51
|
Matsumoto K, Ni S, Arai H, Toyama T, Saito Y, Suzuki T, Dohmae N, Mukai K, Taguchi T. A non-nucleotide agonist that binds covalently to cysteine residues of STING. Cell Struct Funct 2023; 48:59-70. [PMID: 36575042 PMCID: PMC10721953 DOI: 10.1247/csf.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Stimulator of interferon genes (STING) is an ER-localized transmembrane protein and the receptor for 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which is a second messenger produced by cGAMP synthase (cGAS), a cytosolic double-stranded DNA sensor. The cGAS-STING pathway plays a critical role in the innate immune response to infection of a variety of DNA pathogens through the induction of the type I interferons. Pharmacological activation of STING is a promising therapeutic strategy for cancer, thus the development of potent and selective STING agonists has been pursued. Here we report that mouse STING can be activated by phenylarsine oxide (PAO), a membrane permeable trivalent arsenic compound that preferentially reacts with thiol group of cysteine residue (Cys). The activation of STING with PAO does not require cGAS or cGAMP. Mass spectrometric analysis of the peptides generated by trypsin and chymotrypsin digestion of STING identifies several PAO adducts, suggesting that PAO covalently binds to STING. Screening of STING variants with single Cys to serine residues (Ser) reveals that Cys88 and Cys291 are critical to the response to PAO. STING activation with PAO, as with cGAMP, requires the ER-to-Golgi traffic and palmitoylation of STING. Our results identify a non-nucleotide STING agonist that does not target the cGAMP-binding pocket, and demonstrate that Cys of STING can be a novel target for the development of STING agonist.Key words: STING agonist, cysteine modification, innate immunity, phenylarsine oxide.
Collapse
Affiliation(s)
- Kentaro Matsumoto
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shenwei Ni
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
52
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
53
|
Gentili M, Liu B, Papanastasiou M, Dele-Oni D, Schwartz MA, Carlson RJ, Al'Khafaji AM, Krug K, Brown A, Doench JG, Carr SA, Hacohen N. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nat Commun 2023; 14:611. [PMID: 36739287 PMCID: PMC9899276 DOI: 10.1038/s41467-023-36132-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/06/2023] Open
Abstract
Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.
Collapse
Affiliation(s)
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | | | | | - Marc A Schwartz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | | | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
54
|
Gao KM, Marshak-Rothstein A, Fitzgerald KA. Type-1 interferon-dependent and -independent mechanisms in cyclic GMP-AMP synthase-stimulator of interferon genes-driven auto-inflammation. Curr Opin Immunol 2023; 80:102280. [PMID: 36638547 DOI: 10.1016/j.coi.2022.102280] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
The cyclic cyclic gaunosine monophosphate adenosine monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic dsDNA and initiates immune responses against pathogens. It is also implicated in several auto-inflammatory diseases known as monogenic interferonopathies, specifically Three prime repair exonuclease 1 (Trex1) loss-of-function (LOF), Dnase2 LOF, and stimulator of interferon genes-associated-vasculopathy-with-onset-in-infancy (SAVI). Although monogenic interferonopathies have diverse clinical presentations, they are distinguished by the elevation of type-1 interferons (T1IFNs). However, animal models have demonstrated that T1IFNs contribute to only some disease outcomes and that cGAS-STING activation also promotes T1IFN-independent pathology. For example, while T1IFNs drive the immunopathology associated with Trex1 LOF, disease in Dnase2 LOF is partially independent of T1IFNs, while disease in SAVI appears to occur entirely independent of T1IFNs. Additionally, while the cGAS-STING pathway is well characterized in hematopoietic cells, these animal models point to important roles for STING activity in nonhematopoietic cells in disease. Together, these models illustrate the complex role that cGAS-STING-driven responses play in the pathogenesis of inflammatory diseases across tissues.
Collapse
Affiliation(s)
- Kevin Mj Gao
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
55
|
Jeltema D, Abbott K, Yan N. STING trafficking as a new dimension of immune signaling. J Exp Med 2023; 220:213837. [PMID: 36705629 PMCID: PMC9930166 DOI: 10.1084/jem.20220990] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
The cGAS-STING pathway is an evolutionarily conserved immune signaling pathway critical for microbial defense. Unlike other innate immune pathways that largely rely on stationary cascades of signaling events, STING is highly mobile in the cell. STING is activated on the ER, but only signals after it arrives on the Golgi, and then it is quickly degraded by the lysosome. Each step of STING trafficking through the secretory pathway is regulated by host factors. Homeostatic STING trafficking via COPI-, COPII-, and clathrin-coated vesicles is important for maintaining baseline tissue and cellular immunity. Aberrant vesicular trafficking or lysosomal dysfunction produces an immune signal through STING, which often leads to tissue pathology in mice and humans. Many trafficking-mediated diseases of STING signaling appear to impact the central nervous system, leading to neurodegeneration. Therefore, STING trafficking introduces a new dimension of immune signaling that likely has broad implications in human disease.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Abbott
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA,Correspondence to Nan Yan:
| |
Collapse
|
56
|
UFL1 promotes antiviral immune response by maintaining STING stability independent of UFMylation. Cell Death Differ 2023; 30:16-26. [PMID: 35871231 PMCID: PMC9883236 DOI: 10.1038/s41418-022-01041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
The precise regulation of STING homeostasis is essential for its antiviral function. Post-translational modification, especially ubiquitination, is important for the regulation of STING homeostasis. Previous studies have focused on how STING is degraded, but little is known about its maintenance. Here, we show that UFM1 specific ligase UFL1 promotes innate immune response by maintaining STING expression independent of UFMylation. Mechanistically, UFL1 inhibits TRIM29 to interact with STING, thereby reducing its ubiquitination at K338/K347/K370 and subsequent proteasomal degradation. DNA virus infection reduces the UFL1 expression, which may promote STING degradation and facilitate viral expansion. Our study identifies UFL1 as a crucial regulator for the maintenance of STING stability and antiviral function, and provides novel insights into the mechanistic explanation for the immunological escape of DNA virus.
Collapse
|
57
|
Zeng PH, Yin WJ. The cGAS/STING signaling pathway: a cross-talk of infection, senescence and tumors. Cell Cycle 2023; 22:38-56. [PMID: 35946607 PMCID: PMC9769453 DOI: 10.1080/15384101.2022.2109899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The cGAS/STING signaling pathway is an important part of the cytoplasmic DNA sensor, which can trigger a type I interferon response to microbial infection when pathogenic DNA is detected. However, continuous inhibition of cGAS/STING signaling by viral infection may be an important cause of tumorigenesis. At the same time, recent studies have shown that although the cGAS/STING signaling pathway also plays a core role in anti-tumor immunity and cell senescence, the inflammatory response induced by cGAS/STING signaling will also promote tumorigenesis in different backgrounds. Here, we discuss the role of cGAS/STING in the context of infection, senescence, and tumors, especially with respect to progression, to facilitate a better understanding of the mechanism of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
58
|
Shen S, Rui Y, Wang Y, Su J, Yu X. SARS-CoV-2, HIV, and HPV: Convergent evolution of selective regulation of cGAS-STING signaling. J Med Virol 2023; 95:e28220. [PMID: 36229923 PMCID: PMC9874546 DOI: 10.1002/jmv.28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Recognizing aberrant cytoplasmic double-stranded DNA and stimulating innate immunity is essential for the host's defense against viruses and tumors. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that synthesizes the second messenger 2'3'-cGAMP and subsequently activates stimulator of interferon genes (STING)-mediated activation of TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and the production of type I interferon (IFN-I). Both the cGAS-STING-mediated IFN-I antiviral defense and the countermeasures developed by diverse viruses have been extensively studied. However, recent studies have revealed a convergent evolutionary feature of severe acute respiratory syndrome coronavirus 2 and human immunodeficiency virus (HIV) viral proteins in terms of the selective regulation of cGAS-STING-mediated nuclear factor-κB (NF-κB) signaling without any effect on cGAS-STING-mediated TBK1/IRF3 activation and IFN production. The potential beneficial effect of this cGAS-STING-mediated, NF-κB-dependent antiviral effect, and the possible detrimental effect of IFN-I in the pathogenesis of coronavirus disease 2019 and HIV infection deserve more attention and future investigation.
Collapse
Affiliation(s)
- Si Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Xiao‐Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
59
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
60
|
The Golgi-resident protein ACBD3 concentrates STING at ER-Golgi contact sites to drive export from the ER. Cell Rep 2022; 41:111868. [PMID: 36543137 DOI: 10.1016/j.celrep.2022.111868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
STING, an endoplasmic reticulum (ER)-resident receptor for cyclic di-nucleotides (CDNs), is essential for innate immune responses. Upon CDN binding, STING moves from the ER to the Golgi, where it activates downstream type-I interferon (IFN) signaling. General cargo proteins exit from the ER via concentration at ER exit sites. However, the mechanism of STING concentration is poorly understood. Here, we visualize the ER exit sites of STING by blocking its transport at low temperature or by live-cell imaging with the cell-permeable ligand bis-pivSATE-2'F-c-di-dAMP, which we have developed. After ligand binding, STING forms punctate foci at non-canonical ER exit sites. Unbiased proteomic screens and super-resolution microscopy show that the Golgi-resident protein ACBD3/GCP60 recognizes and concentrates ligand-bound STING at specialized ER-Golgi contact sites. Depletion of ACBD3 impairs STING ER-to-Golgi trafficking and type-I IFN responses. Our results identify the ACBD3-mediated non-canonical cargo concentration system that drives the ER exit of STING.
Collapse
|
61
|
Vila IK, Guha S, Kalucka J, Olagnier D, Laguette N. Alternative pathways driven by STING: From innate immunity to lipid metabolism. Cytokine Growth Factor Rev 2022; 68:54-68. [PMID: 36085258 DOI: 10.1016/j.cytogfr.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023]
Abstract
The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| | - Soumyabrata Guha
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France
| | - Joanna Kalucka
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - Nadine Laguette
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
62
|
Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol 2022:S0962-8924(22)00252-5. [DOI: 10.1016/j.tcb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
|
63
|
Zhang R, Hou X, Wang C, Li J, Zhu J, Jiang Y, Hou F. The Endoplasmic Reticulum ATP13A1 is Essential for MAVS-Mediated Antiviral Innate Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203831. [PMID: 36216581 PMCID: PMC9685455 DOI: 10.1002/advs.202203831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
RIG-I-MAVS signaling pathway is essential for efficient innate immune response against virus infection. Though many components have been identified in RIG-I pathway and it can be partially reconstituted in vitro, detailed mechanisms involved in cells are still unclear. Here, a genome-wide CRISPR-Cas9 screen is performed using an engineered cell line IFNB-P2A-GSDMD-N, and ATP13A1, a putative dislocase located on the endoplasmic reticulum, is identified as an important regulator of RIG-I pathway. ATP13A1 deficiency abolishes RIG-I-mediated antiviral innate immune response due to compromised MAVS stability and crippled signaling potency of residual MAVS. Moreover, it is discovered that MAVS is subject to protease-mediated degradation in the absence of ATP13A1. As homozygous Atp13a1 knockout mice result in developmental retardation and embryonic lethality, Atp13a1 conditional knockout mice are generated. Myeloid-specific Atp13a1-deficient mice are viable and susceptible to RNA virus infection. Collectively, the findings reveal that ATP13A1 is indispensable for the stability and activation of MAVS and a proper antiviral innate immune response.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Xianteng Hou
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Changwan Wang
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jiaxin Li
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Junyan Zhu
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Yingbo Jiang
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Fajian Hou
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
64
|
Fang R, Jiang Q, Yu X, Zhao Z, Jiang Z. Recent advances in the activation and regulation of the cGAS-STING pathway. Adv Immunol 2022; 156:55-102. [PMID: 36410875 DOI: 10.1016/bs.ai.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cGAS-STING pathway is responsible for cytoplasmic double-stranded DNA (dsDNA) -triggered innate immunity and involved in the pathology of various diseases including infection, autoimmune diseases, neurodegeneration and cancer. Understanding the activation and regulatory mechanisms of this pathway is critical to develop therapeutic strategies toward these diseases. Here, we review the signal transduction, cellular functions and regulations of cGAS and STING, particularly highlighting the latest understandings on the activation of cGAS by dsDNA and/or Manganese (Mn2+), STING trafficking, sulfated glycosaminoglycans (sGAGs)-induced STING polymerization and activation, and also regulation of the cGAS-STING pathway by different biocondensates formed via phase separation of proteins from host cells and viruses.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Yu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhen Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
65
|
Hu X, Zhang H, Zhang Q, Yao X, Ni W, Zhou K. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J Neuroinflammation 2022; 19:242. [PMID: 36195926 PMCID: PMC9531511 DOI: 10.1186/s12974-022-02602-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Stimulator of interferons genes (STING), which is crucial for the secretion of type I interferons and proinflammatory cytokines in response to cytosolic nucleic acids, plays a key role in the innate immune system. Studies have revealed the participation of the STING pathway in unregulated inflammatory processes, traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid haemorrhage (SAH) and hypoxic–ischaemic encephalopathy (HIE). STING signalling is markedly increased in CNS injury, and STING agonists might facilitate the pathogenesis of CNS injury. However, the effects of STING-regulated signalling activation in CNS injury are not well understood. Aberrant activation of STING increases inflammatory events, type I interferon responses, and cell death. cGAS is the primary pathway that induces STING activation. Herein, we provide a comprehensive review of the latest findings related to STING signalling and the cGAS–STING pathway and highlight the control mechanisms and their functions in CNS injury. Furthermore, we summarize and explore the most recent advances toward obtaining an understanding of the involvement of STING signalling in programmed cell death (autophagy, necroptosis, ferroptosis and pyroptosis) during CNS injury. We also review potential therapeutic agents that are capable of regulating the cGAS–STING signalling pathway, which facilitates our understanding of cGAS–STING signalling functions in CNS injury and the potential value of this signalling pathway as a treatment target.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.,Department of Orthopedics, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng, Beijing, 100053, People's Republic of China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Qianxin Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Department of Cardiology, Zhejiang Yuhuan People's Hospital, Yuhuan, 317600, Zhejiang, China
| | - Xue Yao
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, 300050, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
66
|
Yin H, Shan Y, Xia T, Ji Y, Yuan L, You Y, You B. Emerging Roles of Lipophagy in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14184526. [PMID: 36139685 PMCID: PMC9496701 DOI: 10.3390/cancers14184526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Metastasis is the main cause of death in patients with malignant tumors worldwide. Mounting evidence suggests lipid droplet metabolism is involved in the process of metastasis. As a mechanism to selectively degrade lipid droplets, the current research on lipophagy and tumor metastasis is quite limited. This review summarizes the crosstalk among lipophagy, tumor lipid metabolism and cancer metastasis, which will provide a new reference for the development of effective targeted drugs. Abstract Obesity is a prominent risk factor for certain types of tumor progression. Adipocytes within tumor stroma contribute to reshaping tumor microenvironment (TME) and the metabolism and metastasis of tumors through the production of cytokines and adipokines. However, the crosstalk between adipocytes and tumor cells remains a major gap in this field. Known as a subtype of selective autophagy, lipophagy is thought to contribute to lipid metabolism by breaking down intracellular lipid droplets (LDs) and generating free fatty acids (FAs). The metastatic potential of cancer cells closely correlates with the lipid degradation mechanisms, which are required for energy generation, signal transduction, and biosynthesis of membranes. Here, we discuss the recent advance in the understanding of lipophagy with tumor lipid metabolism and review current studies on the roles of lipoghagy in the metastasis of certain human malignancies. Additionally, the novel candidate drugs targeting lipophagy are integrated for effective treatment strategies.
Collapse
Affiliation(s)
- Haimeng Yin
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ying Shan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
| | - Tian Xia
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
| | - Yan Ji
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ling Yuan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Yiwen You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Correspondence: (Y.Y.); (B.Y.)
| | - Bo You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Correspondence: (Y.Y.); (B.Y.)
| |
Collapse
|
67
|
Du Y, Zhang H, Nie X, Qi Y, Shi S, Han Y, Zhou W, He C, Wang L. Link between sterile inflammation and cardiovascular diseases: Focus on cGAS-STING pathway in the pathogenesis and therapeutic prospect. Front Cardiovasc Med 2022; 9:965726. [PMID: 36072862 PMCID: PMC9441773 DOI: 10.3389/fcvm.2022.965726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sterile inflammation characterized by unresolved chronic inflammation is well established to promote the progression of multiple autoimmune diseases, metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, collectively termed as sterile inflammatory diseases. In recent years, substantial evidence has revealed that the inflammatory response is closely related to cardiovascular diseases. Cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway which is activated by cytoplasmic DNA promotes the activation of interferon regulatory factor 3 (IRF3) or nuclear factor-κB (NF-κB), thus leading to upregulation of the levels of inflammatory factors and interferons (IFNs). Therefore, studying the role of inflammation caused by cGAS-STING pathway in cardiovascular diseases could provide a new therapeutic target for cardiovascular diseases. This review focuses on that cGAS-STING-mediated inflammatory response in the progression of cardiovascular diseases and the prospects of cGAS or STING inhibitors for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Du
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Zhang
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Nie
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shi Shi
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingying Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenchen Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chaoyong He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Chaoyong He
| | - Lintao Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
- Lintao Wang
| |
Collapse
|
68
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
69
|
Gao J, Zheng M, Wu X, Zhang H, Su H, Dang Y, Ma M, Wang F, Xu J, Chen L, Liu T, Chen J, Zhang F, Yang L, Xu Q, Hu X, Wang H, Fei Y, Chen C, Liu H. CDK inhibitor Palbociclib targets STING to alleviate autoinflammation. EMBO Rep 2022; 23:e53932. [PMID: 35403787 PMCID: PMC9171422 DOI: 10.15252/embr.202153932] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022] Open
Abstract
Aberrant activation of stimulator of interferon genes (STING) is tightly associated with multiple types of disease, including cancer, infection, and autoimmune diseases. However, the development of STING modulators for the therapy of STING-related diseases is still an unmet clinical need. We employed a high-throughput screening approach based on the interaction of small-molecule chemical compounds with recombinant STING protein to identify functional STING modulators. Intriguingly, the cyclin-dependent protein kinase (CDK) inhibitor Palbociclib was found to directly bind STING and inhibit its activation in both mouse and human cells. Mechanistically, Palbociclib targets Y167 of STING to block its dimerization, its binding with cyclic dinucleotides, and its trafficking. Importantly, Palbociclib alleviates autoimmune disease features induced by dextran sulphate sodium or genetic ablation of three prime repair exonuclease 1 (Trex1) in mice in a STING-dependent manner. Our work identifies Palbociclib as a novel pharmacological inhibitor of STING that abrogates its homodimerization and provides a basis for the fast repurposing of this Food and Drug Administration-approved drug for the therapy of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiani Gao
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mengge Zheng
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xiangyang Wu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Hang Zhang
- Department of Optical Science and EngineeringShanghai Engineering Research Center of Ultra‐Precision Optical ManufacturingKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Fudan UniversityShanghaiChina
| | - Hang Su
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yifang Dang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mingtong Ma
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fei Wang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Junfang Xu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Li Chen
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Tianhao Liu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Jianxia Chen
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fan Zhang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Li Yang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Qinghua Xu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xuefei Hu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Heyong Wang
- Central LaboratoryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yiyan Fei
- Department of Optical Science and EngineeringShanghai Engineering Research Center of Ultra‐Precision Optical ManufacturingKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Fudan UniversityShanghaiChina
| | - Chang Chen
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Haipeng Liu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Central LaboratoryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Institute of Nuclear MedicineTongji University School of MedicineShanghaiChina
| |
Collapse
|
70
|
Hong Z, Mei J, Guo H, Zhu J, Wang C. Intervention of cGAS‒STING signaling in sterile inflammatory diseases. J Mol Cell Biol 2022; 14:mjac005. [PMID: 35084490 PMCID: PMC9122663 DOI: 10.1093/jmcb/mjac005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Sterile inflammation characterized by unresolved chronic inflammation is well established to promote the progression of multiple autoimmune diseases, metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, collectively termed 'sterile inflammatory diseases'. By recognizing host-derived DNA, cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activates endoplasmic reticulum-associated stimulator of interferon genes (STING), which leads to the induction of type I interferons and inflammatory cytokines or immunogenic cell death that promotes sterile inflammation. Additionally, the DNA/cGAS-independent mode of STING activation has also been characterized in the progression of several sterile inflammatory diseases. This review focuses on the molecular mechanism of cGAS-dependent and cGAS-independent STING signaling under various disease conditions, particularly highlighting the diverse initiators upon this signaling pathway. We also summarize recent advances in the discovery of antagonists targeting cGAS and STING and the evaluation of their efficiencies in preclinical models. Finally, we discuss potential differences in the clinical applications of the specific antagonists, which may shed light on the precision therapeutic interventions.
Collapse
Affiliation(s)
- Ze Hong
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahao Mei
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Hanli Guo
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
71
|
Zhu H, Zhang R, Yi L, Tang YD, Zheng C. UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation. J Med Virol 2022; 94:4490-4501. [PMID: 35577759 DOI: 10.1002/jmv.27860] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/07/2022]
Abstract
STING (stimulator of interferon genes) is a pivotal innate immune adaptor, and its functions during DNA virus infections have been extensively documented. However, its homeostatic regulation is not well understood. Our study demonstrates that UNC93B1 is a crucial checker for STING to prevent hyperactivation. Ectopic expression of UNC93B1 attenuates IFN-β promoter activity and the transcriptions of IFN-β, ISG54, and ISG56 genes. Moreover, UNC93B1 also blocks the IRF3 nuclear translocation induced by ectopic expression of both cGAS and STING and reduces the stability of STING by facilitating its autophagy-lysosome degradation, which can be reversed by lysosome inhibitors. Mechanistically, UNC93B1 interacts with STING and suppresses STING-activated downstream signaling by delivering STING to the lysosomes for degradation depending on its trafficking capability. UNC93B1 knockout (KO) in human embryonic kidney 293T (HEK293T) cells facilitates IFN-β promoter activity, IFN-β, ISG54, and ISG56 transcriptions IRF3 nuclear translocation induced by ectopic expression of cGAS and STING. Infected with herpes simplex virus-1 (HSV-1), UNC93B1 knockdown BJ cells or primary peritoneal macrophages from Unc93b1-deficient (Unc93b1-/- ) mice show enhanced IFN-β, ISG54, and ISG56 transcriptions, TBK1 phosphorylation, and reduced STING degradation and viral replication. In addition, Unc93b1-/- mice exhibit higher IFN-β, ISG54, and ISG56 transcriptions and lower mortality upon HSV-1 infection in vivo. Collectively, these findings demonstrate that UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation and provide novel insights into the function of UNC93B1 in antiviral innate immunity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongzhao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
72
|
Abstract
Inflammation plays indispensable roles in building the immune responses such as acquired immunity against harmful pathogens. Furthermore, it is essential for maintaining biological homeostasis in ever-changing conditions. Pattern-recognition receptors (PRRs) reside in cell membranes, endosomes or cytoplasm, and function as triggers for inflammatory responses. Binding of pathogen- or self-derived components, such as DNA, to PRRs activates downstream signaling cascades, resulting in the production of a series of pro-inflammatory cytokines and type I interferons (IFNs). While these series of responses are essential for host defense, the unexpected release of DNA from the nucleus or mitochondria of host cells can lead to autoimmune and autoinflammatory diseases. In this review, we focus on DNA-sensing mechanisms via PRRs and the disorders and extraordinary conditions caused by self-derived DNA.
Collapse
Affiliation(s)
- Daisuke Ori
- Division of Biological Science, Graduate School of Science and Technology, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Division of Biological Science, Graduate School of Science and Technology, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
73
|
Steiner A, Hrovat-Schaale K, Prigione I, Yu CH, Laohamonthonkul P, Harapas CR, Low RRJ, De Nardo D, Dagley LF, Mlodzianoski MJ, Rogers KL, Zillinger T, Hartmann G, Gantier MP, Gattorno M, Geyer M, Volpi S, Davidson S, Masters SL. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat Commun 2022; 13:2321. [PMID: 35484149 PMCID: PMC9051092 DOI: 10.1038/s41467-022-29946-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coatomer complex I (COPI) mediates retrograde vesicular trafficking from Golgi to the endoplasmic reticulum (ER) and within Golgi compartments. Deficiency in subunit alpha causes COPA syndrome and is associated with type I IFN signalling, although the upstream innate immune sensor involved was unknown. Using in vitro models we find aberrant activation of the STING pathway due to deficient retrograde but probably not intra-Golgi transport. Further we find the upstream cytosolic DNA sensor cGAS as essentially required to drive type I IFN signalling. Genetic deletion of COPI subunits COPG1 or COPD similarly induces type I IFN activation in vitro, which suggests that inflammatory diseases associated with mutations in other COPI subunit genes may exist. Finally, we demonstrate that inflammation in COPA syndrome patient peripheral blood mononuclear cells and COPI-deficient cell lines is ameliorated by treatment with the small molecule STING inhibitor H-151, suggesting targeted inhibition of the cGAS/STING pathway as a promising therapeutic approach.
Collapse
Affiliation(s)
- Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Institute of Structural Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ignazia Prigione
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ronnie Ren Jie Low
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3168, Australia
| | - Laura F Dagley
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Technology and Biology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michael J Mlodzianoski
- Center for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Kelly L Rogers
- Center for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Immunology, Philipps-University Marburg, BMFZ, 35043, Marburg, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 53127, Bonn, Germany
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Marco Gattorno
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefano Volpi
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- University of Genoa, 16126, Genoa, Italy
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
74
|
Qian N, Li S, Tan X. The curious case of TMEM120A: Mechanosensor, fat regulator, or antiviral defender? Bioessays 2022; 44:e2200045. [PMID: 35419854 DOI: 10.1002/bies.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022]
Abstract
Mechanical pain sensing, adipogenesis, and STING-dependent innate immunity seem three distinct biological processes without substantial relationships. Intriguingly, TMEM120A, a transmembrane protein, has been shown to detect mechanical pain stimuli as a mechanosensitive channel, contribute to adipocyte differentiation/function by regulating genome organization and promote STING trafficking to active cellular innate immune response. However, the role of TMEM120A as a mechanosensitive channel was challenged by recent studies which cannot reproduce data supporting its role in mechanosensing. Furthermore, the molecular mechanism by which TMEM120A contributes to adipocyte differentiation/function and promotes STING trafficking remains elusive. In this review, we discuss these multiple proposed functions of TMEM120A and hypothesize the molecular mechanism underlying TMEM120A's role in fatty acid metabolism and STING signaling.
Collapse
Affiliation(s)
- Nianchao Qian
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Shuo Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
75
|
Kong C, Ni X, Wang Y, Zhang A, Zhang Y, Lin F, Li S, Lv Y, Zhu J, Yao X, Dai Q, Mo Y, Wang J. ICA69 aggravates ferroptosis causing septic cardiac dysfunction via STING trafficking. Cell Death Dis 2022; 8:187. [PMID: 35397620 PMCID: PMC8994779 DOI: 10.1038/s41420-022-00957-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/03/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022]
Abstract
Previous studies have demonstrated that cardiomyocyte apoptosis, ferroptosis, and inflammation participate in the progress of sepsis-induced cardiomyopathy (SIC). Although Islet cell autoantigen 69 (ICA69) is an imperative molecule that could regulate inflammation and immune response in numerous illnesses, its function in cardiovascular disease, particularly in SIC, is still elusive. We confirmed that LPS significantly enhanced the expression of ICA69 in wild-type (WT) mice, macrophages, and cardiomyocytes. The knockout of ICA69 in lipopolysaccharide(LPS)-induced mice markedly elevated survival ratio and heart function, while inhibiting cardiac muscle and serum inflammatory cytokines, reactive oxygen (ROS), and ferroptosis biomarkers. Mechanistically, increased expression of ICA69 triggered the production of STING, which further resulted in the production of intracellular lipid peroxidation, eventually triggering ferroptosis and heart injury. Intriguingly, ICA69 deficiency only reversed the ferroptotic marker levels, such as prostaglandin endoperoxide synthase 2 (PTGS2), malonaldehyde (MDA), 4-hydroxynonenal (4HNE), glutathione peroxidase 4 (GPX4), superoxide dismutase (SOD), iron and lipid ROS, but had no effects on the xCT-dependent manner. Additionally, greater ICA69 level was identified in septic patients peripheralblood mononuclear cells (PBMCs) than in normal control groups. Generally, we unveil that ICA69 deficiency can relieve inflammation and ferroptosis in LPS-induced murine hearts and macrophages, making targeting ICA69 in heart a potentially promising treatment method for SIC.
Collapse
|
76
|
Lei C, Tan Y, Ni D, Peng J, Yi G. cGAS-STING signaling in ischemic diseases. Clin Chim Acta 2022; 531:177-182. [DOI: 10.1016/j.cca.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|
77
|
Jeon MJ, Lee H, Lee J, Baek SY, Lee D, Jo S, Lee JY, Kang M, Jung HR, Han SB, Kim NJ, Lee S, Kim H. Development of Potent Immune Modulators Targeting Stimulator of Interferon Genes Receptor. J Med Chem 2022; 65:5407-5432. [PMID: 35315650 DOI: 10.1021/acs.jmedchem.1c01795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum-membrane protein that plays important roles in cancer immunotherapy by activating innate immune responses. We designed and synthesized STING modulators and characterized compounds 4a and 4c that share a crucial amidobenzimidazole moiety. In vitro STING binding and cell-based activity assays demonstrated the potency and efficacy of the compounds that function as direct STING agonists by stimulating STING downstream signaling and promoting type I interferon immune responses. In vitro metabolic studies and the pharmacokinetic properties of the compounds led us to investigate their anticancer activity in an in vivo syngeneic model. Intravenous injection of compounds 4a and 4c significantly decreased tumor volume in a CT26 murine colorectal carcinoma model, and the immunological memory-derived cancer inhibition was observed in 4c-treated mouse models. The present results suggest the therapeutic potential of the compounds for cancer immunotherapy via STING-mediated immune activation.
Collapse
Affiliation(s)
- Min Jae Jeon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyelim Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeehee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department for HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Soo Yeon Baek
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Donghee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seongman Jo
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joo-Youn Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Miso Kang
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Ra Jung
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Soo Bong Han
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Nam-Jung Kim
- Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sanghee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department for HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyejin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
78
|
Zhang R, Kang R, Tang D. STING1 in Different Organelles: Location Dictates Function. Front Immunol 2022; 13:842489. [PMID: 35371032 PMCID: PMC8969013 DOI: 10.3389/fimmu.2022.842489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 01/07/2023] Open
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1), also known as TMEM173, is an immune adaptor protein that governs signal crosstalk that is implicated in many physiological and pathological processes. Although it has been established that STING1 traffics from the endoplasmic reticulum (ER) to Golgi apparatus (Golgi) upon DNA-triggered activation, emerging evidence reveals that STING1 can be transported to different organelles, which dictate its immune-dependent (e.g., the production of type I interferons and pro-inflammatory cytokines) and -independent (e.g., the activation of autophagy and cell death) functions. In this brief review, we outline the roles of STING1 in different organelles (including the ER, ER-Golgi intermediate compartment, Golgi, mitochondria, endosomes, lysosomes, and nucleus) and discuss the potential relevance of these roles to diseases and pharmacological interventions.
Collapse
|
79
|
Guey B, Ablasser A. Emerging dimensions of cellular cGAS-STING signaling. Curr Opin Immunol 2022; 74:164-171. [DOI: 10.1016/j.coi.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
|
80
|
Li X, Yu Z, Fang Q, Yang M, Huang J, Li Z, Wang J, Chen T. The transmembrane endoplasmic reticulum-associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA-triggered inflammatory response. SCIENCE ADVANCES 2022; 8:eabh0496. [PMID: 35080984 PMCID: PMC8791621 DOI: 10.1126/sciadv.abh0496] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The endoplasmic reticulum (ER)-localized stimulator of interferon genes (STING) is the core adaptor for the pathogenic-DNA-triggered innate response. Aberrant activation of STING causes autoinflammatory and autoimmune diseases, raising the concern about how STING is finely tuned during innate response to pathogenic DNAs. Here, we report that the transmembrane domain (TM)-containing ER-localized E3 ubiquitin ligase TRIM13 (tripartite motif containing 13) is required for restraining inflammatory response to pathogenic DNAs. TRIM13 deficiency enhances pathogenic-DNA-triggered inflammatory cytokine production, inhibits DNA virus replication, and causes age-related autoinflammation. Mechanistically, TRIM13 interacts with STING via the TM and catalyzes Lys6-linked polyubiquitination of STING, leading to decelerated ER exit and accelerated ER-initiated degradation of STING. STING deficiency reverses the enhanced innate anti-DNA virus response in TRIM13 knockout mice. Our study delineates a potential strategy for controlling the homeostasis of STING by transmembrane ER-associated TRIM13 during the pathogenic-DNA-triggered inflammatory response.
Collapse
Affiliation(s)
- Xuelian Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Zhou Yu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Qian Fang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Mingjin Yang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Jiaying Huang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zheng Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Immunology, Bone Marrow Transplantation Centre of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Haematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China
- Corresponding author. (J.W.); (T.C.)
| | - Taoyong Chen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- Corresponding author. (J.W.); (T.C.)
| |
Collapse
|
81
|
Li S, Qian N, Jiang C, Zu W, Liang A, Li M, Elledge SJ, Tan X. Gain-of-function genetic screening identifies the antiviral function of TMEM120A via STING activation. Nat Commun 2022; 13:105. [PMID: 35013224 PMCID: PMC8748537 DOI: 10.1038/s41467-021-27670-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/01/2021] [Indexed: 02/08/2023] Open
Abstract
Zika virus (ZIKV) infection can be associated with neurological pathologies, such as microcephaly in newborns and Guillain-Barre syndrome in adults. Effective therapeutics are currently not available. As such, a comprehensive understanding of virus-host interactions may guide the development of medications for ZIKV. Here we report a human genome-wide overexpression screen to identify host factors that regulate ZIKV infection and find TMEM120A as a ZIKV restriction factor. TMEM120A overexpression significantly inhibits ZIKV replication, while TMEM120A knockdown increases ZIKV infection in cell lines. Moreover, Tmem120a knockout in mice facilitates ZIKV infection in primary mouse embryonic fibroblasts (MEF) cells. Mechanistically, the antiviral activity of TMEM120A is dependent on STING, as TMEM120A interacts with STING, promotes the translocation of STING from the endoplasmic reticulum (ER) to ER-Golgi intermediate compartment (ERGIC) and enhances the phosphorylation of downstream TBK1 and IRF3, resulting in the expression of multiple antiviral cytokines and interferon-stimulated genes. In summary, our gain-of-function screening identifies TMEM120A as a key activator of the antiviral signaling of STING. Understanding the interplay between host and viral factors during infection is essential for the interactome of infection. Here the authors perform a gain-of-function screen to identify factors involved during Zika virus infection and identify TMEM120A as a key factor in the STING mediated immune responses.
Collapse
Affiliation(s)
- Shuo Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Nianchao Qian
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Chao Jiang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Wenhong Zu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Anthony Liang
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02120, USA
| | - Mamie Li
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02120, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02120, USA
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
82
|
Duan A, Ma Z, Liu W, Shen K, Zhou H, Wang S, Kong R, Shao Y, Chen Y, Guo W, Liu F. 1,25-Dihydroxyvitamin D Inhibits Osteoarthritis by Modulating Interaction Between Vitamin D Receptor and NLRP3 in Macrophages. J Inflamm Res 2021; 14:6523-6542. [PMID: 34887675 PMCID: PMC8651053 DOI: 10.2147/jir.s339670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Background Osteoarthritis (OA) is the most prevalent chronic joint disease globally. Loss of extracellular matrix (ECM) by chondrocytes is a classic feature of OA. Inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), secreted mainly by macrophages, promote expression of matrix degrading proteins and further aggravate progression of OA. 1,25-dihydroxyvitamin D (1,25VD) modulates inflammation thus exerting protective effects on cartilage tissue. However, the underlying mechanisms of 1,25VD activity have not been fully elucidated. Methods The destabilization of the medial meniscus (DMM)-induced mice model of OA was established to investigate the protective effects of 1,25VD by micro-CT and Safranin-O and Fast Green staining. And the co-culture system between THP-1 cells and primary chondrocytes was constructed to explore the effects of vitamin D receptor (VDR) and 1,25VD on chondrogenic proliferation, apoptosis, and migration. The immunofluorescence staining and Western blot analysis were used to detect the expressions of ECM proteins and matrix degradation-associated proteases. Enzyme-linked immunosorbent assay (ELISA) was used to examine the expression levels of inflammatory cytokines. Results The findings of the study showed that 1,25VD prevented cartilage degeneration and osteophyte formation by inhibiting secretion of inflammatory cytokines in OA mice model. These protective effects were exerted through the vitamin D receptor (VDR). Further studies showed that 1,25VD increased ubiquitination level of NLRP3 by binding to VDR, resulting in decrease in IL-1β and IL-18 secretion. These findings indicate that 1,25VD binds to VDR thus preventing chondrogenic ECM degradation by modulating macrophage NLRP3 activation and secretion of inflammatory cytokines, thus alleviating OA progression. Conclusion Here, our study suggests that 1,25VD, targeting to VDR, prevents chondrogenic ECM degradation through regulating macrophage NLRP3 activation and inflammatory cytokines secretion, thereby alleviating OA. These findings provide information on a novel molecular mechanism for application of 1,25VD as OA therapy.
Collapse
Affiliation(s)
- Ao Duan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Wanshun Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shunbing Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Renyi Kong
- Department of Orthopedics, Xincheng Hospital of Traditional Chinese Medicine, Maanshan, 243131, Anhui, People's Republic of China
| | - Yuqi Shao
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Yunzi Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Wei Guo
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| |
Collapse
|
83
|
Wang Y, Luo W, Wang X, Ma Y, Huang L, Wang Y. MAMDC2, a gene highly expressed in microglia in experimental models of Alzheimers Disease, positively regulates the innate antiviral response during neurotropic virus infection. J Infect 2021; 84:187-204. [PMID: 34902449 DOI: 10.1016/j.jinf.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Microglia, as central nervous system (CNS)-resident macrophages, are the first line of defense against neurotropic virus infection, the immune response of which is implicated in numerous CNS diseases, including Alzheimer's disease (AD). Indeed, the infectious hypothesis for AD has long been recognized, of note herpes simplex virus type 1 (HSV-1), the most common human neurotropic virus. However, the mechanism linking HSV-1 and AD remains obscure. In this study, we analyzed the transcriptome data of microglia in AD mice. We found that MAM domain containing 2 (MAMDC2) is significantly upregulated in microglia isolated from both a series of AD mice established by numerous genetic strategies and mice with HSV-1 infection. Mamdc2-deficient (Mamdc2-/-) mice are susceptible to HSV-1 infection and show an impaired type I interferon (I-IFN)-based innate antiviral response upon neurotropic HSV-1 infection. The in vitro experiments suggest a similar result. Moreover, lentivirus-mediated overexpression of Mamdc2 in mouse brains enhances the innate antiviral response in microglia and ameliorates herpes simplex encephalitis (HSE) symptoms. Mechanistically, MAMDC2 interacts with STING via its first MAM domain within and enhances the polymerization of STING, activating downstream TBK1-IRF3 signaling to facilitate the expression of I-IFNs. The sulfated glycosaminoglycan-mediated polymerization of STING also largely depends on MAMDC2. Our study uncovers the function of MAMDC2 in the innate antiviral response in microglia, revealing a potential mechanism linking HSV-1 and AD, especially the contribution of Mamdc2 overexpression to the upregulation of I-IFN in the AD brain.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China.
| | - Weisheng Luo
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China
| | - Xiaohui Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China
| | - Yuying Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, China.
| |
Collapse
|
84
|
Shang M, Lu K, Guan W, Cao S, Ren M, Zhou C. 2',3'-Cyclic GMP-AMP Dinucleotides for STING-Mediated Immune Modulation: Principles, Immunotherapeutic Potential, and Synthesis. ChemMedChem 2021; 17:e202100671. [PMID: 34807508 DOI: 10.1002/cmdc.202100671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The cGAS-STING pathway discovered ten years ago is an important component of the innate immune system. Activation of cGAS-STING triggers downstream signalling, such as TBK1-IRF3, NF-κB and autophagy, which in turn leads to antipathogen responses, durable antitumour immunity or autoimmune diseases. 2',3'-Cyclic GMP-AMP dinucleotides (2',3'-cGAMP), the key second messengers produced by cGAS, play a pivotal role in cGAS-STING signalling by binding and activating STING. Thus, 2',3'-cGAMP has immunotherapeutic potential, which in turn has stimulated research on the design and synthesis of 2',3'-cGAMP analogues for clinical applications over the past ten years. This review presents the discovery, metabolism, and function of 2',3'-cGAMP in the cGAS-STING innate immune signalling axis. The enzymatic and chemical syntheses of 2',3'-cGAMP analogues as STING-targeting therapeutics are also summarized.
Collapse
Affiliation(s)
- Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shujie Cao
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
85
|
Ji W, Zhang L, Xu X, Liu X. ALG2 regulates type I interferon responses by inhibiting STING trafficking. J Cell Sci 2021; 134:273719. [PMID: 34787301 DOI: 10.1242/jcs.259060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Stimulator of IFN genes (STING), an endoplasmic reticulum (ER) signaling adaptor, is essential for the type I interferon response to cytosolic dsDNA. The translocation from the ER to perinuclear vesicles following binding cGAMP is a critical step for STING to activate downstream signaling molecules, which lead to the production of interferon and pro-inflammatory cytokines. Here we found that apoptosis-linked gene 2 (ALG2) suppressed STING signaling induced by either HSV-1 infection or cGAMP presence. Knockout of ALG2 markedly facilitated the expression of type I interferons upon cGAMP treatment or HSV-1 infection in THP-1 monocytes. Mechanistically, ALG2 associated with the C-terminal tail (CTT) of STING and inhibited its trafficking from ER to perinuclear region. Furthermore, the ability of ALG2 to coordinate calcium was crucial for its regulation of STING trafficking and DNA-induced innate immune responses. This work suggests that ALG2 is involved in DNA-induced innate immune responses by regulating STING trafficking.
Collapse
Affiliation(s)
- Wangsheng Ji
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Lianfei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyu Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
86
|
Li F, Wang N, Zheng Y, Luo Y, Zhang Y. cGAS- Stimulator of Interferon Genes Signaling in Central Nervous System Disorders. Aging Dis 2021; 12:1658-1674. [PMID: 34631213 PMCID: PMC8460300 DOI: 10.14336/ad.2021.0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cytosolic nucleic acid sensors contribute to the initiation of innate immune responses by playing a critical role in the detection of pathogens and endogenous nucleic acids. The cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS) and its downstream effector, stimulator of interferon genes (STING), mediate innate immune signaling by promoting the release of type I interferons (IFNs) and other inflammatory cytokines. These biomolecules are suggested to play critical roles in host defense, senescence, and tumor immunity. Recent studies have demonstrated that cGAS-STING signaling is strongly implicated in the pathogenesis of central nervous system (CNS) diseases which are underscored by neuroinflammatory-driven disease progression. Understanding and regulating the interactions between cGAS-STING signaling and the nervous system may thus provide an effective approach to prevent or delay late-onset CNS disorders. Here, we present a review of recent advances in the literature on cGAS-STING signaling and provide a comprehensive overview of the modulatory patterns of the cGAS-STING pathway in CNS disorders.
Collapse
Affiliation(s)
- Fengjuan Li
- 1Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ningqun Wang
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yangmin Zheng
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yongbo Zhang
- 1Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
87
|
Han L, Zhuang M, Deng J, Zheng Y, Zhang J, Nan M, Zhang X, Gao C, Wang P. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways. J Med Virol 2021; 93:5376-5389. [PMID: 33913550 PMCID: PMC8242602 DOI: 10.1002/jmv.27050] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to the pathogenesis of coronavirus disease 2019 (COVID-19). The strategy used by SARS-CoV-2 to evade antiviral immunity needs further investigation. Here, we reported that SARS-CoV-2 ORF9b inhibited types I and III IFN production by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of types I and III IFNs by Sendai virus and poly (I:C). SARS-CoV-2 ORF9b inhibited the activation of types I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKKε, rather than IRF3-5D, which is the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of types I and III IFNs by TRIF and STING, which are the adaptor protein of the endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of the cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. A mechanistic analysis revealed that the SARS-CoV-2 ORF9b protein interacted with RIG-I, MDA-5, MAVS, TRIF, STING, and TBK1 and impeded the phosphorylation and nuclear translocation of IRF3. In addition, SARS-CoV-2 ORF9b facilitated the replication of the vesicular stomatitis virus. Therefore, the results showed that SARS-CoV-2 ORF9b negatively regulates antiviral immunity and thus facilitates viral replication. This study contributes to our understanding of the molecular mechanism through which SARS-CoV-2 impairs antiviral immunity and provides an essential clue to the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Lulu Han
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Meng‐Wei Zhuang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Jian Deng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Jing Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Mei‐Ling Nan
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Xue‐Jing Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Pei‐Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Suzhou Research InstituteShandong UniversitySuzhouJiangsuChina
| |
Collapse
|
88
|
Zhang R, Kang R, Tang D. The STING1 network regulates autophagy and cell death. Signal Transduct Target Ther 2021; 6:208. [PMID: 34078874 PMCID: PMC8172903 DOI: 10.1038/s41392-021-00613-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/18/2023] Open
Abstract
Cell death and immune response are at the core of life. In past decades, the endoplasmic reticulum (ER) protein STING1 (also known as STING or TMEM173) was found to play a fundamental role in the production of type I interferons (IFNs) and pro-inflammatory cytokines in response to DNA derived from invading microbial pathogens or damaged hosts by activating multiple transcription factors. In addition to this well-known function in infection, inflammation, and immunity, emerging evidence suggests that the STING1-dependent signaling network is implicated in health and disease by regulating autophagic degradation or various cell death modalities (e.g., apoptosis, necroptosis, pyroptosis, ferroptosis, mitotic cell death, and immunogenic cell death [ICD]). Here, we outline the latest advances in our understanding of the regulating mechanisms and signaling pathways of STING1 in autophagy and cell death, which may shed light on new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
89
|
Amadio R, Piperno GM, Benvenuti F. Self-DNA Sensing by cGAS-STING and TLR9 in Autoimmunity: Is the Cytoskeleton in Control? Front Immunol 2021; 12:657344. [PMID: 34084165 PMCID: PMC8167430 DOI: 10.3389/fimmu.2021.657344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Modified or misplaced DNA can be recognized as a danger signal by mammalian cells. Activation of cellular responses to DNA has evolved as a defense mechanism to microbial infections, cellular stress, and tissue damage, yet failure to control this mechanism can lead to autoimmune diseases. Several monogenic and multifactorial autoimmune diseases have been associated with type-I interferons and interferon-stimulated genes (ISGs) induced by deregulated recognition of self-DNA. Hence, understanding how cellular mechanism controls the pathogenic responses to self-nucleic acid has important clinical implications. Fine-tuned membrane trafficking and cellular compartmentalization are two major factors that balance activation of DNA sensors and availability of self-DNA ligands. Intracellular transport and organelle architecture are in turn regulated by cytoskeletal dynamics, yet the precise impact of actin remodeling on DNA sensing remains elusive. This review proposes a critical analysis of the established and hypothetical connections between self-DNA recognition and actin dynamics. As a paradigm of this concept, we discuss recent evidence of deregulated self-DNA sensing in the prototypical actin-related primary immune deficiency (Wiskott-Aldrich syndrome). We anticipate a broader impact of actin-dependent processes on tolerance to self-DNA in autoimmune disorders.
Collapse
Affiliation(s)
- Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
90
|
Taguchi T, Mukai K, Takaya E, Shindo R. STING Operation at the ER/Golgi Interface. Front Immunol 2021; 12:646304. [PMID: 34012437 PMCID: PMC8126659 DOI: 10.3389/fimmu.2021.646304] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
DNA is present in the nucleus and mitochondria of eukaryotic cells. There are, however, certain instances in which DNA emerges in the cytosol. The two major sources of cytosolic DNA are self DNA that is leaked out from the nucleus or mitochondria, and non-self DNA from DNA viruses. The cytosolic DNA triggers the host immune response. Recent studies have identified two key molecules, cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) in this immune response. STING is an endoplasmic reticulum (ER) protein. After STING binding to cGAMP, STING exits the ER and translocates to the Golgi, where STING triggers the type I interferon- and proinflammatory responses through the activation of interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB). STING also activates other cellular responses including cell senescence, autophagy, and cell death. In this review, we focus on emerging issues regarding the regulation of STING by membrane traffic, with a particular focus on the retrograde membrane traffic from the Golgi to the ER. The retrograde membrane traffic is recently shown by us and others to be critical for silencing the STING signaling pathway and the defect in this traffic underlies the pathogenesis of the COPA syndrome, a monogenic autoinflammatory disease caused by missense mutations of coatomer protein complex subunit α (COP-α).
Collapse
Affiliation(s)
- Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Eiko Takaya
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ruri Shindo
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
91
|
Prabakaran T, Troldborg A, Kumpunya S, Alee I, Marinković E, Windross SJ, Nandakumar R, Narita R, Zhang BC, Carstensen M, Vejvisithsakul P, Marqvorsen MHS, Iversen MB, Holm CK, Østergaard LJ, Pedersen FS, Pisitkun T, Behrendt R, Pisitkun P, Paludan SR. A STING antagonist modulating the interaction with STIM1 blocks ER-to-Golgi trafficking and inhibits lupus pathology. EBioMedicine 2021; 66:103314. [PMID: 33813142 PMCID: PMC8047499 DOI: 10.1016/j.ebiom.2021.103314] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nucleic acids are potent stimulators of type I interferon (IFN-I) and antiviral defense, but may also promote pathological inflammation. A range of diseases are characterized by elevated IFN-I, including systemic lupus erythematosus (lupus). The DNA-activated cGAS-STING pathway is a major IFN-I-inducing pathway, and activation of signaling is dependent on trafficking of STING from the ER to the Golgi. METHODS Here we used cell culture systems, a mouse lupus model, and material from lupus patients, to explore the mode of action of a STING antagonistic peptide, and its ability to modulate disease processes. FINDINGS We report that the peptide ISD017 selectively inhibits all known down-stream activities of STING, including IFN-I, inflammatory cytokines, autophagy, and apoptosis. ISD017 blocks the essential trafficking of STING from the ER to Golgi through a mechanism dependent on the STING ER retention factor STIM1. Importantly, ISD017 blocks STING activity in vivo and ameliorates disease development in a mouse model for lupus. Finally, ISD017 treatment blocks pathological cytokine responses in cells from lupus patients with elevated IFN-I levels. INTERPRETATION These data hold promise for beneficial use of STING-targeting therapy in lupus. FUNDING The Novo Nordisk Foundation, The European Research Council, The Lundbeck Foundation, European Union under the Horizon 2020 Research, Deutsche Forschungsgemeinschaft, Chulalongkorn University.
Collapse
Affiliation(s)
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus DK-8000, Denmark; Department of Rheumatology, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Sarinya Kumpunya
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Inter-Department Program of Biomedical Sciences, Faculty of Graduate, Chulalongkorn University, Bangkok, Thailand
| | - Isara Alee
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Inter-Department Program of Biomedical Sciences, Faculty of Graduate, Chulalongkorn University, Bangkok, Thailand
| | - Emilija Marinković
- Institute for Immunology, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Samuel J Windross
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Ramya Nandakumar
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Mikkel Carstensen
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Pichpisith Vejvisithsakul
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark; Section for Translational Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Lars J Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus DK-8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Prapaporn Pisitkun
- Section for Translational Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.
| |
Collapse
|
92
|
Abstract
Two studies published in this issue of JEM, by Lepelley et al. (https://doi.org/10.1084/jem.20200600) and Deng et al. (https://doi.org/10.1084/jem.20201045), and two additional manuscripts by Mukai et al. (https://doi.org/10.1101/2020.05.20.107664 Preprint v1) and Steiner et al. (https://doi.org/10.1101/2020.07.09.194399 Preprint v1) demonstrate that COPA syndrome-associated high interferon titers are linked to mutations in COPA preventing STING's retrieval from the Golgi back to the ER and thereby causing chronic immune activation.
Collapse
Affiliation(s)
- Sophie Rivara
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| |
Collapse
|
93
|
Zou SS, Qiao Y, Zhu S, Gao B, Yang N, Liu YJ, Chen J. Intrinsic strategies for the evasion of cGAS-STING signaling-mediated immune surveillance in human cancer: How therapy can overcome them. Pharmacol Res 2021; 166:105514. [PMID: 33631336 DOI: 10.1016/j.phrs.2021.105514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes cytosolic DNA and catalyzes the formation of cyclic GMP-AMP, which upon activation triggers the induction of stimulator of interferon genes (STING), leading to type I interferons production; these events then promote the cross-priming of dendritic cells and the initiation of a tumor-specific CD8+ T cell response. However, cancer cells in the tumor microenvironment cannot trigger intrinsic cGAS-STING signaling, regardless of the expression of cGAS and STING. This dysfunctional cGAS-STING signaling enables cancer cells to evade immune surveillance, thereby promoting tumorigenesis. Here, we review recent advances in the current understanding of the activation of cGAS-STING signaling and immunotherapies based on this pathway and focus on the mechanisms for the inactivation of this pathway in tumor cells to promote the development of cancer immunotherapy. The discovery of inherent resistance and the selection of appropriate combination therapies are of great significance for tumor treatment development.
Collapse
Affiliation(s)
- Shan-Shan Zou
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yuan Qiao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Bao Gao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
94
|
Okude H, Ori D, Kawai T. Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Front Immunol 2021; 11:625833. [PMID: 33633744 PMCID: PMC7902034 DOI: 10.3389/fimmu.2020.625833] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by pattern-recognition receptors (PRRs) is essential for eliciting antiviral immune responses by inducing the production of type I interferons (IFNs) and proinflammatory cytokines. Such responses are a prerequisite for mounting innate and pathogen-specific adaptive immune responses. However, host cells also use nucleic acids as carriers of genetic information, and the aberrant recognition of self-nucleic acids by PRRs is associated with the onset of autoimmune or autoinflammatory diseases. In this review, we describe the mechanisms of nucleic acid sensing by PRRs, including Toll-like receptors, RIG-I-like receptors, and DNA sensor molecules, and their signaling pathways as well as the disorders caused by uncontrolled or unnecessary activation of these PRRs.
Collapse
Affiliation(s)
- Haruna Okude
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
95
|
Vashi N, Bakhoum SF. The Evolution of STING Signaling and Its Involvement in Cancer. Trends Biochem Sci 2021; 46:446-460. [PMID: 33461879 DOI: 10.1016/j.tibs.2020.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been primarily characterized as an inflammatory mechanism in higher eukaryotes in response to cytosolic double-stranded DNA (dsDNA). Since its initial discovery, detailed mechanisms delineating the dynamic subcellular localization of its different components and downstream signaling have been uncovered, leading to attempts to harness its proinflammatory properties for therapeutic benefit in cancer. Emerging evidence, however, indicates that a crucial primordial function of STING is to promote autophagy, and that downstream interferon (IFN) signaling emerged recently in its evolutionary history. Furthermore, studies suggest that this pathway is a crucial regulator of cellular metabolism that potentially couples inflammation to nutrient availability. We focus on the evolutionarily conserved functions of STING, and we discuss how a broader understanding of this pathway can help us to better appreciate its potential role in cancer and harness it for therapeutic benefit.
Collapse
Affiliation(s)
- Nimi Vashi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
96
|
Abstract
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
Collapse
|
97
|
Balka KR, De Nardo D. Molecular and spatial mechanisms governing STING signalling. FEBS J 2020; 288:5504-5529. [PMID: 33237620 DOI: 10.1111/febs.15640] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Detection of microbial nucleic acids via innate immune receptors is critical for establishing host defence against pathogens. The DNA-sensing cGAS-STING pathway has gained increasing attention in the last decade as a key pathway for combating viral and bacterial infections. cGAS-STING activation primarily promotes the secretion of antiviral type I IFNs via the key transcription factor, IRF3. In addition, cGAS-STING signalling also elicits proinflammatory cytokines through NF-κB activity. Activation of IRF3 and NF-κB is mediated by the chief signalling receptor protein STING. Interestingly, STING undergoes significant trafficking events across multiple subcellular locations, which regulates both the activation of downstream signalling pathways, as well as appropriate termination of the responses. Studies to date have provided a comprehensive view of the regulation and role of the IRF3-IFN pathway downstream of STING. However, many aspects of STING signalling remain relatively poorly defined. This review will explore the current understanding of the mechanisms through which STING elicits inflammatory and antimicrobial responses, focusing on the precise signalling and intracellular trafficking events that occur. We will also discuss exciting and emerging concepts in the field, including the importance of IFN-independent STING responses for host defence and during STING-related disease.
Collapse
Affiliation(s)
- Katherine R Balka
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
98
|
Abstract
Two studies published in this issue of JEM, by Lepelley et al. (https://doi.org/10.1084/jem.20200600) and Deng et al. (https://doi.org/10.1084/jem.20201045), and two additional manuscripts by Mukai et al. (https://doi.org/10.1101/2020.05.20.107664 Preprint v1) and Steiner et al. (https://doi.org/10.1101/2020.07.09.194399 Preprint v1) demonstrate that COPA syndrome-associated high interferon titers are linked to mutations in COPA preventing STING's retrieval from the Golgi back to the ER and thereby causing chronic immune activation.
Collapse
Affiliation(s)
- Sophie Rivara
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| |
Collapse
|
99
|
Abstract
Two studies published in this issue of JEM, by Lepelley et al. (https://doi.org/10.1084/jem.20200600) and Deng et al. (https://doi.org/10.1084/jem.20201045), and two additional manuscripts by Mukai et al. (https://doi.org/10.1101/2020.05.20.107664 Preprint v1) and Steiner et al. (https://doi.org/10.1101/2020.07.09.194399 Preprint v1) demonstrate that COPA syndrome-associated high interferon titers are linked to mutations in COPA preventing STING's retrieval from the Golgi back to the ER and thereby causing chronic immune activation.
Collapse
Affiliation(s)
- Sophie Rivara
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| |
Collapse
|