51
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023:10.1038/s41423-023-01032-x. [PMID: 37198402 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
52
|
Ma H, Hu T, Tao W, Tong J, Han Z, Herndler-Brandstetter D, Wei Z, Liu R, Zhou T, Liu Q, Xu X, Zhang K, Zhou R, Cho JH, Li HB, Huang H, Flavell RA, Zhu S. A lncRNA from an inflammatory bowel disease risk locus maintains intestinal host-commensal homeostasis. Cell Res 2023; 33:372-388. [PMID: 37055591 PMCID: PMC10156687 DOI: 10.1038/s41422-023-00790-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/10/2023] [Indexed: 04/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are known to have complex, genetically influenced etiologies, involving dysfunctional interactions between the intestinal immune system and the microbiome. Here, we characterized how the RNA transcript from an IBD-associated long non-coding RNA locus ("CARINH-Colitis Associated IRF1 antisense Regulator of Intestinal Homeostasis") protects against IBD. We show that CARINH and its neighboring gene coding for the transcription factor IRF1 together form a feedforward loop in host myeloid cells. The loop activation is sustained by microbial factors, and functions to maintain the intestinal host-commensal homeostasis via the induction of the anti-inflammatory factor IL-18BP and anti-microbial factors called guanylate-binding proteins (GBPs). Extending these mechanistic insights back to humans, we demonstrate that the function of the CARINH/IRF1 loop is conserved between mice and humans. Genetically, the T allele of rs2188962, the most probable causal variant of IBD within the CARINH locus from the human genetics study, impairs the inducible expression of the CARINH/IRF1 loop and thus increases genetic predisposition to IBD. Our study thus illustrates how an IBD-associated lncRNA maintains intestinal homeostasis and protects the host against colitis.
Collapse
Affiliation(s)
- Hongdi Ma
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Taidou Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiyu Tong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zili Han
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tingyue Zhou
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuyuan Liu
- The Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuemei Xu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongbin Zhou
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Judy H Cho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- School of Data Science, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| |
Collapse
|
53
|
Tao X, Li S, Chen G, Wang J, Xu S. Approaches for Modes of Action Study of Long Non-Coding RNAs: From Single Verification to Genome-Wide Determination. Int J Mol Sci 2023; 24:ijms24065562. [PMID: 36982636 PMCID: PMC10054671 DOI: 10.3390/ijms24065562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are not translated into known functional proteins. This broad definition covers a large collection of transcripts with diverse genomic origins, biogenesis, and modes of action. Thus, it is very important to choose appropriate research methodologies when investigating lncRNAs with biological significance. Multiple reviews to date have summarized the mechanisms of lncRNA biogenesis, their localization, their functions in gene regulation at multiple levels, and also their potential applications. However, little has been reviewed on the leading strategies for lncRNA research. Here, we generalize a basic and systemic mind map for lncRNA research and discuss the mechanisms and the application scenarios of ‘up-to-date’ techniques as applied to molecular function studies of lncRNAs. Taking advantage of documented lncRNA research paradigms as examples, we aim to provide an overview of the developing techniques for elucidating lncRNA interactions with genomic DNA, proteins, and other RNAs. In the end, we propose the future direction and potential technological challenges of lncRNA studies, focusing on techniques and applications.
Collapse
Affiliation(s)
- Xiaoyuan Tao
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
54
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
55
|
Yeo SJ, Ying C, Fullwood MJ, Tergaonkar V. Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains. Trends Genet 2023; 39:217-232. [PMID: 36642680 DOI: 10.1016/j.tig.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Topologically associating domains (TADs) are integral to spatial genome organization, instructing gene expression, and cell fate. Recently, several advances have uncovered roles for noncoding RNAs (ncRNAs) in the regulation of the form and function of mammalian TADs. Phase separation has also emerged as a potential arbiter of ncRNAs in the regulation of TADs. In this review we discuss the implications of these novel findings in relation to how ncRNAs might structurally and functionally regulate TADs from two perspectives: moderating loop extrusion through interactions with architectural proteins, and facilitating TAD phase separation. Additionally, we propose future studies and directions to investigate these phenomena.
Collapse
Affiliation(s)
- Samuel Jianjie Yeo
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 308232, Singapore
| | - Chen Ying
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Pathology and the Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| |
Collapse
|
56
|
Abstract
The principle of trained immunity represents innate immune memory due to sustained, mainly epigenetic, changes triggered by endogenous or exogenous stimuli in bone marrow (BM) progenitors (central trained immunity) and their innate immune cell progeny, thereby triggering elevated responsiveness against secondary stimuli. BM progenitors can respond to microbial and sterile signals, thereby possibly acquiring trained immunity-mediated long-lasting alterations that may shape the fate and function of their progeny, for example, neutrophils. Neutrophils, the most abundant innate immune cell population, are produced in the BM from committed progenitor cells in a process designated granulopoiesis. Neutrophils are the first responders against infectious or inflammatory challenges and have versatile functions in immunity. Together with other innate immune cells, neutrophils are effectors of peripheral trained immunity. However, given the short lifetime of neutrophils, their ability to acquire immunological memory may lie in the central training of their BM progenitors resulting in generation of reprogrammed, that is, "trained", neutrophils. Although trained immunity may have beneficial effects in infection or cancer, it may also mediate detrimental outcomes in chronic inflammation. Here, we review the emerging research area of trained immunity with a particular emphasis on the role of neutrophils and granulopoiesis.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
57
|
Yang J, Zhang J, Yang Q, Huang X, Yan Z, Wang P, Gao X, Li J, Li N, Gao Y, Gun S. LncRNA EN-90756 promotes CPB2-induced proliferation and inhibits apoptosis in IPEC-J2 cells by affecting the JAK-STAT signaling pathway activation. Front Microbiol 2023; 13:1082025. [PMID: 36713226 PMCID: PMC9879603 DOI: 10.3389/fmicb.2022.1082025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs), as key regulators, are closely associated with the development of a variety of disease. However, the mechanisms by which lncRNAs regulate Clostridium perfringens type C induced piglet diarrhea are unclear. Methods In the present study, we explored the expression and characterization of lncRNAs in a C. perfringens beta2 (CPB2) toxin-treated intestinal porcine epithelial cell line-J2 (IPEC-J2) using RNA-sequencing (RNA-seq). Results A total of 6,558 lncRNAs were identified, of which 49 lncRNAs were significantly differentially expressed between the control and CPB2 groups. Functional enrichment analysis showed that the target genes of differentially expressed lncRNA EN-90756 were mainly associated with defense response to virus, and negative regulation of apoptotic process. LncRNA EN-90756 was significantly up-regulated in IPEC-J2 cells at different time points after CPB2 treatment. Functionally, knockdown of lncRNA EN-90756 might regulate the proliferation and apoptosis of IPEC-J2 cells by affecting the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. LncRNA EN-90756 may be involved in CPB2 toxin-induced piglet diarrhea by regulating the expression of its target gene MX1 (encoding MX dynamin like GTPase 1). Conclusion Long non-coding RNA EN-90756 affected the antiviral ability of IPEC-J2 cells by regulating the expression of MX1. Meanwhile, lncRNA EN-90756 might regulate cell proliferation and apoptosis by affecting JAK-STAT signaling pathway activation. These findings provide novel perspectives and directions for further exploration of the regulatory mechanisms of lncRNAs on CPB2 toxin-induced diarrhea in piglets.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Juanli Zhang
- College of Life Sciences and Technology, Longdong University, Qingyang, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Li
- Jilin Rongtai Agricultural Development Co., Ltd., Changchun, China
| | - Yi Gao
- Jilin Rongtai Agricultural Development Co., Ltd., Changchun, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China,*Correspondence: Shuangbao Gun,
| |
Collapse
|
58
|
Zhang W, Zhao J, Deng L, Ishimwe N, Pauli J, Wu W, Shan S, Kempf W, Ballantyne MD, Kim D, Lyu Q, Bennett M, Rodor J, Turner AW, Lu YW, Gao P, Choi M, Warthi G, Kim HW, Barroso MM, Bryant WB, Miller CL, Weintraub NL, Maegdefessel L, Miano JM, Baker AH, Long X. INKILN is a novel long noncoding RNA promoting vascular smooth muscle inflammation via scaffolding MKL1 and USP10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.522948. [PMID: 36711681 PMCID: PMC9881896 DOI: 10.1101/2023.01.07.522948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Activation of vascular smooth muscle cells (VSMCs) inflammation is vital to initiate vascular disease. However, the role of human-specific long noncoding RNAs (lncRNAs) in VSMC inflammation is poorly understood. Methods Bulk RNA-seq in differentiated human VSMCs revealed a novel human-specific lncRNA called IN flammatory M K L1 I nteracting L ong N oncoding RNA ( INKILN ). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation and human atherosclerosis and abdominal aortic aneurysm (AAA) samples. The transcriptional regulation of INKILN was determined through luciferase reporter system and chromatin immunoprecipitation assay. Both loss- and gain-of-function approaches and multiple RNA-protein and protein-protein interaction assays were utilized to uncover the role of INKILN in VSMC proinflammatory gene program and underlying mechanisms. Bacterial Artificial Chromosome (BAC) transgenic (Tg) mice were utilized to study INKLIN expression and function in ligation injury-induced neointimal formation. Results INKILN expression is downregulated in contractile VSMCs and induced by human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB site within its proximal promoter. INKILN activates the proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. Mechanistically, INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks ILIβ-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1, and the luciferase activity of an NF-κB reporter. Further, INKILN knockdown enhances MKL1 ubiquitination, likely through the reduced physical interaction with the deubiquitinating enzyme, USP10. INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in BAC Tg mice. Conclusions These findings elucidate an important pathway of VSMC inflammation involving an INKILN /MKL1/USP10 regulatory axis. Human BAC Tg mice offer a novel and physiologically relevant approach for investigating human-specific lncRNAs under vascular disease conditions.
Collapse
|
59
|
Abstract
Macrophages have been recognized as the primary mediators of innate immunity starting from embryonic/fetal development. Macrophage-mediated defenses may not be as antigen-specific as adaptive immunity, but increasing information suggests that these responses do strengthen with repeated immunological triggers. The concept of innate memory in macrophages has been described as "trained immunity" or "innate immune memory (IIM)." As currently understood, this cellular memory is rooted in epigenetic and metabolic reprogramming. The recognition of IIM may be particularly important in the fetus and the young neonate who are yet to develop protective levels of adaptive immunity, and could even be of preventive/therapeutic importance in many disorders. There may also be a possibility of therapeutic enhancement with targeted vaccination. This article presents a review of the properties, mechanisms, and possible clinical significance of macrophage-mediated IIM.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
60
|
Li Y, Yu H, Feng J. Role of chemokine-like factor 1 as an inflammatory marker in diseases. Front Immunol 2023; 14:1085154. [PMID: 36865551 PMCID: PMC9971601 DOI: 10.3389/fimmu.2023.1085154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Immunoinflammatory mechanisms have been incrementally found to be involved in the pathogenesis of multiple diseases, with chemokines being the main drivers of immune cell infiltration in the inflammatory response. Chemokine-like factor 1 (CKLF1), a novel chemokine, is highly expressed in the human peripheral blood leukocytes and exerts broad-spectrum chemotactic and pro-proliferative effects by activating multiple downstream signaling pathways upon binding to its functional receptors. Furthermore, the relationship between CKLF1 overexpression and various systemic diseases has been demonstrated in both in vivo and in vitro experiments. In this context, it is promising that clarifying the downstream mechanism of CKLF1 and identifying its upstream regulatory sites can yield new strategies for targeted therapeutics of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Yutong Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
61
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
62
|
Kloc M, Kubiak JZ, Zdanowski R, Ghobrial RM. Memory Macrophages. Int J Mol Sci 2022; 24:ijms24010038. [PMID: 36613481 PMCID: PMC9819859 DOI: 10.3390/ijms24010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Immunological memory is a crucial part of the immune defense that allows organisms to respond against previously encountered pathogens or other harmful factors. Immunological memory is based on the establishment of epigenetic modifications of the genome. The ability to memorize encounters with pathogens and other harmful factors and mount enhanced defense upon subsequent encounters is an evolutionarily ancient mechanism operating in all animals and plants. However, the term immunological memory is usually restricted to the organisms (invertebrates and vertebrates) possessing the immune system. The mammalian immune system, with innate and adaptive branches, is the most sophisticated among vertebrates. The concept of innate memory and memory macrophages is relatively new and thus understudied. We introduce the concept of immunological memory and describe types of memory in different species and their evolutionary status. We discuss why the traditional view of innate immune cells as the first-line defenders is too restrictive and how the innate immune cells can accumulate and retain immunologic memory. We describe how the initial priming leads to chromatin remodeling and epigenetic changes, which allow memory macrophage formation. We also summarize what is currently known about the mechanisms underlying development of memory macrophages; their molecular and metabolic signature and surface markers; and how they may contribute to immune defense, diseases, and organ transplantation.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Jacek Z. Kubiak
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, Szaserow 128, 04-141 Warsaw, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, Szaserow 128, 04-141 Warsaw, Poland
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
63
|
Sun B, Sherrin M, Roy R. Unscheduled epigenetic modifications cause genome instability and sterility through aberrant R-loops following starvation. Nucleic Acids Res 2022; 51:84-98. [PMID: 36504323 PMCID: PMC9841415 DOI: 10.1093/nar/gkac1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
During starvation, organisms modify both gene expression and metabolism to adjust to the energy stress. We previously reported that Caenorhabditis elegans lacing AMP-activated protein kinase (AMPK) exhibit transgenerational reproductive defects associated with abnormally elevated trimethylated histone H3 at lysine 4 (H3K4me3) levels in the germ line following recovery from acute starvation. Here, we show that these H3K4me3 marks are significantly increased at promoters, driving aberrant transcription elongation resulting in the accumulation of R-loops in starved AMPK mutants. DNA-RNA immunoprecipitation followed by high-throughput sequencing (DRIP-seq) analysis demonstrated that a significant proportion of the genome was affected by R-loop formation. This was most pronounced in the promoter-transcription start site regions of genes, in which the chromatin was modified by H3K4me3. Like H3K4me3, the R-loops were also found to be heritable, likely contributing to the transgenerational reproductive defects typical of these mutants following starvation. Strikingly, AMPK mutant germ lines show considerably more RAD-51 (the RecA recombinase) foci at sites of R-loop formation, potentially sequestering them from their roles at meiotic breaks or at sites of induced DNA damage. Our study reveals a previously unforeseen role of AMPK in maintaining genome stability following starvation. The downstream effects of R-loops on DNA damage sensitivity and germline stem cell integrity may account for inappropriate epigenetic modification that occurs in numerous human disorders, including various cancers.
Collapse
Affiliation(s)
- Bing Sun
- To whom correspondence should be addressed.
| | - McLean Sherrin
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Richard Roy
- Correspondence may also be addressed to Richard Roy. Tel: +1 514 398 6437;
| |
Collapse
|
64
|
Hu S, Xiang D, Zhang X, Zhang L, Wang S, Jin K, You L, Huang J. The mechanisms and cross-protection of trained innate immunity. Virol J 2022; 19:210. [PMID: 36482472 PMCID: PMC9733056 DOI: 10.1186/s12985-022-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
In recent years, the traditional cognition of immunological memory being specific to adaptive immunity has been challenged. Innate immunity can mount enhanced responsiveness upon secondary stimulation, and a phenomenon is termed trained innate immunity. Trained innate immunity is orchestrated by distinct metabolic and epigenetic reprogramming in both circulating myeloid cells and myeloid progenitor cells in bone marrow, leading to long-term resistance to related and non-related pathogens infections. The induction of trained innate immunity can also polarize innate immune cells towards a hyperresponsive phenotype in the tumor microenvironment to exert antitumor effects. This review will discuss the current understanding of innate immune memory and the mechanisms during the induction of innate immunity, including signaling pathways, metabolic changes, and epigenetic rewriting. We also provide an overview of cross-protection against infectious diseases and cancers based on trained innate immunity.
Collapse
Affiliation(s)
- Shiwei Hu
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Danhong Xiang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Xinlu Zhang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Lan Zhang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Shengjie Wang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Keyi Jin
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Liangshun You
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Jian Huang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| |
Collapse
|
65
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
66
|
Bolouri H, Ries RE, Wiedeman AE, Hylkema T, Scheiding S, Gersuk VH, O'Brien K, Nguyen QA, Smith JL, Alice Long S, Meshinchi S. Inflammatory bone marrow signaling in pediatric acute myeloid leukemia distinguishes patients with poor outcomes. Nat Commun 2022; 13:7186. [PMID: 36418348 PMCID: PMC9684530 DOI: 10.1038/s41467-022-34965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
High levels of the inflammatory cytokine IL-6 in the bone marrow are associated with poor outcomes in pediatric acute myeloid leukemia (pAML), but its etiology remains unknown. Using RNA-seq data from pre-treatment bone marrows of 1489 children with pAML, we show that > 20% of patients have concurrent IL-6, IL-1, IFNα/β, and TNFα signaling activity and poorer outcomes. Targeted sequencing of pre-treatment bone marrow samples from affected patients (n = 181) revealed 5 highly recurrent patterns of somatic mutation. Using differential expression analyses of the most common genomic subtypes (~60% of total), we identify high expression of multiple potential drivers of inflammation-related treatment resistance. Regardless of genomic subtype, we show that JAK1/2 inhibition reduces receptor-mediated inflammatory signaling by leukemic cells in-vitro. The large number of high-risk pAML genomic subtypes presents an obstacle to the development of mutation-specific therapies. Our findings suggest that therapies targeting inflammatory signaling may be effective across multiple genomic subtypes of pAML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Kimberly O'Brien
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Quynh-Anh Nguyen
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Research Scientific Computing, Seattle Children's Research Institute, 818 Stewart Street, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
67
|
Wang K, Cadzow M, Bixley M, Leask MP, Merriman ME, Yang Q, Li Z, Takei R, Phipps-Green A, Major TJ, Topless R, Dalbeth N, King F, Murphy R, Stamp LK, de Zoysa J, Wang Z, Shi Y, Merriman TR. A Polynesian-specific copy number variant encompassing the MICA gene associates with gout. Hum Mol Genet 2022; 31:3757-3768. [PMID: 35451026 PMCID: PMC9616569 DOI: 10.1093/hmg/ddac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Gout is of particularly high prevalence in the Māori and Pacific (Polynesian) populations of Aotearoa New Zealand (NZ). Here, we investigated the contribution of common population-specific copy number variation (CNV) to gout in the Aotearoa NZ Polynesian population. Microarray-generated genome-wide genotype data from Aotearoa NZ Polynesian individuals with (n = 1196) and without (n = 1249) gout were analyzed. Comparator population groups were 552 individuals of European ancestry and 1962 of Han Chinese ancestry. Levels of circulating major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) were measured by enzyme-linked immunosorbent assay. Fifty-four CNV regions (CNVRs) appearing in at least 10 individuals were detected, of which seven common (>2%) CNVRs were specific to or amplified in Polynesian people. A burden test of these seven revealed associations of insertion/deletion with gout (odds ratio (OR) 95% confidence interval [CI] = 1.80 [1.01; 3.22], P = 0.046). Individually testing of the seven CNVRs for association with gout revealed nominal association of CNVR1 with gout in Western Polynesian (Chr6: 31.36-31.45 Mb, OR = 1.72 [1.03; 2.92], P = 0.04), CNVR6 in the meta-analyzed Polynesian sample sets (Chr1: 196.75-196.92 Mb, OR = 1.86 [1.16; 3.00], P = 0.01) and CNVR9 in Western Polynesian (Chr1: 189.35-189.54 Mb, OR = 2.75 [1.15; 7.13], P = 0.03). Analysis of European gout genetic association data demonstrated a signal of association at the CNVR1 locus that was an expression quantitative trait locus for MICA. The most common CNVR (CNVR1) includes deletion of the MICA gene, encoding an immunomodulatory protein. Expression of MICA was reduced in the serum of individuals with the deletion. In summary, we provide evidence for the association of CNVR1 containing MICA with gout in Polynesian people, implicating class I MHC-mediated antigen presentation in gout.
Collapse
Affiliation(s)
- Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Matt Bixley
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Megan P Leask
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Marilyn E Merriman
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
| | - Riku Takei
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ruth Topless
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Frances King
- Ngati Porou Hauora Charitable Trust, Te Puia Springs, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch 8013, New Zealand
| | - Janak de Zoysa
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
68
|
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Front Microbiol 2022; 13:991678. [PMID: 36338030 PMCID: PMC9630750 DOI: 10.3389/fmicb.2022.991678] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Over the last decades, research regarding innate immune responses has gained increasing importance. A growing body of evidence supports the notion that the innate arm of the immune system could show memory traits. Such traits are thought to be conserved throughout evolution and provide a survival advantage. Several models are available to study these mechanisms. Among them, we find the fruit fly, Drosophila melanogaster. This non-mammalian model has been widely used for innate immune research since it naturally lacks an adaptive response. Here, we aim to review the latest advances in the study of the memory mechanisms of the innate immune response using this animal model.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Romina Koiffman
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Solomon Tibebu Melkie
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
69
|
Takayama KI, Inoue S. Targeting phase separation on enhancers induced by transcription factor complex formations as a new strategy for treating drug-resistant cancers. Front Oncol 2022; 12:1024600. [PMID: 36263200 PMCID: PMC9574090 DOI: 10.3389/fonc.2022.1024600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The limited options for treating patients with drug-resistant cancers have emphasized the need to identify alternative treatment targets. Tumor cells have large super-enhancers (SEs) in the vicinity of important oncogenes for activation. The physical process of liquid-liquid phase separation (LLPS) contributes to the assembly of several membrane-less organelles in mammalian cells. Intrinsically disordered regions (IDRs) of proteins induce LLPS formation by developing condensates. It was discovered that key transcription factors (TFs) undergo LLPS in SEs. In addition, TFs play critical roles in the epigenetic and genetic regulation of cancer progression. Recently, we revealed the essential role of disease-specific TF collaboration changes in advanced prostate cancer (PC). OCT4 confers epigenetic changes by promoting complex formation with TFs, such as Forkhead box protein A1 (FOXA1), androgen receptor (AR) and Nuclear respiratory factor 1 (NRF1), inducing PC progression. It was demonstrated that TF collaboration through LLPS underlying transcriptional activation contributes to cancer aggressiveness and drug resistance. Moreover, the disruption of TF-mediated LLPS inhibited treatment-resistant PC tumor growth. Therefore, we propose that repression of TF collaborations involved in the LLPS of SEs could be a promising strategy for advanced cancer therapy. In this article, we summarize recent evidence highlighting the formation of LLPS on enhancers as a potent therapeutic target in advanced cancers.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
70
|
Cuartero S, Stik G, Stadhouders R. Three-dimensional genome organization in immune cell fate and function. Nat Rev Immunol 2022; 23:206-221. [PMID: 36127477 DOI: 10.1038/s41577-022-00774-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
Collapse
Affiliation(s)
- Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - Grégoire Stik
- Centre for Genomic Regulation (CRG), Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
71
|
Small-molecule screening identifies Syk kinase inhibition and rutaecarpine as modulators of macrophage training and SARS-CoV-2 infection. Cell Rep 2022; 41:111441. [PMID: 36179680 PMCID: PMC9474420 DOI: 10.1016/j.celrep.2022.111441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Biologically active small molecules can impart modulatory effects, in some cases providing extended long-term memory. In a screen of biologically active small molecules for regulators of tumor necrosis factor (TNF) induction, we identify several compounds with the ability to induce training effects on human macrophages. Rutaecarpine shows acute and long-term modulation, enhancing lipopolysaccharide (LPS)-induced pro-inflammatory cytokine secretion and relieving LPS tolerance in human macrophages. Rutaecarpine inhibits β-glucan-induced H3K4Me3 marks at the promoters of several pro-inflammatory cytokines, highlighting the potential of this molecule to modulate chromosomal topology. Syk kinase inhibitor (SYKi IV), another screen hit, promotes an enhanced response to LPS similar to that previously reported for β-glucan-induced training. Macrophages trained with SYKi IV show a high degree of resistance to influenza A, multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and OC43 coronavirus infection, highlighting a potential application of this molecule and other SYKis as prophylactic treatments for viral susceptibility.
Collapse
|
72
|
Nica V, Popp RA, Crișan TO, Joosten LAB. The future clinical implications of trained immunity. Expert Rev Clin Immunol 2022; 18:1125-1134. [PMID: 36062825 DOI: 10.1080/1744666x.2022.2120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trained Immunity (TI) refers to the long-term modulation of the innate immune response, based on previous interactions with microbes, microbial ligands or endogenous substances. Through metabolic and epigenetic reprogramming, monocytes, macrophages and neutrophils develop an enhanced capacity to mount innate immune responses to subsequent stimuli and this is persistent due to alterations at the myeloid progenitor compartment. AREAS COVERED The purpose of this article is to review the current understanding of the TI process and discuss about its potential clinical implications in the near future. We address the evidence of TI involvement in various diseases, the currently developed new therapy, and discuss how TI may lead to new clinical tools to improve existing standards of care. EXPERT OPINION The state of art in this domain has made considerable progress, linking TI-related mechanisms in multiple immune-mediated pathologies, starting with infections to autoimmune disorders and cancers. As a relatively new area of immunology, it has seen fast progress with many of its applications ready to be investigated in clinical settings.
Collapse
Affiliation(s)
- Valentin Nica
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Radu A Popp
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Tania O Crișan
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania.,Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
73
|
Koeken VACM, Qi C, Mourits VP, de Bree LCJ, Moorlag SJCFM, Sonawane V, Lemmers H, Dijkstra H, Joosten LAB, van Laarhoven A, Xu CJ, van Crevel R, Netea MG, Li Y. Plasma metabolome predicts trained immunity responses after antituberculosis BCG vaccination. PLoS Biol 2022; 20:e3001765. [PMID: 36094960 PMCID: PMC9499240 DOI: 10.1371/journal.pbio.3001765] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/22/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
The antituberculosis vaccine Bacillus Calmette–Guérin (BCG) induces nonspecific protection against heterologous infections, at least partly through induction of innate immune memory (trained immunity). The amplitude of the response to BCG is variable, but the factors that influence this response are poorly understood. Metabolites, either released by cells or absorbed from the gut, are known to influence immune responses, but whether they impact BCG responses is not known. We vaccinated 325 healthy individuals with BCG, and collected blood before, 2 weeks and 3 months after vaccination, to assess the influence of circulating metabolites on the immune responses induced by BCG. Circulating metabolite concentrations after BCG vaccination were found to have a more pronounced impact on trained immunity responses, such as the increase in IL-1β and TNF-α production upon Staphylococcus aureus stimulation, than on specific adaptive immune memory, assessed as IFN-γ production in response to Mycobacterium tuberculosis. Circulating metabolites at baseline were able to predict trained immunity responses at 3 months after vaccination and enrichment analysis based on the metabolites positively associated with trained immunity revealed enrichment of the tricarboxylic acid (TCA) cycle and glutamine metabolism, both of which were previously found to be important for trained immunity. Several new metabolic pathways that influence trained immunity were identified, among which taurine metabolism associated with BCG-induced trained immunity, a finding validated in functional experiments. In conclusion, circulating metabolites are important factors influencing BCG-induced trained immunity in humans. Modulation of metabolic pathways may be a novel strategy to improve vaccine and trained immunity responses. The response to the BCG vaccine, which provides protection against tuberculosis as well as unrelated pathogens, is variable. This study shows that the baseline plasma metabolome is able to partially predict trained immunity upon BCG vaccination, identifying the metabolome as a potential source of this heterogeneity.
Collapse
Affiliation(s)
- Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cancan Qi
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Vera P. Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - L. Charlotte J. de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J. C. F. M. Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vidhisha Sonawane
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- * E-mail:
| |
Collapse
|
74
|
Ning H, Kang J, Lu Y, Liang X, Zhou J, Ren R, Zhou S, Zhao Y, Xie Y, Bai L, Zhang L, Kang Y, Gao X, Xu M, Ma Y, Zhang F, Bai Y. Cyclic di-AMP as endogenous adjuvant enhanced BCG-induced trained immunity and protection against Mycobacterium tuberculosis in mice. Front Immunol 2022; 13:943667. [PMID: 36081510 PMCID: PMC9445367 DOI: 10.3389/fimmu.2022.943667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is a licensed prophylactic vaccine against tuberculosis (TB). Current TB vaccine efforts focus on improving BCG effects through recombination or genetic attenuation and/or boost with different vaccines. Recent years, it was revealed that BCG could elicit non-specific heterogeneous protection against other pathogens such as viruses through a process termed trained immunity. Previously, we constructed a recombinant BCG (rBCG-DisA) with elevated c-di-AMP as endogenous adjuvant by overexpressing di-adenylate cyclase of Mycobacterium tuberculosis DisA, and found that rBCG-DisA induced enhanced immune responses by subcutaneous route in mice after M. tuberculosis infection. In this study, splenocytes from rBCG-DisA immunized mice by intravenous route (i.v) elicited greater proinflammatory cytokine responses to homologous and heterologous re-stimulations than BCG. After M. tuberculosis infection, rBCG-DisA immunized mice showed hallmark responses of trained immunity including potent proinflammatory cytokine responses, enhanced epigenetic changes, altered lncRNA expressions and metabolic rewiring in bone marrow cells and other tissues. Moreover, rBCG-DisA immunization induced higher levels of antibodies and T cells responses in the lung and spleen of mice after M. tuberculosis infection. It was found that rBCG-DisA resided longer than BCG in the lung of M. tuberculosis infected mice implying prolonged duration of vaccine efficacy. Then, we found that rBCG-DisA boosting could prolong survival of BCG-primed mice over 90 weeks against M. tuberculosis infection. Our findings provided in vivo experimental evidence that rBCG-DisA with c-di-AMP as endogenous adjuvant induced enhanced trained immunity and adaptive immunity. What’s more, rBCG-DisA showed promising potential in prime-boost strategy against M. tuberculosis infection in adults.
Collapse
Affiliation(s)
- Huanhuan Ning
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Yanzhi Lu
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Xuan Liang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jie Zhou
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Rui Ren
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Shan Zhou
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhao
- Laboratory Animal Center, Air Force Medical University, Xi’an, China
| | - Yanling Xie
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Lu Bai
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Linna Zhang
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Yali Kang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Xiaojing Gao
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Mingze Xu
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Yanling Ma
- College of Life Sciences, Northwest University, Xi’an, China
| | - Fanglin Zhang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- *Correspondence: Yinlan Bai, ; Fanglin Zhang,
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- *Correspondence: Yinlan Bai, ; Fanglin Zhang,
| |
Collapse
|
75
|
Bannister S, Kim B, Domínguez-Andrés J, Kilic G, Ansell BRE, Neeland MR, Moorlag SJCFM, Matzaraki V, Vlahos A, Shepherd R, Germano S, Bahlo M, Messina NL, Saffery R, Netea MG, Curtis N, Novakovic B. Neonatal BCG vaccination is associated with a long-term DNA methylation signature in circulating monocytes. SCIENCE ADVANCES 2022; 8:eabn4002. [PMID: 35930640 PMCID: PMC9355358 DOI: 10.1126/sciadv.abn4002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/23/2022] [Indexed: 05/21/2023]
Abstract
Trained immunity describes the capacity of innate immune cells to develop heterologous memory in response to certain exogenous exposures. This phenomenon mediates, at least in part, the beneficial off-target effects of the BCG vaccine. Using an in vitro model of trained immunity, we show that BCG exposure induces a persistent change in active histone modifications, DNA methylation, transcription, and adenosine-to-inosine RNA modification in human monocytes. By profiling DNA methylation of circulating monocytes from infants in the MIS BAIR clinical trial, we identify a BCG-associated DNA methylation signature that persisted more than 12 months after neonatal BCG vaccination. Genes associated with this epigenetic signature are involved in viral response pathways, consistent with the reported off-target protection against viral infections in neonates, adults, and the elderly. Our findings indicate that the off-target effects of BCG in infants are accompanied by epigenetic remodeling of circulating monocytes that lasts more than 1 year.
Collapse
Affiliation(s)
- Samantha Bannister
- Infectious Diseases, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital, Parkville, VIC, Australia
| | - Bowon Kim
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB Nijmegen, Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB Nijmegen, Netherlands
| | - Brendan R. E. Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Melanie R. Neeland
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Simone J. C. F. M. Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB Nijmegen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB Nijmegen, Netherlands
| | - Amanda Vlahos
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Rebecca Shepherd
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Susie Germano
- Infectious Diseases, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nicole L. Messina
- Infectious Diseases, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Richard Saffery
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB Nijmegen, Netherlands
- Department for Immunology and Metabolism, Life and Medical Science Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Nigel Curtis
- Infectious Diseases, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital, Parkville, VIC, Australia
- Corresponding author. (B.N.); (N.C.)
| | - Boris Novakovic
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Corresponding author. (B.N.); (N.C.)
| |
Collapse
|
76
|
Zhang X, Sun B, Bai Y, Canário AVM, Xu X, Li J. Long non-coding RNAs are involved in immune resistance to Aeromonas hydrophila in black carp (Mylopharyngodon piceus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:366-374. [PMID: 35772677 DOI: 10.1016/j.fsi.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
A growing number of studies identified long non-coding RNAs (lncRNAs) to be closely associated with immune function through the regulation of immune cell differentiation and immune cell effector function. Here we tested whether lncRNAs are involved in immune function in black carp (Mylopharyngodon piceus) through the exposure to Aeromonas hydrophila and analysis of the spleen gene expression response using RNA-seq. A total of 9036 lncRNAs were identified with high confidence. Differential expression analysis identified a total of 3558 DElncRNAs (Differential expression lncRNA) involved in A. hydrophila infection and 4526 target genes corresponding to DElncRNAs. After screening 4526 target genes in the InnateDB database, a total of 150 immunity genes were identified. After GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of the obtained immunity genes, the Toll-like receptor (TLR) signaling pathway, TLR2, TLR3, TLR5, and TLR8 were identified as particularly significant in A. hydrophyla-resistant black carp. At the same time, the Ras signaling pathway was particularly enriched in the spleen of susceptible black carp. Analysis of PPI (protein-protein interaction) networks of the obtained immune genes identified SRC (SRC Proto-Oncogene), MYD88 (Myeloid differentiation primary response 88), MAPK3 (Mitogen-Activated Protein Kinase 3), MYC (MYC Proto-Oncogene) as main hub genes regulated by lncRNA and possibly mediating a mechanism of susceptibility to bacteria. These results establish a functional role of lncRNAs and a mechanistic base for the immune response in black carp resistant to A. hydrophila.
Collapse
Affiliation(s)
- Xueshu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bingyan Sun
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Adelino V M Canário
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
77
|
Chen Z, Natarajan R. Epigenetic modifications in metabolic memory: What are the memories, and can we erase them? Am J Physiol Cell Physiol 2022; 323:C570-C582. [PMID: 35785987 PMCID: PMC9359656 DOI: 10.1152/ajpcell.00201.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Inherent and acquired abnormalities in gene regulation due to the influence of genetics and epigenetics (traits related to environment rather than genetic factors) underlie many diseases including diabetes. Diabetes could lead to multiple complications including retinopathy, nephropathy, and cardiovascular disease that greatly increase morbidity and mortality. Epigenetic changes have also been linked to diabetes-related complications. Genes associated with many pathophysiological features of these vascular complications (e.g., inflammation, fibrosis, and oxidative stress) can be regulated by epigenetic mechanisms involving histone posttranslational modifications, DNA methylation, changes in chromatin structure/remodeling, and noncoding RNAs. Intriguingly, these epigenetic changes triggered during early periods of hyperglycemic exposure and uncontrolled diabetes are not immediately corrected even after restoration of normoglycemia and metabolic balance. This latency in effect across time and conditions is associated with persistent development of complications in diabetes with prior history of poor glycemic control, termed as metabolic memory or legacy effect. Epigenetic modifications are generally reversible and provide a window of therapeutic opportunity to ameliorate cellular dysfunction and mitigate or "erase" metabolic memory. Notably, trained immunity and related epigenetic changes transmitted from hematopoietic stem cells to innate immune cells have also been implicated in metabolic memory. Hence, identification of epigenetic variations at candidate genes, or epigenetic signatures genome-wide by epigenome-wide association studies can aid in prompt diagnosis to prevent progression of complications and identification of much-needed new therapeutic targets. Herein, we provide a review of epigenetics and epigenomics in metabolic memory of diabetic complications covering the current basic research, clinical data, and translational implications.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
78
|
Naik S, Fuchs E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 2022; 607:249-255. [PMID: 35831602 DOI: 10.1038/s41586-022-04919-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/30/2022] [Indexed: 01/01/2023]
Abstract
Our body has a remarkable ability to remember its past encounters with allergens, pathogens, wounds and irritants, and to react more quickly to the next experience. This accentuated sensitivity also helps us to cope with new threats. Despite maintaining a state of readiness and broadened resistance to subsequent pathogens, memories can also be maladaptive, leading to chronic inflammatory disorders and cancers. With the ever-increasing emergence of new pathogens, allergens and pollutants in our world, the urgency to unravel the molecular underpinnings of these phenomena has risen to new heights. Here we reflect on how the field of inflammatory memory has evolved, since 2007, when researchers realized that non-specific memory is contained in the nucleus and propagated at the epigenetic level. We review the flurry of recent discoveries revealing that memory is not just a privilege of the immune system but also extends to epithelia of the skin, lung, intestine and pancreas, and to neurons. Although still unfolding, epigenetic memories of inflammation have now been linked to possible brain disorders such as Alzheimer disease, and to an elevated risk of cancer. In this Review, we consider the consequences-good and bad-of these epigenetic memories and their implications for human health and disease.
Collapse
Affiliation(s)
- Shruti Naik
- Department of Pathology, New York University Langone Health, New York, NY, USA. .,Department of Medicine, New York University Langone Health, New York, NY, USA. .,Ronald O. Perelman Department of Dermatology, New York University Langone Health, New York, NY, USA. .,Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
79
|
Liu N, Sadlon T, Wong YY, Pederson S, Breen J, Barry SC. 3DFAACTS-SNP: using regulatory T cell-specific epigenomics data to uncover candidate mechanisms of type 1 diabetes (T1D) risk. Epigenetics Chromatin 2022; 15:24. [PMID: 35773720 PMCID: PMC9244893 DOI: 10.1186/s13072-022-00456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have enabled the discovery of single nucleotide polymorphisms (SNPs) that are significantly associated with many autoimmune diseases including type 1 diabetes (T1D). However, many of the identified variants lie in non-coding regions, limiting the identification of mechanisms that contribute to autoimmune disease progression. To address this problem, we developed a variant filtering workflow called 3DFAACTS-SNP to link genetic variants to target genes in a cell-specific manner. Here, we use 3DFAACTS-SNP to identify candidate SNPs and target genes associated with the loss of immune tolerance in regulatory T cells (Treg) in T1D. Results Using 3DFAACTS-SNP, we identified from a list of 1228 previously fine-mapped variants, 36 SNPs with plausible Treg-specific mechanisms of action. The integration of cell type-specific chromosome conformation capture data in 3DFAACTS-SNP identified 266 regulatory regions and 47 candidate target genes that interact with these variant-containing regions in Treg cells. We further demonstrated the utility of the workflow by applying it to three other SNP autoimmune datasets, identifying 16 Treg-centric candidate variants and 60 interacting genes. Finally, we demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of all known common (> 10% allele frequency) variants from the Genome Aggregation Database (gnomAD). We identified 9376 candidate variants and 4968 candidate target genes, generating a list of potential sites for future T1D or other autoimmune disease research. Conclusions We demonstrate that it is possible to further prioritise variants that contribute to T1D based on regulatory function, and illustrate the power of using cell type-specific multi-omics datasets to determine disease mechanisms. Our workflow can be customised to any cell type for which the individual datasets for functional annotation have been generated, giving broad applicability and utility. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00456-5.
Collapse
Affiliation(s)
- Ning Liu
- South Australian Health and Medical Research Institute, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Timothy Sadlon
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| | - Ying Y Wong
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - James Breen
- South Australian Health and Medical Research Institute, Adelaide, Australia. .,Robinson Research Institute, University of Adelaide, Adelaide, Australia. .,Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia. .,Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia. .,John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | - Simon C Barry
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| |
Collapse
|
80
|
Juste RA, Ferreras-Colino E, de la Fuente J, Domínguez M, Risalde MA, Domínguez L, Cabezas-Cruz A, Gortázar C. Heat inactivated mycobacteria, alpha-gal and zebra fish: insights gained from experiences with two promising trained immunity inductors and a validated animal model. Immunol Suppl 2022; 167:139-153. [PMID: 35752944 DOI: 10.1111/imm.13529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in nonspecific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the etiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,NySA. Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, 28220 Majadahonda, Madrid, Spain
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| |
Collapse
|
81
|
Manevski M, Devadoss D, Long C, Singh SP, Nasser MW, Borchert GM, Nair MN, Rahman I, Sopori M, Chand HS. Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia. Front Immunol 2022; 13:803362. [PMID: 35774797 PMCID: PMC9237255 DOI: 10.3389/fimmu.2022.803362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Research Impact Cigarette smoke (CS) exposure is strongly associated with chronic obstructive pulmonary disease (COPD). In respiratory airways, CS exposure disrupts airway barrier functions, mucous/phlegm production, and basic immune responses of airway epithelial cells. Based on our recent identification of a specific immunomodulatory long noncoding RNA (lncRNA), we investigated its role in CS-induced responses in bronchial airways of cynomolgus macaque model of CS-induced COPD and in former smokers with and without COPD. The lncRNA was significantly upregulated in CS-induced macaque airways and in COPD airways that exhibited higher mucus expression and goblet cell hyperplasia. Experimental models of cells derived from COPD subjects recapitulated the augmented inflammation and mucus expression following the smoke challenge. Blocking of lncRNA expression in cell culture setting suppressed the smoke-induced and COPD-associated dysregulated mucoinflammatory response suggesting that this airway specific immunomodulatory lncRNA may represent a novel target to mitigate the smoke-mediated inflammation and mucus hyperexpression. Rationale In conducting airways, CS disrupts airway epithelial functions, mucociliary clearances, and innate immune responses that are primarily orchestrated by human bronchial epithelial cells (HBECs). Mucus hypersecretion and dysregulated immune response are the hallmarks of chronic bronchitis (CB) that is often exacerbated by CS. Notably, we recently identified a long noncoding RNA (lncRNA) antisense to ICAM-1 (LASI) that mediates airway epithelial responses. Objective To investigate the role of LASI lncRNA in CS-induced airway inflammation and mucin hyperexpression in an animal model of COPD, and in HBECs and lung tissues from former smokers with and without COPD. To interrogate LASI lncRNA role in CS-mediated airway mucoinflammatory responses by targeted gene editing. Methods Small airway tissue sections from cynomolgus macaques exposed to long-term mainstream CS, and those from former smokers with and without COPD were analyzed. The structured-illumination imaging, RNA fluorescence in-situ hybridization (FISH), and qRT-PCR were used to characterize lncRNA expression and the expression of inflammatory factors and airway mucins in a cell culture model of CS extract (CSE) exposure using HBECs from COPD (CHBEs) in comparison with cells from normal control (NHBEs) subjects. The protein levels of mucin MUC5AC, and inflammatory factors ICAM-1, and IL-6 were determined using specific ELISAs. RNA silencing was used to block LASI lncRNA expression and lentivirus encoding LASI lncRNA was used to achieve LASI overexpression (LASI-OE). Results Compared to controls, LASI lncRNA was upregulated in CS-exposed macaques and in COPD smoker airways, correlating with mucus hyperexpression and mucus cell hyperplasia in severe COPD airways. At baseline, the unstimulated CHBEs showed increased LASI lncRNA expression with higher expression of secretory mucin MUC5AC, and inflammatory factors, ICAM-1, and IL-6 compared to NHBEs. CSE exposure of CHBEs resulted in augmented inflammation and mucus expression compared to controls. While RNA silencing-mediated LASI knockdown suppressed the mucoinflammatory response, cells overexpressing LASI lncRNA showed elevated mRNA levels of inflammatory factors. Conclusions Altogether, LASI lncRNA may represent a novel target to control the smoke-mediated dysregulation in airway responses and COPD exacerbations.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Christopher Long
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Shashi P. Singh
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Glen M. Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL, United States
| | - Madhavan N. Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Mohan Sopori
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Hitendra S. Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
82
|
Taks EJM, Moorlag SJCFM, Netea MG, van der Meer JWM. Shifting the Immune Memory Paradigm: Trained Immunity in Viral Infections. Annu Rev Virol 2022; 9:469-489. [PMID: 35676081 DOI: 10.1146/annurev-virology-091919-072546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trained immunity is defined as the de facto memory characteristics induced in innate immune cells after exposure to microbial stimuli after infections or certain types of vaccines. Through epigenetic and metabolic reprogramming of innate immune cells after exposure to these stimuli, trained immunity induces an enhanced nonspecific protection by improving the inflammatory response upon restimulation with the same or different pathogens. Recent studies have increasingly shown that trained immunity can, on the one hand, be induced by exposure to viruses; on the other hand, when induced, it can also provide protection against heterologous viral infections. In this review we explore current knowledge on trained immunity and its relevance for viral infections, as well as its possible future uses. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Esther J M Taks
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands; .,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| |
Collapse
|
83
|
Fava VM, Bourgey M, Nawarathna PM, Orlova M, Cassart P, Vinh DC, Cheng MP, Bourque G, Schurr E, Langlais D. A systems biology approach identifies candidate drugs to reduce mortality in severely ill patients with COVID-19. SCIENCE ADVANCES 2022; 8:eabm2510. [PMID: 35648852 PMCID: PMC9159580 DOI: 10.1126/sciadv.abm2510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/12/2022] [Indexed: 05/14/2023]
Abstract
Despite the availability of highly efficacious vaccines, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks effective drug treatment, which results in a high rate of mortality. To address this therapeutic shortcoming, we applied a systems biology approach to the study of patients hospitalized with severe COVID. We show that, at the time of hospital admission, patients who were equivalent on the clinical ordinal scale displayed significant differential monocyte epigenetic and transcriptomic attributes between those who would survive and those who would succumb to COVID-19. We identified messenger RNA metabolism, RNA splicing, and interferon signaling pathways as key host responses overactivated by patients who would not survive. Those pathways are prime drug targets to reduce mortality of critically ill patients with COVID-19, leading us to identify tacrolimus, zotatifin, and nintedanib as three strong candidates for treatment of severely ill patients at the time of hospital admission.
Collapse
Affiliation(s)
- Vinicius M. Fava
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Mathieu Bourgey
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Pubudu M. Nawarathna
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Marianna Orlova
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Pauline Cassart
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Donald C. Vinh
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Division of Medical Microbiology, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Matthew Pellan Cheng
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Division of Medical Microbiology, McGill University Health Center, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - David Langlais
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| |
Collapse
|
84
|
Geckin B, Konstantin Föhse F, Domínguez-Andrés J, Netea MG. Trained immunity: implications for vaccination. Curr Opin Immunol 2022; 77:102190. [PMID: 35597182 DOI: 10.1016/j.coi.2022.102190] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023]
Abstract
The concept that only adaptive immunity can build immunological memory has been challenged in the past decade. Live attenuated vaccines such as the Bacillus Calmette-Guérin, measles-containing vaccines, and the oral polio vaccine have been shown to reduce overall mortality beyond their effects attributable to the targeted diseases. After an encounter with a primary stimulus, epigenetic and metabolic reprogramming of bone marrow progenitor cells and functional changes of tissue immune cell populations result in augmented immune responses against a secondary challenge. This process has been termed trained immunity. This review describes the mechanisms leading to trained immunity and summarizes the most important developments from the past few years.
Collapse
Affiliation(s)
- Büsranur Geckin
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Friedrich Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
85
|
Jakwerth CA, Ordovas-Montanes J, Blank S, Schmidt-Weber CB, Zissler UM. Role of Respiratory Epithelial Cells in Allergic Diseases. Cells 2022; 11:1387. [PMID: 35563693 PMCID: PMC9105716 DOI: 10.3390/cells11091387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The airway epithelium provides the first line of defense to the surrounding environment. However, dysfunctions of this physical barrier are frequently observed in allergic diseases, which are tightly connected with pro- or anti-inflammatory processes. When the epithelial cells are confronted with allergens or pathogens, specific response mechanisms are set in motion, which in homeostasis, lead to the elimination of the invaders and leave permanent traces on the respiratory epithelium. However, allergens can also cause damage in the sensitized organism, which can be ascribed to the excessive immune reactions. The tight interaction of epithelial cells of the upper and lower airways with local and systemic immune cells can leave an imprint that may mirror the pathophysiology. The interaction with effector T cells, along with the macrophages, play an important role in this response, as reflected in the gene expression profiles (transcriptomes) of the epithelial cells, as well as in the secretory pattern (secretomes). Further, the storage of information from past exposures as memories within discrete cell types may allow a tissue to inform and fundamentally alter its future responses. Recently, several lines of evidence have highlighted the contributions from myeloid cells, lymphoid cells, stromal cells, mast cells, and epithelial cells to the emerging concepts of inflammatory memory and trained immunity.
Collapse
Affiliation(s)
- Constanze A. Jakwerth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA;
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| |
Collapse
|
86
|
Wan L, Li W, Meng Y, Hou Y, Chen M, Xu B. Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects. Front Immunol 2022; 13:849451. [PMID: 35514959 PMCID: PMC9063412 DOI: 10.3389/fimmu.2022.849451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid development of multiple high-throughput sequencing technologies has made it possible to explore the critical roles and mechanisms of functional enhancers and enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental pathological process in infectious diseases, cancers and immune disorders, coordinates the balance between the internal and external environment of the organism. It has been shown that both active enhancers and intranuclear eRNAs are preferentially expressed over inflammation-related genes in response to inflammatory stimuli, suggesting that enhancer transcription events and their products influence the expression and function of inflammatory genes. Therefore, in this review, we summarize and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in inflammatory immune cells, non-inflammatory immune cells, inflammatory immune diseases and tumors, and explore the potential therapeutic effects of enhancer inhibitors affecting eRNA production for diseases with inflammatory immune responses.
Collapse
Affiliation(s)
- Lilin Wan
- Medical School, Southeast University, Nanjing, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan Meng
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
87
|
Trained immunity-related vaccines: innate immune memory and heterologous protection against infections. Trends Mol Med 2022; 28:497-512. [DOI: 10.1016/j.molmed.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022]
|
88
|
Fraschilla I, Amatullah H, Jeffrey KL. One genome, many cell states: epigenetic control of innate immunity. Curr Opin Immunol 2022; 75:102173. [PMID: 35405493 PMCID: PMC9081230 DOI: 10.1016/j.coi.2022.102173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
A hallmark of the innate immune system is its ability to rapidly initiate short-lived or sustained transcriptional programs in a cell-specific and pathogen-specific manner that is dependent on dynamic chromatin states. Much of the epigenetic landscape is set during cellular differentiation; however, pathogens and other environmental cues also induce changes in chromatin that can either promote tolerance or 'train' innate immune cells for amplified secondary responses. We review chromatin processes that enable innate immune cell differentiation and functional transcriptional responses in naive or experienced cells, in concert with signal transduction and cellular metabolic shifts. We discuss how immune chromatin mechanisms are maladapted in disease and novel therapeutic approaches for cellular reprogramming.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajera Amatullah
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
89
|
Yu D, Zhang J, Wang S. Trained immunity in the mucosal diseases. WIREs Mech Dis 2022; 14:e1543. [PMID: 35266652 DOI: 10.1002/wsbm.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Immune memory is well known as a signature of the adaptive immune system. Recently, enhanced responses to subsequent triggers are also observed in innate immune system, termed trained immunity (TI). Awakening of innate immune memory is required for host defense, such as anti-pathogen and anti-tumor responses. However, hyper-reactivation of trained innate immune cells also gives rise to undesirable inflammation. Mucosa immune system serves as the first defense line against pathogens. Trained immunity of mucosal immune system is tightly associated with the outcomes of mucosal diseases. In this review, we discuss the role of trained immunity in mucosal-associated diseases and the underlying mechanisms. We summarize the metabolic and epigenetic changes of trained immune cells and highlight their potential in clinical treatment. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Dou Yu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Division of Life Sciences of Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaqi Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
90
|
Habash NW, Sehrawat TS, Shah VH, Cao S. Epigenetics of alcohol-related liver diseases. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100466. [PMID: 35462859 PMCID: PMC9018389 DOI: 10.1016/j.jhepr.2022.100466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.
Collapse
Key Words
- 3C, chromosome conformation capture
- 4C, chromosome conformation capture-on-chip
- AH, alcohol-related hepatitis
- ARLD, alcohol-related liver disease
- ASH, alcohol-related steatohepatitis
- ATAC, assay for transposase-accessible chromatin
- Acetylation
- Alcohol liver disease
- BET, bromodomain and extraterminal motif
- BETi, BET inhibitor
- BRD, bromodomain
- CCL2, C-C motif chemokine ligand 2
- CTCF, CCCTC-binding factor
- CXCL, C-X-C motif chemokine ligand
- Chromatin architecture
- Computational biology
- DNA methylation
- DNMT, DNA methyltransferase
- E-P, enhancer-promoter
- Epidrugs
- Epigenetics
- FKBP5, FK506-binding protein 5
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HIF1α, hypoxia inducible factor-1α
- HMGB1, high-mobility group box protein 1
- HNF4α, hepatocyte nuclear factor 4α
- HSC, hepatic stellate cell
- Hi-C, chromosome capture followed by high-throughput sequencing
- Histones
- IL, interleukin
- LPS, lipopolysaccharide
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MECP2, methyl-CpG binding protein 2
- NAFLD, non-alcohol-related fatty liver disease
- PPARG, peroxisome proliferator activated receptor-γ
- SAA, salvianolic acid A
- SIRT, sirtuin
- SREBPs, sterol regulatory element-binding proteins
- Single cell epigenome
- TAD, topologically associating domain
- TEAD, TEA domain transcription factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- YAP, Yes-associated protein
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
Affiliation(s)
| | | | - Vijay H. Shah
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| | - Sheng Cao
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| |
Collapse
|
91
|
Hu Z, Lu S, Lowrie DB, Fan X. Trained immunity: A Yin-Yang balance. MedComm (Beijing) 2022; 3:e121. [PMID: 35281787 PMCID: PMC8906449 DOI: 10.1002/mco2.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Traditionally, immune memory is regarded as an exclusive hallmark of adaptive immunity. However, a growing body of evidence suggesting that innate immune cells show adaptive characteristics has challenged this dogma. In the past decade, trained immunity, a de facto innate immune memory, has been defined as a long-term functional reprogramming of cells of the innate immune system: the reprogramming is evoked by endogenous or exogenous insults, the cells return to a nonactivated state and subsequently show altered inflammatory responses against a second challenge. Trained immunity became regarded as a mechanism selected in evolution to protect against infection; however, a maladaptive effect might result in hyperinflammation. This dual effect is consistent with the Yin-Yang theory in traditional Chinese philosophy, in which Yang represents active, positive, and aggressive factors, whereas Yin represents passive, negative, and inhibitory factors. In this review, we give a brief overview of history and latest progress about trained immunity, including experimental models, inductors, molecular mechanisms, clinical application and so on. Moreover, this is the first time to put forward the theory of Yin-Yang balance to understand trained immunity. We envision that more efforts will be focused on developing novel immunotherapies targeting trained immunity in the coming years.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
| | - Shui‐Hua Lu
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
- National Medical Center for Infectious Diseases of ChinaShenzhen Third People Hospital, South Science & Technology UniversityShenzhenChina
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of ChinaShenzhen Third People Hospital, South Science & Technology UniversityShenzhenChina
| | - Xiao‐Yong Fan
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
| |
Collapse
|
92
|
Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front Immunol 2022; 13:812148. [PMID: 35237264 PMCID: PMC8882614 DOI: 10.3389/fimmu.2022.812148] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The C-type lectin receptor Dectin-1 was originally described as the β-glucan receptor expressed in myeloid cells, with crucial functions in antifungal responses. However, over time, different ligands both of microbial-derived and endogenous origin have been shown to be recognized by Dectin-1. The outcomes of this recognition are diverse, including pro-inflammatory responses such as cytokine production, reactive oxygen species generation and phagocytosis. Nonetheless, tolerant responses have been also attributed to Dectin-1, depending on the specific ligand engaged. Dectin-1 recognition of their ligands triggers a plethora of downstream signaling pathways, with complex interrelationships. These signaling routes can be modulated by diverse factors such as phosphatases or tetraspanins, resulting either in pro-inflammatory or regulatory responses. Since its first depiction, Dectin-1 has recently gained a renewed attention due to its role in the induction of trained immunity. This process of long-term memory of innate immune cells can be triggered by β-glucans, and Dectin-1 is crucial for its initiation. The main signaling pathways involved in this process have been described, although the understanding of the above-mentioned complexity in the β-glucan-induced trained immunity is still scarce. In here, we have reviewed and updated all these factors related to the biology of Dectin-1, highlighting the gaps that deserve further research. We believe on the relevance to fully understand how this receptor works, and therefore, how we could harness it in different pathological conditions as diverse as fungal infections, autoimmunity, or cancer.
Collapse
Affiliation(s)
| | | | - Carlos del Fresno
- Immune response and Immunomodulation Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
93
|
Saini A, Ghoneim HE, Lio CWJ, Collins PL, Oltz EM. Gene Regulatory Circuits in Innate and Adaptive Immune Cells. Annu Rev Immunol 2022; 40:387-411. [PMID: 35119910 DOI: 10.1146/annurev-immunol-101320-025949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ankita Saini
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Patrick L Collins
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| |
Collapse
|
94
|
Is the BCG Vaccine an Answer to Future Pandemic Preparedness? Vaccines (Basel) 2022; 10:vaccines10020201. [PMID: 35214660 PMCID: PMC8876484 DOI: 10.3390/vaccines10020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
While the development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines was rapid, time to development and implementation challenges remain that may impact the response to future pandemics. Trained immunity via bacille Calmette-Guerin (BCG) vaccination (an antigen agnostic strategy) offers a potential intervention against future novel pathogens via an existing, safe, and widely distributed vaccine to protect vulnerable populations and preserve health system capacity while targeted vaccines are developed and implemented.
Collapse
|
95
|
Abstract
The dogma that immunological memory is an exclusive trait of adaptive immunity has been recently challenged by studies showing that priming of innate cells can also result in modified long-term responsiveness to secondary stimuli, once the cells have returned to a non-activated state. This phenomenon is known as 'innate immune memory', 'trained immunity' or 'innate training'. While the main known triggers of trained immunity are microbial-derived molecules such as β-glucan, endogenous particles such as oxidized low-density lipoprotein and monosodium urate crystals can also induce trained phenotypes in innate cells. Whether exogenous particles can induce trained immunity has been overlooked. Our exposure to particulates has dramatically increased in recent decades as a result of the broad medical use of particle-based drug carriers, theragnostics, adjuvants, prosthetics and an increase in environmental pollution. We recently showed that pristine graphene can induce trained immunity in macrophages, enhancing their inflammatory response to TLR agonists, proving that exogenous nanomaterials can affect the long-term response of innate cells. The consequences of trained immunity can be beneficial, for instance, enhancing protection against unrelated pathogens; however, they can also be deleterious if they enhance inflammatory disorders. Therefore, studying the ability of particulates and biomaterials to induce innate trained phenotypes in cells is warranted. Here we analyse the mechanisms whereby particles can induce trained immunity and discuss how physicochemical characteristics of particulates could influence the induction of innate memory. We review the implications of trained immunity in the context of particulate adjuvants, nanocarriers and nanovaccines and their potential applications in medicine. Finally, we reflect on the unanswered questions and the future of the field.
Collapse
|
96
|
IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 2021; 150:155773. [PMID: 34844039 DOI: 10.1016/j.cyto.2021.155773] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Trained immunity is the long-term memory of innate immune cells, characterised by increased pro-inflammatory responses towards homo- and heterologous secondary stimuli. Interleukin (IL)-1 signalling plays an essential role in the induction of trained immunity, also called innate immune memory. As such, certain anti-inflammatory members of the IL-1 family of cytokines (IL-1F) which interfere with the inflammatory process have the potential to regulate the induction of a trained phenotype. The aim of this review is to provide an update on the role of IL-1F members in the context of trained immunity, emphasising the role of anti-inflammatory cytokines from the IL-1F to inhibit the induction of trained immunity, and touching upon their potential as therapeutics in IL-1-driven inflammatory disorders.
Collapse
|
97
|
Moorlag SJCFM, Matzaraki V, van Puffelen JH, van der Heijden C, Keating S, Groh L, Röring RJ, Bakker OB, Koeken VACM, de Bree LCJ, Smeekens SP, Oosting M, Gamboa RA, Riksen NP, Xavier RJ, Wijmenga C, Kumar V, van Crevel R, Novakovic B, Joosten LAB, Li Y, Netea MG. An integrative genomics approach identifies KDM4 as a modulator of trained immunity. Eur J Immunol 2021; 52:431-446. [PMID: 34821391 PMCID: PMC9299854 DOI: 10.1002/eji.202149577] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 09/29/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023]
Abstract
Innate immune cells are able to build memory characteristics via a process termed “trained immunity.” Host factors that influence the magnitude of the individual trained immunity response remain largely unknown. Using an integrative genomics approach, our study aimed to prioritize and understand the role of specific genes in trained immunity responses. In vitro‐induced trained immunity responses were assessed in two independent population‐based cohorts of healthy individuals, the 300 Bacillus Calmette‐Guérin (300BCG; n = 267) and 200 Functional Genomics (200FG; n = 110) cohorts from the Human Functional Genomics Project. Genetic loci that influence cytokine responses upon trained immunity were identified by conducting a meta‐analysis of QTLs identified in the 300BCG and 200FG cohorts. From the identified QTL loci, we functionally validated the role of PI3K‐Akt signaling pathway and two genes that belong to the family of Siglec receptors (Siglec‐5 and Siglec‐14). Furthermore, we identified the H3K9 histone demethylases of the KDM4 family as major regulators of trained immunity responses. These data pinpoint an important role of metabolic and epigenetic processes in the regulation of trained immunity responses, and these findings may open new avenues for vaccine design and therapeutic interventions.
Collapse
Affiliation(s)
- Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelmer H van Puffelen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charlotte van der Heijden
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sam Keating
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laszlo Groh
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rutger Jan Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Olivier B Bakker
- Department of Genetics, University Medical Center Groningen, University of Groningenor, Groningen, The Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Sanne P Smeekens
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raúl Aguirre Gamboa
- Department of Genetics, University Medical Center Groningen, University of Groningenor, Groningen, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningenor, Groningen, The Netherlands.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Norway
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningenor, Groningen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Boris Novakovic
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School, Hannover, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
98
|
Long non-coding RNAs associated with infection and vaccine-induced immunity. Essays Biochem 2021; 65:657-669. [PMID: 34528687 DOI: 10.1042/ebc20200072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
The immune system responds to infection or vaccination through a dynamic and complex process that involves several molecular and cellular factors. Among these factors, long non-coding RNAs (lncRNAs) have emerged as significant players in all areas of biology, particularly in immunology. Most of the mammalian genome is transcribed in a highly regulated manner, generating a diversity of lncRNAs that impact the differentiation and activation of immune cells and affect innate and adaptive immunity. Here, we have reviewed the range of functions and mechanisms of lncRNAs in response to infectious disease, including pathogen recognition, interferon (IFN) response, and inflammation. We describe examples of lncRNAs exploited by pathogenic agents during infection, which indicate that lncRNAs are a fundamental part of the arms race between hosts and pathogens. We also discuss lncRNAs potentially implicated in vaccine-induced immunity and present examples of lncRNAs associated with the antibody response of subjects receiving Influenza or Yellow Fever vaccines. Elucidating the widespread involvement of lncRNAs in the immune system will improve our understanding of the factors affecting immune response to different pathogenic agents, to better prevent and treat disease.
Collapse
|
99
|
Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proc Natl Acad Sci U S A 2021; 118:2102698118. [PMID: 34663697 PMCID: PMC8545490 DOI: 10.1073/pnas.2102698118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
During infection, extracellular “labile” heme, released from damaged red blood or parenchymal cells, acts as prototypical alarmin stimulating myeloid cells. A characteristic hallmark of myeloid cell activation is the development of trained immunity, specified as long-lasting adaptations based on transcriptional and epigenetic modifications. In vivo, this is maintained by the rerouting of hematopoiesis. We found that heme is a previously unrecognized trained immunity inducer promoting resistance to bacterial infection in mice. This goes along with extensive long-lasting epigenetic memory in hematopoietic stem cells provoking drastic changes in the transcription factor–binding landscape of myeloid progenitor cells. Given the critical role of heme during infections, we propose that trained immunity is a more general component of innate immunity than previously suggested. Trained immunity defines long-lasting adaptations of innate immunity based on transcriptional and epigenetic modifications of myeloid cells and their bone marrow progenitors [M. Divangahi et al., Nat. Immunol. 22, 2–6 (2021)]. Innate immune cells, however, do not exclusively differentiate between foreign and self but also react to host-derived molecules referred to as alarmins. Extracellular “labile” heme, released during infections, is a bona fide alarmin promoting myeloid cell activation [M. P. Soares, M. T. Bozza, Curr. Opin. Immunol. 38, 94–100 (2016)]. Here, we report that labile heme is a previously unrecognized inducer of trained immunity that confers long-term regulation of lineage specification of hematopoietic stem cells and progenitor cells. In contrast to previous reports on trained immunity, essentially mediated by pathogen-associated molecular patterns, heme training depends on spleen tyrosine kinase signal transduction pathway acting upstream of c-Jun N-terminal kinases. Heme training promotes resistance to sepsis, is associated with the expansion of self-renewing hematopoetic stem cells primed toward myelopoiesis and to the occurrence of a specific myeloid cell population. This is potentially evoked by sustained activity of Nfix, Runx1, and Nfe2l2 and dissociation of the transcriptional repressor Bach2. Previously reported trained immunity inducers are, however, infrequently present in the host, whereas heme abundantly occurs during noninfectious and infectious disease. This difference might explain the vanishing protection exerted by heme training in sepsis over time with sustained long-term myeloid adaptations. Hence, we propose that trained immunity is an integral component of innate immunity with distinct functional differences on infectious disease outcome depending on its induction by pathogenic or endogenous molecules.
Collapse
|
100
|
Acevedo OA, Berrios RV, Rodríguez-Guilarte L, Lillo-Dapremont B, Kalergis AM. Molecular and Cellular Mechanisms Modulating Trained Immunity by Various Cell Types in Response to Pathogen Encounter. Front Immunol 2021; 12:745332. [PMID: 34671359 PMCID: PMC8521023 DOI: 10.3389/fimmu.2021.745332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
The induction of trained immunity represents an emerging concept defined as the ability of innate immune cells to acquire a memory phenotype, which is a typical hallmark of the adaptive response. Key points modulated during the establishment of trained immunity include epigenetic, metabolic and functional changes in different innate-immune and non-immune cells. Regarding to epigenetic changes, it has been described that long non-coding RNAs (LncRNAs) act as molecular scaffolds to allow the assembly of chromatin-remodeling complexes that catalyze epigenetic changes on chromatin. On the other hand, relevant metabolic changes that occur during this process include increased glycolytic rate and the accumulation of metabolites from the tricarboxylic acid (TCA) cycle, which subsequently regulate the activity of histone-modifying enzymes that ultimately drive epigenetic changes. Functional consequences of established trained immunity include enhanced cytokine production, increased antigen presentation and augmented antimicrobial responses. In this article, we will discuss the current knowledge regarding the ability of different cell subsets to acquire a trained immune phenotype and the molecular mechanisms involved in triggering such a response. This knowledge will be helpful for the development of broad-spectrum therapies against infectious diseases based on the modulation of epigenetic and metabolic cues regulating the development of trained immunity.
Collapse
Affiliation(s)
- Orlando A. Acevedo
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V. Berrios
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bastián Lillo-Dapremont
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|