51
|
Structural basis for proton coupled cystine transport by cystinosin. Nat Commun 2022; 13:4845. [PMID: 35977944 PMCID: PMC9385667 DOI: 10.1038/s41467-022-32589-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Amino acid transporters play a key role controlling the flow of nutrients across the lysosomal membrane and regulating metabolism in the cell. Mutations in the gene encoding the transporter cystinosin result in cystinosis, an autosomal recessive metabolic disorder characterised by the accumulation of cystine crystals in the lysosome. Cystinosin is a member of the PQ-loop family of solute carrier (SLC) transporters and uses the proton gradient to drive cystine export into the cytoplasm. However, the molecular basis for cystinosin function remains elusive, hampering efforts to develop novel treatments for cystinosis and understand the mechanisms of ion driven transport in the PQ-loop family. To address these questions, we present the crystal structures of cystinosin from Arabidopsis thaliana in both apo and cystine bound states. Using a combination of in vitro and in vivo based assays, we establish a mechanism for cystine recognition and proton coupled transport. Mutational mapping and functional characterisation of human cystinosin further provide a framework for understanding the molecular impact of disease-causing mutations. Mutations in CTNS, the lysosomal cystine-proton symporter, cause cystinosis. Here authors report crystal structures of CTNS from Arabidopsis thaliana in complex with cystine, and establish the mode of ligand recognition and mechanism for proton-coupled cystine export from the lysosome.
Collapse
|
52
|
Yang Z, Xia J, Hong J, Zhang C, Wei H, Ying W, Sun C, Sun L, Mao Y, Gao Y, Tan S, Friml J, Li D, Liu X, Sun L. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature 2022; 609:611-615. [PMID: 35917925 PMCID: PMC9477737 DOI: 10.1038/s41586-022-05143-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Polar auxin transport is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters exhibit highly asymmetrical localizations at the plasma membrane and drive polar auxin transport3,4; however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of Arabidopsis thaliana PIN1: the apo state, bound to the natural auxin indole-3-acetic acid (IAA), and in complex with the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of PIN1 shares a conserved NhaA fold5. In the substrate-bound structure, IAA is coordinated by both hydrophobic stacking and hydrogen bonding. NPA competes with IAA for the same site at the intracellular pocket, but with a much higher affinity. These findings inform our understanding of the substrate recognition and transport mechanisms of PINs and set up a framework for future research on directional auxin transport, one of the most crucial processes underlying plant development. Structures of the Arabidopsis thaliana auxin exporter PIN1 in the apo state, bound to the natural auxin or bound to an inhibitor provide insights into the polar auxin transport mechanisms mediated by PIN family transporters.
Collapse
Affiliation(s)
- Zhisen Yang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Xia
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing Hong
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chenxi Zhang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Wei
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Ying
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunqiao Sun
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianghanxiao Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanbo Mao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- Cryo-EM Center, Core Facility Center for Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shutang Tan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Linfeng Sun
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
53
|
Hu Y, Wang Y, Lin J, Wu S, Muyldermans S, Wang S. Versatile Application of Nanobodies for Food Allergen Detection and Allergy Immunotherapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8901-8912. [PMID: 35820160 DOI: 10.1021/acs.jafc.2c03324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unique characteristics of camelid heavy-chain only antibody (HCAb) derived nanobodies (Nbs) have facilitated their employment as tools for research and application in extensive fields including food safety inspection, diagnosis and therapy of diseases, etc., to develop immune detecting techniques or alternative candidates of conventional antibodies as diagnostic and therapeutic reagents. The wide application in the fields of food allergen inspection and immunotherapy has not been addressed as not much results published in the literature. The robust properties and straightforward selecting strategy of Nbs impel the advantageous employment compared with monoclonal antibodies (mAbs) to establish immunoassay and serve as blocking antibodies to compete immunoglobulin E (IgE) binding epitopes on food allergens. More and more efforts have been invested to develop specific Nbs against food allergen proteins, such as macadamia allergen of Mac i 1, peanut allergen of Ara h 3, and lupine allergen of Lup an 1, which demonstrated the potential of Nbs for research and application in food allergen surveillance. Meanwhile, the paratopes of Nbs preferably targeting the unique epitopes of food allergens can provide more possibilities to serve as blocking antibodies to shield IgE binding epitopes for food allergy immunotherapy. Regardless, the research and application of Nbs in the field of food allergen and allergic reactions are expected to attract dramatic focus and produce promising research outputs.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
54
|
Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies (Basel) 2022; 11:antib11030049. [PMID: 35892709 PMCID: PMC9326752 DOI: 10.3390/antib11030049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells are characterized by overexpressed tumor-associated antigens or mutated neoantigens, which are expressed on the cell surface or intracellularly. One strategy of cancer immunotherapy is to target cell-surface-expressed tumor-associated antigens (TAAs) with therapeutic antibodies. For targeting TAAs or neoantigens, adoptive T-cell therapies with activated autologous T cells from cancer patients transduced with novel recombinant TCRs or chimeric antigen receptors have been successfully applied. Many TAAs and most neoantigens are expressed in the cytoplasm or nucleus of tumor cells. As alternative to adoptive T-cell therapy, the mRNA of intracellular tumor antigens can be depleted by RNAi, the corresponding genes or proteins deleted by CRISPR-Cas or inactivated by kinase inhibitors or by intrabodies, respectively. Intrabodies are suitable to knockdown TAAs and neoantigens without off-target effects. RNA sequencing and proteome analysis of single tumor cells combined with computational methods is bringing forward the identification of new neoantigens for the selection of anti-cancer intrabodies, which can be easily performed using phage display antibody repertoires. For specifically delivering intrabodies into tumor cells, the usage of new capsid-modified adeno-associated viruses and lipid nanoparticles coupled with specific ligands to cell surface receptors can be used and might bring cancer intrabodies into the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
55
|
Moliner-Morro A, McInerney GM, Hanke L. Nanobodies in the limelight: Multifunctional tools in the fight against viruses. J Gen Virol 2022; 103. [PMID: 35579613 DOI: 10.1099/jgv.0.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist's molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
56
|
Sorgenfrei M, Hürlimann LM, Remy MM, Keller PM, Seeger MA. Biomolecules capturing live bacteria from clinical samples. Trends Biochem Sci 2022; 47:673-688. [PMID: 35487808 DOI: 10.1016/j.tibs.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Rapid phenotypic antimicrobial susceptibility testing (AST) requires the enrichment of live bacteria from patient samples, which is particularly challenging in the context of life-threatening bloodstream infections (BSIs) due to low bacterial titers. Over two decades, an extensive array of pathogen-specific biomolecules has been identified to capture live bacteria. The prevailing biomolecules are immune proteins of the complement system, antibodies, aptamers, phage proteins, and antimicrobial peptides. These biomolecules differ by their binder generation technologies and exhibit highly variable specificities, ranging from bacterial strains to most pathogenic bacteria. Here, we summarize how these diverse biomolecules were identified, list examples of successfully reported capture assays, and provide an outlook on the use of nanobodies raised against conserved surface-accessible proteins as promising biomolecules for pathogen capture.
Collapse
Affiliation(s)
- Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Mélissa M Remy
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
57
|
Walter JD, Scherer M, Hutter CAJ, Garaeva AA, Zimmermann I, Wyss M, Rheinberger J, Ruedin Y, Earp JC, Egloff P, Sorgenfrei M, Hürlimann LM, Gonda I, Meier G, Remm S, Thavarasah S, van Geest G, Bruggmann R, Zimmer G, Slotboom DJ, Paulino C, Plattet P, Seeger MA. Biparatopic sybodies neutralize SARS-CoV-2 variants of concern and mitigate drug resistance. EMBO Rep 2022; 23:e54199. [PMID: 35253970 PMCID: PMC8982573 DOI: 10.15252/embr.202154199] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
The ongoing COVID‐19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair, Sb#15 and Sb#68, that can bind simultaneously to the SARS‐CoV‐2 spike RBD and efficiently neutralize pseudotyped and live viruses by interfering with ACE2 interaction. Cryo‐EM confirms that Sb#15 and Sb#68 engage two spatially discrete epitopes, influencing rational design of bispecific and tri‐bispecific fusion constructs that exhibit up to 100‐ and 1,000‐fold increase in neutralization potency, respectively. Cryo‐EM of the sybody‐spike complex additionally reveals a novel up‐out RBD conformation. While resistant viruses emerge rapidly in the presence of single binders, no escape variants are observed in the presence of the bispecific sybody. The multivalent bispecific constructs further increase the neutralization potency against globally circulating SARS‐CoV‐2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the potential development of therapeutic strategies that mitigate the emergence of new SARS‐CoV‐2 escape mutants.
Collapse
Affiliation(s)
- Justin D Walter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Melanie Scherer
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Alisa A Garaeva
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Department of Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Linkster Therapeutics AG, Zurich, Switzerland
| | - Marianne Wyss
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jan Rheinberger
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Yelena Ruedin
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pascal Egloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Linkster Therapeutics AG, Zurich, Switzerland
| | - Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sille Remm
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sujani Thavarasah
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss, Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss, Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dirk J Slotboom
- Department of Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Cristina Paulino
- Department of Membrane Enzymology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Philippe Plattet
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
58
|
Botte M, Ni D, Schenck S, Zimmermann I, Chami M, Bocquet N, Egloff P, Bucher D, Trabuco M, Cheng RKY, Brunner JD, Seeger MA, Stahlberg H, Hennig M. Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation. Nat Commun 2022; 13:1826. [PMID: 35383177 PMCID: PMC8983717 DOI: 10.1038/s41467-022-29459-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharides are major constituents of the extracellular leaflet in the bacterial outer membrane and form an effective physical barrier for environmental threats and for antibiotics in Gram-negative bacteria. The last step of LPS insertion via the Lpt pathway is mediated by the LptD/E protein complex. Detailed insights into the architecture of LptDE transporter complexes have been derived from X-ray crystallography. However, no structure of a laterally open LptD transporter, a transient state that occurs during LPS release, is available to date. Here, we report a cryo-EM structure of a partially opened LptDE transporter in complex with rigid chaperones derived from nanobodies, at 3.4 Å resolution. In addition, a subset of particles allows to model a structure of a laterally fully opened LptDE complex. Our work offers insights into the mechanism of LPS insertion, provides a structural framework for the development of antibiotics targeting LptD and describes a highly rigid chaperone scaffold to enable structural biology of challenging protein targets.
Collapse
Affiliation(s)
- Mathieu Botte
- leadXpro AG, Park Innovaare, 5234, Villigen, Switzerland
| | - Dongchun Ni
- C-CINA, Biozentrum, University of Basel, Mattenstr. 24, 4058, Basel, Switzerland
| | - Stephan Schenck
- leadXpro AG, Park Innovaare, 5234, Villigen, Switzerland
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zürich, Gloriastasse 28/30, 8006, Zürich, Switzerland
- Linkster Therapeutics AG, 8006, Zürich, Switzerland
| | - Mohamed Chami
- C-CINA, Biozentrum, University of Basel, Mattenstr. 24, 4058, Basel, Switzerland
| | | | - Pascal Egloff
- Institute of Medical Microbiology, University of Zürich, Gloriastasse 28/30, 8006, Zürich, Switzerland
- Linkster Therapeutics AG, 8006, Zürich, Switzerland
| | - Denis Bucher
- leadXpro AG, Park Innovaare, 5234, Villigen, Switzerland
| | | | | | - Janine D Brunner
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- VIB-VUB Center for Structural Biology, VIB, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Gloriastasse 28/30, 8006, Zürich, Switzerland
| | - Henning Stahlberg
- C-CINA, Biozentrum, University of Basel, Mattenstr. 24, 4058, Basel, Switzerland
| | - Michael Hennig
- leadXpro AG, Park Innovaare, 5234, Villigen, Switzerland.
| |
Collapse
|
59
|
Moreno E, Valdés-Tresanco MS, Molina-Zapata A, Sánchez-Ramos O. Structure-based design and construction of a synthetic phage display nanobody library. BMC Res Notes 2022; 15:124. [PMID: 35351202 PMCID: PMC8966178 DOI: 10.1186/s13104-022-06001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To design and construct a new synthetic nanobody library using a structure-based approach that seeks to maintain high protein stability and increase the number of functional variants within the combinatorial space of mutations. RESULTS Synthetic nanobody (Nb) libraries are emerging as an attractive alternative to animal immunization for the selection of stable, high affinity Nbs. Two key features define a synthetic Nb library: framework selection and CDR design. We selected the universal VHH framework from the cAbBCII10 Nb. CDR1 and CDR2 were designed with the same fixed length as in cAbBCII10, while for CDR3 we chose a 14-long loop, which creates a convex binding site topology. Based on the analysis of the cAbBCII10 crystal structure, we carefully selected the positions to be randomized and tailored the codon usage at each position, keeping at particular places amino acids that guarantee stability, favoring properties like polarity at solvent-exposed positions and avoiding destabilizing amino acids. Gene synthesis and library construction were carried out by GenScript, using our own phagemid vector. The constructed library has an estimated size of 1.75 × 108. NGS showed that the amino acid diversity and frequency at each randomized position are the expected from the codon usage.
Collapse
Affiliation(s)
- Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellín, Colombia
| | | | - Andrea Molina-Zapata
- Faculty of Basic Sciences, University of Medellin, Medellín, Colombia
- Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | | |
Collapse
|
60
|
Valdés-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Structural Insights into the Design of Synthetic Nanobody Libraries. Molecules 2022; 27:molecules27072198. [PMID: 35408597 PMCID: PMC9000494 DOI: 10.3390/molecules27072198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Single domain antibodies from camelids, or nanobodies, are a unique class of antibody fragments with several advantageous characteristics: small monomeric size, high stability and solubility and easy tailoring for multiple applications. Nanobodies are gaining increasing acceptance as diagnostic tools and promising therapeutic agents in cancer and other diseases. While most nanobodies are obtained from immunized animals of the camelid family, a few synthetic nanobody libraries constructed in recent years have shown the capability of generating high quality nanobodies in terms of affinity and stability. Since this synthetic approach has important advantages over the use of animals, the recent advances are indeed encouraging. Here we review over a dozen synthetic nanobody libraries reported so far and discuss the different approaches followed in their construction and validation, with an emphasis on framework and hypervariable loop design as critical issues defining their potential as high-class nanobody sources.
Collapse
Affiliation(s)
- Mario S. Valdés-Tresanco
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| | - Andrea Molina-Zapata
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas (CIB), Medellin 050034, Colombia
| | - Alaín González Pose
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
| | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| |
Collapse
|
61
|
Bärland N, Rueff AS, Cebrero G, Hutter CAJ, Seeger MA, Veening JW, Perez C. Mechanistic basis of choline import involved in teichoic acids and lipopolysaccharide modification. SCIENCE ADVANCES 2022; 8:eabm1122. [PMID: 35235350 PMCID: PMC8890701 DOI: 10.1126/sciadv.abm1122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Phosphocholine molecules decorating bacterial cell wall teichoic acids and outer-membrane lipopolysaccharide have fundamental roles in adhesion to host cells, immune evasion, and persistence. Bacteria carrying the operon that performs phosphocholine decoration synthesize phosphocholine after uptake of the choline precursor by LicB, a conserved transporter among divergent species. Streptococcus pneumoniae is a prominent pathogen where phosphocholine decoration plays a fundamental role in virulence. Here, we present cryo-electron microscopy and crystal structures of S. pneumoniae LicB, revealing distinct conformational states and describing architectural and mechanistic elements essential to choline import. Together with in vitro and in vivo functional characterization, we found that LicB displays proton-coupled import activity and promiscuous selectivity involved in adaptation to choline deprivation conditions, and describe LicB inhibition by synthetic nanobodies (sybodies). Our results provide previously unknown insights into the molecular mechanism of a key transporter involved in bacterial pathogenesis and establish a basis for inhibition of the phosphocholine modification pathway across bacterial phyla.
Collapse
Affiliation(s)
| | - Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Cedric A. J. Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Camilo Perez
- Biozentrum, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
62
|
Ji F, Ren J, Vincke C, Jia L, Muyldermans S. Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2446:3-17. [PMID: 35157266 DOI: 10.1007/978-1-0716-2075-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The presence of unique heavy chain-only antibodies (HCAbs) in camelids was discovered at Vrije Universiteit Brussel (VUB, Brussels, Belgium) at a time when many researchers were exploring the cloning and expression of smaller antigen-binding fragments (Fv and Fab) from hybridoma-derived antibodies. The potential importance of this discovery was anticipated, and efforts were immediately undertaken to understand the emergence and ontogeny of these HCAbs as well as to investigate the applications of the single-domain antigen-binding variable domains of HCAbs (nanobodies). Nanobodies were demonstrated to possess multiple biochemical and biophysical advantages over other antigen-binding antibody fragments and alternative scaffolds. Today, nanobodies have a significant and growing impact on research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Cécile Vincke
- Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China. .,Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
63
|
Li D, Peng Q, Huang C, Zang B, Ren J, Ji F, Muyldermans S, Jia L. Cytoplasmic Expression of Nanobodies with Formylglycine Generating Enzyme Tag and Conversion to a Bio-Orthogonal Aldehyde Group. Methods Mol Biol 2022; 2446:357-371. [PMID: 35157283 DOI: 10.1007/978-1-0716-2075-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanobodies (Nbs) can be successfully retrieved following phage, bacterial, yeast, or ribosome display of immune, synthetic, or naïve libraries. However, after panning, multiple individual Nb clones need to be screened and assessed for solubility, antigen specificity, affinity, and potential biological function. Therefore, it is highly desirable to have a convenient expression strategy to obtain sufficient protein for in-depth characterization of the Nbs. The presence of a purification and detection tag, as well as a chemically reactive group to enable simple generation of Nb derivatives, would be of great help in this regard. Here, we provide a general protocol for high yield cytoplasmic expression and purification of formylglycine generating enzyme (FGE)-tagged Nbs. The cysteine within the FGE tag is easily converted to formylglycine by passing the FGE-tag containing Nb over a continuous-flow bio-catalysis system. The aldehyde group within the formylglycine side chain at the C-terminal end of the Nb is suitably located for subsequent bio-orthogonal reactions to fluorescent dyes, biotin, polyethylene glycol, or chromatography resins. We also include methods for production of high yield recombinant FGE, as well as conditions for its immobilization on Sepharose to produce the continuous-flow bio-catalysis system.
Collapse
Affiliation(s)
- Da Li
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Chungdong Huang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Berlin Zang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
64
|
Li T, Cai H, Zhao Y, Li Y, Lai Y, Yao H, Liu LD, Sun Z, van Vlissingen MF, Kuiken T, GeurtsvanKessel CH, Zhang N, Zhou B, Lu L, Gong Y, Qin W, Mondal M, Duan B, Xu S, Richard AS, Raoul H, Chen J, Xu C, Wu L, Zhou H, Huang Z, Zhang X, Li J, Wang Y, Bi Y, Rockx B, Chen J, Meng F, Lavillette D, Li D. Uncovering a conserved vulnerability site in SARS-CoV-2 by a human antibody. EMBO Mol Med 2021; 13:e14544. [PMID: 34672091 PMCID: PMC8646660 DOI: 10.15252/emmm.202114544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
An essential step for SARS-CoV-2 infection is the attachment to the host cell receptor by its Spike receptor-binding domain (RBD). Most of the existing RBD-targeting neutralizing antibodies block the receptor-binding motif (RBM), a mutable region with the potential to generate neutralization escape mutants. Here, we isolated and structurally characterized a non-RBM-targeting monoclonal antibody (FD20) from convalescent patients. FD20 engages the RBD at an epitope distal to the RBM with a KD of 5.6 nM, neutralizes SARS-CoV-2 including the current Variants of Concern such as B.1.1.7, B.1.351, P.1, and B.1.617.2 (Delta), displays modest cross-reactivity against SARS-CoV, and reduces viral replication in hamsters. The epitope coincides with a predicted "ideal" vulnerability site with high functional and structural constraints. Mutation of the residues of the conserved epitope variably affects FD20-binding but confers little or no resistance to neutralization. Finally, in vitro mode-of-action characterization and negative-stain electron microscopy suggest a neutralization mechanism by which FD20 destructs the Spike. Our results reveal a conserved vulnerability site in the SARS-CoV-2 Spike for the development of potential antiviral drugs.
Collapse
|
65
|
Wagner TR, Rothbauer U. Nanobodies - Little helpers unravelling intracellular signaling. Free Radic Biol Med 2021; 176:46-61. [PMID: 34536541 DOI: 10.1016/j.freeradbiomed.2021.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
The identification of diagnostic and therapeutic targets requires a comprehensive understanding of cellular processes, for which advanced technologies in biomedical research are needed. The emergence of nanobodies (Nbs) derived from antibody fragments of camelid heavy chain-only antibodies as intracellular research tools offers new possibilities to study and modulate target antigens in living cells. Here we summarize this rapidly changing field, beginning with a brief introduction of Nbs, followed by an overview of how target-specific Nbs can be generated, and introduce the selection of intrabodies as research tools. Intrabodies, by definition, are intracellular functional Nbs that target ectopic or endogenous intracellular antigens within living cells. Such binders can be applied in various formats, e.g. as chromobodies for live cell microscopy or as biosensors to decipher complex intracellular signaling pathways. In addition, protein knockouts can be achieved by target-specific Nbs, while modulating Nbs have the potential as future therapeutics. The development of fine-tunable and switchable Nb-based systems that simultaneously provide spatial and temporal control has recently taken the application of these binders to the next level.
Collapse
Affiliation(s)
- Teresa R Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
66
|
Szykowska A, Chen Y, Smith TB, Preger C, Yang J, Qian D, Mukhopadhyay SM, Wigren E, Neame SJ, Gräslund S, Persson H, Atkinson PJ, Di Daniel E, Mead E, Wang J, Davis JB, Burgess-Brown NA, Bullock AN. Selection and structural characterization of anti-TREM2 scFvs that reduce levels of shed ectodomain. Structure 2021; 29:1241-1252.e5. [PMID: 34233201 PMCID: PMC8575122 DOI: 10.1016/j.str.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022]
Abstract
Mutations in TREM2, a receptor expressed by microglia in the brain, are associated with an increased risk of neurodegeneration, including Alzheimer's disease. Numerous studies support a role for TREM2 in sensing damaging stimuli and triggering signaling cascades necessary for neuroprotection. Despite its significant role, ligands and regulators of TREM2 activation, and the mechanisms governing TREM2-dependent responses and its cleavage from the membrane, remain poorly characterized. Here, we present phage display generated antibody single-chain variable fragments (scFvs) to human TREM2 immunoglobulin-like domain. Co-crystal structures revealed the binding of two scFvs to an epitope on the TREM2 domain distal to the putative ligand-binding site. Enhanced functional activity was observed for oligomeric scFv species, which inhibited the production of soluble TREM2 in a HEK293 cell model. We hope that detailed characterization of their epitopes and properties will facilitate the use of these renewable binders as structural and functional biology tools for TREM2 research.
Collapse
Affiliation(s)
- Aleksandra Szykowska
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Yu Chen
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Thomas B Smith
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK; Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Charlotta Preger
- Structural Genomics Consortium (SGC), Karolinska Institutet, Karolinska University Hospital, Division of Rheumatology, Department of Medicine Solna, 171 76 Stockholm, Sweden
| | - Jingjing Yang
- Viva Biotech Ltd., 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Dongming Qian
- Viva Biotech Ltd., 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Shubhashish M Mukhopadhyay
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Edvard Wigren
- Structural Genomics Consortium (SGC), Karolinska Institutet, Karolinska University Hospital, Division of Rheumatology, Department of Medicine Solna, 171 76 Stockholm, Sweden
| | | | - Susanne Gräslund
- Structural Genomics Consortium (SGC), Karolinska Institutet, Karolinska University Hospital, Division of Rheumatology, Department of Medicine Solna, 171 76 Stockholm, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development & School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK; Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Emma Mead
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK; Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - John Wang
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - John B Davis
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK; Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
67
|
A non-ACE2 competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. Signal Transduct Target Ther 2021; 6:378. [PMID: 34732694 PMCID: PMC8564274 DOI: 10.1038/s41392-021-00810-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
The current COVID-19 pandemic has heavily burdened the global public health system and may keep simmering for years. The frequent emergence of immune escape variants have spurred the search for prophylactic vaccines and therapeutic antibodies that confer broad protection against SARS-CoV-2 variants. Here we show that the bivalency of an affinity maturated fully human single-domain antibody (n3113.1-Fc) exhibits exquisite neutralizing potency against SARS-CoV-2 pseudovirus, and confers effective prophylactic and therapeutic protection against authentic SARS-CoV-2 in the host cell receptor angiotensin-converting enzyme 2 (ACE2) humanized mice. The crystal structure of n3113 in complex with the receptor-binding domain (RBD) of SARS-CoV-2, combined with the cryo-EM structures of n3113 and spike ecto-domain, reveals that n3113 binds to the side surface of up-state RBD with no competition with ACE2. The binding of n3113 to this novel epitope stabilizes spike in up-state conformations but inhibits SARS-CoV-2 S mediated membrane fusion, expanding our recognition of neutralization by antibodies against SARS-CoV-2. Binding assay and pseudovirus neutralization assay show no evasion of recently prevalent SARS-CoV-2 lineages, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) for n3113.1-Fc with Y58L mutation, demonstrating the potential of n3113.1-Fc (Y58L) as a promising candidate for clinical development to treat COVID-19.
Collapse
|
68
|
Wang Z, Li L, Hu R, Zhong P, Zhang Y, Cheng S, Jiang H, Liu R, Ding Y. Structural insights into the binding of nanobodies LaM2 and LaM4 to the red fluorescent protein mCherry. Protein Sci 2021; 30:2298-2309. [PMID: 34562299 PMCID: PMC8521304 DOI: 10.1002/pro.4194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/20/2023]
Abstract
Red fluorescent proteins (RFPs) are powerful tools used in molecular biology research. Although RFP can be easily monitored in vivo, manipulation of RFP by suitable nanobodies binding to different epitopes of RFP is still desired. Thus, it is crucial to obtain structural information on how the different nanobodies interact with RFP. Here, we determined the crystal structures of the LaM2-mCherry and LaM4-mCherry complexes at 1.4 and 1.9 Å resolution. Our results showed that LaM2 binds to the side of the mCherry β-barrel, while LaM4 binds to the bottom of the β-barrel. The distinct binding sites of LaM2 and LaM4 were further verified by isothermal titration calorimetry, fluorescence-based size exclusion chromatography, and dynamic light scattering assays. Mutation of the residues at the LaM2 or LaM4 binding interface to mCherry significantly decreased the binding affinity of the nanobody to mCherry. Our results also showed that LaM2 and LaM4 can bind to mCherry simultaneously, which is crucial for recruiting multiple operation elements to the RFP. The binding of LaM2 or LaM4 did not significantly change the chromophore environment of mCherry, which is important for fluorescence quantification assays, while several GFP nanobodies significantly altered the fluorescence. Our results provide atomic resolution interaction information on the binding of nanobodies LaM2 and LaM4 with mCherry, which is important for developing detection and manipulation methods for RFP-based biotechnology.
Collapse
Affiliation(s)
- Ziying Wang
- School of Life SciencesFudan UniversityShanghaiChina
| | - Long Li
- Department of MacromoleculesFudan UniversityShanghaiChina
| | - Rongting Hu
- Department of MacromoleculesFudan UniversityShanghaiChina
| | - Peiyu Zhong
- School of Life SciencesFudan UniversityShanghaiChina
| | - Yiran Zhang
- School of Life SciencesFudan UniversityShanghaiChina
| | - Shihao Cheng
- School of Life SciencesFudan UniversityShanghaiChina
| | - He Jiang
- School of Life SciencesFudan UniversityShanghaiChina
| | - Rui Liu
- School of Life SciencesFudan UniversityShanghaiChina
| | - Yu Ding
- School of Life SciencesFudan UniversityShanghaiChina
| |
Collapse
|
69
|
Wang X, Li F, Qiu W, Xu B, Li Y, Lian X, Yu H, Zhang Z, Wang J, Li Z, Xue W, Zhu F. SYNBIP: synthetic binding proteins for research, diagnosis and therapy. Nucleic Acids Res 2021; 50:D560-D570. [PMID: 34664670 PMCID: PMC8728148 DOI: 10.1093/nar/gkab926] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
The success of protein engineering and design has extensively expanded the protein space, which presents a promising strategy for creating next-generation proteins of diverse functions. Among these proteins, the synthetic binding proteins (SBPs) are smaller, more stable, less immunogenic, and better of tissue penetration than others, which make the SBP-related data attracting extensive interest from worldwide scientists. However, no database has been developed to systematically provide the valuable information of SBPs yet. In this study, a database named ‘Synthetic Binding Proteins for Research, Diagnosis, and Therapy (SYNBIP)’ was thus introduced. This database is unique in (a) comprehensively describing thousands of SBPs from the perspectives of scaffolds, biophysical & functional properties, etc.; (b) panoramically illustrating the binding targets & the broad application of each SBP and (c) enabling a similarity search against the sequences of all SBPs and their binding targets. Since SBP is a human-made protein that has not been found in nature, the discovery of novel SBPs relied heavily on experimental protein engineering and could be greatly facilitated by in-silico studies (such as AI and computational modeling). Thus, the data provided in SYNBIP could lay a solid foundation for the future development of novel SBPs. The SYNBIP is accessible without login requirement at both official (https://idrblab.org/synbip/) and mirror (http://synbip.idrblab.net/) sites.
Collapse
Affiliation(s)
- Xiaona Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Binbin Xu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yanlin Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongyan Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhao Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
70
|
Al-Ramahi Y, Nyerges A, Margolles Y, Cerdán L, Ferenc G, Pál C, Fernández LÁ, de Lorenzo V. ssDNA recombineering boosts in vivo evolution of nanobodies displayed on bacterial surfaces. Commun Biol 2021; 4:1169. [PMID: 34621006 PMCID: PMC8497518 DOI: 10.1038/s42003-021-02702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
ssDNA recombineering has been exploited to hyperdiversify genomically-encoded nanobodies displayed on the surface of Escherichia coli for originating new binding properties. As a proof-of-principle a nanobody recognizing the antigen TirM from enterohaemorrhagic E. coli (EHEC) was evolved towards the otherwise not recognized TirM antigen from enteropathogenic E. coli (EPEC). To this end, E. coli cells displaying this nanobody fused to the intimin outer membrane-bound domain were subjected to multiple rounds of mutagenic oligonucleotide recombineering targeting the complementarity determining regions (CDRs) of the cognate VHH gene sequence. Binders to the EPEC-TirM were selected upon immunomagnetic capture of bacteria bearing active variants and nanobodies identified with a new ability to strongly bind the new antigen. The results highlight the power of combining evolutionary properties of bacteria in vivo with oligonucleotide synthesis in vitro for the sake of focusing diversification to specific segments of a gene (or protein thereof) of interest.
Collapse
Affiliation(s)
- Yamal Al-Ramahi
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Akos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Lidia Cerdán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Gyorgyi Ferenc
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, H-6726, Hungary
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
71
|
Ahmad J, Jiang J, Boyd LF, Zeher A, Huang R, Xia D, Natarajan K, Margulies DH. Structures of synthetic nanobody-SARS-CoV-2 receptor-binding domain complexes reveal distinct sites of interaction. J Biol Chem 2021; 297:101202. [PMID: 34537245 PMCID: PMC8444450 DOI: 10.1016/j.jbc.2021.101202] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/15/2022] Open
Abstract
Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.
Collapse
Affiliation(s)
- Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison Zeher
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
72
|
Silva-Pilipich N, Smerdou C, Vanrell L. A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies. Microorganisms 2021; 9:microorganisms9091956. [PMID: 34576851 PMCID: PMC8465657 DOI: 10.3390/microorganisms9091956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nanobodies are camelid-derived single-domain antibodies that present some advantages versus conventional antibodies, such as a smaller size, and higher tissue penetrability, stability, and hydrophilicity. Although nanobodies can be delivered as proteins, in vivo expression from adeno-associated viral (AAV) vectors represents an attractive strategy. This is due to the fact that AAV vectors, that can provide long-term expression of recombinant genes, have shown an excellent safety profile, and can accommodate genes for one or several nanobodies. In fact, several studies showed that AAV vectors can provide sustained nanobody expression both locally or systemically in preclinical models of human diseases. Some of the pathologies addressed with this technology include cancer, neurological, cardiovascular, infectious, and genetic diseases. Depending on the indication, AAV-delivered nanobodies can be expressed extracellularly or inside cells. Intracellular nanobodies or “intrabodies” carry out their function by interacting with cell proteins involved in disease and have also been designed to help elucidate cellular mechanisms by interfering with normal cell processes. Finally, nanobodies can also be used to retarget AAV vectors, when tethered to viral capsid proteins. This review covers applications in which AAV vectors have been used to deliver nanobodies, with a focus on their therapeutic use.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain;
- Correspondence: (C.S.); (L.V.); Tel.: +34-948194700 (C.S.); +508-29021505 (L.V.); Fax: +34-948194717 (C.S.)
| | - Lucía Vanrell
- Biotechnology Laboratory, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, Montevideo 11100, Uruguay
- Nanogrow Biotech, CIE BIO Incubator, Mercedes 1237, Montevideo 11100, Uruguay
- Correspondence: (C.S.); (L.V.); Tel.: +34-948194700 (C.S.); +508-29021505 (L.V.); Fax: +34-948194717 (C.S.)
| |
Collapse
|
73
|
Deneka D, Rutz S, Hutter CAJ, Seeger MA, Sawicka M, Dutzler R. Allosteric modulation of LRRC8 channels by targeting their cytoplasmic domains. Nat Commun 2021; 12:5435. [PMID: 34521847 PMCID: PMC8440666 DOI: 10.1038/s41467-021-25742-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
Members of the LRRC8 family form heteromeric assemblies, which function as volume-regulated anion channels. These modular proteins consist of a transmembrane pore and cytoplasmic leucine-rich repeat (LRR) domains. Despite their known molecular architecture, the mechanism of activation and the role of the LRR domains in this process has remained elusive. Here we address this question by generating synthetic nanobodies, termed sybodies, which target the LRR domain of the obligatory subunit LRRC8A. We use these binders to investigate their interaction with homomeric LRRC8A channels by cryo-electron microscopy and the consequent effect on channel activation by electrophysiology. The five identified sybodies either inhibit or enhance activity by binding to distinct epitopes of the LRR domain, thereby altering channel conformations. In combination, our work provides a set of specific modulators of LRRC8 proteins and reveals the role of their cytoplasmic domains as regulators of channel activity by allosteric mechanisms.
Collapse
Affiliation(s)
- Dawid Deneka
- Department of Biochemistry University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Sonja Rutz
- Department of Biochemistry University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Cedric A J Hutter
- Institute of Medical Microbiology University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
| | - Marta Sawicka
- Department of Biochemistry University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Raimund Dutzler
- Department of Biochemistry University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
74
|
Li T, Cai H, Yao H, Zhou B, Zhang N, van Vlissingen MF, Kuiken T, Han W, GeurtsvanKessel CH, Gong Y, Zhao Y, Shen Q, Qin W, Tian XX, Peng C, Lai Y, Wang Y, Hutter CAJ, Kuo SM, Bao J, Liu C, Wang Y, Richard AS, Raoul H, Lan J, Seeger MA, Cong Y, Rockx B, Wong G, Bi Y, Lavillette D, Li D. A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nat Commun 2021; 12:4635. [PMID: 34330908 PMCID: PMC8324831 DOI: 10.1038/s41467-021-24905-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/15/2021] [Indexed: 01/15/2023] Open
Abstract
SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7-17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 μg mL-1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hongmin Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hebang Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Bingjie Zhou
- University of CAS, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Ning Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing, China
| | - Martje Fentener van Vlissingen
- Erasmus Laboratory Animal Science Center, Erasmus University Medical Center, Rotterdam, Netherlands
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
| | - Thijs Kuiken
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Beijing, China
| | - Corine H GeurtsvanKessel
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yuhuan Gong
- University of CAS, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing, China
| | - Yapei Zhao
- University of CAS, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Quan Shen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing, China
| | - Wenming Qin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS, Shanghai, China
| | - Xiao-Xu Tian
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS, Shanghai, China
| | - Yanling Lai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Beijing, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Shu-Ming Kuo
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Caixuan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Beijing, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Beijing, China
| | - Audrey S Richard
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
| | - Hervé Raoul
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Yao Cong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Barry Rockx
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Paris, France
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| | - Yuhai Bi
- University of CAS, Beijing, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing, China.
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China.
- Pasteurien College, Soochow University, Jiangsu, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
75
|
Eaglesham JB, Garcia A, Berkmen M. Production of antibodies in SHuffle Escherichia coli strains. Methods Enzymol 2021; 659:105-144. [PMID: 34752282 DOI: 10.1016/bs.mie.2021.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are globally important macromolecules, used for research, diagnostics, and as therapeutics. The common mammalian antibody immunoglobulin G (IgG) is a complex glycosylated macromolecule, composed of two heavy chains and two light chains held together by multiple disulfide bonds. For this reason, IgG and related antibody fragments are usually produced through secretion from mammalian cell lines, such as Chinese Hamster Ovary cells. However, there is growing interest in production of antibodies in prokaryotic systems due to the potential for rapid and cheap production in a highly genetically manipulable system. Research on oxidative protein folding in prokaryotes has enabled engineering of Escherichia coli strains capable of producing IgG and other disulfide bonded proteins in the cytoplasm, known as SHuffle. In this protocol, we provide a review of research on prokaryotic antibody production, guidelines on cloning of antibody expression constructs, conditions for an initial expression and purification experiment, and parameters which may be optimized for increased purification yields. Last, we discuss the limitations of prokaryotic antibody production, and highlight potential future avenues for research on antibody expression and folding.
Collapse
|
76
|
Straub MS, Alvadia C, Sawicka M, Dutzler R. Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling. eLife 2021; 10:e69800. [PMID: 34263724 PMCID: PMC8298096 DOI: 10.7554/elife.69800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022] Open
Abstract
The exposure of the negatively charged lipid phosphatidylserine on the cell surface, catalyzed by lipid scramblases, is an important signal for the clearance of apoptotic cells by macrophages. The protein XKR9 is a member of a conserved family that has been associated with apoptotic lipid scrambling. Here, we describe structures of full-length and caspase-treated XKR9 from Rattus norvegicus in complex with a synthetic nanobody determined by cryo-electron microscopy. The 43 kDa monomeric membrane protein can be divided into two structurally related repeats, each containing four membrane-spanning segments and a helix that is partly inserted into the lipid bilayer. In the full-length protein, the C-terminus interacts with a hydrophobic pocket located at the intracellular side acting as an inhibitor of protein function. Cleavage by caspase-3 at a specific site releases 16 residues of the C-terminus, thus making the pocket accessible to the cytoplasm. Collectively, the work has revealed the unknown architecture of the XKR family and has provided initial insight into its activation by caspases.
Collapse
Affiliation(s)
- Monique S Straub
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Carolina Alvadia
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Marta Sawicka
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
77
|
Broichhagen J, Kilian N. Chemical Biology Tools To Investigate Malaria Parasites. Chembiochem 2021; 22:2219-2236. [PMID: 33570245 PMCID: PMC8360121 DOI: 10.1002/cbic.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Parasitic diseases like malaria tropica have been shaping human evolution and history since the beginning of mankind. After infection, the response of the human host ranges from asymptomatic to severe and may culminate in death. Therefore, proper examination of the parasite's biology is pivotal to deciphering unique molecular, biochemical and cell biological processes, which in turn ensure the identification of treatment strategies, such as potent drug targets and vaccine candidates. However, implementing molecular biology methods for genetic manipulation proves to be difficult for many parasite model organisms. The development of fast and straightforward applicable alternatives, for instance small-molecule probes from the field of chemical biology, is essential. In this review, we will recapitulate the highlights of previous molecular and chemical biology approaches that have already created insight and understanding of the malaria parasite Plasmodium falciparum. We discuss current developments from the field of chemical biology and explore how their application could advance research into this parasite in the future. We anticipate that the described approaches will help to close knowledge gaps in the biology of P. falciparum and we hope that researchers will be inspired to use these methods to gain knowledge - with the aim of ending this devastating disease.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGermany
| | - Nicole Kilian
- Centre for Infectious DiseasesParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| |
Collapse
|
78
|
Azadi A, Golchini A, Delazar S, Abarghooi Kahaki F, Dehnavi SM, Payandeh Z, Eyvazi S. Recent Advances on Immune Targeted Therapy of Colorectal Cancer Using bi-Specific Antibodies and Therapeutic Vaccines. Biol Proced Online 2021; 23:13. [PMID: 34193050 PMCID: PMC8245152 DOI: 10.1186/s12575-021-00147-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a universal heterogeneous disease that is characterized by genetic and epigenetic alterations. Immunotherapy using monoclonal antibodies (mAb) and cancer vaccines are substitute strategies for CRC treatment. When cancer immunotherapy is combined with chemotherapy, surgery, and radiotherapy, the CRC treatment would become excessively efficient. One of the compelling immunotherapy approaches to increase the efficiency of CRC therapy is the deployment of therapeutic mAbs, nanobodies, bi-specific antibodies and cancer vaccines, which improve clinical outcomes in patients. Also, among the possible therapeutic approaches for CRC patients, gene vaccines in combination with antibodies are recently introduced as a new perspective. Here, we aimed to present the current progress in CRC immunotherapy, especially using Bi-specific antibodies and dendritic cells mRNA vaccines. For this aim, all data were extracted from Google Scholar, PubMed, Scopus, and Elsevier, using keywords cancer vaccines; CRC immunotherapy and CRC mRNA vaccines. About 97 articles were selected and investigated completely based on the latest developments and novelties on bi-specific antibodies, mRNA vaccines, nanobodies, and MGD007.
Collapse
Affiliation(s)
- Ali Azadi
- Department of Medicine, De La Salle Health Sciences Institute, Dasmariñas, Philippines
| | - Alireza Golchini
- Cancer surgery Department; Shiraz Medical School, Shiraz University of medical Sciences, Shiraz, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
79
|
Ahmadi MKB, Mohammadi SA, Makvandi M, Mamouei M, Rahmati M, Dehghani H, Wood DW. Recent Advances in the Scaffold Engineering of Protein Binders. Curr Pharm Biotechnol 2021; 22:878-891. [PMID: 32838715 DOI: 10.2174/1389201021999200824101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
In recent years, extensive attention has been given to the generation of new classes of ligand- specific binding proteins to supplement monoclonal antibodies. A combination of protein engineering and display technologies has been used to manipulate non-human antibodies for humanization and stabilization purposes or even the generation of new binding proteins. Engineered protein scaffolds can now be directed against therapeutic targets to treat cancer and immunological disorders. Although very few of these scaffolds have successfully passed clinical trials, their remarkable properties such as robust folding, high solubility, and small size motivate their employment as a tool for biology and applied science studies. Here, we have focused on the generation of new non-Ig binding proteins and single domain antibody manipulation, with a glimpse of their applications.
Collapse
Affiliation(s)
- Mohammad K B Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed A Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Mamouei
- Department of Animal Science, Ramin Agricultural and Natural Resources University, Ahvaz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hesam Dehghani
- Stem Cells Regenerative Research Group, Ressearch Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, United States
| |
Collapse
|
80
|
Kinetic mechanism of Na +-coupled aspartate transport catalyzed by Glt Tk. Commun Biol 2021; 4:751. [PMID: 34140623 PMCID: PMC8211817 DOI: 10.1038/s42003-021-02267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s−1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging. Trinco et al. measure aspartate uptake rates in proteoliposomes containing purified prokaryotic Na+-coupled aspartate transporter GltTk. To overcome limitation of protein orientation, they use synthetic nanobody that blocks transporters from outside and reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution.
Collapse
|
81
|
Fernandes CFC, Pereira SS, Luiz MB, Silva NKRL, Silva MCS, Marinho ACM, Fonseca MHG, Furtado GP, Trevizani R, Nicolete R, Soares AM, Zuliani JP, Stabeli RG. Engineering of single-domain antibodies for next-generation snakebite antivenoms. Int J Biol Macromol 2021; 185:240-250. [PMID: 34118288 DOI: 10.1016/j.ijbiomac.2021.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Given the magnitude of the global snakebite crisis, strategies to ensure the quality of antivenom, as well as the availability and sustainability of its supply are under development by several research groups. Recombinant DNA technology has allowed the engineering of monoclonal antibodies and recombinant fragments as alternatives to conventional antivenoms. Besides having higher therapeutic efficacy, with broad neutralization capacity against local and systemic toxicity, novel antivenoms need to be safe and cost-effective. Due to the biological and physical chemical properties of camelid single-domain antibodies, with high volume of distribution to distal tissue, their modular format, and their versatility, their biotechnological application has grown considerably in recent decades. This article presents the most up-to-date developments concerning camelid single-domain-based antibodies against major toxins from snake venoms, the main venomous animals responsible for reported envenoming cases and related human deaths. A brief discussion on the composition, challenges, and perspectives of antivenoms is presented, as well as the road ahead for next-generation antivenoms based on single-domain antibodies.
Collapse
Affiliation(s)
| | - Soraya S Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Nauanny K R L Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcela Cristina S Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | - Andreimar M Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil; Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | - Rodrigo G Stabeli
- Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
82
|
Ligand engineering for theranostic applications. Curr Opin Chem Biol 2021; 63:145-151. [PMID: 34004409 DOI: 10.1016/j.cbpa.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]
Abstract
Targeted therapy of cancer is considered as promising alternative approach to conventional chemotherapy and radiotherapy. Recent advancements in biotechnology have significantly improved the identification of novel radiopharmaceuticals allowing for more accurate imaging and therapeutic targeting of epithelial tumors. The successful development of radiotracers critically depends on the selection and validation of the tumor-specific target structure, the technical approach employed for the identification of a target-specific ligand, and the evaluation and improvement of the binding properties and the pharmacokinetic profile of the ligand by biotechnological procedures or chemical modification, respectively. Employing rational design of a quinoline-based fibroblast activation protein inhibitor (FAPI) and 'high-through put' display technology using a sunflower trypsin inhibitor1-based peptide library, several FAPI derivatives and a novel αvβ6 integrin-binding peptide (SFITGv6) were identified. FAPI and SFITGv6 represent powerful radiopharmaceuticals for diagnostic imaging and/or endoradiotherapy of FAP- and αvβ6 integrin-expressing epithelial tumors, respectively.
Collapse
|
83
|
Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, Hofman P, Rashidian M. Nanobodies for Medical Imaging: About Ready for Prime Time? Biomolecules 2021; 11:637. [PMID: 33925941 PMCID: PMC8146371 DOI: 10.3390/biom11050637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.
Collapse
Affiliation(s)
- Léa Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
| | - Lauren Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Chemistry and Bioengineering, Harvard University, Cambridge, MA 02138, USA
| | - Omar Abousaway
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Andrea Mines
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Center Hospital, 06100 Nice, France
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
84
|
Valdez-Cruz NA, García-Hernández E, Espitia C, Cobos-Marín L, Altamirano C, Bando-Campos CG, Cofas-Vargas LF, Coronado-Aceves EW, González-Hernández RA, Hernández-Peralta P, Juárez-López D, Ortega-Portilla PA, Restrepo-Pineda S, Zelada-Cordero P, Trujillo-Roldán MA. Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microb Cell Fact 2021; 20:88. [PMID: 33888152 PMCID: PMC8061467 DOI: 10.1186/s12934-021-01576-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 is a novel β-coronavirus that caused the COVID-19 pandemic disease, which spread rapidly, infecting more than 134 million people, and killing almost 2.9 million thus far. Based on the urgent need for therapeutic and prophylactic strategies, the identification and characterization of antibodies has been accelerated, since they have been fundamental in treating other viral diseases. Here, we summarized in an integrative manner the present understanding of the immune response and physiopathology caused by SARS-CoV-2, including the activation of the humoral immune response in SARS-CoV-2 infection and therefore, the synthesis of antibodies. Furthermore, we also discussed about the antibodies that can be generated in COVID-19 convalescent sera and their associated clinical studies, including a detailed characterization of a variety of human antibodies and identification of antibodies from other sources, which have powerful neutralizing capacities. Accordingly, the development of effective treatments to mitigate COVID-19 is expected. Finally, we reviewed the challenges faced in producing potential therapeutic antibodies and nanobodies by cell factories at an industrial level while ensuring their quality, efficacy, and safety.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México.
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Laura Cobos-Marín
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil N° 2950, Valparaíso, Chile
| | - Carlos G Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Luis F Cofas-Vargas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Enrique W Coronado-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Ricardo A González-Hernández
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Pablo Hernández-Peralta
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Paola A Ortega-Portilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Sara Restrepo-Pineda
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Patricio Zelada-Cordero
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México.
| |
Collapse
|
85
|
Birchenough HL, Nivia HDR, Jowitt TA. Interaction standards for biophysics: anti-lysozyme nanobodies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:333-343. [PMID: 33839878 PMCID: PMC8189969 DOI: 10.1007/s00249-021-01524-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
There is a significant demand in the molecular biophysics community for robust standard samples. They are required by researchers, instrument developers and pharmaceutical companies for instrumental quality control, methodological development and in the design and validation of devices, diagnostics and instrumentation. To-date there has been no clear consensus on the need and type of standards that should be available and different research groups and instrument manufacturers use different standard systems which significantly hinders comparative analysis. One of the major objectives of the Association of Resources for Biophysical Research in Europe (ARBRE) is to establish a common set of standard samples that can be used throughout the biophysics community and instrument developers. A survey was circulated among ARBRE members to ascertain the requirements of laboratories when using standard systems and the results are documented in this article. In summary, the major requirements are protein samples which are cheap, relatively small, stable and have different binding strengths. We have developed a panel of sdAb’s or ‘nanobodies’ against hen-egg white lysozyme with different binding strengths and suitable stability characteristics. Here we show the results of the survey, the selection procedure, validation and final selection of a panel of nanobody interaction standards.
Collapse
Affiliation(s)
- Holly L Birchenough
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, England
| | - Hilda D Ruiz Nivia
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, England
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, England.
| |
Collapse
|
86
|
Yao H, Cai H, Li T, Zhou B, Qin W, Lavillette D, Li D. A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS Pathog 2021; 17:e1009328. [PMID: 33657135 PMCID: PMC7959386 DOI: 10.1371/journal.ppat.1009328] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/15/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
A key step to the SARS-CoV-2 infection is the attachment of its Spike receptor-binding domain (S RBD) to the host receptor ACE2. Considerable research has been devoted to the development of neutralizing antibodies, including llama-derived single-chain nanobodies, to target the receptor-binding motif (RBM) and to block ACE2-RBD binding. Simple and effective strategies to increase potency are desirable for such studies when antibodies are only modestly effective. Here, we identify and characterize a high-affinity synthetic nanobody (sybody, SR31) as a fusion partner to improve the potency of RBM-antibodies. Crystallographic studies reveal that SR31 binds to RBD at a conserved and 'greasy' site distal to RBM. Although SR31 distorts RBD at the interface, it does not perturb the RBM conformation, hence displaying no neutralizing activities itself. However, fusing SR31 to two modestly neutralizing sybodies dramatically increases their affinity for RBD and neutralization activity against SARS-CoV-2 pseudovirus. Our work presents a tool protein and an efficient strategy to improve nanobody potency.
Collapse
Affiliation(s)
- Hebang Yao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmin Cai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingjie Zhou
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wenming Qin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, China
| | - Dimitri Lavillette
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Pasteurien College, Soochow University, Jiangsu, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
87
|
Nie J, Ma X, Hu F, Miao H, Feng X, Zhang P, Han MH, You F, Yang Y, Zhang W, Zheng W. Designing and constructing a phage display synthesized single domain antibodies library based on camel VHHs frame for screening and identifying humanized TNF-α-specific nanobody. Biomed Pharmacother 2021; 137:111328. [PMID: 33571835 DOI: 10.1016/j.biopha.2021.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/17/2023] Open
Abstract
Tumor necrosis factor (TNF-α) is an important clinically tested cytokine that could induce autoimmune diseases and inflammation. Therefore, the anti-TNF-α therapy strategy was developed and used therapeutically in various diseases, especially in the cytokine storm associated chimeric antigen receptor (CAR) T-cell therapy and antiviral therapy. Compare with other anti-TNF-α inhibitors, anti-TNF-α Nb (nanobody) has many unique advantages. Herein, we reported a novel humanized scaffold for library construction, which could be soluble and expressed in Escherichia coli (E.coli), and the efficiency capacity could reach as high as 2.01 × 109. Meanwhile, an anti-TNF-α Nb was selected for further study after 4 rounds of screening, NT-3, as the optimal Nb could effectively inhibit TNF-mediated cytotoxicity. The IC50 of NT-3 was determined as 0.804 μM, and its apoptosis inhibition rate was 62.47 % in L929 cells. Furthermore, the molecular docking results showed that complementarity-determining regions (CDRs) of NT-3 could connect to TNF for blocking function through strong hydrogen bonds and salt bridges. In general, our study not only provided a good Nb screening platform in vitro without animal immunization, but also generated a series of novel humanized anti-TNF-α Nb candidates with potential applications.
Collapse
Affiliation(s)
- Jifan Nie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fabiao Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Miao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xin Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Peiwen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Myong Hun Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Genetic, Faculty of Life Science, KIM IL SUNG University, Pyongyang 999093, Democratic People's Republic of Korea
| | - Fang You
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; SinGENE Biotech Pte Ltd, Singapore Science Park, Singapore 118258, Singapore.
| | - Wenlian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Center of Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC 27310, USA
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
88
|
Ahmad J, Jiang J, Boyd LF, Natarajan K, Margulies DH. Synthetic nanobody-SARS-CoV-2 receptor-binding domain structures identify distinct epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.27.428466. [PMID: 33532775 PMCID: PMC7852268 DOI: 10.1101/2021.01.27.428466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands unprecedented attention. We report four X-ray crystal structures of three synthetic nanobodies (sybodies) (Sb16, Sb45 and Sb68) bind to the receptor-binding domain (RBD) of SARS-CoV-2: binary complexes of Sb16-RBD and Sb45-RBD; a ternary complex of Sb45-RBD-Sb68; and Sb16 unliganded. Sb16 and Sb45 bind the RBD at the ACE2 interface, positioning their CDR2 and CDR3 loops diametrically. Sb16 reveals a large CDR2 shift when binding the RBD. Sb68 interacts peripherally at the ACE2 interface; steric clashes with glycans explain its mechanism of viral neutralization. Superposing these structures onto trimeric spike (S) protein models indicates these sybodies bind conformations of the mature S protein differently, which may aid therapeutic design. ONE SENTENCE SUMMARY X-ray structures of synthetic nanobodies complexed with the receptor-binding domain of the spike protein of SARS-CoV-2 reveal details of CDR loop interactions in recognition of distinct epitopic sites.
Collapse
Affiliation(s)
- Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892
| |
Collapse
|
89
|
Wang W, Xu C, Wang H, Jiang C. Identification of nanobodies against hepatocellular carcinoma marker glypican-3. Mol Immunol 2021; 131:13-22. [PMID: 33453658 DOI: 10.1016/j.molimm.2021.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Glypican-3 (GPC3) is a highly specific diagnostic marker for hepatocellular carcinoma (HCC) diagnosis and a potential target in HCC therapy. Nanobodies (Nbs) are promising targeting molecules due to their high specificity and strong affinities to antigens, high stability, deep tissue penetration, and low immunogenicity. In this study, we isolated Nbs against GPC3 marker protein from a synthetic Nb library by phage display. To characterize these Nbs, we performed enzyme-linked immunosorbent assay, immunoprecipitation assay, and immunofluorescent assay to demonstrate that four (G8, G10, G11, and G64) of them bound specifically to recombinant as well as endogenous GPC3, and epitope mapping showed they all bound to N-terminal subunit of GPC3. Furthermore, we found that G64 exhibited high protein stability and GPC3 binding activity in serum at 37℃ for at least 96 h, and G64 did not affect the proliferation of HEK293T cells and HCC cell line HepG2. Our study provides four anti-GPC3 Nbs as promising targeting molecules for HCC diagnostic and therapeutic drugs.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519080, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Chang Xu
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519080, China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Xinyang, Henan, 464000, China
| | - Changan Jiang
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519080, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
90
|
Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TW. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021; 11:63. [PMID: 33418902 PMCID: PMC7825061 DOI: 10.3390/biom11010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane transport proteins. This review paper focuses on methodologies to generate cell plasma membrane transport protein-targeting nanobodies, and the advantages and pitfalls while generating these small antibody-derivatives, and discusses several therapeutic nanobodies directed towards transmembrane proteins, including channels and pores, adenosine triphosphate-powered pumps and porters.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Timo W.M. De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| |
Collapse
|
91
|
Wang W, Yuan J, Jiang C. Applications of nanobodies in plant science and biotechnology. PLANT MOLECULAR BIOLOGY 2021; 105:43-53. [PMID: 33037986 PMCID: PMC7547553 DOI: 10.1007/s11103-020-01082-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/05/2020] [Indexed: 05/15/2023]
Abstract
Present review summarizes the current applications of nanobodies in plant science and biotechnology, including plant expression of nanobodies, plant biotechnological applications, nanobody-based immunodetection, and nanobody-mediated resistance against plant pathogens. Nanobodies (Nbs) are variable domains of heavy chain-only antibodies (HCAbs) isolated from camelids. In spite of their single domain structure, nanobodies display many unique features, such as small size, high stability, and cryptic epitopes accessibility, which make them ideal for sophisticated applications in plants and animals. In this review, we summarize the current applications of nanobodies in plant science and biotechnology, focusing on nanobody expression in plants, plant biotechnological applications, determination of plant toxins and pathogens, and nanobody-mediated resistance against plant pathogens. Prospects and challenges of nanobody applications in plants are also discussed.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China.
| | - Jumao Yuan
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Changan Jiang
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
92
|
Nanobodies as Versatile Tool for Multiscale Imaging Modalities. Biomolecules 2020; 10:biom10121695. [PMID: 33353213 PMCID: PMC7767244 DOI: 10.3390/biom10121695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging is constantly growing in different areas of preclinical biomedical research. Several imaging methods have been developed and are continuously updated for both in vivo and in vitro applications, in order to increase the information about the structure, localization and function of molecules involved in physiology and disease. Along with these progresses, there is a continuous need for improving labeling strategies. In the last decades, the single domain antigen-binding fragments nanobodies (Nbs) emerged as important molecular imaging probes. Indeed, their small size (~15 kDa), high stability, affinity and modularity represent desirable features for imaging applications, providing higher tissue penetration, rapid targeting, increased spatial resolution and fast clearance. Accordingly, several Nb-based probes have been generated and applied to a variety of imaging modalities, ranging from in vivo and in vitro preclinical imaging to super-resolution microscopy. In this review, we will provide an overview of the state-of-the-art regarding the use of Nbs in several imaging modalities, underlining their extreme versatility and their enormous potential in targeting molecules and cells of interest in both preclinical and clinical studies.
Collapse
|
93
|
Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes. Trends Endocrinol Metab 2020; 31:905-917. [PMID: 33160815 DOI: 10.1016/j.tem.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells. In this review, we discuss recent protective approaches for β cells and the advantages and limitations of current imaging probes in the field.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå S-90187, Sweden
| | - Rita S Garcia Ribeiro
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
94
|
Bordignon E, Seeger MA, Galazzo L, Meier G. From in vitro towards in situ: structure-based investigation of ABC exporters by electron paramagnetic resonance spectroscopy. FEBS Lett 2020; 594:3839-3856. [PMID: 33219535 DOI: 10.1002/1873-3468.14004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) exporters have been studied now for more than four decades, and recent structural investigation has produced a large number of protein database entries. Yet, important questions about how ABC exporters function at the molecular level remain debated, such as which are the molecular recognition hotspots and the allosteric couplings dynamically regulating the communication between the catalytic cycle and the export of substrates. This conundrum mainly arises from technical limitations confining all research to in vitro analysis of ABC transporters in detergent solutions or embedded in membrane-mimicking environments. Therefore, a largely unanswered question is how ABC exporters operate in situ, namely in the native membrane context of a metabolically active cell. This review focuses on novel mechanistic insights into type I ABC exporters gained through a unique combination of structure determination, biochemical characterization, generation of conformation-specific nanobodies/sybodies and double electron-electron resonance.
Collapse
Affiliation(s)
- Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
95
|
Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk J, Sorgenfrei M, Schroer MA, Gruzinov AY, Jeffries CM, Graewert MA, Svergun DI, Dobrev N, Remans K, Seeger MA, McInerney GM, Murrell B, Hällberg BM, Löw C. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat Commun 2020; 11:5588. [PMID: 33149112 PMCID: PMC7642358 DOI: 10.1038/s41467-020-19204-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022] Open
Abstract
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.
Collapse
Affiliation(s)
- Tânia F Custódio
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Hrishikesh Das
- Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Division of Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Samuel Pazicky
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Joanna Pieprzyk
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Andrey Yu Gruzinov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Melissa A Graewert
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Nikolay Dobrev
- European Molecular Biology Laboratory (EMBL) Heidelberg, Protein Expression and Purification Core Facility, 69117, Heidelberg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL) Heidelberg, Protein Expression and Purification Core Facility, 69117, Heidelberg, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - B Martin Hällberg
- Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC, Notkestrasse 85, D-22607, Hamburg, Germany.
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany.
| |
Collapse
|
96
|
Abstract
DNA libraries are predisposed to template mispairing during conventional “bulk” PCR, leading to the loss of unique sequences. The latter is facilitated by the nonuniform distribution of templates frequently observed in DNA libraries. These effects result in a prominent reduction of the original diversity. The encapsulation of DNA repertoires in liquid droplets abolishes the effects of mispairing in DNA libraries. The fundamental advantages of emulsion PCR (ePCR) over bulk PCR are illustrated by deep sequencing and mathematical modeling, which provide the general strategy for ePCR rationalization. The quasi single-molecule ePCR reveals total genetic information by counteracting the degeneration of DNA libraries’ diversity. Conventional “bulk” PCR often yields inefficient and nonuniform amplification of complex templates in DNA libraries, introducing unwanted biases. Amplification of single DNA molecules encapsulated in a myriad of emulsion droplets (emulsion PCR, ePCR) allows the mitigation of this problem. Different ePCR regimes were experimentally analyzed to identify the most robust techniques for enhanced amplification of DNA libraries. A phenomenological mathematical model that forms an essential basis for optimal use of ePCR for library amplification was developed. A detailed description by high-throughput sequencing of amplified DNA-encoded libraries highlights the principal advantages of ePCR over bulk PCR. ePCR outperforms PCR, reduces gross DNA errors, and provides a more uniform distribution of the amplified sequences. The quasi single-molecule amplification achieved via ePCR represents the fundamental requirement in case of complex DNA templates being prone to diversity degeneration and provides a way to preserve the quality of DNA libraries.
Collapse
|
97
|
Flicker S, Zettl I, Tillib SV. Nanobodies-Useful Tools for Allergy Treatment? Front Immunol 2020; 11:576255. [PMID: 33117377 PMCID: PMC7561424 DOI: 10.3389/fimmu.2020.576255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
In the last decade single domain antibodies (nanobodies, VHH) qualified through their unique characteristics have emerged as accepted and even advantageous alternative to conventional antibodies and have shown great potential as diagnostic and therapeutic tools. Currently nanobodies find their main medical application area in the fields of oncology and neurodegenerative diseases. According to late-breaking information, nanobodies specific for coronavirus spikes have been generated these days to test their suitability as useful therapeutics for future outbreaks. Their superior properties such as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity, ease of their generation, selection and production proved nanobodies also to be remarkable to investigate their efficacy for passive treatment of type I allergy, an exaggerated immune reaction to foreign antigens with increasing global prevalence.
Collapse
Affiliation(s)
- Sabine Flicker
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ines Zettl
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
98
|
Muyldermans S. A guide to: generation and design of nanobodies. FEBS J 2020; 288:2084-2102. [PMID: 32780549 PMCID: PMC8048825 DOI: 10.1111/febs.15515] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/03/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
A nanobody (Nb) is a registered trademark of Ablynx, referring to the single antigen-binding domain of heavy chain-only antibodies (HCAbs) that are circulating in Camelidae. Nbs are produced recombinantly in micro-organisms and employed as research tools or for diagnostic and therapeutic applications. They were - and still are - also named single-domain antibodies (sdAbs) or variable domain of the heavy chain of HCAbs (VHH). A variety of methods are currently in use for the fast and efficient generation of target-specific Nbs. Such Nbs are produced at low cost and associate with high affinity to their cognate antigen. They are robust, strictly monomeric and easy to tailor into more complex entities to meet the requirements of their application. Here, we review the various sources and different strategies that have been developed to identify rapidly, target-specific Nbs. We further discuss a variety of engineering technologies that have been explored to broaden the application range of Nbs and summarise those applications where designed Nbs might offer a marked advantage over other affinity reagents.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, China
| |
Collapse
|
99
|
Kichuk TC, Carrasco-López C, Avalos JL. Lights up on organelles: Optogenetic tools to control subcellular structure and organization. WIREs Mech Dis 2020; 13:e1500. [PMID: 32715616 DOI: 10.1002/wsbm.1500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/21/2022]
Abstract
Since the neurobiological inception of optogenetics, light-controlled molecular perturbations have been applied in many scientific disciplines to both manipulate and observe cellular function. Proteins exhibiting light-sensitive conformational changes provide researchers with avenues for spatiotemporal control over the cellular environment and serve as valuable alternatives to chemically inducible systems. Optogenetic approaches have been developed to target proteins to specific subcellular compartments, allowing for the manipulation of nuclear translocation and plasma membrane morphology. Additionally, these tools have been harnessed for molecular interrogation of organelle function, location, and dynamics. Optogenetic approaches offer novel ways to answer fundamental biological questions and to improve the efficiency of bioengineered cell factories by controlling the assembly of synthetic organelles. This review first provides a summary of available optogenetic systems with an emphasis on their organelle-specific utility. It then explores the strategies employed for organelle targeting and concludes by discussing our perspective on the future of optogenetics to control subcellular structure and organization. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Therese C Kichuk
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|