51
|
Dalloul I, Laffleur B, Dalloul Z, Wehbi B, Jouan F, Brauge B, Derouault P, Moreau J, Kracker S, Fischer A, Durandy A, Le Noir S, Cogné M. UnAIDed Class Switching in Activated B-Cells Reveals Intrinsic Features of a Self-Cleaving IgH Locus. Front Immunol 2021; 12:737427. [PMID: 34777346 PMCID: PMC8581400 DOI: 10.3389/fimmu.2021.737427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Activation-induced deaminase (AID) is the major actor of immunoglobulin (Ig) gene diversification in germinal center B-cells. From its first description, it was considered as mandatory for class switch recombination (CSR), and this discovery initiated a long quest for all of the AID-interacting factors controlling its activity. The mechanisms focusing AID-mediated DNA lesions to given target sequences remain incompletely understood with regards the detailed characterization of optimal substrates in which cytidine deamination will lead to double strand breaks (DSBs) and chromosomal cleavage. In an effort to reconsider whether such CSR breaks absolutely require AID, we herein provide evidence, based on deep-sequencing approaches, showing that this dogma is not absolute in both human and mouse B lymphocytes. In activated B-cells from either AID-deficient mice or human AID-deficient patients, we report an intrinsic ability of the IgH locus to undergo "on-target" cleavage and subsequent synapsis of broken regions in conditions able to yield low-level CSR. DNA breaks occur in such conditions within the same repetitive S regions usually targeted by AID, but their repair follows a specific pathway with increased usage of microhomology-mediated repair. These data further demonstrate the role of AID machinery as not initiating de novo chromosomal cleavage but rather catalyzing a process which spontaneously initiates at low levels in an appropriately conformed IgH locus.
Collapse
Affiliation(s)
- Iman Dalloul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Brice Laffleur
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Zeinab Dalloul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Batoul Wehbi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Florence Jouan
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Baptiste Brauge
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Paco Derouault
- Centre Hospitalier Universitaire (CHU) Dupuytren, Limoges, France
| | - Jeanne Moreau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Sven Kracker
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Alain Fischer
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Anne Durandy
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Sandrine Le Noir
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Michel Cogné
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| |
Collapse
|
52
|
Dauba A, Khamlichi AA. Long-Range Control of Class Switch Recombination by Transcriptional Regulatory Elements. Front Immunol 2021; 12:738216. [PMID: 34594340 PMCID: PMC8477019 DOI: 10.3389/fimmu.2021.738216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Immunoglobulin class switch recombination (CSR) plays a crucial role in adaptive immune responses through a change of the effector functions of antibodies and is triggered by T-cell-dependent as well as T-cell-independent antigens. Signals generated following encounter with each type of antigen direct CSR to different isotypes. At the genomic level, CSR occurs between highly repetitive switch sequences located upstream of the constant gene exons of the immunoglobulin heavy chain locus. Transcription of switch sequences is mandatory for CSR and is induced in a stimulation-dependent manner. Switch transcription takes place within dynamic chromatin domains and is regulated by long-range regulatory elements which promote alignment of partner switch regions in CSR centers. Here, we review recent work and models that account for the function of long-range transcriptional regulatory elements and the chromatin-based mechanisms involved in the control of CSR.
Collapse
Affiliation(s)
- Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
53
|
MAD2L2 dimerization and TRIP13 control shieldin activity in DNA repair. Nat Commun 2021; 12:5421. [PMID: 34521823 PMCID: PMC8440562 DOI: 10.1038/s41467-021-25724-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
MAD2L2 (REV7) plays an important role in DNA double-strand break repair. As a member of the shieldin complex, consisting of MAD2L2, SHLD1, SHLD2 and SHLD3, it controls DNA repair pathway choice by counteracting DNA end-resection. Here we investigated the requirements for shieldin complex assembly and activity. Besides a dimerization-surface, HORMA-domain protein MAD2L2 has the extraordinary ability to wrap its C-terminus around SHLD3, likely creating a very stable complex. We show that appropriate function of MAD2L2 within shieldin requires its dimerization, mediated by SHLD2 and accelerating MAD2L2-SHLD3 interaction. Dimerization-defective MAD2L2 impairs shieldin assembly and fails to promote NHEJ. Moreover, MAD2L2 dimerization, along with the presence of SHLD3, allows shieldin to interact with the TRIP13 ATPase, known to drive topological switches in HORMA-domain proteins. We find that appropriate levels of TRIP13 are important for proper shieldin (dis)assembly and activity in DNA repair. Together our data provide important insights in the dependencies for shieldin activity.
Collapse
|
54
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
55
|
Huang H, Zhu Q, Jussila A, Han Y, Bintu B, Kern C, Conte M, Zhang Y, Bianco S, Chiariello AM, Yu M, Hu R, Tastemel M, Juric I, Hu M, Nicodemi M, Zhuang X, Ren B. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Nat Genet 2021; 53:1064-1074. [PMID: 34002095 PMCID: PMC8853952 DOI: 10.1038/s41588-021-00863-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Insulators play a critical role in spatiotemporal gene regulation in animals. The evolutionarily conserved CCCTC-binding factor (CTCF) is required for insulator function in mammals, but not all of its binding sites act as insulators. Here we explore the sequence requirements of CTCF-mediated transcriptional insulation using a sensitive insulator reporter in mouse embryonic stem cells. We find that insulation potency depends on the number of CTCF-binding sites in tandem. Furthermore, CTCF-mediated insulation is dependent on upstream flanking sequences at its binding sites. CTCF-binding sites at topologically associating domain boundaries are more likely to function as insulators than those outside topologically associating domain boundaries, independently of binding strength. We demonstrate that insulators form local chromatin domain boundaries and weaken enhancer-promoter contacts. Taken together, our results provide genetic, molecular and structural evidence connecting chromatin topology to the action of insulators in the mammalian genome.
Collapse
Affiliation(s)
- Hui Huang
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, University of California, San Diego, Biomedical Sciences Graduate Program, La Jolla, California 92093, USA
| | - Quan Zhu
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Adam Jussila
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuanyuan Han
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Colin Kern
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy
| | - Miao Yu
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Melodi Tastemel
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant’Angelo, Naples, Italy, Berlin Institute for Medical Systems Biology, Max Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany., Berlin Institute of Health (BIH), Berlin, Germany
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Center for Epigenomics, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA, University of California, San Diego School of Medicine, Institute of Genomic Medicine, and Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA,Correspondence:
| |
Collapse
|
56
|
Surdez D, Zaidi S, Grossetête S, Laud-Duval K, Ferre AS, Mous L, Vourc'h T, Tirode F, Pierron G, Raynal V, Baulande S, Brunet E, Hill V, Delattre O. STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma. Cancer Cell 2021; 39:810-826.e9. [PMID: 33930311 DOI: 10.1016/j.ccell.2021.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/31/2020] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
STAG2, a cohesin family gene, is among the most recurrently mutated genes in cancer. STAG2 loss of function (LOF) is associated with aggressive behavior in Ewing sarcoma, a childhood cancer driven by aberrant transcription induced by the EWSR1-FLI1 fusion oncogene. Here, using isogenic Ewing cells, we show that, while STAG2 LOF profoundly changes the transcriptome, it does not significantly impact EWSR1-FLI1, CTCF/cohesin, or acetylated H3K27 DNA binding patterns. In contrast, it strongly alters the anchored dynamic loop extrusion process at boundary CTCF sites and dramatically decreases promoter-enhancer interactions, particularly affecting the expression of genes regulated by EWSR1-FLI1 at GGAA microsatellite neo-enhancers. Down-modulation of cis-mediated EWSR1-FLI1 activity, observed in STAG2-LOF conditions, is associated with enhanced migration and invasion properties of Ewing cells previously observed in EWSR1-FLI1low cells. Our study illuminates a process whereby STAG2-LOF fine-tunes the activity of an oncogenic transcription factor through altered CTCF-anchored loop extrusion and cis-mediated enhancer mechanisms.
Collapse
MESH Headings
- Bone Neoplasms/genetics
- Bone Neoplasms/mortality
- Bone Neoplasms/pathology
- CCCTC-Binding Factor/chemistry
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/genetics
- Chromatin Immunoprecipitation
- Chromosomal Proteins, Non-Histone/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- Histones/metabolism
- Humans
- Loss of Function Mutation
- Lysine/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/mortality
- Sarcoma, Ewing/pathology
- Cohesins
Collapse
Affiliation(s)
- Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France.
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Karine Laud-Duval
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Anna Sole Ferre
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Université de Paris, Imagine Institute, 75005 Paris, France
| | - Lieke Mous
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Thomas Vourc'h
- UMR 168, Biology Inspired Physics at Mesoscales, PSL Research University, Institut Curie Research Centre, 75005 Paris, France
| | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, 69008 Lyon, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005 Paris, France
| | - Virginie Raynal
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France; Institut Curie Genomics of Excellence (ICGex) Platform, PSL Université, Institut Curie Research Centre, 75005 Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Université, Institut Curie Research Centre, 75005 Paris, France
| | - Erika Brunet
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Université de Paris, Imagine Institute, 75005 Paris, France
| | - Véronique Hill
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France; Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005 Paris, France.
| |
Collapse
|
57
|
Kenter AL, Watson CT, Spille JH. Igh Locus Polymorphism May Dictate Topological Chromatin Conformation and V Gene Usage in the Ig Repertoire. Front Immunol 2021; 12:682589. [PMID: 34084176 PMCID: PMC8167033 DOI: 10.3389/fimmu.2021.682589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Vast repertoires of unique antigen receptors are created in developing B and T lymphocytes. The antigen receptor loci contain many variable (V), diversity (D) and joining (J) gene segments that are arrayed across very large genomic expanses and are joined to form variable-region exons of expressed immunoglobulins and T cell receptors. This process creates the potential for an organism to respond to large numbers of different pathogens. Here, we consider the possibility that genetic polymorphisms with alterations in a vast array of regulatory elements in the immunoglobulin heavy chain (IgH) locus lead to changes in locus topology and impact immune-repertoire formation.
Collapse
Affiliation(s)
- Amy L. Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jan-Hendrik Spille
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
58
|
Abstract
B lymphocytes change antibody heavy chain (IgH) isotypes by a recombination/deletion process called IgH class switch recombination (CSR). CSR involves introduction of DNA breaks into a donor switch (S) region and also into one of six downstream S regions, with joining of the breaks changing antibody isotype. A chromatin super-anchor, of unknown function, is located just downstream of the IgH locus. We show that complete deletion of this super-anchor variably decreases CSR to most S regions and creates an ectopic S region downstream of IgH locus that undergoes aberrant CSR-driven chromosomal rearrangements. Based on these and other findings, we conclude that the super-anchor downstream of IgH is a critical insulator for focusing potentially dangerous CSR rearrangements to the IgH locus. IgH class switch recombination (CSR) replaces Cμ constant region (CH) exons with one of six downstream CHs by joining transcription-targeted double-strand breaks (DSBs) in the Cμ switch (S) region to DSBs in a downstream S region. Chromatin loop extrusion underlies fundamental CSR mechanisms including 3′IgH regulatory region (3′IgHRR)-mediated S region transcription, CSR center formation, and deletional CSR joining. There are 10 consecutive CTCF-binding elements (CBEs) downstream of the 3′IgHRR, termed the “3′IgH CBEs.” Prior studies showed that deletion of eight 3′IgH CBEs did not detectably affect CSR. Here, we report that deletion of all 3′IgH CBEs impacts, to varying degrees, germline transcription and CSR of upstream S regions, except that of Sγ1. Moreover, deletion of all 3′IgH CBEs rendered the 6-kb region just downstream highly transcribed and caused sequences within to be aligned with Sμ, broken, and joined to form aberrant CSR rearrangements. These findings implicate the 3′IgH CBEs as critical insulators for focusing loop extrusion-mediated 3′IgHRR transcriptional and CSR activities on upstream CH locus targets.
Collapse
|
59
|
Tang C, MacCarthy T. Characterization of DNA G-Quadruplex Structures in Human Immunoglobulin Heavy Variable (IGHV) Genes. Front Immunol 2021; 12:671944. [PMID: 34040612 PMCID: PMC8141862 DOI: 10.3389/fimmu.2021.671944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Activation-induced deaminase (AID) is a key enzyme involved in antibody diversification by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) of the Immunoglobulin (Ig) loci. AID preferentially targets WRC (W=A/T, R=A/G) hotspot motifs and avoids SYC (S=C/G, Y=C/T) coldspots. G-quadruplex (G4) structures are four-stranded DNA secondary structures with key functions in transcription, translation and replication. In vitro studies have shown G4s to form and bind AID in Ig switch (S) regions. Alterations in the gene encoding AID can further disrupt AID-G4 binding and reduce CSR in vivo. However, it is still unclear whether G4s form in the variable (V) region, or how they may affect SHM. To assess the possibility of G4 formation in human V regions, we analyzed germline human Ig heavy chain V (IGHV) sequences, using a pre-trained deep learning model that predicts G4 potential. This revealed that many genes from the IGHV3 and IGHV4 families are predicted to have high G4 potential in the top and bottom strand, respectively. Different IGHV alleles also showed variability in G4 potential. Using a high-resolution (G4-seq) dataset of biochemically confirmed potential G4s in IGHV genes, we validated our computational predictions. G4-seq also revealed variation between S and V regions in the distribution of potential G4s, with the V region having overall reduced G4 abundance compared to the S region. The density of AGCT motifs, where two AGC hotspots overlap on both strands, was roughly 2.6-fold greater in the V region than the Constant (C) region, which does not mutate despite having predicted G4s at similar levels. However, AGCT motifs in both V and C regions were less abundant than in S regions. In silico mutagenesis experiments showed that G4 potentials were generally robust to mutation, although large deviations from germline states were found, mostly in framework regions. G4 potential is also associated with higher mutability of certain WRC hotspots on the same strand. In addition, CCC coldspots opposite a predicted G4 were shown to be targeted significantly more for mutation. Our overall assessment reveals plausible evidence of functional G4s forming in the Ig V region.
Collapse
Affiliation(s)
- Catherine Tang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
60
|
Liu S, Zhao K. The Toolbox for Untangling Chromosome Architecture in Immune Cells. Front Immunol 2021; 12:670884. [PMID: 33995409 PMCID: PMC8120992 DOI: 10.3389/fimmu.2021.670884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
The code of life is not only encrypted in the sequence of DNA but also in the way it is organized into chromosomes. Chromosome architecture is gradually being recognized as an important player in regulating cell activities (e.g., controlling spatiotemporal gene expression). In the past decade, the toolbox for elucidating genome structure has been expanding, providing an opportunity to explore this under charted territory. In this review, we will introduce the recent advancements in approaches for mapping spatial organization of the genome, emphasizing applications of these techniques to immune cells, and trying to bridge chromosome structure with immune cell activities.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, United States
| |
Collapse
|
61
|
Bruzeau C, Moreau J, Le Noir S, Pinaud E. Panorama of stepwise involvement of the IgH 3' regulatory region in murine B cells. Adv Immunol 2021; 149:95-114. [PMID: 33993921 DOI: 10.1016/bs.ai.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Among the multiple events leading to immunoglobulin (Ig) expression in B cells, stepwise activation of the Ig heavy chain locus (IgH) is of critical importance. Transcription regulation of the complex IgH locus has always been an interesting viewpoint to unravel the multiple and complex events required for IgH expression. First, regulatory germline transcripts (GLT) assist DNA remodeling events such as VDJ recombination, class switch recombination (CSR) and somatic hypermutation (SHM). Second, productive spliced transcripts restrict heavy chain protein expression associated either with the surface receptor of developing B cells or secreted in large amounts in plasma cells. One main transcriptional regulator for IgH lies at its 3' extremity and includes both a set of enhancers grouped in a large 3' regulatory region (3'RR) and a cluster of 3'CTCF-binding elements (3'CBEs). In this focused review, we will preferentially refer to evidence reported for the murine endogenous IgH locus, whether it is wt or carries deletions or insertions within the IgH 3' boundary and associated regulatory region.
Collapse
Affiliation(s)
- Charlotte Bruzeau
- CNRS, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 7276, Limoges, France; INSERM, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 1262, Limoges, France; Université de Limoges, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 7276, UMR 1262, Limoges, France
| | - Jeanne Moreau
- CNRS, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 7276, Limoges, France; INSERM, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 1262, Limoges, France; Université de Limoges, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 7276, UMR 1262, Limoges, France
| | - Sandrine Le Noir
- CNRS, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 7276, Limoges, France; INSERM, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 1262, Limoges, France; Université de Limoges, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 7276, UMR 1262, Limoges, France
| | - Eric Pinaud
- CNRS, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 7276, Limoges, France; INSERM, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 1262, Limoges, France; Université de Limoges, Contrôle de la Réponse Immune B et des Lymphoproliférations, UMR 7276, UMR 1262, Limoges, France.
| |
Collapse
|
62
|
Repair of programmed DNA lesions in antibody class switch recombination: common and unique features. ACTA ACUST UNITED AC 2021; 2:115-125. [PMID: 33817557 PMCID: PMC7996122 DOI: 10.1007/s42764-021-00035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023]
Abstract
The adaptive immune system can diversify the antigen receptors to eliminate various pathogens through programmed DNA lesions at antigen receptor genes. In immune diversification, general DNA repair machineries are applied to transform the programmed DNA lesions into gene mutation or recombination events with common and unique features. Here we focus on antibody class switch recombination (CSR), and review the initiation of base damages, the conversion of damaged base to DNA double-strand break, and the ligation of broken ends. With an emphasis on the unique features in CSR, we discuss recent advances in the understanding of DNA repair/replication coordination, and ERCC6L2-mediated deletional recombination. We further elaborate the application of CSR in end-joining, resection and translesion synthesis assays. In the time of the COVID-19 pandemic, we hope it help to understand the generation of therapeutic antibodies.
Collapse
|
63
|
Three-dimensional genome rewiring during the development of antibody-secreting cells. Biochem Soc Trans 2021; 48:1109-1119. [PMID: 32453419 PMCID: PMC7329350 DOI: 10.1042/bst20191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
The development of B lymphocytes into antibody-secreting plasma cells is central to the adaptive immune system in that it confers protective and specific antibody response against invading pathogen. This developmental process involves extensive morphological and functional alterations that begin early after antigenic stimulation. These include chromatin restructuring that is critical in regulating gene expression, DNA rearrangement and other cellular processes. Here we outline the recent understanding of the three-dimensional architecture of the genome, specifically focused on its contribution to the process of B cell activation and terminal differentiation into antibody-secreting cells.
Collapse
|
64
|
Abstract
B cells constitute a main branch adaptive immune system. They mediate host defence through the production of high-affinity antibodies against an enormous diversity of foreign antigens. Remarkably, B cells undergo multiple types of somatic DNA mutation to achieve this effector function, including class switch recombination (CSR) and somatic hypermutation (SHM). These processes occur in response to antigen recognition and inflammatory signals, and require strict biological control at multiple levels. Transcription within the locus that encodes antibodies plays direct roles in CSR. Additional non-coding RNAs (ncRNAs), including both microRNAs (miRNAs) and long ncRNAs (lncRNAs), also play pivotal roles in B cell activation and terminal effector function through post-transcriptional gene regulation and chromatin remodelling, respectively.
Collapse
Affiliation(s)
- Eric J Wigton
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
65
|
An insulator that regulates chromatin extrusion and class switch recombination. Proc Natl Acad Sci U S A 2021; 118:2026399118. [PMID: 33479168 DOI: 10.1073/pnas.2026399118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
66
|
IgH 3' regulatory region increases ectopic class switch recombination. PLoS Genet 2021; 17:e1009288. [PMID: 33556079 PMCID: PMC7869978 DOI: 10.1371/journal.pgen.1009288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
DNA lesions inflicted by activation-induced deaminase (AID) instrumentally initiate the processes reshaping immunoglobulin genes in mature B-cells, from local somatic hypermutation (SHM) to junctions of distant breaks during class switch recombination (CSR). It remains incompletely understood how these divergent outcomes of AID attacks are differentially and temporally focused, with CSR strictly occurring in the Ig heavy chain (IgH) locus while SHM concentrates on rearranged V(D)J regions in the IgH and Ig light chain loci. In the IgH locus, disruption of either the 3’Regulatory Region (3’RR) super-enhancer or of switch (S) regions preceding constant genes, profoundly affects CSR. Reciprocally, we now examined if these elements are sufficient to induce CSR in a synthetic locus based on the Igκ locus backbone. Addition of a surrogate “core 3’RR” (c3’RR) and of a pair of transcribed and spliced Switch regions, together with a reporter system for “κ-CSR” yielded a switchable Igκ locus. While the c3’RR stimulated SHM at S regions, it also lowered the local SHM threshold necessary for switch recombination to occur. The 3’RR thus both helps recruit AID to initiate DNA lesions, but then also promotes their resolution through long-distance synapses and recombination following double-strand breaks. Class switching allows B lymphocytes to replace expression of immunoglobin M with that of immunoglobulins G, A or E. The genetic support of class switching, is a unique and large deletion uniquely occuring within the immunoglobulin heavy chain (IgH) locus. This recombination is triggered after DNA lesions inflicted by the activation-induced deaminase (AID) enzyme. In immunoglobulin light chain loci, AID only stimulates somatic hypermutation. In such a non-IgH locus, we now show that the IgH 3’ superenhancer can promote junctions between distant DNA breaks and ectopic class switch recombination. This study identifies the minimal elements necessary for class-switch recombination to occur instead of hypermutation in a locus targeted by AID, i.e. transcribed (and spliced) target sites for AID in so-called S regions, and the 3’IgH superenhancer which both helps recruit AID for DNA lesions, and helps repair these lesions through distant gene synapsis and recombination.
Collapse
|
67
|
Kubo N, Ishii H, Xiong X, Bianco S, Meitinger F, Hu R, Hocker JD, Conte M, Gorkin D, Yu M, Li B, Dixon JR, Hu M, Nicodemi M, Zhao H, Ren B. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat Struct Mol Biol 2021; 28:152-161. [PMID: 33398174 PMCID: PMC7913465 DOI: 10.1038/s41594-020-00539-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
The CCCTC-binding factor (CTCF) works together with the cohesin complex to drive the formation of chromatin loops and topologically associating domains, but its role in gene regulation has not been fully defined. Here, we investigated the effects of acute CTCF loss on chromatin architecture and transcriptional programs in mouse embryonic stem cells undergoing differentiation to neural precursor cells. We identified CTCF-dependent enhancer-promoter contacts genome-wide and found that they disproportionately affect genes that are bound by CTCF at the promoter and are dependent on long-distance enhancers. Disruption of promoter-proximal CTCF binding reduced both long-range enhancer-promoter contacts and transcription, which were restored by artificial tethering of CTCF to the promoter. Promoter-proximal CTCF binding is correlated with the transcription of over 2,000 genes across a diverse set of adult tissues. Taken together, the results of our study show that CTCF binding to promoters may promote long-distance enhancer-dependent transcription at specific genes in diverse cell types.
Collapse
Affiliation(s)
- Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Haruhiko Ishii
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Xiong Xiong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Simona Bianco
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - Franz Meitinger
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - James D. Hocker
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mattia Conte
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - David Gorkin
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jesse R. Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Departments of Chemistry, Biochemistry, and Bioengineering, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Correspondence to:
| |
Collapse
|
68
|
Laffleur B, Lim J, Zhang W, Chen Y, Pefanis E, Bizarro J, Batista CR, Wu L, Economides AN, Wang J, Basu U. Noncoding RNA processing by DIS3 regulates chromosomal architecture and somatic hypermutation in B cells. Nat Genet 2021; 53:230-242. [PMID: 33526923 PMCID: PMC8011275 DOI: 10.1038/s41588-020-00772-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Noncoding RNAs are exquisitely titrated by the cellular RNA surveillance machinery for regulating diverse biological processes. The RNA exosome, the predominant 3' RNA exoribonuclease in mammalian cells, is composed of nine core and two catalytic subunits. Here, we developed a mouse model with a conditional allele to study the RNA exosome catalytic subunit DIS3. In DIS3-deficient B cells, integrity of the immunoglobulin heavy chain (Igh) locus in its topologically associating domain is affected, with accumulation of DNA-associated RNAs flanking CTCF-binding elements, decreased CTCF binding to CTCF-binding elements and disorganized cohesin localization. DIS3-deficient B cells also accumulate activation-induced cytidine deaminase-mediated asymmetric nicks, altering somatic hypermutation patterns and increasing microhomology-mediated end-joining DNA repair. Altered mutation patterns and Igh architectural defects in DIS3-deficient B cells lead to decreased class-switch recombination but increased chromosomal translocations. Our observations of DIS3-mediated architectural regulation at the Igh locus are reflected genome wide, thus providing evidence that noncoding RNA processing is an important mechanism for controlling genome organization.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yiyun Chen
- Division of Life Science, Department of Chemical and Biological Engineering, Center for Systems Biology and Human Health, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Evangelos Pefanis
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jonathan Bizarro
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carolina R Batista
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lijing Wu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, Center for Systems Biology and Human Health, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
69
|
Arnould C, Rocher V, Finoux AL, Clouaire T, Li K, Zhou F, Caron P, Mangeot PE, Ricci EP, Mourad R, Haber JE, Noordermeer D, Legube G. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 2021; 590:660-665. [PMID: 33597753 PMCID: PMC7116834 DOI: 10.1038/s41586-021-03193-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022]
Abstract
The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX-53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion.
Collapse
Affiliation(s)
- Coline Arnould
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Vincent Rocher
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Anne-Laure Finoux
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Thomas Clouaire
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Kevin Li
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Felix Zhou
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Pierre Caron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Philippe E Mangeot
- CIRI - International Center for Infectiology Research, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, INSERM U1293, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaël Mourad
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Gaëlle Legube
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France.
| |
Collapse
|
70
|
Dai HQ, Hu H, Lou J, Ye AY, Ba Z, Zhang X, Zhang Y, Zhao L, Yoon HS, Chapdelaine-Williams AM, Kyritsis N, Chen H, Johnson K, Lin S, Conte A, Casellas R, Lee CS, Alt FW. Loop extrusion mediates physiological Igh locus contraction for RAG scanning. Nature 2021; 590:338-343. [PMID: 33442057 PMCID: PMC9037962 DOI: 10.1038/s41586-020-03121-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
RAG endonuclease initiates Igh V(D)J recombination in progenitor B cells by binding a JH-recombination signal sequence (RSS) within a recombination centre (RC) and then linearly scanning upstream chromatin, presented by loop extrusion mediated by cohesin, for convergent D-RSSs1,2. The utilization of convergently oriented RSSs and cryptic RSSs is intrinsic to long-range RAG scanning3. Scanning of RAG from the DJH-RC-RSS to upstream convergent VH-RSSs is impeded by D-proximal CTCF-binding elements (CBEs)2-5. Primary progenitor B cells undergo a mechanistically undefined contraction of the VH locus that is proposed to provide distal VHs access to the DJH-RC6-9. Here we report that an inversion of the entire 2.4-Mb VH locus in mouse primary progenitor B cells abrogates rearrangement of both VH-RSSs and normally convergent cryptic RSSs, even though locus contraction still occurs. In addition, this inversion activated both the utilization of cryptic VH-RSSs that are normally in opposite orientation and RAG scanning beyond the VH locus through several convergent CBE domains to the telomere. Together, these findings imply that broad deregulation of CBE impediments in primary progenitor B cells promotes RAG scanning of the VH locus mediated by loop extrusion. We further found that the expression of wings apart-like protein homologue (WAPL)10, a cohesin-unloading factor, was low in primary progenitor B cells compared with v-Abl-transformed progenitor B cell lines that lacked contraction and RAG scanning of the VH locus. Correspondingly, depletion of WAPL in v-Abl-transformed lines activated both processes, further implicating loop extrusion in the locus contraction mechanism.
Collapse
Affiliation(s)
- Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| | - Hongli Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiangman Lou
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhaoqing Ba
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Xuefei Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yiwen Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lijuan Zhao
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hye Suk Yoon
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aimee M. Chapdelaine-Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nia Kyritsis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Huan Chen
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kerstin Johnson
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Lin
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Conte
- Lymphocyte Nuclear Biology, NIAMS, NIH, and Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, and Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Cheng-Sheng Lee
- Institute of Molecular and Cellular Biology, Department of Life Sciences, Hsinchu, Taiwan, 30013, R.O.C.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| |
Collapse
|
71
|
Rivas MA, Meydan C, Chin CR, Challman MF, Kim D, Bhinder B, Kloetgen A, Viny AD, Teater MR, McNally DR, Doane AS, Béguelin W, Fernández MTC, Shen H, Wang X, Levine RL, Chen Z, Tsirigos A, Elemento O, Mason CE, Melnick AM. Smc3 dosage regulates B cell transit through germinal centers and restricts their malignant transformation. Nat Immunol 2021; 22:240-253. [PMID: 33432228 PMCID: PMC7855695 DOI: 10.1038/s41590-020-00827-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/25/2020] [Indexed: 01/28/2023]
Abstract
During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Cycle Proteins/deficiency
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Chondroitin Sulfate Proteoglycans/deficiency
- Chondroitin Sulfate Proteoglycans/genetics
- Chondroitin Sulfate Proteoglycans/metabolism
- Chromosomal Proteins, Non-Histone/deficiency
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases
- Gene Deletion
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Haploinsufficiency
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Humans
- Immunity, Humoral
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Signal Transduction
- Cohesins
- Mice
Collapse
Affiliation(s)
- Martín A Rivas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matt F Challman
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daleum Kim
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Aaron D Viny
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matt R Teater
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dylan R McNally
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ashley S Doane
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Hao Shen
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xiang Wang
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ross L Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Institute for Computational Medicine, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
72
|
Saha T, Sundaravinayagam D, Di Virgilio M. Charting a DNA Repair Roadmap for Immunoglobulin Class Switch Recombination. Trends Biochem Sci 2020; 46:184-199. [PMID: 33250286 DOI: 10.1016/j.tibs.2020.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is the process occurring in mature B cells that diversifies the effector component of antibody responses. CSR is initiated by the activity of the B cell-specific enzyme activation-induced cytidine deaminase (AID), which leads to the formation of programmed DNA double-strand breaks (DSBs) at the Ig heavy chain (Igh) locus. Mature B cells use a multilayered and complex regulatory framework to ensure that AID-induced DNA breaks are channeled into productive repair reactions leading to CSR, and to avoid aberrant repair events causing lymphomagenic chromosomal translocations. Here, we review the DNA repair pathways acting on AID-induced DSBs and their functional interplay, with a particular focus on the latest developments in their molecular composition and mechanistic regulation.
Collapse
Affiliation(s)
- Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
73
|
Wang WJ, Li LY, Cui JW. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics Chromatin 2020; 13:49. [PMID: 33168103 PMCID: PMC7654176 DOI: 10.1186/s13072-020-00371-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
With the rapid development of next-generation sequencing technology, chromosome structural variation has gradually gained increased clinical significance in tumorigenesis. However, the molecular mechanism(s) underlying this structural variation remain poorly understood. A search of the literature shows that a three-dimensional chromatin state plays a vital role in inducing structural variation and in the gene expression profiles in tumorigenesis. Structural variants may result in changes in copy number or deletions of coding sequences, as well as the perturbation of structural chromatin features, especially topological domains, and disruption of interactions between genes and their regulatory elements. This review focuses recent work aiming at elucidating how structural variations develop and misregulate oncogenes and tumor suppressors, to provide general insights into tumor formation mechanisms and to provide potential targets for future anticancer therapies.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Ling-Yu Li
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Jiu-Wei Cui
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
74
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
75
|
Jones K, Savulescu AF, Brombacher F, Hadebe S. Immunoglobulin M in Health and Diseases: How Far Have We Come and What Next? Front Immunol 2020; 11:595535. [PMID: 33193450 PMCID: PMC7662119 DOI: 10.3389/fimmu.2020.595535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
B lymphocytes are important in secreting antibodies that protect against invading pathogens such as viruses, bacteria, parasites, and also in mediating pathogenesis of allergic diseases and autoimmunity. B lymphocytes develop in the bone marrow and contain heavy and light chains, which upon ligation form an immunoglobulin M (IgM) B cell receptor (BCR) expressed on the surface of naïve immature B cells. Naïve B cells expressing either IgM or IgD isotypes are thought to play interchangeable functions in antibody responses to T cell-dependent and T cell-independent antigens. IgM short-lived plasma cells (SLPCs) and antigen-specific IgM memory B cells (MBCs-M) are critical in the first few days of infection, as well as long-term memory induced by vaccination, respectively. At mucosal surfaces, IgM is thought to play a critical part in promoting mucosal tolerance and shaping microbiota together with IgA. In this review, we explore how IgM structure and BCR signaling shapes B cell development, self and non-self-antigen-specific antibody responses, responses to infectious (such as viruses, parasites, and fungal) and non-communicable diseases (such as autoimmunity and allergic asthma). We also explore how metabolism could influence other B cell functions such as mucosal tolerance and class switching. Finally, we discuss some of the outstanding critical research questions in both experimental and clinical settings targeting IgM.
Collapse
Affiliation(s)
- Katelyn Jones
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
76
|
A Hyper-IgM Syndrome Mutation in Activation-Induced Cytidine Deaminase Disrupts G-Quadruplex Binding and Genome-wide Chromatin Localization. Immunity 2020; 53:952-970.e11. [PMID: 33098766 DOI: 10.1016/j.immuni.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/27/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023]
Abstract
Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.
Collapse
|
77
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
78
|
Ba Z, Lou J, Ye AY, Dai HQ, Dring EW, Lin SG, Jain S, Kyritsis N, Kieffer-Kwon KR, Casellas R, Alt FW. CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 2020; 586:305-310. [PMID: 32717742 PMCID: PMC7554077 DOI: 10.1038/s41586-020-2578-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
The RAG endonuclease initiates Igh locus V(D)J recombination in progenitor (pro)-B cells1. Upon binding a recombination centre-based JH, RAG scans upstream chromatin via loop extrusion, potentially mediated by cohesin, to locate Ds and assemble a DJH-based recombination centre2. CTCF looping factor-bound elements (CBEs) within IGCR1 upstream of Ds impede RAG scanning3-5; however, their inactivation allows scanning to proximal VHs, where additional CBEs activate rearrangement and impede scanning any further upstream5. Distal VH utilization is thought to involve diffusional access to the recombination centre following large-scale Igh locus contraction6-8. Here we test the potential of linear RAG scanning to mediate distal VH usage in G1-arrested v-Abl pro-B cell lines9, which undergo robust D-to-JH but little VH-to-DJH rearrangements, presumably owing to lack of locus contraction2,5. Through an auxin-inducible approach10, we degraded the cohesin component RAD2110-12 or CTCF12,13 in these G1-arrested lines. Degradation of RAD21 eliminated all V(D)J recombination and interactions associated with RAG scanning, except for reecombination centre-located DQ52-to-JH joining, in which synapsis occurs by diffusion2. Remarkably, while degradation of CTCF suppressed most CBE-based chromatin interactions, it promoted robust recombination centre interactions with, and robust VH-to-DJH joining of, distal VHs, with patterns similar to those of 'locus-contracted' primary pro-B cells. Thus, downmodulation of CTCF-bound scanning-impediment activity promotes cohesin-driven RAG scanning across the 2.7-Mb Igh locus.
Collapse
Affiliation(s)
- Zhaoqing Ba
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Jiangman Lou
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Edward W Dring
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sherry G Lin
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Suvi Jain
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nia Kyritsis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kyong-Rim Kieffer-Kwon
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA
- Center of Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA.
- Center of Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
79
|
CtIP-mediated DNA resection is dispensable for IgH class switch recombination by alternative end-joining. Proc Natl Acad Sci U S A 2020; 117:25700-25711. [PMID: 32989150 DOI: 10.1073/pnas.2010972117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To generate antibodies with different effector functions, B cells undergo Immunoglobulin Heavy Chain (IgH) class switch recombination (CSR). The ligation step of CSR is usually mediated by the classical nonhomologous end-joining (cNHEJ) pathway. In cNHEJ-deficient cells, a remarkable ∼25% of CSR can be achieved by the alternative end-joining (Alt-EJ) pathway that preferentially uses microhomology (MH) at the junctions. While A-EJ-mediated repair of endonuclease-generated breaks requires DNA end resection, we show that CtIP-mediated DNA end resection is dispensable for A-EJ-mediated CSR using cNHEJ-deficient B cells. High-throughput sequencing analyses revealed that loss of ATM/ATR phosphorylation of CtIP at T855 or ATM kinase inhibition suppresses resection without altering the MH pattern of the A-EJ-mediated switch junctions. Moreover, we found that ATM kinase promotes Alt-EJ-mediated CSR by suppressing interchromosomal translocations independent of end resection. Finally, temporal analyses reveal that MHs are enriched in early internal deletions even in cNHEJ-proficient B cells. Thus, we propose that repetitive IgH switch regions represent favored substrates for MH-mediated end-joining contributing to the robustness and resection independence of A-EJ-mediated CSR.
Collapse
|
80
|
Wu L, Schatz DG. Making ends meet in class switch recombination. Cell Res 2020; 30:711-712. [PMID: 32451457 PMCID: PMC7609326 DOI: 10.1038/s41422-020-0342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Lizhen Wu
- Department of immunobiology, Yale School of Medicine, New Haven, CT, 06519, USA
| | - David G Schatz
- Department of immunobiology, Yale School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
81
|
He Y, Ren J, Xu X, Ni K, Schwader A, Finney R, Wang C, Sun L, Klarmann K, Keller J, Tubbs A, Nussenzweig A, Muegge K. Lsh/HELLS is required for B lymphocyte development and immunoglobulin class switch recombination. Proc Natl Acad Sci U S A 2020; 117:20100-20108. [PMID: 32727902 PMCID: PMC7443918 DOI: 10.1073/pnas.2004112117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutation of HELLS (Helicase, Lymphoid-Specific)/Lsh in human DNA causes a severe immunodeficiency syndrome, but the nature of the defect remains unknown. We assessed here the role of Lsh in hematopoiesis using conditional Lsh knockout mice with expression of Mx1 or Vav Cre-recombinase. Bone marrow transplantation studies revealed that Lsh depletion in hematopoietic stem cells severely reduced B cell numbers and impaired B cell development in a hematopoietic cell-autonomous manner. Lsh-deficient mice without bone marrow transplantation exhibited lower Ig levels in vivo compared to controls despite normal peripheral B cell numbers. Purified B lymphocytes proliferated normally but produced less immunoglobulins in response to in vitro stimulation, indicating a reduced capacity to undergo class switch recombination (CSR). Analysis of germline transcripts, examination of double-stranded breaks using biotin-labeling DNA break assay, and End-seq analysis indicated that the initiation of the recombination process was unscathed. In contrast, digestion-circularization PCR analysis and high-throughput sequencing analyses of CSR junctions and a chromosomal break repair assay indicated an impaired ability of the canonical end-joining pathway in Lsh-deficient B cells. Our data suggest a hematopoietic cell-intrinsic role of Lsh in B cell development and in CSR providing a potential target for immunodeficiency therapy.
Collapse
Affiliation(s)
- Yafeng He
- Epigenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Jianke Ren
- Epigenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Xiaoping Xu
- Epigenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Kai Ni
- Epigenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Andrew Schwader
- Epigenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Richard Finney
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Can Wang
- Epigenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Lei Sun
- Hematopoiesis and Stem Cell Biology Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Kimberly Klarmann
- Hematopoiesis and Stem Cell Biology Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
- Basic Science Program, Leidos Biomedical Research, Inc., Basic Science Program, Frederick National Laboratory, Frederick, MD 21702
| | - Jonathan Keller
- Hematopoiesis and Stem Cell Biology Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
- Basic Science Program, Leidos Biomedical Research, Inc., Basic Science Program, Frederick National Laboratory, Frederick, MD 21702
| | - Anthony Tubbs
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Kathrin Muegge
- Epigenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702;
- Hematopoiesis and Stem Cell Biology Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
82
|
Wu Q, Liu P, Wang L. Many facades of CTCF unified by its coding for three-dimensional genome architecture. J Genet Genomics 2020; 47:407-424. [PMID: 33187878 DOI: 10.1016/j.jgg.2020.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
CCCTC-binding factor (CTCF) is a multifunctional zinc finger protein that is conserved in metazoan species. CTCF is consistently found to play an important role in many diverse biological processes. CTCF/cohesin-mediated active chromatin 'loop extrusion' architects three-dimensional (3D) genome folding. The 3D architectural role of CTCF underlies its multifarious functions, including developmental regulation of gene expression, protocadherin (Pcdh) promoter choice in the nervous system, immunoglobulin (Ig) and T-cell receptor (Tcr) V(D)J recombination in the immune system, homeobox (Hox) gene control during limb development, as well as many other aspects of biology. Here, we review the pleiotropic functions of CTCF from the perspective of its essential role in 3D genome architecture and topological promoter/enhancer selection. We envision the 3D genome as an enormous complex architecture, with tens of thousands of CTCF sites as connecting nodes and CTCF proteins as mysterious bonds that glue together genomic building parts with distinct articulation joints. In particular, we focus on the internal mechanisms by which CTCF controls higher order chromatin structures that manifest its many façades of physiological and pathological functions. We also discuss the dichotomic role of CTCF sites as intriguing 3D genome nodes for seemingly contradictory 'looping bridges' and 'topological insulators' to frame a beautiful magnificent house for a cell's nuclear home.
Collapse
Affiliation(s)
- Qiang Wu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China.
| | - Peifeng Liu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Leyang Wang
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| |
Collapse
|
83
|
Butzmann A, Sridhar K, Jangam D, Kumar J, Sahoo MK, Shahmarvand N, Warnke R, Rangasamy E, Pinsky BA, Ohgami RS. A comprehensive analysis of RHOA mutation positive and negative angioimmunoblastic T-cell lymphomas by targeted deep sequencing, expression profiling and single cell digital image analysis. Int J Mol Med 2020; 46:1466-1476. [PMID: 32945366 PMCID: PMC7447311 DOI: 10.3892/ijmm.2020.4686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/22/2020] [Indexed: 11/29/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a uniquely aggressive mature T-cell neoplasm. In recent years, recurrent genetic mutations in ras homolog family member A (RHOA), tet methylcytosine dioxygenase 2 (TET2), DNA methyltransferase 3 alpha (DNMT3A) and isocitrate dehydrogenase [NADP(+)] 2 (IDH2) have been identified as associated with AITL. However, a deep molecular study assessing both DNA mutations and RNA expression profile combined with digital image analysis is lacking. The present study aimed to evaluate the significance of molecular and morphologic features by high resolution digital image analysis in several cases of AITL. To do so, a total of 18 separate tissues from 10 patients with AITL were collected and analyzed. The results identified recurrent mutations in RHOA, TET2, DNMT3A, and IDH2, and demonstrated increased DNA mutations in coding, promoter and CCCTC binding factor (CTCF) binding sites in RHOA mutated AITLs vs. RHOA non-mutated cases, as well as increased overall survival in RHOA mutated patients. In addition, single cell computational digital image analysis morphologically characterized RHOA mutated AITL cells as distinct from cells from RHOA mutation negative patients. Computational analysis of single cell morphological parameters revealed that RHOA mutated cells have decreased eccentricity (more circular) compared with RHOA non-mutated AITL cells. In conclusion, the results from the present study expand our understanding of AITL and demonstrate that there are specific cell biological and morphological manifestations of RHOA mutations in cases of AITL.
Collapse
Affiliation(s)
| | - Kaushik Sridhar
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Diwash Jangam
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jyoti Kumar
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Nahid Shahmarvand
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Roger Warnke
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
84
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Mechanism and regulation of class switch recombination by IgH transcriptional control elements. Adv Immunol 2020; 147:89-137. [PMID: 32981636 DOI: 10.1016/bs.ai.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class switch recombination (CSR) plays an important role in humoral immunity by generating antibodies with different effector functions. CSR to a particular antibody isotype is induced by external stimuli, and occurs between highly repetitive switch (S) sequences. CSR requires transcription across S regions, which generates long non-coding RNAs and secondary structures that promote accessibility of S sequences to activation-induced cytidine deaminase (AID). AID initiates DNA double-strand breaks (DSBs) intermediates that are repaired by general DNA repair pathways. Switch transcription is controlled by various regulatory elements, including enhancers and insulators. The current paradigm posits that transcriptional control of CSR involves long-range chromatin interactions between regulatory elements and chromatin loops-stabilizing factors, which promote alignment of partner S regions in a CSR centre (CSRC) and initiation of CSR. In this review, we focus on the role of IgH transcriptional control elements in CSR and the chromatin-based mechanisms underlying this control.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
85
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
86
|
DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat Commun 2020; 11:3158. [PMID: 32572033 PMCID: PMC7308414 DOI: 10.1038/s41467-020-16926-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/29/2020] [Indexed: 01/20/2023] Open
Abstract
Efficient repair of DNA double-strand breaks (DSBs) requires a coordinated DNA Damage Response (DDR), which includes phosphorylation of histone H2Ax, forming γH2Ax. This histone modification spreads beyond the DSB into neighboring chromatin, generating a DDR platform that protects against end disassociation and degradation, minimizing chromosomal rearrangements. However, mechanisms that determine the breadth and intensity of γH2Ax domains remain unclear. Here, we show that chromosomal contacts of a DSB site are the primary determinants for γH2Ax landscapes. DSBs that disrupt a topological border permit extension of γH2Ax domains into both adjacent compartments. In contrast, DSBs near a border produce highly asymmetric DDR platforms, with γH2Ax nearly absent from one broken end. Collectively, our findings lend insights into a basic DNA repair mechanism and how the precise location of a DSB may influence genome integrity. Formation of γH2Ax serves as a checkpoint for double-strand break (DSB) repair pathways. Here the authors reveal via integrated chromatin analysis that γH2Ax domains are established by chromosomal contacts with the DSB site.
Collapse
|
87
|
Mayerova N, Cipak L, Gregan J. Cohesin Biology: From Passive Rings to Molecular Motors. Trends Genet 2020; 36:387-389. [PMID: 32396831 DOI: 10.1016/j.tig.2020.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 02/04/2023]
Abstract
The loop extrusion hypothesis postulated that extrusion of DNA loops through cohesin rings organizes genomes. Recent findings suggest that cohesin itself is a molecular motor that extrudes DNA. This has important implications not only for the organization of interphase chromatin but also for other processes where cohesin plays vital roles.
Collapse
Affiliation(s)
- Nina Mayerova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Department of Chromosome Biology, MPL, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
88
|
Liu X, Liu T, Shang Y, Dai P, Zhang W, Lee BJ, Huang M, Yang D, Wu Q, Liu LD, Zheng X, Zhou BO, Dong J, Yeap LS, Hu J, Xiao T, Zha S, Casellas R, Liu XS, Meng FL. ERCC6L2 promotes DNA orientation-specific recombination in mammalian cells. Cell Res 2020; 30:732-744. [PMID: 32355287 PMCID: PMC7608219 DOI: 10.1038/s41422-020-0328-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Programmed DNA recombination in mammalian cells occurs predominantly in a directional manner. While random DNA breaks are typically repaired both by deletion and by inversion at approximately equal proportions, V(D)J and class switch recombination (CSR) of immunoglobulin heavy chain gene overwhelmingly delete intervening sequences to yield productive rearrangement. What factors channel chromatin breaks to deletional CSR in lymphocytes is unknown. Integrating CRISPR knockout and chemical perturbation screening we here identify the Snf2-family helicase-like ERCC6L2 as one such factor. We show that ERCC6L2 promotes double-strand break end-joining and facilitates optimal CSR in mice. At the cellular levels, ERCC6L2 rapidly engages in DNA repair through its C-terminal domains. Mechanistically, ERCC6L2 interacts with other end-joining factors and plays a functionally redundant role with the XLF end-joining factor in V(D)J recombination. Strikingly, ERCC6L2 controls orientation-specific joining of broken ends during CSR, which relies on its helicase activity. Thus, ERCC6L2 facilitates programmed recombination through directional repair of distant breaks.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafang Shang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wubing Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Min Huang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingpeng Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu Wu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Liu Daisy Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China
| | - Bo O Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Genome Editing Research Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, Center of Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| | - X Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, 02215, USA
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
89
|
Feng Y, Seija N, Di Noia JM, Martin A. AID in Antibody Diversification: There and Back Again. Trends Immunol 2020; 41:586-600. [PMID: 32434680 PMCID: PMC7183997 DOI: 10.1016/j.it.2020.04.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Activation-Induced cytidine Deaminase (AID) initiates affinity maturation and isotype switching by deaminating deoxycytidines within immunoglobulin genes, leading to somatic hypermutation (SHM) and class switch recombination (CSR). AID thus potentiates the humoral response to clear pathogens. Marking the 20th anniversary of the discovery of AID, we review the current understanding of AID function. We discuss AID biochemistry and how error-free forms of DNA repair are co-opted to prioritize mutagenesis over accuracy during antibody diversification. We discuss the regulation of DNA double-strand break (DSB) repair pathways during CSR. We describe genomic targeting of AID as a multilayered process involving chromatin architecture, cis- and trans-acting factors, and determining mutagenesis – distinct from AID occupancy at loci that are spared from mutation. Subverted base excision repair (BER) and mismatch repair (MMR) pathways act concertedly to generate antibody sequence diversity during SHM. In CSR, DNA DSBs are repaired by the nonhomologous end-joining pathway involving the 53BP1–Rif1–Shieldin axis, and by an alternative end-joining pathway involving HMCES (5-Hydroxymethylcytosine binding, ES-cell-specific) that binds and protects resected DSB ends. Genomic targeting of AID appears to be multilayered, with inbuilt redundancy, but robust enough to ensure that most of the genome is spared from AID activity. Cis elements and genome topology act together with trans-acting factors involved in transcription and RNA processing to determine AID activity at specific Ig regions. Other loci sharing genomic and transcriptional features with the Ig are collaterally targeted during SHM and CSR.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Noé Seija
- Institute de Recherches Cliniques de Montréal, Montréal, QC, Canada; Molecular Biology Programs, Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Javier M Di Noia
- Institute de Recherches Cliniques de Montréal, Montréal, QC, Canada; Molecular Biology Programs, Department of Medicine, University of Montreal, Montréal, QC, Canada.
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
90
|
Abolhassani H, Marcotte H, Fang M, Hammarström L. Clinical implications of experimental analyses of AID function on predictive computational tools: Challenge of missense variants. Clin Genet 2020; 97:844-856. [PMID: 32162335 DOI: 10.1111/cge.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 11/30/2022]
Abstract
Due to the increased usage of high throughput sequencing for the diagnosis of genetically inherited disorders, it is vital to evaluate the risk of new variants and novel genes before accepting them in clinical practice. However, discordant in silico and in vitro results, challenge estimations of the effect of an identified genetic variant. We aimed to comprehensively evaluate pathogenic and polymorphic variants using the activation-induced-cytidine-deaminase (AICDA) gene as a model. We systematically searched and identified patients with confirmed AICDA-mutations. Population-based-databases were screened for germline-polymorphic-AICDA-variants. Activity of AICDA-mutant and severity of the clinical and immunologic-phenotype were showed comparing 108 population-based-variants with 48 pathogenic mutations (12 overlapping-variants). Discordant predictions of different algorithms were observed on average in 38% of the population-database variants, mainly for missense mutations. Functional activity in mutations observed only in patients was significantly lower than variants in the population databases and overlapping-variants between patients and the general-population. Surprisingly, overlapping-variants had an even higher functional activity than the most common polymorphic-variants; however, their pathogenicity was still distinguishable when their function was compared with wild-type AICDA. Classifications of genetic variants cannot readily be translated into a clinical implication. Combined databases of functional and computational assays should therefore be developed for each specific gene.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Harold Marcotte
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mingyan Fang
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,BGI-Shenzhen, Shenzhen, China.,China National GeneBank, Shenzhen, China
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,BGI-Shenzhen, Shenzhen, China.,China National GeneBank, Shenzhen, China
| |
Collapse
|