, Pediatric Hematology Oncology Department, Istinye University, Istanbul, Turkey
| | - Cetin Timur
- Pediatric Hematology Department, Yeditepe University Hospital, Istanbul, Turkey
| | - Gul Nihal Ozdemir
- Faculty of Medicine, Pediatric Hematology Oncology Department, Istinye University, Istanbul, Turkey.,Faculty of Medicine, Division of Pediatric Hematology, Kocaeli University, Istanbul, Turkey
| | - Sadan Hacısalihoglu
- Faculty of Medicine, Division of Pediatric Hematology, Kocaeli University, Istanbul, Turkey
| | - Sema Aylan Gelen
- Pediatric Hematology Division, Istanbul Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Müge Sayitoğlu
- Genetics Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
85
|
Yu CH, Wu G, Chang CC, Jou ST, Lu MY, Lin KH, Chen SH, Wu KH, Huang FL, Cheng CN, Chang HH, Hedges D, Wang JL, Yen HJ, Li MJ, Chou SW, Hung CT, Lin ZS, Lin CY, Chen HY, Ni YL, Hsu YC, Lin DT, Lin SW, Yang JJ, Pui CH, Yu SL, Yang YL. Sequential Approach to Improve the Molecular Classification of Childhood Acute Lymphoblastic Leukemia. J Mol Diagn 2022; 24:1195-1206. [PMID: 35963521 PMCID: PMC9667711 DOI: 10.1016/j.jmoldx.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
Identification of specific leukemia subtypes is a key to successful risk-directed therapy in childhood acute lymphoblastic leukemia (ALL). Although RNA sequencing (RNA-seq) is the best approach to identify virtually all specific leukemia subtypes, the routine use of this method is too costly for patients in resource-limited countries. This study enrolled 295 patients with pediatric ALL from 2010 to 2020. Routine screening could identify major cytogenetic alterations in approximately 69% of B-cell ALL (B-ALL) cases by RT-PCR, DNA index, and multiplex ligation-dependent probe amplification. STIL-TAL1 was present in 33% of T-cell ALL (T-ALL) cases. The remaining samples were submitted for RNA-seq. More than 96% of B-ALL cases and 74% of T-ALL cases could be identified based on the current molecular classification using this sequential approach. Patients with Philadelphia chromosome-like ALL constituted only 2.4% of the entire cohort, a rate even lower than those with ZNF384-rearranged (4.8%), DUX4-rearranged (6%), and Philadelphia chromosome-positive (4.4%) ALL. Patients with ETV6-RUNX1, high hyperdiploidy, PAX5 alteration, and DUX4 rearrangement had favorable prognosis, whereas those with hypodiploid and KMT2A and MEF2D rearrangement ALL had unfavorable outcomes. With the use of multiplex ligation-dependent probe amplification, DNA index, and RT-PCR in B-ALL and RT-PCR in T-ALL followed by RNA-seq, childhood ALL can be better classified to improve clinical assessments.
Collapse
Affiliation(s)
- Chih-Hsiang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chia-Ching Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Shu-Huey Chen
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital and School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fang-Liang Huang
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Neng Cheng
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dale Hedges
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinn-Li Wang
- Division of Hematology Oncology, Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Ju Yen
- Department of Pediatrics, Taipei Veterans General Hospital and National Yang-Ming Chiao-Tung University School of Medicine, Taipei, Taiwan
| | - Meng-Ju Li
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Shu-Wei Chou
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
| | - Yu-Ling Ni
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dong-Tsamn Lin
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jun J Yang
- Department of Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
86
|
|
87
|
Tirtakusuma R, Szoltysek K, Milne P, Grinev VV, Ptasinska A, Chin PS, Meyer C, Nakjang S, Hehir-Kwa JY, Williamson D, Cauchy P, Keane P, Assi SA, Ashtiani M, Kellaway SG, Imperato MR, Vogiatzi F, Schweighart EK, Lin S, Wunderlich M, Stutterheim J, Komkov A, Zerkalenkova E, Evans P, McNeill H, Elder A, Martinez-Soria N, Fordham SE, Shi Y, Russell LJ, Pal D, Smith A, Kingsbury Z, Becq J, Eckert C, Haas OA, Carey P, Bailey S, Skinner R, Miakova N, Collin M, Bigley V, Haniffa M, Marschalek R, Harrison CJ, Cargo CA, Schewe D, Olshanskaya Y, Thirman MJ, Cockerill PN, Mulloy JC, Blair HJ, Vormoor J, Allan JM, Bonifer C, Heidenreich O, Bomken S. Epigenetic regulator genes direct lineage switching in MLL/AF4 leukemia. Blood 2022; 140:1875-1890. [PMID: 35839448 PMCID: PMC10488321 DOI: 10.1182/blood.2021015036] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.
Collapse
Affiliation(s)
- Ricky Tirtakusuma
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katarzyna Szoltysek
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vasily V. Grinev
- Department of Genetics, the Faculty of Biology, Belarusian State University, Minsk, Republic of Belarus
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paulynn S. Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claus Meyer
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Salam A. Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Minoo Ashtiani
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sophie G. Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria R. Imperato
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Fotini Vogiatzi
- ALL-BFM Study Group, Pediatric Hematology/Oncology, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | | - Shan Lin
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mark Wunderlich
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Alexander Komkov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Elena Zerkalenkova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hesta McNeill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Elder
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Natalia Martinez-Soria
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah E. Fordham
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yuzhe Shi
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lisa J. Russell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deepali Pal
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, University of York, York, United Kingdom
| | | | - Jennifer Becq
- Illumina Cambridge Ltd., Great Abington, United Kingdom
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oskar A. Haas
- St Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter Carey
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Roderick Skinner
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Natalia Miakova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Dermatology and Newcastle National Institute of Health Research (NIHR), Newcastle Biomedical Research Centre, Newcastle Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - Christine J. Harrison
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Denis Schewe
- Department of Pediatrics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yulia Olshanskaya
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Michael J. Thirman
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Peter N. Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James C. Mulloy
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Helen J. Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - James M. Allan
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
88
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
89
|
Yasuda T, Sanada M, Tsuzuki S, Hayakawa F. Oncogenic lesions and molecular subtypes in adults with B-cell acute lymphoblastic leukemia. Cancer Sci 2022; 114:8-15. [PMID: 36106363 PMCID: PMC9807527 DOI: 10.1111/cas.15583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL), a genetically heterogeneous disease, is classified into different molecular subtypes that are defined by recurrent gene rearrangements, gross chromosomal abnormalities, or specific gene mutations. Cells with these genetic alterations acquire a leukemia-initiating ability and show unique expression profiles. The distribution of B-ALL molecular subtypes is greatly dependent on age, which also affects treatment responsiveness and long-term survival, partly accounting for the inferior outcome in adolescents and young adults (AYA) and (older) adults with B-ALL. Recent advances in sequencing technology, especially RNA sequencing and the application of these technologies in large B-ALL cohorts have uncovered B-ALL molecular subtypes prevalent in AYA and adults. These new insights supply more precise estimations of prognoses and targeted therapies informed by sequencing results, as well as a deeper understanding of the genetic basis of AYA/adult B-ALL. This article provides an account of these technological advances and an overview of the recent major findings of B-ALL molecular subtypes in adults.
Collapse
Affiliation(s)
- Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
90
|
Hennawi M, Pakasticali N, Tashkandi H, Hussaini M. Genomic Landscape of Mixed-Phenotype Acute Leukemia. Int J Mol Sci 2022; 23:11259. [PMID: 36232559 PMCID: PMC9569865 DOI: 10.3390/ijms231911259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mixed-phenotype leukemia (MPAL) is a type of acute leukemia in which the blast population shows mixed features of myeloid, T-lymphoid, and/or B-lymphoid differentiation. MPALs are rare and carry a poor prognosis, thus, often pose both a diagnostic and therapeutic challenge. Conventionally, the diagnosis of MPAL requires either a single blast population with a lineage-defining phenotypic expression of multiple lineages (myeloid, B-cell and/or T-cell) (biphenotypic) or two distinct blast populations that each independently satisfy criteria for designation as AML, B-ALL, and/or T-ALL (bilineage). Given the rarity of MPAL, minimal studies have been performed to describe the genomic landscape of these neoplasms. IRB approval was obtained. Central MCC database was searched for any patient with a diagnosis of acute undifferentiated leukemia (AUL), acute leukemia of ambiguous lineage (ALAL), and MPAL. All patient diagnoses were manually reviewed by a hematopathologist to confirm the diagnosis of MPAL. Genomic and molecular data were collated from the EMR and bioinformatically from MCC genomics repositories. Twenty-eight patients with MPAL were identified. Thirteen were female and 15 were male. Average age was 56 years old (range = 28-81). Ten cases were biclonal and 18 were biphenotypic. Diagnoses were as follows: B/myeloid (n = 18), T/myeloid (n = 9), and T/B (n = 1). Cytogenetic analysis (Karyotype +/- FISH) was available for 27 patients. The most frequent recurrent abnormalities were complex karyotype (n = 8), BCR/ABL1 translocation (n = 6), Del 5q/-5 (n = 4), Polysomy 21 (n = 4). Mutational analysis was available for 18 patients wherein mutations were detected in 45 unique genes. The most frequently mutated genes were TP53 (7), RUNX1 (6), WT1 (4), MLL2 (3), FLT3 (3), CBL (2), ASXL1 (2), TET2 (2), MAP3K6 (2), MLL (2), and MAP3K1 (2). Targetable or potentially targetable biomarkers were found in 56% of cases. Overall survival was 19.5 months (range = 0-70 m). Ten patients were treated with an allogeneic stem cell transplant and had superior outcome (p = 0.0013). In one the largest series of MPAL cases to date, we corroborate previous findings with enriched detection of RUNX1 and FLT3-ITD mutations along with discovery of unreported mutations (MAP3K) that may be amenable to therapeutic manipulation. We also report the frequent occurrence of AML with MDS-related changes (AML-MRC)-defining cytogenetic abnormalities (26%). Finally, we show that those patients that received stem cell transplant had a better overall survival. Our findings support the need to genomically profile MPAL cases to exploit opportunities for targeted therapies in this orphan disease with dismal prognosis.
Collapse
Affiliation(s)
| | | | | | - Mohammad Hussaini
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
91
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1171] [Impact Index Per Article: 390.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
92
|
Zhao X, Wang P, Diedrich JD, Smart B, Reyes N, Yoshimura S, Zhang J, Yang W, Barnett K, Xu B, Li Z, Huang X, Yu J, Crews K, Yeoh AEJ, Konopleva M, Wei CL, Pui CH, Savic D, Yang JJ. Epigenetic activation of the FLT3 gene by ZNF384 fusion confers a therapeutic susceptibility in acute lymphoblastic leukemia. Nat Commun 2022; 13:5401. [PMID: 36104354 PMCID: PMC9474531 DOI: 10.1038/s41467-022-33143-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
FLT3 is an attractive therapeutic target in acute lymphoblastic leukemia (ALL) but the mechanism for its activation in this cancer is incompletely understood. Profiling global gene expression in large ALL cohorts, we identify over-expression of FLT3 in ZNF384-rearranged ALL, consistently across cases harboring different fusion partners with ZNF384. Mechanistically, we discover an intergenic enhancer element at the FLT3 locus that is exclusively activated in ZNF384-rearranged ALL, with the enhancer-promoter looping directly mediated by the fusion protein. There is also a global enrichment of active enhancers within ZNF384 binding sites across the genome in ZNF384-rearranged ALL cells. Downregulation of ZNF384 blunts FLT3 activation and decreases ALL cell sensitivity to FLT3 inhibitor gilteritinib in vitro. In patient-derived xenograft models of ZNF384-rearranged ALL, gilteritinib exhibits significant anti-leukemia efficacy as a monotherapy in vivo. Collectively, our results provide insights into FLT3 regulation in ALL and point to potential genomics-guided targeted therapy for this patient population.
Collapse
Affiliation(s)
- Xujie Zhao
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jonathan D Diedrich
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon Smart
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Noemi Reyes
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingliao Zhang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kelly Barnett
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen Eng Juh Yeoh
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Marina Konopleva
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
93
|
Nilius-Eliliwi V, Tembrink M, Gerding WM, Lubieniecki KP, Lubieniecka JM, Kankel S, Liehr T, Mika T, Dimopoulos F, Döhner K, Schroers R, Nguyen HHP, Vangala DB. Broad genomic workup including optical genome mapping uncovers a DDX3X: MLLT10 gene fusion in acute myeloid leukemia. Front Oncol 2022; 12:959243. [PMID: 36158701 PMCID: PMC9501710 DOI: 10.3389/fonc.2022.959243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
In acute myeloid leukemia (AML), treatment decisions are currently made according to the risk classification of the European LeukemiaNet (ELN), which is based on genetic alterations. Recently, optical genome mapping (OGM) as a novel method proved to yield a genome-wide and detailed cytogenetic characterization at the time of diagnosis. A young female patient suffered from a rather unexpected aggressive disease course under FLT3 targeted therapy in combination with induction chemotherapy. By applying a “next-generation diagnostic workup“ strategy with OGM and whole-exome sequencing (WES), a DDX3X: MLLT10 gene fusion could be detected, otherwise missed by routine diagnostics. Furthermore, several aspects of lineage ambiguity not shown by standard diagnostics were unraveled such as deletions of SUZ12 and ARPP21, as well as T-cell receptor recombination. In summary, the detection of this particular gene fusion DDX3X: MLLT10 in a female AML patient and the findings of lineage ambiguity are potential explanations for the aggressive course of disease. Our study demonstrates that OGM can yield novel clinically significant results, including additional information helpful in disease monitoring and disease biology.
Collapse
Affiliation(s)
- Verena Nilius-Eliliwi
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | - Stefanie Kankel
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Mika
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Fotios Dimopoulos
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Roland Schroers
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | | | - Deepak Ben Vangala
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- *Correspondence: Deepak Ben Vangala,
| |
Collapse
|
94
|
Mixed-Phenotype Acute Leukemia: Clinical Diagnosis and Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10081974. [PMID: 36009521 PMCID: PMC9405901 DOI: 10.3390/biomedicines10081974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Mixed-phenotype acute leukemia (MPAL) comprises a heterogenous group of leukemias that are genetically, immunophenotypically, and clinically, diverse. Given the rarity of the disease, the diagnosis and treatment of MPAL is extremely challenging. Recent collaborative efforts have made significant progress in understanding the complex genomic landscape of MPAL. Some retrospective studies support starting ALL-type induction followed by an allogeneic stem cell transplant(allo-sct) in the first complete remission; however, due to the inherent bias of retrospective data and small case series, a prospective validation of AML- and ALL-based regimen, and the incorporation of targeted therapies based on genetics and immunophenotype are warranted. The prognosis of adults and children with MPAL varies; this justifies modulating the intensity of therapy, including the use of allo-sct as a consolidation strategy.
Collapse
|
95
|
Salama M, Ahmed S, Soliman S, El-Sharkawy N, Salem S, El-Nashar A, Khedr R, Lehmann L, Sidhom I, El-Haddad A. Characteristics, Treatment Complexity, and Outcome of Mixed-Phenotype Acute Leukemia in Children in a Low–Middle-Income Country. Front Oncol 2022; 12:941885. [PMID: 35875063 PMCID: PMC9300816 DOI: 10.3389/fonc.2022.941885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMixed-phenotype acute leukemia (MPAL) in children is an uncommon subtype of acute leukemia that cannot be definitively assigned to a specific lineage. There is no consensus on the best approach to therapy. Management is more complex in low–middle-income countries (LMICs).AimTo evaluate the clinicopathological characteristics and outcomes of patients with MPAL in a developing country.Patients and MethodsA retrospective descriptive study of 42 pediatric patients newly diagnosed with MPAL from July 2007 until December 2017.ResultsThe immunophenotyping was T/Myeloid in 24 patients (57.1%) and B/Myeloid in 16 (38.1%). Three subjects had MLL gene rearrangement, two had Philadelphia-positive chromosomes, and eight had FMS-like tyrosine kinase 3 (FLT3-ITD) internal tandem duplication (FLT3-ITD) with a ratio >0.4. Two subjects died before starting chemotherapy. Ten patients (25%) received acute lymphoblastic leukemia (ALL) induction, and all achieved complete remission (CR) with no induction deaths and no shift of therapy. Thirty patients (75%) started therapy with acute myeloid leukemia (AML) induction: five (16.6%) died during induction, 17 (56.7%) achieved CR, and 10 patients received maintenance ALL therapy after ending AML treatment. Four of the eight patients with induction failure were switched to ALL therapy. The 5-year event-free survival (EFS) and overall survival (OS) rates were 56.7% [standard error (SE): 8.1%] and 61% (SE: 8%), while the cumulative incidence of relapse was 21.7% (SE: 6.7%), with a median follow-up duration of 5.8 years. Patients treated with ALL-directed therapy had a 5-year EFS rate of 111 70% (SE: 14%) and OS rate of 78.8% (SE: 13%). Patients treated with ALL-directed therapy had a 5-year EFS rate of 70% (SE: 14.5%) and OS rate of 78.8% (SE: 13%). FLT3-ITD mutation showed a significantly lower 5-year EFS rate of 28.6% (SE: 17%) vs. 75% (SE: 9%) for the wild type, p = 0.032. Undernourished patients with a body mass index (BMI) z-score ≤-2 at presentation had a significantly lower 5-year EFS rate of 20% (SE: 17%) compared to 61.8% (SE: 8%) for patients with BMI z-score >-2, p = 0.015.ConclusionThis study supports ALL-directed therapy for pediatric MPAL in a setting of LMIC. Given the poor outcome of FLT3-ITD, the role of FLT3 inhibitor needs to be explored in this subset of cases.
Collapse
Affiliation(s)
- Maram Salama
- Pediatric Oncology Department, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Sonia Ahmed
- Pediatric Oncology Department, National Cancer Institute Cairo University and Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Sonya Soliman
- Clinical Pathology Department, National Cancer Institute Cairo University and Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Nahla El-Sharkawy
- Clinical Pathology Department, National Cancer Institute Cairo University and Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Sherine Salem
- Clinical Pathology Department, National Cancer Institute Cairo University and Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Amr El-Nashar
- Department of Research, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Reham Khedr
- Pediatric Oncology Department, National Cancer Institute Cairo University and Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Leslie Lehmann
- Stem Cell Transplant Center, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, United States
| | - Iman Sidhom
- Pediatric Oncology Department, National Cancer Institute Cairo University and Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
- *Correspondence: Iman Sidhom, ;
| | - Alaa El-Haddad
- Pediatric Oncology Department, National Cancer Institute Cairo University and Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| |
Collapse
|
96
|
Wang YZ, Qin YZ, Chang Y, Yuan XY, Chen WM, He LL, Hao L, Shi WH, Jiang Q, Jiang H, Huang XJ, Liu YR. Immunophenotypic characteristics of ZNF384 rearrangement compared with BCR-ABL1, KMT2A rearrangement, and other adult B-cell precursor acute lymphoblastic leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:360-369. [PMID: 35735203 DOI: 10.1002/cyto.b.22086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND ZNF384 rearrangement has been recently identified as a new subtype of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive studies clarifying immunophenotypic features and discriminating them from non-ZNF384 in adult BCP-ALL remain scarce to date. METHODS Flow cytometric assessments were retrospectively performed in 43 patients with ZNF384 rearrangement, 45 with BCR-ABL1, 29 with KMT2A rearrangement and 44 with other BCP-ALL in the analysis cohort. RESULTS CD33- and CD13-positive frequencies were significantly higher in patients with ZNF384 rearrangement than in those with non-ZNF384; however, no significant difference was observed in CD10- and CD123-positive frequencies. Analysis of antigen-positive cell proportion and median fluorescence intensity (MFI) further indicated that patients with ZNF384 rearrangement had significantly lower CD10 and higher CD33, CD13, and CD123 proportion and MFI. However, compared with KMT2A rearrangement, the CD10 expression in patients with ZNF384 rearrangement was higher, with the median percentage and MFI of 36.16 (3.63-94.79)% versus 4.53 (0.03-21.00)%, and 4.50 (0.86-32.26) versus 2.06 (0.87-4.04), respectively (p < 0.0001). Furthermore, compared with BCR-ABL1 and other BCP-ALL, ZNF384 rearrangement had significantly higher CD33 and CD13 proportion and MFI (p < 0.0001 and p < 0.05, respectively). In addition, higher CD123 proportion and MFI in ZNF384 rearrangement than those in the other three groups were reported for the first time (p < 0.01). A flow cytometry scoring system, including CD10%, CD33MFI, CD13%, and CD123MFI, was proposed and verified to predict ZNF384 rearrangement with high sensitivity and specificity, that is, 76.74% and 91.53% in the analysis and 87.50% and 91.30% in the validation cohort. CONCLUSIONS The multiparameter immunophenotypic scoring system could suggest ZNF384 rearrangement.
Collapse
Affiliation(s)
- Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ling-Ling He
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Le Hao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wei-Hua Shi
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
97
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022; 36:1703-1719. [PMID: 35732831 PMCID: PMC9252913 DOI: 10.1038/s41375-022-01613-1] [Citation(s) in RCA: 1661] [Impact Index Per Article: 553.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022]
Abstract
The upcoming 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid Tumours is part of an effort to hierarchically catalogue human cancers arising in various organ systems within a single relational database. This paper summarizes the new WHO classification scheme for myeloid and histiocytic/dendritic neoplasms and provides an overview of the principles and rationale underpinning changes from the prior edition. The definition and diagnosis of disease types continues to be based on multiple clinicopathologic parameters, but with refinement of diagnostic criteria and emphasis on therapeutically and/or prognostically actionable biomarkers. While a genetic basis for defining diseases is sought where possible, the classification strives to keep practical worldwide applicability in perspective. The result is an enhanced, contemporary, evidence-based classification of myeloid and histiocytic/dendritic neoplasms, rooted in molecular biology and an organizational structure that permits future scalability as new discoveries continue to inexorably inform future editions.
Collapse
|
98
|
Kimura S, Montefiori L, Iacobucci I, Zhao Y, Gao Q, Paietta EM, Haferlach C, Laird AD, Mead PE, Gu Z, Stock W, Litzow M, Rowe JM, Luger SM, Hunger SP, Ryland GL, Schmidt B, Ekert PG, Oshlack A, Grimmond SM, Rehn J, Breen J, Yeung D, White DL, Aldoss I, Jabbour EJ, Pui CH, Meggendorfer M, Walter W, Kern W, Haferlach T, Brady S, Zhang J, Roberts KG, Blombery P, Mullighan CG. Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood 2022; 139:3519-3531. [PMID: 35192684 PMCID: PMC9203703 DOI: 10.1182/blood.2022015444] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 01/14/2023] Open
Abstract
Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Lindsey Montefiori
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yaqi Zhao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | | | | | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
- Departments of Computational and Quantitative Medicine, and Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA
| | - Wendy Stock
- Department of Hematology and Oncology, University of Chicago, Chicago, IL
| | - Mark Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Jacob M Rowe
- Department of Hematology, Rambam Health Care Campus, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Selina M Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Precision Oncology, Centre for Cancer Research, and
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Breon Schmidt
- Computational Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Paul G Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre and School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Alicia Oshlack
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | | - Jacqueline Rehn
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - David Yeung
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Hematology Department, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Deborah L White
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Elias J Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | - Samuel Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia; and
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
99
|
Alvarez S, da Silva Almeida AC, Albero R, Biswas M, Barreto-Galvez A, Gunning TS, Shaikh A, Aparicio T, Wendorff A, Piovan E, Van Vlierberghe P, Gygi S, Gautier J, Madireddy A, A Ferrando A. Functional mapping of PHF6 complexes in chromatin remodeling, replication dynamics, and DNA repair. Blood 2022; 139:3418-3429. [PMID: 35338774 PMCID: PMC9185155 DOI: 10.1182/blood.2021014103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/27/2022] [Indexed: 01/05/2023] Open
Abstract
The Plant Homeodomain 6 gene (PHF6) encodes a nucleolar and chromatin-associated leukemia tumor suppressor with proposed roles in transcription regulation. However, specific molecular mechanisms controlled by PHF6 remain rudimentarily understood. Here we show that PHF6 engages multiple nucleosome remodeling protein complexes, including nucleosome remodeling and deacetylase, SWI/SNF and ISWI factors, the replication machinery and DNA repair proteins. Moreover, after DNA damage, PHF6 localizes to sites of DNA injury, and its loss impairs the resolution of DNA breaks, with consequent accumulation of single- and double-strand DNA lesions. Native chromatin immunoprecipitation sequencing analyses show that PHF6 specifically associates with difficult-to-replicate heterochromatin at satellite DNA regions enriched in histone H3 lysine 9 trimethyl marks, and single-molecule locus-specific analyses identify PHF6 as an important regulator of genomic stability at fragile sites. These results extend our understanding of the molecular mechanisms controlling hematopoietic stem cell homeostasis and leukemia transformation by placing PHF6 at the crossroads of chromatin remodeling, replicative fork dynamics, and DNA repair.
Collapse
Affiliation(s)
- Silvia Alvarez
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Mayukh Biswas
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Thomas S Gunning
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Anam Shaikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Tomas Aparicio
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Erich Piovan
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Sezione di Oncologia, Università di Padova, Padova, Italy
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Genetics and Development, College of Physicians and Surgeons, and
| | | | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY; and
- Department of Pediatrics and
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
100
|
Hetzel S, Mattei AL, Kretzmer H, Qu C, Chen X, Fan Y, Wu G, Roberts KG, Luger S, Litzow M, Rowe J, Paietta E, Stock W, Mardis ER, Wilson RK, Downing JR, Mullighan CG, Meissner A. Acute lymphoblastic leukemia displays a distinct highly methylated genome. NATURE CANCER 2022; 3:768-782. [PMID: 35590059 PMCID: PMC9236905 DOI: 10.1038/s43018-022-00370-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/25/2022] [Indexed: 04/13/2023]
Abstract
DNA methylation is tightly regulated during development and is stably maintained in healthy cells. In contrast, cancer cells are commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data from large cohorts at a genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing across ALL subtypes, leukemia cell lines and healthy hematopoietic cells, and show that unlike most cancers, ALL samples exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T cell ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients, which is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome and provide further insights into the non-canonical regulation of methylation in cancer.
Collapse
Affiliation(s)
- Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Wendy Stock
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - James R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Chemistry and Pharmacy, Freie Universität, Berlin, Germany.
| |
Collapse
|