51
|
Chougule A, Iyengar VV, Gowri V, Taur P, Madkaikar MR, Bodhanwala M, Desai MM. Cleavage-resistant RIPK1-induced autoinflammatory syndrome-A report of three generations with periodic fever and clinical response to colchicine. Int J Rheum Dis 2024; 27:e14837. [PMID: 37452601 DOI: 10.1111/1756-185x.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The clinical syndrome caused by cleavage-resistant RIPK1 is known as CRIA (Cleavage-resistant RIPK1-induced autoinflammatory) syndrome. We present a family with three generations affected by CRIA syndrome. Our index patient (P1), a boy born of a non-consanguineous marriage, developed recurrent episodes of fever after 5 months of age, with variable periodicity. His father (P2) and paternal grandmother also had periodic fever. At 23 months of age, P1 was diagnosed with renal biopsy-proven steroid-responsive nephrotic syndrome. His first visit to our center was at 2 years of age. At presentation, he had failure to thrive, microcytic hypochromic anemia, and elevated inflammatory markers and interleukin-6 levels. Amyloid A protein was elevated, serum creatinine was normal, and proteinuria resolved after addition of steroids. Next-generation sequencing showed heterozygous mutation (c.970G>A, p.Asp324His) in RIPK1. This mutation has been reported to cause CRIA syndrome. P2 and P1's asymptomatic younger brother had the same mutation. All the affected members showed variability with respect to frequency and duration of periodic fever as well as the age of onset. Both P1 and P2 had elevated amyloid A, with no evidence of renal dysfunction. P1 and P2 showed improvement in the intensity of fever spikes with colchicine treatment; however, both continue to have periodic fever.
Collapse
Affiliation(s)
- Akshaya Chougule
- Department of Pediatric Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Vaishnavi V Iyengar
- Department of Pediatric Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Pediatric Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Prasad Taur
- Department of Pediatric Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Manisha R Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR NIIH, Mumbai, India
| | - Minnie Bodhanwala
- Department of Paediatrics, B. J. Wadia Hospital for Children, Mumbai, India
| | - Mukesh M Desai
- Department of Pediatric Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
52
|
Nakano H. Necroptosis and Its Involvement in Various Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:129-143. [PMID: 38467977 DOI: 10.1007/978-981-99-9781-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Necroptosis is a regulated form of cell death involved in the development of various pathological conditions. In contrast to apoptosis, plasma membrane rupture (PMR) occurs in cells in the relatively early stage of necroptosis; therefore, necroptosis induces a strong inflammatory response. Stimuli, including tumor necrosis factor (TNF), interferon (IFN)α/β, lipopolysaccharide, polyI:C, and viral infection, induce the formation of necrosomes that lead to membrane rupture and the release of intracellular contents, termed danger-associated molecular patterns (DAMPs). DAMPs are the collective term for molecules that normally reside in the cytoplasm or nucleus in living cells without inducing inflammation but induce strong inflammatory responses when released outside cells. Recent studies have provided a better understanding of the mechanisms underlying PMR and the release of DAMPs. Moreover, necroptosis is involved in various pathological conditions, and mutations in necroptosis-related genes can cause hereditary autoinflammatory syndromes. Thus, manipulating necroptosis signaling pathways may be useful for treating diseases involving necroptosis.
Collapse
Affiliation(s)
- Hiroyasu Nakano
- Department of Biochemistry, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
53
|
Pati S, Singh Gautam A, Dey M, Tiwari A, Kumar Singh R. Molecular and functional characteristics of receptor-interacting protein kinase 1 (RIPK1) and its therapeutic potential in Alzheimer's disease. Drug Discov Today 2023; 28:103750. [PMID: 37633326 DOI: 10.1016/j.drudis.2023.103750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Inflammation and cell death processes positively control the organ homeostasis of an organism. Receptor-interacting protein kinase 1 (RIPK1), a member of the RIPK family, is a crucial regulator of cell death and inflammation, and control homeostasis at the cellular and tissue level. Necroptosis, a programmed form of necrosis-mediated cell death and tumor necrosis factor (TNF)-induced necrotic cell death, is mostly regulated by RIPK1 kinase activity. Thus, RIPK1 has recently emerged as an upstream kinase that controls multiple cellular pathways and participates in regulating inflammation and cell death. All the major cell types in the central nervous system (CNS) have been found to express RIPK1. Selective inhibition of RIPK1 has been shown to prevent neuronal cell death, which could ultimately lead to a significant reduction of neurodegeneration and neuroinflammation. In addition, the kinase structure of RIPK1 is highly conducive to the development of specific pharmacological small-molecule inhibitors. These factors have led to the emergence of RIPK1 as an important therapeutic target for Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Satyam Pati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Mangaldeep Dey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Aman Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
54
|
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
55
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
56
|
Tao P, Han X, Wang Q, Wang S, Zhang J, Liu L, Fan X, Liu C, Liu M, Guo L, Lee PY, Aksentijevich I, Zhou Q. A gain-of-function variation in PLCG1 causes a new immune dysregulation disease. J Allergy Clin Immunol 2023; 152:1292-1302. [PMID: 37422272 PMCID: PMC10770301 DOI: 10.1016/j.jaci.2023.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Phospholipase C (PLC) γ1 is a critical enzyme regulating nuclear factor-κB (NF-κB), extracellular signal-related kinase, mitogen-activated protein kinase, and nuclear factor of activated T cells signaling pathways, yet germline PLCG1 mutation in human disease has not been reported. OBJECTIVE We aimed to investigate the molecular pathogenesis of a PLCG1 activating variant in a patient with immune dysregulation. METHODS Whole exome sequencing was used to identify the patient's pathogenic variants. Bulk RNA sequencing, single-cell RNA sequencing, quantitative PCR, cytometry by time of flight, immunoblotting, flow cytometry, luciferase assay, IP-One ELISA, calcium flux assay, and cytokine measurements in patient PBMCs and T cells and COS-7 and Jurkat cell lines were used to define inflammatory signatures and assess the impact of the PLCG1 variant on protein function and immune signaling. RESULTS We identified a novel and de novo heterozygous PLCG1 variant, p.S1021F, in a patient presenting with early-onset immune dysregulation disease. We demonstrated that the S1021F variant is a gain-of-function variant, leading to increased inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and increased phosphorylation of extracellular signal-related kinase, p65, and p38. The transcriptome and protein expression at the single-cell level revealed exacerbated inflammatory responses in the patient's T cells and monocytes. The PLCG1 activating variant resulted in enhanced NF-κB and type II interferon pathways in T cells, and hyperactivated NF-κB and type I interferon pathways in monocytes. Treatment with either PLCγ1 inhibitor or Janus kinase inhibitor reversed the upregulated gene expression profile in vitro. CONCLUSIONS Our study highlights the critical role of PLCγ1 in maintaining immune homeostasis. We illustrate immune dysregulation as a consequence of PLCγ1 activation and provide insight into therapeutic targeting of PLCγ1.
Collapse
Affiliation(s)
- Panfeng Tao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qintao Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shihao Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lin Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaorui Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chenlu Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meng Liu
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li Guo
- Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
57
|
Wang Q, Jin T, Jian S, Han X, Song H, Zhou Q, Yu X. A dominant pathogenic MEFV mutation causes atypical pyrin-associated periodic syndromes. JCI Insight 2023; 8:e172975. [PMID: 37676738 PMCID: PMC10619432 DOI: 10.1172/jci.insight.172975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Pyrin, a protein encoded by the MEFV gene, plays a vital role in innate immunity by sensing modifications in Rho GTPase and assembling the pyrin inflammasome, which in turn activates downstream immune responses. We identified a novel and de novo MEFV p.E583A dominant variant in 3 patients from the same family; the variant was distinct from the previously reported S242 and E244 sites. These patients exhibited a phenotype that diverged from those resulting from classical MEFV gene mutations, characterized by the absence of recurrent fever but the presence of recurrent chest and abdominal pain. Colchicine effectively controlled the phenotype, and the mutation was found to induce pyrin inflammasome assembly and activation in patients' peripheral blood mononuclear cells (PBMCs) and cell lines. Mechanistically, truncation experiments revealed that the E583A variant affected the autoinhibitory structure of pyrin. Our study offers insights into the mechanisms underlying pyrin inflammasome activation.
Collapse
Affiliation(s)
- Qintao Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Taijie Jin
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shan Jian
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Han
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomin Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| |
Collapse
|
58
|
Hou Y, Wang L, Luo C, Tang W, Dai R, An Y, Tang X. Clinical characteristics of early-onset paediatric systemic lupus erythematosus in a single centre in China. Rheumatology (Oxford) 2023; 62:3373-3381. [PMID: 36810668 DOI: 10.1093/rheumatology/kead086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES We sought to investigate the sex distribution, clinical presentations, disease outcomes and genetic background of early-onset paediatric SLE (eo-pSLE) in a single centre in China to help enable early diagnosis and timely treatment. METHODS The clinical data of children aged less than 5 years old with SLE (n = 19) from January 2012 to December 2021 were reviewed and analysed. We performed DNA sequencing in 11 out of 19 patients to survey the genetic aetiologies. RESULTS Our study included 6 males and 13 females. The mean age at onset was 3.73 years. The median diagnostic delay was 9 months and was longer in male patients (P = 0.02). Four patients had an SLE-relevant family history. The most common clinical manifestations at diagnosis were fever, rash and hepatosplenomegaly. ANA positivity and low C3 were identified in all children. The renal (94.74%), mucocutaneous (94.74%), haematological (89.47%), respiratory (89.47%), digestive (84.21%), cardiovascular (57.89%) and neuropsychiatric (52.63%) systems were involved to varying degrees. We identified 13 SLE-associated gene mutations in 9 out of 11 patients: TREX1, PIK3CD, LRBA, KRAS, STAT4, C3, ITGAM, CYBB, TLR5, RIPK1, BACH2, CFHR5 and SYK. One male patient showed a 47, XXY chromosomal abnormality. CONCLUSION Early-onset (<5 years) pSLE is characterized by an insidious onset, typical immunological patterns, and the involvement of multiple organs. Immunological screening and genetic testing should be performed as soon as feasible in patients with an early onset of multisystemic autoimmune diseases to confirm the diagnosis.
Collapse
Affiliation(s)
- Yipei Hou
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Paediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Li Wang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Paediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Chong Luo
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Paediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Wenjing Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Paediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Rongxin Dai
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Paediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yunfei An
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Paediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Paediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| |
Collapse
|
59
|
Ling ZY, Lv QZ, Li J, Lu RY, Chen LL, Xu WH, Wang Y, Zhuang CL. Protective Effect of a Novel RIPK1 Inhibitor, Compound 4-155, in Systemic Inflammatory Response Syndrome and Sepsis. Inflammation 2023; 46:1796-1809. [PMID: 37227549 DOI: 10.1007/s10753-023-01842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Excessive inflammatory response is a critical pathogenic factor for the tissue damage and organ failure caused by systemic inflammatory response syndrome (SIRS) and sepsis. In recent years, drugs targeting RIPK1 have proved to be an effective anti-inflammatory strategy. In this study, we identified a novel anti-inflammatory lead compound 4-155 that selectively targets RIPK1. Compound 4-155 significantly inhibited necroptosis of cells, and its activity is about 10 times higher than the widely studied Nec-1 s. The anti-necroptosis effect of 4-155 was mainly dependent on the inhibition of phosphorylation of RIPK1, RIPK3, and MLKL. In addition, we demonstrated that 4-155 specifically binds RIPK1 by drug affinity responsive target stability (DARTS), immunoprecipitation, kinase assay, and immunofluorescence microscopy. More importantly, compound 4-155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis and not influence the activation of MAPK and NF-κB, which is more potential for the subsequent drug development. Compound 4-155 effectively protected mice from TNF-induced SIRS and sepsis. Using different doses, we found that 6 mg/kg oral administration of compound 4-155 could increase the survival rate of SIRS mice from 0 to 90%, and the anti-inflammatory effect of 4-155 in vivo was significantly stronger than Nec-1 s at the same dose. Consistently, 4-155 significantly reduced serum levels of pro-inflammatory cytokines (TNF-α and IL-6) and protected the liver and kidney from excessive inflammatory damages. Taken together, our results suggested that compound 4-155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis, providing a new lead compound for the treatment of SIRS and sepsis.
Collapse
Affiliation(s)
- Zhong-Yi Ling
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Quan-Zhen Lv
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiao Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lin-Lin Chen
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei-Heng Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Wang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
60
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
61
|
Martinez Lagunas K, Savcigil DP, Zrilic M, Carvajal Fraile C, Craxton A, Self E, Uranga-Murillo I, de Miguel D, Arias M, Willenborg S, Piekarek M, Albert MC, Nugraha K, Lisewski I, Janakova E, Igual N, Tonnus W, Hildebrandt X, Ibrahim M, Ballegeer M, Saelens X, Kueh A, Meier P, Linkermann A, Pardo J, Eming S, Walczak H, MacFarlane M, Peltzer N, Annibaldi A. Cleavage of cFLIP restrains cell death during viral infection and tissue injury and favors tissue repair. SCIENCE ADVANCES 2023; 9:eadg2829. [PMID: 37494451 PMCID: PMC10371024 DOI: 10.1126/sciadv.adg2829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.
Collapse
Affiliation(s)
- Kristel Martinez Lagunas
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Deniz Pinar Savcigil
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Matea Zrilic
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Carlos Carvajal Fraile
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Emily Self
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Iratxe Uranga-Murillo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego de Miguel
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Maykel Arias
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Michael Piekarek
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Marie Christine Albert
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Kalvin Nugraha
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Ina Lisewski
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Erika Janakova
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Natalia Igual
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Ximena Hildebrandt
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Mohammed Ibrahim
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Andrew Kueh
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julian Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sabine Eming
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
| | - Henning Walczak
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, UK
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nieves Peltzer
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Department of Translational Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch Strasse 21, 50931, Cologne, Germany
| |
Collapse
|
62
|
Wu B, Li J, Wang H, Liu J, Li J, Sun F, Feng DC. RIPK1 is aberrantly expressed in multiple B-cell cancers and implicated in the underlying pathogenesis. Discov Oncol 2023; 14:131. [PMID: 37462822 DOI: 10.1007/s12672-023-00725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
According to the latest epidemiology of the US, B-cell cancers account for > 3% of all new cancer cases and > 80% of non-Hodgkin lymphomas. However, the disease-modifying small molecular drug suitable for most B-cell cancers is still lacking. RIPK1 (receptor-interacting serine/threonine-protein kinase 1) has been observed to be dysregulated and implicated in the pathogenesis of multiple solid cancers, of which, however, the roles in blood cancers are quite unclear. In our study, to identify multi-function targets for B-cell cancer treatment, we reanalyzed a public transcriptomic dataset from the database of Gene Expression Omnibus, which includes CD19+ B-cell populations from 6 normal donors and patients of 5 CLL, 10 FL, and 8 DLBCL. After overlapping three groups (CLL vs. normal, FL vs. normal, and DLBCL vs. normal) of differentially expressed genes (DEGs), we obtained 69 common DEGs, of which 3 were validated by real-time quantitative PCR, including RIPK3, IGSF3, TGFBI. Interestingly, we found that the loss function of RIPK1 significantly increases the proliferation and viability of GM12878 cells (a normal human B lymphocyte cell line). Consistently, overexpression of RIPK1 in TMD8 and U2932 cells effectively inhibited cell proliferation and growth. More importantly, modifying RIPK1 kinase activity by a small molecule (such as necrostain-1, HOIPIN-1, etc.) alters the cell growth status of B-cell lymphoma, showing that RIPK1 exhibits anti-tumor activity in the context of B-cell lymphoma. Taken together, we consider that RIPK1 may be a potential target in the clinical application of B-cell lymphoma (including CLL, DLBCL, and FL) treatment.
Collapse
Affiliation(s)
- Baoyu Wu
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, 18 Sudi Road, Xuzhou, 221006, Jiangsu, China.
| | - Jingyu Li
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, 18 Sudi Road, Xuzhou, 221006, Jiangsu, China
| | - Han Wang
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, 18 Sudi Road, Xuzhou, 221006, Jiangsu, China
| | - Jianguo Liu
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, 18 Sudi Road, Xuzhou, 221006, Jiangsu, China
| | - Jiayong Li
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, 18 Sudi Road, Xuzhou, 221006, Jiangsu, China
| | - Fang Sun
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, 18 Sudi Road, Xuzhou, 221006, Jiangsu, China
| | - Dong Chuan Feng
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou Medical University, 18 Sudi Road, Xuzhou, 221006, Jiangsu, China
| |
Collapse
|
63
|
Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol 2023:S1471-4906(23)00105-9. [PMID: 37357102 DOI: 10.1016/j.it.2023.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.
Collapse
Affiliation(s)
- Jon Huyghe
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
64
|
Malireddi RS, Bynigeri RR, Mall R, Nadendla EK, Connelly JP, Pruett-Miller SM, Kanneganti TD. Whole-genome CRISPR screen identifies RAVER1 as a key regulator of RIPK1-mediated inflammatory cell death, PANoptosis. iScience 2023; 26:106938. [PMID: 37324531 PMCID: PMC10265528 DOI: 10.1016/j.isci.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of innate immunity, cell death, inflammation, and cellular homeostasis. Therefore, many pathogens carry TAK1 inhibitors (TAK1i). As a host strategy to counteract this, inhibition or deletion of TAK1 induces spontaneous inflammatory cell death, PANoptosis, through the RIPK1-PANoptosome complex, containing the NLRP3 inflammasome and caspase-8/FADD/RIPK3 as integral components; however, PANoptosis also promotes pathological inflammation. Therefore, understanding molecular mechanisms that regulate TAK1i-induced cell death is essential. Here, we report a genome-wide CRISPR screen in macrophages that identified TAK1i-induced cell death regulators, including polypyrimidine tract-binding (PTB) protein 1 (PTBP1), a known regulator of RIPK1, and a previously unknown regulator RAVER1. RAVER1 blocked alternative splicing of Ripk1, and its genetic depletion inhibited TAK1i-induced, RIPK1-mediated inflammasome activation and PANoptosis. Overall, our CRISPR screen identified several positive regulators of PANoptosis. Moreover, our study highlights the utility of genome-wide CRISPR-Cas9 screens in myeloid cells for comprehensive characterization of complex cell death pathways to discover therapeutic targets.
Collapse
Affiliation(s)
| | - Ratnakar R. Bynigeri
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jon P. Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
65
|
Zhang L, Tie X, Che F, Wang G, Ge Y, Li B, Yang Y. Novel maternal duplication of 6p22.3-p25.3 with subtelomeric 6p25.3 deletion: new clinical findings and genotype-phenotype correlations. Mol Cytogenet 2023; 16:11. [PMID: 37303060 DOI: 10.1186/s13039-023-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Copy-number variants (CNVs) drive many neurodevelopmental-related disorders. Although many neurodevelopmental-related CNVs can give rise to widespread phenotypes, it is necessary to identify the major genes contributing to phenotypic presentation. Copy-number variations in chromosome 6, such as independent 6p deletion and 6p duplication, have been reported in several live-born infants and present widespread abnormalities such as intellectual disability, growth deficiency, developmental delay, and multiple dysmorphic facial features. However, a contiguous deletion and duplication in chromosome 6p regions have been reported in only a few cases. CASE PRESENTATION In this study, we reported the first duplication of chromosome band 6p25.3-p22.3 with deletion of 6p25.3 in a pedigree. This is the first case reported involving CNVs in these chromosomal regions. In this pedigree, we reported a 1-year-old boy with maternal 6p25-pter duplication characterized by chromosome karyotype. Further analysis using CNV-seq revealed a 20.88-Mb duplication at 6p25.3-p22.3 associated with a contiguous 0.66-Mb 6p25.3 deletion. Whole exome sequencing confirmed the deletion/duplication and identified no pathogenic or likely pathogenic variants related with the patient´s phenotype. The proband presented abnormal growth, developmental delay, skeletal dysplasia, hearing loss, and dysmorphic facial features. Additionally, he presented recurrent infection after birth. CNV-seq using the proband´s parental samples showed that the deletion/duplication was inherited from the proband´s mother, who exhibited a similar phenotype to the proband. When compared with other cases, this proband and his mother presented a new clinical finding: forearm bone dysplasia. The major candidate genes contributing to recurrent infection, eye development, hearing loss features, neurodevelopmental development, and congenital bone dysplasia were further discussed. CONCLUSIONS Our results showed a new clinical finding of a contiguous deletion and duplication in chromosome 6p regions and suggested candidate genes associated with phenotypic features, such as FOXC1, SERPINB6, NRN1, TUBB2A, IRF4, and RIPK1.
Collapse
Affiliation(s)
- Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Xiaoling Tie
- Department of Rehabilitation, Xi'an Children's Hospital, Xi'an, China
| | - Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Guoxia Wang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Ge
- The Center Laboratory Medicine, Xi'an Children's Hospital, Xi'an, China
| | - Benchang Li
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China.
| |
Collapse
|
66
|
Wang Y, Wang J, Zheng W, Zhang J, Wang J, Jin T, Tao P, Wang Y, Liu C, Huang J, Lee PY, Yu X, Zhou Q. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design. Immunity 2023:S1074-7613(23)00231-5. [PMID: 37315560 DOI: 10.1016/j.immuni.2023.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1β. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1β and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.
Collapse
Affiliation(s)
- Yusha Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Jun Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenjie Zheng
- Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinbo Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Taijie Jin
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Panfeng Tao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Yibo Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chenlu Liu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiqian Huang
- Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University, Hangzhou 311121, Zhejiang, China; Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China.
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
67
|
Guo Y, Jin L, Dong L, Zhang M, Kuang Y, Chen X, Zhu W, Yin M. NHWD-1062 ameliorates inflammation and proliferation by the RIPK1/NF-κB/TLR1 axis in Psoriatic Keratinocytes. Biomed Pharmacother 2023; 162:114638. [PMID: 37011486 DOI: 10.1016/j.biopha.2023.114638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease. RIPK1 plays an important role in inflammatory diseases. At present, the clinical efficacy of the RIPK1 inhibitor is limited and the regulatory mechanism is unclear in the treatment of psoriasis. Therefore, our team developed a new RIPK1 inhibitor, NHWD-1062, which showed a slightly lower IC50 in U937 cells than that of GSK'772 (a RIPK1 inhibitor in clinical trials) (11 nM vs. 14 nM), indicating that the new RIPK1 inhibitor was no less inhibitory than GSK'772. In this study, we evaluated the therapeutic effects of NHWD-1062 using an IMQ-induced mouse model of psoriasis and explored the precise regulatory mechanism involved. We found that gavage of NHWD-1062 significantly ameliorated the inflammatory response and inhibited the abnormal proliferation of the epidermis in IMQ-induced psoriatic mice. We then elucidated the mechanism of NHWD-1062, which was that suppressed the proliferation and inflammation of keratinocytes in vitro and in vivo through the RIPK1/NF-κB/TLR1 axis. Dual-luciferase reporter assay indicated that P65 can directly target the TLR1 promoter region and activate TLR1 expression, leading to inflammation. In summary, our study demonstrates that NHWD-1062 alleviates psoriasis-like inflammation by inhibiting the activation of the RIPK1/NF-κB/TLR1 axis, which has not been previously reported and further provides evidence for the clinical translation of NHWD-1062 in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yiyan Guo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Liping Jin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Liang Dong
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Mi Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Yehong Kuang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China.
| | - Mingzhu Yin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
68
|
Wang Q, Chen X, Luo Y, Chen J, Yu X. Gain-of-function of MEFV Mutation Causes Very Early Onset Inflammatory Bowel Disease. J Clin Immunol 2023:10.1007/s10875-023-01520-9. [PMID: 37198371 DOI: 10.1007/s10875-023-01520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Qintao Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiang Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Youyou Luo
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaomin Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| |
Collapse
|
69
|
Badaro-Garcia S, Hohmann MS, Coelho AL, Verri WA, Hogaboam CM. Standard of care drugs do not modulate activity of senescent primary human lung fibroblasts. Sci Rep 2023; 13:3654. [PMID: 36871123 PMCID: PMC9985617 DOI: 10.1038/s41598-023-30844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Cellular senescence is crucial in the progression of idiopathic pulmonary fibrosis (IPF), but it is not evident whether the standard-of-care (SOC) drugs, nintedanib and pirfenidone, have senolytic properties. To address this question, we performed colorimetric and fluorimetric assays, qRT-PCR, and western blotting to evaluate the effect of SOC drugs and D + Q on senescent normal and IPF lung fibroblasts. In this study, we found that SOC drugs did not provoke apoptosis in the absence of death ligand in normal or IPF senescent lung fibroblasts. Nintedanib increased caspase-3 activity in the presence of Fas Ligand in normal but not in IPF senescent fibroblasts. Conversely, nintedanib enhanced B cell lymphoma 2 expression in senescent IPF lung fibroblasts. Moreover, in senescent IPF cells, pirfenidone induced mixed lineage kinase domain-like pseudokinase phosphorylation, provoking necroptosis. Furthermore, pirfenidone increased transcript levels of FN1 and COL1A1 in senescent IPF fibroblasts. Lastly, D + Q augmented growth differentiation factor 15 (GDF15) transcript and protein levels in both normal and IPF senescent fibroblasts. Taken together, these results establish that SOC drugs failed to trigger apoptosis in senescent primary human lung fibroblasts, possibly due to enhanced Bcl-2 levels by nintedanib and the activation of the necroptosis pathway by pirfenidone. Together, these data revealed the inefficacy of SOC drugs to target senescent cells in IPF.
Collapse
Affiliation(s)
- Stephanie Badaro-Garcia
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA.,Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Miriam S Hohmann
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Ana Lucia Coelho
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA.
| |
Collapse
|
70
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
71
|
Du Y, Liu M, Nigrovic PA, Dedeoglu F, Lee PY. Biologics and JAK inhibitors for the treatment of monogenic systemic autoinflammatory diseases in children. J Allergy Clin Immunol 2023; 151:607-618. [PMID: 36707349 PMCID: PMC9992337 DOI: 10.1016/j.jaci.2022.12.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) are caused by aberrant activation of 1 or more inflammatory pathways in an antigen-independent manner. Monogenic forms of SAIDs typically manifest during childhood, and early treatment is essential to minimize morbidity and mortality. On the basis of the mechanism of disease and the dominant cytokine(s) that propagates inflammation, monogenic SAIDs can be grouped into major categories including inflammasomopathies/disorders of IL-1, interferonopathies, and disorders of nuclear factor-κB and/or aberrant TNF activity. This classification scheme has direct therapeutic relevance given the availability of biologic agents and small-molecule inhibitors that specifically target these pathways. Here, we review the experience of using biologics that target IL-1 and TNF as well as using Janus kinase inhibitors for the treatment of monogenic SAIDs in pediatric patients. We provide an evidence-based guide for the use of these medications and discuss their mechanism of action, safety profile, and strategies for therapeutic monitoring.
Collapse
Affiliation(s)
- Yan Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou
| | - Meng Liu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston.
| |
Collapse
|
72
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
73
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
74
|
Peng J, Wang Y, Han X, Zhang C, Chen X, Jin Y, Yang Z, An Y, Zhang J, Liu Z, Chen Y, Gao E, Zhang Y, Xu F, Zheng C, Zhou Q, Liu Z. Clinical Implications of a New DDX58 Pathogenic Variant That Causes Lupus Nephritis due to RIG-I Hyperactivation. J Am Soc Nephrol 2023; 34:258-272. [PMID: 36261300 PMCID: PMC10103098 DOI: 10.1681/asn.2022040477] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus, with heterogeneous phenotypes and different responses to therapy. Identifying genetic causes of LN can facilitate more individual treatment strategies. METHODS We performed whole-exome sequencing in a cohort of Chinese patients with LN and identified variants of a disease-causing gene. Extensive biochemical, immunologic, and functional analyses assessed the effect of the variant on type I IFN signaling. We further investigated the effectiveness of targeted therapy using single-cell RNA sequencing. RESULTS We identified a novel DDX58 pathogenic variant, R109C, in five unrelated families with LN. The DDX58 R109C variant is a gain-of-function mutation, elevating type I IFN signaling due to reduced autoinhibition, which leads to RIG-I hyperactivation, increased RIG-I K63 ubiquitination, and MAVS aggregation. Transcriptome analysis revealed an increased IFN signature in patient monocytes. Initiation of JAK inhibitor therapy (baricitinib 2 mg/d) effectively suppressed the IFN signal in one patient. CONCLUSIONS A novel DDX58 R109C variant that can cause LN connects IFNopathy and LN, suggesting targeted therapy on the basis of pathogenicity. PODCAST This article contains a podcast at.
Collapse
Affiliation(s)
- Jiahui Peng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yusha Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Xiang Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Zhaohui Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhengzhao Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yangyang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhihong Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
75
|
Horne CR, Samson AL, Murphy JM. The web of death: the expanding complexity of necroptotic signaling. Trends Cell Biol 2023; 33:162-174. [PMID: 35750616 DOI: 10.1016/j.tcb.2022.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
The past decade has seen the emergence of the necroptosis programmed cell death pathway as an important contributor to the pathophysiology of myriad diseases. The receptor interacting protein kinase (RIPK)1 and RIPK3, and the pseudokinase executioner protein, mixed lineage kinase domain-like (MLKL), have grown to prominence as the core pathway components. Depending on cellular context, these proteins also serve as integrators of signals, such as post-translational modifications and protein or metabolite interactions, adding layers of complexity to pathway regulation. Here, we describe the emerging picture of the web of proteins that tune necroptotic signal transduction and how these events have diverged across species, presumably owing to selective pressures of pathogens upon the RIPK3-MLKL protein pair.
Collapse
Affiliation(s)
- Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
76
|
Li W, Yuan J. Targeting RIPK1 kinase for modulating inflammation in human diseases. Front Immunol 2023; 14:1159743. [PMID: 36969188 PMCID: PMC10030951 DOI: 10.3389/fimmu.2023.1159743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) is a master regulator of TNFR1 signaling in controlling cell death and survival. While the scaffold of RIPK1 participates in the canonical NF-κB pathway, the activation of RIPK1 kinase promotes not only necroptosis and apoptosis, but also inflammation by mediating the transcriptional induction of inflammatory cytokines. The nuclear translocation of activated RIPK1 has been shown to interact BAF-complex to promote chromatin remodeling and transcription. This review will highlight the proinflammatory role of RIPK1 kinase with focus on human neurodegenerative diseases. We will discuss the possibility of targeting RIPK1 kinase for the treatment of inflammatory pathology in human diseases.
Collapse
Affiliation(s)
- Wanjin Li
- *Correspondence: Wanjin Li, ; Junying Yuan,
| | | |
Collapse
|
77
|
Shi C, Cao P, Wang Y, Zhang Q, Zhang D, Wang Y, Wang L, Gong Z. PANoptosis: A Cell Death Characterized by Pyroptosis, Apoptosis, and Necroptosis. J Inflamm Res 2023; 16:1523-1532. [PMID: 37077221 PMCID: PMC10106823 DOI: 10.2147/jir.s403819] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
PANoptosis is a new cell death proposed by Malireddi et al in 2019, which is characterized by pyroptosis, apoptosis and necroptosis, but cannot be explained by any of them alone. The interaction between pyroptosis, apoptosis and necroptosis is involved in PANoptosis. In this review, from the perspective of PANoptosis, we focus on the relationship between pyroptosis, apoptosis and necroptosis, the key molecules in the process of PANoptosis and the formation of PANoptosome, as well as the role of PANoptosis in diseases. We aim to understand the mechanism of PANoptosis and provide a basis for targeted intervention of PANoptosis-related molecules to treat human diseases.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Zuojiong Gong, Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People’s Republic of China, Email
| |
Collapse
|
78
|
Huyghe J, Priem D, Van Hove L, Gilbert B, Fritsch J, Uchiyama Y, Hoste E, van Loo G, Bertrand MJM. ATG9A prevents TNF cytotoxicity by an unconventional lysosomal targeting pathway. Science 2022; 378:1201-1207. [PMID: 36520901 DOI: 10.1126/science.add6967] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.
Collapse
Affiliation(s)
- Jon Huyghe
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lisette Van Hove
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Barbara Gilbert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 113-8654 Tokyo, Japan
| | - Esther Hoste
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
79
|
Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2022; 22:343-351. [PMID: 36165421 DOI: 10.1097/aci.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory complications have been shown to arise in all age groups and across the spectrum of inborn errors of immunity (IEI). This review aims to highlight recent ground-breaking research and its impact on our understanding of IEI. RECENT FINDINGS Three registry-based studies of unprecedented size revealed the high prevalence of autoimmune, inflammatory and malignant complications in IEI. Two novel IEI were discovered: an autoinflammatory relopathy, cleavage-resistant RIPK1-induced autoinflammatory syndrome, as well as an inheritable phenocopy of PD-1 blockade-associated complication (as seen in cancer therapy) manifesting with multiorgan autoimmunity and Mycobacterium tuberculosis infection. A study examining patients with partial RAG deficiency pinpointed the specific defects leading to the failure of central and peripheral tolerance resulting in wide-ranging autoimmunity. A novel variant of Immunodeficiency Polyendocrinopathy Enteropathy X-linked syndrome was described, associated with preferential expression of a FOXP3 isoform lacking exon 2, linking exon-specific functions and the phenotypes corresponding to their absence. Lastly, we touch on recent findings pertaining actinopathies, the prototypical IEI with autoimmune, inflammatory and atopic complications. SUMMARY Dysregulated immunity has been associated with IEI since their discovery. Recently, large concerted efforts have shown how common these complications actually are while providing insight into normal and dysregulated molecular mechanisms, as well as describing novel diseases.
Collapse
|
80
|
Sultan M, Adawi M, Kol N, McCourt B, Adawi I, Baram L, Tal N, Werner L, Lev A, Snapper SB, Barel O, Konnikova L, Somech R, Shouval DS. RIPK1 mutations causing infantile-onset IBD with inflammatory and fistulizing features. Front Immunol 2022; 13:1041315. [PMID: 36466854 PMCID: PMC9716469 DOI: 10.3389/fimmu.2022.1041315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 08/13/2023] Open
Abstract
PURPOSE Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulator of necroptosis and inflammatory responses. We present the clinical features, genetic analysis and immune work-up of two patients with infantile-onset inflammatory bowel disease (IBD) resulting from RIPK1 mutations. METHODS Whole exome and Sanger sequencing was performed in two IBD patients. Mass cytometry time of flight (CyTOF) was conducted for in-depth immunophenotyping on one of the patient's peripheral blood mononuclear cells, and compared to control subjects and patients with Crohn's disease. RESULTS The patients presented with severe colitis and perianal fistulas in the first months of life, without severe/atypical infections. Genetic studies identified pathogenic genetic variants in RIPK1 (Patient 1, A c.1934C>T missense mutation in Exon 11; Patient 2, c.580G>A missense mutation residing in Exon 4). Protein modeling demonstrated that the mutation in Patient 1 displaces a water molecule, potentially disrupting the local environment, and the mutation in Patient 2 may lead to disruption of the packing and conformation of the kinase domain. Immunofluorescence RIPK1 staining in rectal biopsies demonstrated no expression for Patient 1 and minimal expression for Patient 2, compared to controls and patients with active Crohn's disease. Using CyTOF unbiased clustering analysis, we identified peripheral immune dysregulation in one of these patients, characterized by an increase in IFNγ CD8+ T cells along with a decrease in monocytes, dendritic cells and B cells. Moreover, RIPK1-deficient patient's immune cells exhibited decreased IL-6 production in response to lipopolysaccharide (LPS) across multiple cell types including T cells, B cells and innate immune cells. CONCLUSIONS Mutations in RIPK1 should be considered in very young patients presenting with colitis and perianal fistulas. Given RIPK1's role in inflammasome activation, but also in epithelial cells, it is unclear whether IL1 blockade or allogeneic hematopoietic stem cell transplantation can suppress or cure the hyper-inflammatory response in these patients. Additional studies in humans are required to better define the role of RIPK1 in regulating intestinal immune responses, and how treatment can be optimized for patients with RIPK1 deficiency.
Collapse
Affiliation(s)
- Mutaz Sultan
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital, Al-Quds University, Jerusalem, Palestine
| | - Mohammad Adawi
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital, Al-Quds University, Jerusalem, Palestine
| | - Nitzan Kol
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Wohl Institute of Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Blake McCourt
- Department of Pediatrics, Yale Medical School, New Haven, CT, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, United States
| | - Ihda Adawi
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital, Al-Quds University, Jerusalem, Palestine
| | - Liran Baram
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tiqwa, Israel
| | - Noa Tal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tiqwa, Israel
| | - Lael Werner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tiqwa, Israel
| | - Atar Lev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Immunology Service, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
- Pediatric Department Ward A, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Wohl Institute of Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liza Konnikova
- Department of Pediatrics, Yale Medical School, New Haven, CT, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, United States
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Immunology Service, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
- Pediatric Department Ward A, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Dror S. Shouval
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tiqwa, Israel
| |
Collapse
|
81
|
Stachowicz A, Pandey R, Sundararaman N, Venkatraman V, Van Eyk JE, Fert-Bober J. Protein arginine deiminase 2 (PAD2) modulates the polarization of THP-1 macrophages to the anti-inflammatory M2 phenotype. J Inflamm (Lond) 2022; 19:20. [DOI: 10.1186/s12950-022-00317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Macrophages are effector cells of the innate immune system that undergo phenotypical changes in response to organ injury and repair. These cells are most often classified as proinflammatory M1 and anti-inflammatory M2 macrophages. Protein arginine deiminase (PAD), which catalyses the irreversible conversion of protein-bound arginine into citrulline, is expressed in macrophages. However, the substrates of PAD and its role in immune cells remain unclear. This study aimed to investigate the role of PAD in THP-1 macrophage polarization to the M1 and M2 phenotypes and identify the citrullinated proteins and modified arginines that are associated with this biological switch using mass spectrometry.
Results
Our study showed that PAD2 and, to a lesser extent, PAD1 and PAD4 were predominantly expressed in M1 macrophages. We showed that inhibiting PAD expression with BB-Cl-amidine decreased macrophage polarization to the M1 phenotype (TNF-α, IL-6) and increased macrophage polarization to the M2 phenotype (MRC1, ALOX15). This process was mediated by the downregulation of proteins involved in the NF-κβ pathway. Silencing PAD2 confirmed the activation of M2 macrophages by increasing the antiviral innate immune response and interferon signalling. A total of 192 novel citrullination sites associated with inflammation, cell death and DNA/RNA processing pathways were identified in M1 and M2 macrophages.
Conclusions
We showed that inhibiting PAD activity using a pharmacological inhibitor or silencing PAD2 with PAD2 siRNA shifted the activation of macrophages towards the M2 phenotype, which can be crucial for designing novel macrophage-mediated therapeutic strategies. We revealed a major citrullinated proteome and its rearrangement following macrophage polarization, which after further validation could lead to significant clinical benefits for the treatment of inflammation and autoimmune diseases.
Collapse
|
82
|
Abstract
Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.
Collapse
|
83
|
Wu YH, Mo ST, Chen IT, Hsieh FY, Hsieh SL, Zhang J, Lai MZ. Caspase-8 inactivation drives autophagy-dependent inflammasome activation in myeloid cells. SCIENCE ADVANCES 2022; 8:eabn9912. [PMID: 36367942 PMCID: PMC9651862 DOI: 10.1126/sciadv.abn9912] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/27/2022] [Indexed: 06/07/2023]
Abstract
Caspase-8 activity controls the switch from cell death to pyroptosis when apoptosis and necroptosis are blocked, yet how caspase-8 inactivation induces inflammasome assembly remains unclear. We show that caspase-8 inhibition via IETD treatment in Toll-like receptor (TLR)-primed Fadd-/-Ripk3-/- myeloid cells promoted interleukin-1β (IL-1β) and IL-18 production through inflammasome activation. Caspase-8, caspase-1/11, and functional GSDMD, but not NLRP3 or RIPK1 activity, proved essential for IETD-triggered inflammasome activation. Autophagy became prominent in IETD-treated Fadd-/-Ripk3-/- macrophages, and inhibiting it attenuated IETD-induced cell death and IL-1β/IL-18 production. In contrast, inhibiting GSDMD or autophagy did not prevent IETD-induced septic shock in Fadd-/-Ripk3-/- mice, implying distinct death processes in other cell types. Cathepsin-B contributes to IETD-mediated inflammasome activation, as its inhibition or down-regulation limited IETD-elicited IL-1β production. Therefore, the autophagy and cathepsin-B axis represents one of the pathways leading to atypical inflammasome activation when apoptosis and necroptosis are suppressed and capase-8 is inhibited in myeloid cells.
Collapse
Affiliation(s)
- Yung-Hsuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Ting Mo
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - I-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fu-Yi Hsieh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Jinake Zhang
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
84
|
Tu H, Xiong W, Zhang J, Zhao X, Lin X. Tyrosine phosphorylation regulates RIPK1 activity to limit cell death and inflammation. Nat Commun 2022; 13:6603. [PMID: 36329033 PMCID: PMC9632600 DOI: 10.1038/s41467-022-34080-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a cytosolic protein kinase that regulates multiple inflammatory and cell death pathways. Serine/Threonine phosphorylation of RIPK1 is known to suppress RIPK1 kinase-mediated cell death in the contexts of inflammation, infection and embryogenesis, however, regulation by tyrosine phosphorylation has not been reported. Here, we show that non-receptor tyrosine kinases Janus kinase 1 (JAK1) and SRC are able to phosphorylate RIPK1 at Y384 (Y383 in murine RIPK1), leading to suppression of TNF-induced cell death. Mice bearing a homozygous Ripk1 mutation that prevents tyrosine phosphorylation of RIPK1 (Ripk1Y383F/Y383F), develop systemic inflammation and emergency haematopoiesis. Mechanistically, Ripk1Y383F/Y383F mutation promotes RIPK1 kinase activation and enhances TNF-induced apoptosis and necroptosis, which is partially due to impaired recruitment and activation of MAP kinase-activated protein kinase 2 (MK2). The systemic inflammation and emergency haematopoiesis in Ripk1Y383F/Y383F mice are largely alleviated by RIPK1 kinase inhibition, and prevented by genomic deletions targeted to the upstream pathway (either to Tumor necrosis factor receptor 1 or RIPK3 and Caspase8 simultaneously). In summary, our results demonstrate that tyrosine phosphorylation of RIPK1 is critical for regulating RIPK1 activity to limit cell death and inflammation.
Collapse
Affiliation(s)
- Hailin Tu
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Weihang Xiong
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua University–Peking University Center for Life Sciences, Beijing, 100084 China
| | - Jie Zhang
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Xueqiang Zhao
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Lin
- grid.12527.330000 0001 0662 3178Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua University–Peking University Center for Life Sciences, Beijing, 100084 China
| |
Collapse
|
85
|
Wang G, Xu Y, Wang Q, Chai Y, Sun X, Yang F, Zhang J, Wu M, Liao X, Yu X, Sheng X, Liu Z, Zhang J. Rare and undiagnosed diseases: From disease-causing gene identification to mechanism elucidation. FUNDAMENTAL RESEARCH 2022; 2:918-928. [PMID: 38933382 PMCID: PMC11197726 DOI: 10.1016/j.fmre.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Rare and undiagnosed diseases substantially decrease patient quality of life and have increasingly become a heavy burden on healthcare systems. Because of the challenges in disease-causing gene identification and mechanism elucidation, patients are often confronted with difficulty obtaining a precise diagnosis and treatment. Due to advances in sequencing and multiomics analysis approaches combined with patient-derived iPSC models and gene-editing platforms, substantial progress has been made in the diagnosis and treatment of rare and undiagnosed diseases. The aforementioned techniques also provide an operational basis for future precision medicine studies. In this review, we summarize recent progress in identifying disease-causing genes based on GWAS/WES/WGS-guided multiomics analysis approaches. In addition, we discuss recent advances in the elucidation of pathogenic mechanisms and treatment of diseases with state-of-the-art iPSC and organoid models, which are improved by cell maturation level and gene editing technology. The comprehensive strategies described above will generate a new paradigm of disease classification that will significantly promote the precision and efficiency of diagnosis and treatment for rare and undiagnosed diseases.
Collapse
Affiliation(s)
- Gang Wang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yuyan Xu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qintao Wang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Chai
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiangwei Sun
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fan Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jian Zhang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengchen Wu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xufeng Liao
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Sheng
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhihong Liu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jin Zhang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine; Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
86
|
Li L, Feng R, Li Y, Yu X, Liu Y, Zhao Y, Liu Z. Caspase-8 mutants activate Nrf2 via phosphorylating SQSTM1 to protect against oxidative stress in esophageal squamous cell carcinoma. Free Radic Biol Med 2022; 192:51-62. [PMID: 36165926 DOI: 10.1016/j.freeradbiomed.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Caspase-8, a caspase protein, is involved in the regulation of multiple cell death modes and has a predominant role in cell death. Cancer-associated mutations in the protein-coding region of caspase-8 have been widely reported in several solid tumors and might lead to the loss of its apoptotic function and contribute to the pathogenesis of tumors. However, the specific function and molecular mechanisms of mutant caspase-8 in the development of esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we identified caspase-8 mutants exert tumor-promoting properties in ESCC, patients with the mutants presented a worse prognosis, and caspase-8 mutants lost the suppressive effect on tumor growth in ESCC cells. In addition, we demonstrated that caspase-8 mutants gain a new function of abolishing excess reactive oxygen species (ROS) to maintain ESCC cell growth under oxidative stress. An Nrf2 inhibitor reduced the effects of caspase-8 mutants against oxidative stress. Caspase-8 mutants combined with mTOR to phosphorylate SQSTM1 at Ser349, facilitating the interaction of SQSTM1 and Keap1 and reducing the degradation of the Nrf2 protein. Therefore, our study demonstrated that caspase-8 mutants gain a new function of protecting against oxidative stress via the mTOR/SQSTM1/Keap1/Nrf2 axis in ESCC. Caspase-8 status may be a new prognostic factor for survival in ESCC patients.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
87
|
Mechanisms of TNF-independent RIPK3-mediated cell death. Biochem J 2022; 479:2049-2062. [PMID: 36240069 DOI: 10.1042/bcj20210724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Apoptosis and necroptosis regulate many aspects of organismal biology and are involved in various human diseases. TNF is well known to induce both of these forms of cell death and the underlying mechanisms have been elaborately described. However, cells can also engage apoptosis and necroptosis through TNF-independent mechanisms, involving, for example, activation of the pattern recognition receptors Toll-like receptor (TLR)-3 and -4, or zDNA-binding protein 1 (ZBP1). In this context, cell death signaling depends on the presence of receptor-interacting serine/threonine protein kinase 3 (RIPK3). Whereas RIPK3 is required for TNF-induced necroptosis, it mediates both apoptosis and necroptosis upon TLR3/4 and ZBP1 engagement. Here, we review the intricate mechanisms by which TNF-independent cell death is regulated by RIPK3.
Collapse
|
88
|
Rodriguez DA, Quarato G, Liedmann S, Tummers B, Zhang T, Guy C, Crawford JC, Palacios G, Pelletier S, Kalkavan H, Shaw JJP, Fitzgerald P, Chen MJ, Balachandran S, Green DR. Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis. Proc Natl Acad Sci U S A 2022; 119:e2207240119. [PMID: 36191211 PMCID: PMC9565532 DOI: 10.1073/pnas.2207240119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
The absence of Caspase-8 or its adapter, Fas-associated death domain (FADD), results in activation of receptor interacting protein kinase-3 (RIPK3)- and mixed-lineage kinase-like (MLKL)-dependent necroptosis in vivo. Here, we show that spontaneous activation of RIPK3, phosphorylation of MLKL, and necroptosis in Caspase-8- or FADD-deficient cells was dependent on the nucleic acid sensor, Z-DNA binding protein-1 (ZBP1). We genetically engineered a mouse model by a single insertion of FLAG tag onto the N terminus of endogenous MLKL (MlklFLAG/FLAG), creating an inactive form of MLKL that permits monitoring of phosphorylated MLKL without activating necroptotic cell death. Casp8-/-MlklFLAG/FLAG mice were viable and displayed phosphorylated MLKL in a variety of tissues, together with dramatically increased expression of ZBP1 compared to Casp8+/+ mice. Studies in vitro revealed an increased expression of ZBP1 in cells lacking FADD or Caspase-8, which was suppressed by reconstitution of Caspase-8 or FADD. Ablation of ZBP1 in Casp8-/-MlklFLAG/FLAG mice suppressed spontaneous MLKL phosphorylation in vivo. ZBP1 expression and downstream activation of RIPK3 and MLKL in cells lacking Caspase-8 or FADD relied on a positive feedback mechanism requiring the nucleic acid sensors cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and TBK1 signaling pathways. Our study identifies a molecular mechanism whereby Caspase-8 and FADD suppress spontaneous necroptotic cell death.
Collapse
Affiliation(s)
- Diego A. Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, 19111
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | | | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Halime Kalkavan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Jeremy J. P. Shaw
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Mark J. Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, 19111
| | - Douglas R. Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| |
Collapse
|
89
|
Liu Y, Zhou X, Wang F, Liu C, Xie J, Guan L, Xie Y. Bibliometric analysis of publications on necroptosis from 2001 to 2021. Front Cell Dev Biol 2022; 10:946363. [PMID: 36204681 PMCID: PMC9531166 DOI: 10.3389/fcell.2022.946363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Necroptosis plays an important role in inflammation, cancer, and neurodegenerative diseases. In recent years, the number of studies related to necroptosis has increased and research has become increasingly in-depth. This study aimed to summarize the research conducted since 2001 to discover hotspots and trends in the field of necroptosis. Methods: The Web of Science Core database was used to identify global publications on necroptosis from 2001 to 2021. Bibliometric analysis was performed using Rstudio, VOSviewer, and CiteSpace. Results: The number of publications related to necroptosis gradually increased from 2001 to 2021. Vandenabeele P had the most publications at 45. Yuan JY had the most citations at 5,901. Necroptosis research has been dominated by China and Chinese institutions. Cell Death and Disease had the highest number of related publications among the examined journals. Seven of the top 10 most cited papers had more than 500 citations. Necroptosis, cell death, autophagy, injury, cancer, activated B cell nuclear factor kappa-light chain enhancer, and oxidative stress were important keywords in keyword analysis. Recent research has increasingly focused on breast cancer, receptor-interacting serine/threonine protein kinase 1, modulation, pseudokinase mixed lineage kinase domain-like protein, membrane, protection, and cycle. Conclusion: Interest in necroptosis-related research continues to increase steadily, and there is close cooperation between countries and institutions in the field of necroptosis. The study of necroptosis-related molecules and mechanisms, and the relationship between necroptosis and cancer, may be hotspots and directions in future research.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Fangfei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Cong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Jun Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Le Guan
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
- *Correspondence: Yong Xie,
| |
Collapse
|
90
|
Abstract
Necroptosis, or programmed necrosis, is an inflammatory form of cell death with important functions in host defense against pathogens and tissue homeostasis. The four cytosolic receptor-interacting protein kinase homotypic interaction motif (RHIM)-containing adaptor proteins RIPK1, RIPK3, TRIF (also known as TICAM1) and ZBP1 mediate necroptosis induction in response to infection and cytokine or innate immune receptor activation. Activation of the RHIM adaptors leads to phosphorylation, oligomerization and membrane targeting of the necroptosis effector protein mixed lineage kinase domain-like (MLKL). Active MLKL induces lesions on the plasma membrane, leading to the release of pro-inflammatory damage-associated molecular patterns (DAMPs). Thus, activities of the RHIM adaptors and MLKL are tightly regulated by posttranslational modifications to prevent inadvertent release of immunogenic contents. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the regulatory mechanisms of necroptosis and its biological functions in tissue homeostasis, pathogen infection and other inflammatory diseases.
Collapse
Affiliation(s)
- Kidong Kang
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Christa Park
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| |
Collapse
|
91
|
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022; 8:35. [PMID: 35948598 PMCID: PMC9365836 DOI: 10.1038/s41526-022-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
Collapse
Affiliation(s)
- Jacob M Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
92
|
Hao Y, Yang C, Shu C, Li Z, Xia K, Wu S, Ma H, Tian S, Ji Y, Li J, He S, Zhang X. Discovery, optimization and evaluation of isothiazolo[5,4-b]pyridine derivatives as RIPK1 inhibitors with potent in vivo anti-SIRS activity. Bioorg Chem 2022; 129:106051. [DOI: 10.1016/j.bioorg.2022.106051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
|
93
|
Beck DB, Werner A, Kastner DL, Aksentijevich I. Disorders of ubiquitylation: unchained inflammation. Nat Rev Rheumatol 2022; 18:435-447. [PMID: 35523963 PMCID: PMC9075716 DOI: 10.1038/s41584-022-00778-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/31/2022]
Abstract
Ubiquitylation is an essential post-translational modification that regulates intracellular signalling networks by triggering proteasomal substrate degradation, changing the activity of substrates or mediating changes in proteins that interact with substrates. Hundreds of enzymes participate in reversible ubiquitylation of proteins, some acting globally and others targeting specific proteins. Ubiquitylation is essential for innate immune responses, as it facilitates rapid regulation of inflammatory pathways, thereby ensuring sufficient but not excessive responses. A growing number of inborn errors of immunity are attributed to dysregulated ubiquitylation. These genetic disorders exhibit broad clinical manifestations, ranging from susceptibility to infection to autoinflammatory and/or autoimmune features, lymphoproliferation and propensity to malignancy. Many autoinflammatory disorders result from disruption of components of the ubiquitylation machinery and lead to overactivation of innate immune cells. An understanding of the disorders of ubiquitylation in autoinflammatory diseases could enable the development of novel management strategies.
Collapse
Affiliation(s)
- David B Beck
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Human Genetics and Genomics, New York University, New York, NY, USA
- Division of Rheumatology, Department of Medicine, New York University, New York, NY, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
94
|
Affiliation(s)
- Jessica M Gullett
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
95
|
Ma N, Shangguan F, Zhou H, Huang H, Lei J, An J, Jin G, Zhuang W, Zhou S, Wu S, Xia H, Yang H, Lan L. 6-methoxydihydroavicine, the alkaloid extracted from Macleaya cordata (Willd.) R. Br. (Papaveraceae), triggers RIPK1/Caspase-dependent cell death in pancreatic cancer cells through the disruption of oxaloacetic acid metabolism and accumulation of reactive oxygen species. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154164. [PMID: 35597026 DOI: 10.1016/j.phymed.2022.154164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Many extracts and purified alkaloids of M. cordata (Papaveraceae family) have been reported to display promising anti-tumor effects by inhibiting cancer cell growth and inducing apoptosis in many cancer types. However, no evidence currently exists for anti-pancreatic cancer activity of alkaloids extracted from M. cordata, including a novel alkaloid named 6‑methoxy dihydrosphingosine (6-Methoxydihydroavicine, 6-ME) derived from M. cordata fruits. PURPOSE The aim of this study was to investigate the anti-tumor effects of 6-ME on PC cells and the underlying mechanism. METHODS CCK-8, RTCA, and colony-formation assays were used to analyze PC cell growth. Cell death ratios, changes in MMP and ROS levels were measured by flow cytometry within corresponding detection kits. A Seahorse XFe96 was employed to examine the effects of 6-ME on cellular bioenergetics. Western blot and q-RT-PCR were conducted to detect changes in target molecules. RESULTS 6-ME effectively reduced the growth of PC cells and promoted PCD by activating RIPK1, caspases, and GSDME. Specifically, 6-ME treatment caused a disruption of OAA metabolism and increased ROS production, thereby affecting mitochondrial homeostasis and reducing aerobic glycolysis. These responses resulted in mitophagy and RIPK1-mediated cell death. CONCLUSION 6-ME exhibited specific anti-tumor effects through interrupting OAA metabolic homeostasis to trigger ROS/RIPK1-dependent cell death and mitochondrial dysfunction, suggesting that 6-ME could be considered as a highly promising compound for PC intervention.
Collapse
Affiliation(s)
- Nengfang Ma
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Hongfei Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huimin Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University Town, Ouhai District, Wenzhou 325000, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego (UCSD), LaJolla, CA 92037, United States of America
| | - Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weiwei Zhuang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shipeng Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hongping Xia
- Henan Medical School & Huaihe Hospital & The First Affiliated Hospital, Henan University, Kaifeng, China.
| | - Hailong Yang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China.
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
96
|
Parentelli AS, Picard C, Boursier G, Melki I, Belot A, Smahi A, Georgin-Lavialle S. [Autoinflammatory diseases associated with RIPK1 mutations: A review of the literature]. Rev Med Interne 2022; 43:552-558. [PMID: 35786329 DOI: 10.1016/j.revmed.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/19/2022]
Abstract
Autoinflammatory diseases related to RIPK1 mutations have been recently described. Two distinct clinical phenotypes have been reported and depend on the type and location of the mutation. When the mutation is recessive with loss of function, patients develop a combined phenotype of immune deficiency with recurrent bacterial and fungal infections and signs of early inflammatory bowel disease, non-erosive polyarthritis and growth retardation. On the other hand, when the mutation is dominant, gain of function, the manifestations are only auto-inflammatory with extensive lymphoproliferation, oral lesions such as aphthosis or ulcers, abdominal pain and hepatosplenomegaly. The mutations described for the dominant form affect only the cleavage site of caspase 8 and the clinical phenotype is called CRIA for Cleavage-Resistant RIPK1-Induced Autoinflammatory syndrome. The recessive form is severe and life-threatening requiring hematopoietic stem cell transplantation while the dominant form responds well to interleukin-6 receptor antagonists. Thus, RIPK1 mutations can induce various clinical manifestations with two distinct phenotypes. Although still rare, because of their recent description, these diseases can be suspected by an internist, in front of recurrent digestive features and will be increasingly diagnosed in the future through the integration of this gene in the diagnostic chips dedicated to autoinflammatory diseases and early inflammatory bowel diseases, using next generation sequencing.
Collapse
Affiliation(s)
- A S Parentelli
- Service des urgences pédiatriques, hôpital Robert-Debré, Assistance Publique des hôpitaux de Paris (AP-HP), 48, boulevard Sérurier, 75019 Paris, France; Institut Imagine, Inserm U1163, CNRS ERL 8254, université Paris Cité, Sorbonne Paris-Cité, Laboratoire d'excellence GR-Ex, Paris, France
| | - C Picard
- Centre d'études des déficits immunitaires (CEDI), département médico-universitaire BioPhyGen, hôpital Necker enfants malades, AP-HP, 149, rue de Sèvres, 75743 Paris Cedex 15, France; Université Paris Cité, Paris, France; Laboratoire d'Activation des Lymphocytes et Susceptibilité au virus EBV, Inserm UMR 1163, Institut Imagine, Paris, France; Centre de référence des déficits immunitaires héréditaires (CEREDIH), hôpital Necker-Enfants Malades, AP-HP, 149, rue de Sèvres, 75743 Paris Cedex 15, France
| | - G Boursier
- Laboratoire de génétique des maladies rares et auto-inflammatoires, service de génétique moléculaire et cytogénomique, CHU de Montpellier, Université de Montpellier, 371, avenue du Doyen Gaston-Giraud, 34295 Montpellier Cedex 5, France; Centre de référence des maladies Auto-Inflammatoires rares et de l'Amylose Inflammatoire (CEREMAIA), hôpital de Tenon, AP-HP, 75020 Paris, France
| | - I Melki
- Service de pédiatrie générale, maladies infectieuses et médecine interne pédiatrique, hôpital Robert-Debré, AP-HP, 48, boulevard Sérurier, 75019 Paris, France; Centre de référence des rhumatismes et auto-immunité systémique de l'enfant (RAISE), hôpital Necker Enfants Malades, AP-HP, 149, rue de Sèvres, 75743 Paris Cedex 15, France
| | - A Belot
- CIRI, Inserm U1111, service de néphrologie, rhumatologie, dermatologie pédiatrique, hôpital Femme-Mère-Enfant, hospices civils de Lyon, université de Lyon 1, 69677 Bron, France; Centre de référence des rhumatismes et auto-immunité systémique de l'enfant (RAISE), hôpital Necker Enfants Malades, AP-HP, 149, rue de Sèvres, 75743 Paris Cedex 15, France
| | - A Smahi
- Institut Imagine, Inserm U1163, CNRS ERL 8254, université Paris Cité, Sorbonne Paris-Cité, Laboratoire d'excellence GR-Ex, Paris, France
| | - S Georgin-Lavialle
- Département de médecine interne, DHUI2B, département hospitalo-universitaire inflammation, immunopathologie, biothérapie, hôpital Tenon, université Paris 6, Pierre et Marie Curie, AP-HP, 4, rue de la Chine, 75020 Paris, France; Centre de référence des maladies Auto-Inflammatoires rares et de l'Amylose Inflammatoire (CEREMAIA), hôpital de Tenon, AP-HP, 75020 Paris, France.
| |
Collapse
|
97
|
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022; 42:1473-1507. [PMID: 35748970 PMCID: PMC9244088 DOI: 10.1007/s10875-022-01289-3] [Citation(s) in RCA: 564] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
| | | | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Université Paris Cité, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015, Paris, France
- Université Paris Cité, Imagine Institute, 75015, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raz Somech
- Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
98
|
Characterization of Novel Pathogenic Variants Leading to Caspase-8 Cleavage-Resistant RIPK1-Induced Autoinflammatory Syndrome. J Clin Immunol 2022; 42:1421-1432. [PMID: 35716229 PMCID: PMC9674708 DOI: 10.1007/s10875-022-01298-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Pathogenic RIPK1 variants have been described as the cause of two different inborn errors of immunity. Biallelic loss-of-function variants cause the recessively inherited RIPK1 deficiency, while monoallelic variants impairing the caspase-8-mediated RIPK1 cleavage provoke a novel autoinflammatory disease (AID) called cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome. The aim of this study was to characterize the pathogenicity of two novel RIPK1 variants located at the cleavage site of caspase-8 detected in patients with dominantly-inherited, early-onset undefined AID. RIPK1 genotyping was performed by Sanger and next-generation sequencing. Clinical and analytical data were collected from medical charts, and in silico and in vitro assays were performed to evaluate the functional consequences. Genetic analyses identified two novel heterozygous RIPK1 variants at the caspase-8 cleavage site (p.Leu321Arg and p.Asp324Gly), which displayed a perfect intrafamilial phenotype-genotype segregation following a dominant inheritance pattern. Structural analyses suggested that these variants disrupt the normal RIPK1 structure, probably making it less accessible to and/or less cleavable by caspase-8. In vitro experiments confirmed that the p.Leu321Arg and p.Asp324Gly RIPK1 variants were resistant to caspase-8-mediated cleavage and induced a constitutive activation of necroptotic pathway in a similar manner that previously characterized RIPK1 variants causing CRIA syndrome. All these results strongly supported the pathogenicity of the two novel RIPK1 variants and the diagnosis of CRIA syndrome in all enrolled patients. Moreover, the evidences here collected expand the phenotypic and genetic diversity of this recently described AID, and provide interesting data about effectiveness of treatments that may benefit future patients.
Collapse
|
99
|
Jin S, Zhang T, Fu X, Duan Z, Sun J, Wang Y. Aniline exposure activates receptor-interacting serine/threonineprotein kinase 1 and causes necroptosis of AML12 cells. Toxicol Ind Health 2022; 38:444-454. [PMID: 35658749 DOI: 10.1177/07482337221106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
With the increased use of aniline, potential impacts on human health cannot be ignored. The hepatotoxicity of aniline is largely unknown and the underlying mechanism remains unclear. Therefore, the aim of the present study was to investigate the hepatotoxicity of aniline and elucidate the underlying mechanism. AML12 cells were exposed to different concentrations of aniline (0, 5, 10, or 20 mM) to observe changes to reactive oxygen species (ROS) production and the expression patterns of necroptosis-related proteins (RIPK1, RIPK3, and MLKL). The potential mechanism underlying aniline-induced hepatotoxicity was explored by knockout of RIPK1. The results showed that aniline induced cytotoxicity in AML12 cells in a dose-dependent manner in addition to the production of ROS and subsequent necroptosis of AML12 cells. Silencing of RIPK1 reversed upregulation of necroptosis-related proteins in AML12 cells exposed to aniline, demonstrating that aniline-induced ROS production was related to necroptosis of AML12. Moreover, aniline promoted intracellular RIPK1 activation, suggesting that the RIPK1/ROS pathway plays an important role in aniline-induced hepatotoxicity. NAC could quench ROS and inhibit necroptosis. These results provide a scientific basis for future studies of aniline-induced hepatotoxicity for the prevention and treatment of aniline-induced cytotoxicity.
Collapse
Affiliation(s)
- Shuo Jin
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Tong Zhang
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Xinyu Fu
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Zhongliang Duan
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Jianwen Sun
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| |
Collapse
|
100
|
Lai B, Wu CH, Wu CY, Luo SF, Lai JH. Ferroptosis and Autoimmune Diseases. Front Immunol 2022; 13:916664. [PMID: 35720308 PMCID: PMC9203688 DOI: 10.3389/fimmu.2022.916664] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
Adequate control of autoimmune diseases with an unclear etiology resulting from autoreactivation of the immune system remains a major challenge. One of the factors that trigger autoimmunity is the abnormal induction of cell death and the inadequate clearance of dead cells that leads to the exposure or release of intracellular contents that activate the immune system. Different from other cell death subtypes, such as apoptosis, necroptosis, autophagy, and pyroptosis, ferroptosis has a unique association with the cellular iron load (but not the loads of other metals) and preserves its distinguishable morphological, biological, and genetic features. This review addresses how ferroptosis is initiated and how it contributes to the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel diseases. The mechanisms responsible for ferroptosis-associated events are discussed. We also cover the perspective of targeting ferroptosis as a potential therapeutic for patients with autoimmune diseases. Collectively, this review provides up-to-date knowledge regarding how ferroptosis occurs and its significance in autoimmune diseases.
Collapse
Affiliation(s)
- Benjamin Lai
- Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Hsiang Wu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Jenn-Haung Lai,
| |
Collapse
|