51
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
52
|
Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, Guo S, Yi Z, Wang Q, Yang S. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics 2023; 13:3245-3275. [PMID: 37351163 PMCID: PMC10283054 DOI: 10.7150/thno.84759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/β-catenin, TGFβ superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaixuan Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
53
|
Lampiasi N. The Migration and the Fate of Dental Pulp Stem Cells. BIOLOGY 2023; 12:biology12050742. [PMID: 37237554 DOI: 10.3390/biology12050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
54
|
Sonkodi B, Csorba A, Marsovszky L, Balog A, Kopper B, Nagy ZZ, Resch MD. Evidence of Disruption in Neural Regeneration in Dry Eye Secondary to Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24087514. [PMID: 37108693 PMCID: PMC10140938 DOI: 10.3390/ijms24087514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The purpose of our study was to analyze abnormal neural regeneration activity in the cornea through means of confocal microscopy in rheumatoid arthritis patients with concomitant dry eye disease. We examined 40 rheumatoid arthritis patients with variable severity and 44 volunteer age- and gender-matched healthy control subjects. We found that all examined parameters were significantly lower (p < 0.05) in rheumatoid arthritis patients as opposed to the control samples: namely, the number of fibers, the total length of the nerves, the number of branch points on the main fibers and the total nerve-fiber area. We examined further variables, such as age, sex and the duration of rheumatoid arthritis. Interestingly, we could not find a correlation between the above variables and abnormal neural structural changes in the cornea. We interpreted these findings via implementing our hypotheses. Correspondingly, one neuroimmunological link between dry eye and rheumatoid arthritis could be through the chronic Piezo2 channelopathy-induced K2P-TASK1 signaling axis. This could accelerate neuroimmune-induced sensitization on the spinal level in this autoimmune disease, with Langerhans-cell activation in the cornea and theorized downregulated Piezo1 channels in these cells. Even more importantly, suggested principal primary-damage-associated corneal keratocyte activation could be accompanied by upregulation of Piezo1. Both activation processes on the periphery would skew the plasticity of the Th17/Treg ratio, resulting in Th17/Treg imbalance in dry eye, secondary to rheumatoid arthritis. Hence, chronic somatosensory-terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could result in a mixed picture of disrupted functional regeneration but upregulated morphological regeneration activity of these somatosensory axons in the cornea, providing the demonstrated abnormal neural corneal morphology.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - László Marsovszky
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Miklós D Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
55
|
Narwidina A, Miyazaki A, Iwata K, Kurogoushi R, Sugimoto A, Kudo Y, Kawarabayashi K, Yamakawa Y, Akazawa Y, Kitamura T, Nakagawa H, Yamaguchi-Ueda K, Hasegawa T, Yoshizaki K, Fukumoto S, Yamamoto A, Ishimaru N, Iwasaki T, Iwamoto T. Iroquois homeobox 3 regulates odontoblast proliferation and differentiation mediated by Wnt5a expression. Biochem Biophys Res Commun 2023; 650:47-54. [PMID: 36773339 DOI: 10.1016/j.bbrc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Iroquois homeobox (Irx) genes are TALE-class homeobox genes that are evolutionarily conserved across species and have multiple critical cellular functions in fundamental tissue development processes. Previous studies have shown that Irxs genes are expressed during tooth development. However, the precise roles of genes in teeth remain unclear. Here, we demonstrated for the first time that Irx3 is an essential molecule for the proliferation and differentiation of odontoblasts. Using cDNA synthesized from postnatal day 1 (P1) tooth germs, we examined the expression of all Irx genes (Irx1-Irx6) by RT-PCR and found that all genes except Irx4 were expressed in the tooth tissue. Irx1-Irx3 a were expressed in the dental epithelial cell line M3H1 cells, while Irx3 and Irx5 were expressed in the dental mesenchymal cell line mDP cells. Only Irx3 was expressed in both undifferentiated cell lines. Immunostaining also revealed the presence of IRX3 in the dental epithelial cells and mesenchymal condensation. Inhibition of endogenous Irx3 by siRNA blocks the proliferation and differentiation of mDP cells. Wnt3a, Wnt5a, and Bmp4 are factors involved in odontoblast differentiation and were highly expressed in mDP cells by quantitative PCR analysis. Interestingly, the expression of Wnt5a (but not Wnt3a or Bmp4) was suppressed by Irx3 siRNA. These results suggest that Irx3 plays an essential role in part through the regulation of Wnt5a expression during odontoblast proliferation and differentiation.
Collapse
Affiliation(s)
- Anrizandy Narwidina
- Department of Pediatric Dentistry, Graduate School of Oral Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan; Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Aya Miyazaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Kokoro Iwata
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Rika Kurogoushi
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Keita Kawarabayashi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Yoshihito Yamakawa
- Department of Pediatric Dentistry, Graduate School of Oral Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan; Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Yuki Akazawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Takamasa Kitamura
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Hiroshi Nakagawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Kimiko Yamaguchi-Ueda
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tomokazu Hasegawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Keigo Yoshizaki
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Pediatric Dentistry Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tomonori Iwasaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan.
| |
Collapse
|
56
|
Zhang Y, Wang L, Kang H, Lin CY, Fan Y. Unlocking the Therapeutic Potential of Irisin: Harnessing Its Function in Degenerative Disorders and Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24076551. [PMID: 37047523 PMCID: PMC10095399 DOI: 10.3390/ijms24076551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Physical activity is well-established as an important protective factor against degenerative conditions and a promoter of tissue growth and renewal. The discovery of Fibronectin domain-containing protein 5 (FNDC5) as the precursor of Irisin in 2012 sparked significant interest in its potential as a diagnostic biomarker and a therapeutic agent for various diseases. Clinical studies have examined the correlation between plasma Irisin levels and pathological conditions using a range of assays, but the lack of reliable measurements for endogenous Irisin has led to uncertainty about its prognostic/diagnostic potential as an exercise surrogate. Animal and tissue-engineering models have shown the protective effects of Irisin treatment in reversing functional impairment and potentially permanent damage, but dosage ambiguities remain unresolved. This review provides a comprehensive examination of the clinical and basic studies of Irisin in the context of degenerative conditions and explores its potential as a therapeutic approach in the physiological processes involved in tissue repair/regeneration.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence:
| | - Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chia-Ying Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Department of Biomedical, Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
57
|
Zhuang H, Ren X, Zhang Y, Jiang F, Zhou P. Trimethylamine-N-oxide sensitizes chondrocytes to mechanical loading through the upregulation of Piezo1. Food Chem Toxicol 2023; 175:113726. [PMID: 36925039 DOI: 10.1016/j.fct.2023.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Mechanical strain plays a crucial role in chondrocyte apoptosis and osteoarthritis (OA) disease progression through Piezo1. Trimethylamine-N-oxide (TMAO) is a diet-derived metabolite that correlates positively with multiple chronic diseases. Herein, we explored the potential role of TMAO in sensitizing chondrocytes to Piezo1-mediated mechanotransduction. METHODS The cytotoxicity of TMAO on chondrocytes was assayed. Piezo1 expression was measured after TMAO intervention. Pathological mechanical loading or Yoda1 (a specific Piezo1 channel activator) was administered in chondrocytes. The calcium levels and cytoskeleton in chondrocytes were observed by fluorescence microscopy. Flow cytometry, western blotting, and mitochondrial membrane potential assays were utilized to evaluate apoptosis. A rat OA model was constructed by anterior cruciate ligament transection. Hematoxylin-eosin staining, Safranin-O/Fast Green staining, immunochemistry, and TUNEL were applied to estimate OA severity. RESULTS TMAO intervention alone did not affect chondrocyte viability up to 600 μM. TMAO significantly increased Piezo1 expression and up-regulated intracellular calcium levels, further leading to cytoskeletal damage. Mechanical strain or Yoda1 treatment significantly induced chondrocyte apoptosis. Notably, TMAO intervention further aggravated chondrocyte apoptosis and cartilage destruction under pathological mechanical loading. CONCLUSION TMAO significantly up-regulated Piezo1 expression and sensitized chondrocytes to mechanical loading, which may be closely related to the pathogenesis of OA.
Collapse
Affiliation(s)
- Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuze Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
58
|
Ma Z, Hu X, Zhang Y, Li X, Chen B, An Q, Zhao Y, Zhang Y. Biomineralized Piezoelectrically Active Scaffolds for Inducing Osteogenic Differentiation. Chemistry 2023; 29:e202203166. [PMID: 36478479 DOI: 10.1002/chem.202203166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
There is an endogenous electric field in living organisms, which plays a vital role in the development and regeneration of bone tissue. Therefore, self-powered piezoelectric material for bone repair has become hot research in recent years. However, the current piezoelectric materials for tissue regeneration still have the shortcomings of lack of biological activity and three-dimensional structure. Here, we proposed a three-dimensional polyurethane foam (PUF) scaffold coated with piezoelectric poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and modified by a calcium phosphate (CaP) mineralized coating. The preferred scaffold has an open circuit voltage and short circuit current output of 5 V and 200 nA. Combining the physical and chemical properties of the CaP coating, the piezoelectric signal of PVDF-HFP and the three-dimensional structure of PUF, the scaffold exhibits superior promotion of cell osteogenic differentiation and ectopic bone formation in vivo. The mechanism is attributed to an increase in intracellular Ca2+ levels in response to chemical and piezoelectric stimulation with the material. This research not only paves the way for the application of piezoelectric scaffolds to stimulate osteoblasts differentiation in situ, but also lays the foundation for the clinical treatment of long-term osteoporosis.
Collapse
Affiliation(s)
- Zequn Ma
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.,Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Xiantong Hu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, P. R. China
| | - Yi Zhang
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Xiangming Li
- Department of Functional Materials, School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming, 525000, P. R. China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, P. R. China.,State Key Laboratory of Military Stomatology, Xi'an, 710032, P. R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
59
|
The Impact of Plasma Membrane Ion Channels on Bone Remodeling in Response to Mechanical Stress, Oxidative Imbalance, and Acidosis. Antioxidants (Basel) 2023; 12:antiox12030689. [PMID: 36978936 PMCID: PMC10045377 DOI: 10.3390/antiox12030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical–physical features of the matrix, while others may come from the ‘outer’ environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events.
Collapse
|
60
|
Li J, Wang X, Li X, Liu D, Zhai L, Wang X, Kang R, Yokota H, Yang L, Zhang P. Mechanical Loading Promotes the Migration of Endogenous Stem Cells and Chondrogenic Differentiation in a Mouse Model of Osteoarthritis. Calcif Tissue Int 2023; 112:363-376. [PMID: 36566445 DOI: 10.1007/s00223-022-01052-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is a major health problem, characterized by progressive cartilage degeneration. Previous works have shown that mechanical loading can alleviate OA symptoms by suppressing catabolic activities. This study evaluated whether mechanical loading can enhance anabolic activities by facilitating the recruitment of stem cells for chondrogenesis. We evaluated cartilage degradation in a mouse model of OA through histology with H&E and safranin O staining. We also evaluated the migration and chondrogenic ability of stem cells using in vitro assays, including immunohistochemistry, immunofluorescence, and Western blot analysis. The result showed that the OA mice that received mechanical loading exhibited resilience to cartilage damage. Compared to the OA group, mechanical loading promoted the expression of Piezo1 and the migration of stem cells was promoted via the SDF-1/CXCR4 axis. Also, the chondrogenic differentiation was enhanced by the upregulation of SOX9, a transcription factor important for chondrogenesis. Collectively, the results revealed that mechanical loading facilitated cartilage repair by promoting the migration and chondrogenic differentiation of endogenous stem cells. This study provided new insights into the loading-driven engagement of endogenous stem cells and the enhancement of anabolic responses for the treatment of OA.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoyu Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xuetong Wang
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Kang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
61
|
Qiu X, Deng Z, Wang M, Feng Y, Bi L, Li L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum Cell 2023; 36:540-553. [PMID: 36580272 DOI: 10.1007/s13577-022-00853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Piezo ion channel is a mechanosensitive protein on the cell membrane, which contains Piezo1 and Piezo2. Piezo channels are activated by mechanical forces, including stretch, matrix stiffness, static pressure, and shear stress. Piezo channels transmit mechanical signals that cause different downstream responses in the differentiation process, including integrin signaling pathway, ERK1/2 MAPK signaling pathway, Notch signaling, and WNT signaling pathway. In the fate of stem cell differentiation, scientists found differences in Piezo channel expression and found that Piezo channel expression is related to developmental diseases. Here, we briefly review the structure and function of Piezo channels and the relationship between Piezo and mechanical signals, discussing the current understanding of the role of Piezo channels in stem cell fate and associated molecules and developmental diseases. Ultimately, we believe this review will help identify the association between Piezo channels and stem cell fate.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhuoyue Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meijing Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuqi Feng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
62
|
Kao TW, Liu YS, Yang CY, Lee OKS. Mechanotransduction of mesenchymal stem cells and hemodynamic implications. CHINESE J PHYSIOL 2023; 66:55-64. [PMID: 37082993 DOI: 10.4103/cjop.cjop-d-22-00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the capacity for self-renewal and multipotency. The traditional approach to manipulating MSC's fate choice predominantly relies on biochemical stimulation. Accumulating evidence also suggests the role of physical input in MSCs differentiation. Therefore, investigating mechanotransduction at the molecular level and related to tissue-specific cell functions sheds light on the responses secondary to mechanical forces. In this review, a new frontier aiming to optimize the cultural parameters was illustrated, i.e. spatial boundary condition, which recapitulates in vivo physiology and facilitates the investigations of cellular behavior. The concept of mechanical memory was additionally addressed to appreciate how MSCs store imprints from previous culture niches. Besides, different types of forces as physical stimuli were of interest based on the association with the respective signaling pathways and the differentiation outcome. The downstream mechanoreceptors and their corresponding effects were further pinpointed. The cardiovascular system or immune system may share similar mechanisms of mechanosensing and mechanotransduction; for example, resident stem cells in a vascular wall and recruited MSCs in the bloodstream experience mechanical forces such as stretch and fluid shear stress. In addition, baroreceptors or mechanosensors of endothelial cells detect changes in blood flow, pass over signals induced by mechanical stimuli and eventually maintain arterial pressure at the physiological level. These mechanosensitive receptors transduce pressure variation and regulate endothelial barrier functions. The exact signal transduction is considered context dependent but still elusive. In this review, we summarized the current evidence of how mechanical stimuli impact MSCs commitment and the underlying mechanisms. Future perspectives are anticipated to focus on the application of cardiovascular bioengineering and regenerative medicine.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Shiuan Liu
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University; Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Stem Cell Research Center, National Yang Ming Chiao Tung University; Department of Medical Research, Taipei Veterans General Hospital, Taipei; Department of Orthopedics, China Medical University Hospital; Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
63
|
Wang J, Sun YX, Li J. The role of mechanosensor Piezo1 in bone homeostasis and mechanobiology. Dev Biol 2023; 493:80-88. [PMID: 36368521 DOI: 10.1016/j.ydbio.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Bones and articular cartilage are important load-bearing tissues. The fluid flow inside the bone cells and cell interaction with the extracellular matrix serve as the mechanical cues for bones and joints. Piezo1 is an ion channel found on the cell surface of many cell types, including osteocytes and chondrocytes. It is activated in response to mechanical stimulation, which subsequently mediates a variety of signaling pathways in osteoblasts, osteocytes, and chondrocytes. Piezo1 activation in osteoblastic cells positively regulates osteogenesis, while its activation in joints mediates cartilage degradation. This review focuses on the most recent research on Piezo1 in bone development and regeneration.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, NO.155 Nanjing North Street, Shenyang City, Liaoning Province, 110000, China.
| | - Yong-Xin Sun
- Department of Rehabilitation, The First Affiliated Hospital of China Medical University, NO.155 Nanjing North Street, Shenyang City, Liaoning Province, 110000, China.
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL 306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
64
|
Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res 2022; 10:65. [PMID: 36411278 PMCID: PMC9678891 DOI: 10.1038/s41413-022-00234-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, our scientific interest in spaceflight has grown exponentially and resulted in a thriving area of research, with hundreds of astronauts spending months of their time in space. A recent shift toward pursuing territories farther afield, aiming at near-Earth asteroids, the Moon, and Mars combined with the anticipated availability of commercial flights to space in the near future, warrants continued understanding of the human physiological processes and response mechanisms when in this extreme environment. Acute skeletal loss, more severe than any bone loss seen on Earth, has significant implications for deep space exploration, and it remains elusive as to why there is such a magnitude of difference between bone loss on Earth and loss in microgravity. The removal of gravity eliminates a critical primary mechano-stimulus, and when combined with exposure to both galactic and solar cosmic radiation, healthy human tissue function can be negatively affected. An additional effect found in microgravity, and one with limited insight, involves changes in dynamic fluid flow. Fluids provide the most fundamental way to transport chemical and biochemical elements within our bodies and apply an essential mechano-stimulus to cells. Furthermore, the cell cytoplasm is not a simple liquid, and fluid transport phenomena together with viscoelastic deformation of the cytoskeleton play key roles in cell function. In microgravity, flow behavior changes drastically, and the impact on cells within the porous system of bone and the influence of an expanding level of adiposity are not well understood. This review explores the role of interstitial fluid motion and solute transport in porous bone under two different conditions: normogravity and microgravity.
Collapse
|
65
|
Szabó L, Balogh N, Tóth A, Angyal Á, Gönczi M, Csiki DM, Tóth C, Balatoni I, Jeney V, Csernoch L, Dienes B. The mechanosensitive Piezo1 channels contribute to the arterial medial calcification. Front Physiol 2022; 13:1037230. [PMID: 36439266 PMCID: PMC9685409 DOI: 10.3389/fphys.2022.1037230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 07/27/2023] Open
Abstract
Vascular calcification (VC) is associated with a number of cardiovascular diseases, as well as chronic kidney disease. The role of smooth muscle cells (SMC) has already been widely explored in VC, as has the role of intracellular Ca2+ in regulating SMC function. Increased intracellular calcium concentration ([Ca2+]i) in vascular SMC has been proposed to stimulate VC. However, the contribution of the non-selective Piezo1 mechanosensitive cation channels to the elevation of [Ca2+]i, and consequently to the process of VC has never been examined. In this work the essential contribution of Piezo1 channels to arterial medial calcification is demonstrated. The presence of Piezo1 was proved on human aortic smooth muscle samples using immunohistochemistry. Quantitative PCR and Western blot analysis confirmed the expression of the channel on the human aortic smooth muscle cell line (HAoSMC). Functional measurements were done on HAoSMC under control and calcifying condition. Calcification was induced by supplementing the growth medium with inorganic phosphate (1.5 mmol/L, pH 7.4) and calcium (CaCl2, 0.6 mmol/L) for 7 days. Measurement of [Ca2+]i using fluorescent Fura-2 dye upon stimulation of Piezo1 channels (either by hypoosmolarity, or Yoda1) demonstrated significantly higher calcium transients in calcified as compared to control HAoSMCs. The expression of mechanosensitive Piezo1 channel is augmented in calcified arterial SMCs leading to a higher calcium influx upon stimulation. Activation of the channel by Yoda1 (10 μmol/L) enhanced calcification of HAoSMCs, while Dooku1, which antagonizes the effect of Yoda1, reduced this amplification. Application of Dooku1 alone inhibited the calcification. Knockdown of Piezo1 by siRNA suppressed the calcification evoked by Yoda1 under calcifying conditions. Our results demonstrate the pivotal role of Piezo1 channels in arterial medial calcification.
Collapse
Affiliation(s)
- László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Angyal
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
| | - Dávid Máté Csiki
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Tóth
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
66
|
Lin Y, Ren J, McGrath C. Mechanosensitive Piezo1 and Piezo2 ion channels in craniofacial development and dentistry: Recent advances and prospects. Front Physiol 2022; 13:1039714. [PMID: 36338498 PMCID: PMC9633653 DOI: 10.3389/fphys.2022.1039714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Mechanical forces play important roles in many biological processes and there is increasing interest and understanding of these roles. Mechanotransduction is the process by which mechanical stimuli are converted to biochemical signals through specific mechanisms, and this results in the activation of downstream signaling pathways with specific effects on cell behaviors. This review systematically summarizes the current understanding of the mechanosensitive Piezo1 and Piezo2 ion channels in craniofacial bone, tooth, and periodontal tissue, presenting the latest relevant evidence with implications for potential treatments and managements of dental and orofacial diseases and deformities. The mechanosensitive ion channels Piezo1 and Piezo2 are widely expressed in various cells and tissues and have essential functions in mechanosensation and mechanotransduction. These channels play an active role in many physiological and pathological processes, such as growth and development, mechano-stimulated bone homeostasis and the mediation of inflammatory responses. Emerging evidence indicates the expression of Piezo1 and Piezo2 in bone, dental tissues and dental tissue-derived stem cells and suggests that they function in dental sensation transduction, dentin mineralization and periodontal bone remodeling and modulate orthodontic tooth movement.
Collapse
|
67
|
Yang J, Wu J, Guo Z, Zhang G, Zhang H. Iron Oxide Nanoparticles Combined with Static Magnetic Fields in Bone Remodeling. Cells 2022; 11:cells11203298. [PMID: 36291164 PMCID: PMC9600888 DOI: 10.3390/cells11203298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) are extensively used in bone-related studies as biomaterials due to their unique magnetic properties and good biocompatibility. Through endocytosis, IONPs enter the cell where they promote osteogenic differentiation and inhibit osteoclastogenesis. Static magnetic fields (SMFs) were also found to enhance osteoblast differentiation and hinder osteoclastic differentiation. Once IONPs are exposed to an SMF, they become rapidly magnetized. IONPs and SMFs work together to synergistically enhance the effectiveness of their individual effects on the differentiation and function of osteoblasts and osteoclasts. This article reviewed the individual and combined effects of different types of IONPs and different intensities of SMFs on bone remodeling. We also discussed the mechanism underlying the synergistic effects of IONPs and SMFs on bone remodeling.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiawen Wu
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Zengfeng Guo
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Gejing Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hao Zhang
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
- Correspondence: ; Tel.: +86-13823352822
| |
Collapse
|
68
|
Fuest S, Post C, Balbach ST, Jabar S, Neumann I, Schimmelpfennig S, Sargin S, Nass E, Budde T, Kailayangiri S, Altvater B, Ranft A, Hartmann W, Dirksen U, Rössig C, Schwab A, Pethő Z. Relevance of Abnormal KCNN1 Expression and Osmotic Hypersensitivity in Ewing Sarcoma. Cancers (Basel) 2022; 14:4819. [PMID: 36230742 PMCID: PMC9564116 DOI: 10.3390/cancers14194819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery.
Collapse
Affiliation(s)
- Sebastian Fuest
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | - Christoph Post
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | - Sebastian T Balbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Susanne Jabar
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Ilka Neumann
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | | | - Sarah Sargin
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | - Elke Nass
- Institute of Physiology I, University Münster, 48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, University Münster, 48149 Münster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Andreas Ranft
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Münster, 48149 Münster, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University Münster, 48149 Münster, Germany
| |
Collapse
|
69
|
Rendon CJ, Flood E, Thompson JM, Chirivi M, Watts SW, Contreras GA. PIEZO1 mechanoreceptor activation reduces adipogenesis in perivascular adipose tissue preadipocytes. Front Endocrinol (Lausanne) 2022; 13:995499. [PMID: 36120469 PMCID: PMC9471253 DOI: 10.3389/fendo.2022.995499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
During hypertension, vascular remodeling allows the blood vessel to withstand mechanical forces induced by high blood pressure (BP). This process is well characterized in the media and intima layers of the vessel but not in the perivascular adipose tissue (PVAT). In PVAT, there is evidence for fibrosis development during hypertension; however, PVAT remodeling is poorly understood. In non-PVAT depots, mechanical forces can affect adipogenesis and lipogenic stages in preadipocytes. In tissues exposed to high magnitudes of pressure like bone, the activation of the mechanosensor PIEZO1 induces differentiation of progenitor cells towards osteogenic lineages. PVAT's anatomical location continuously exposes it to forces generated by blood flow that could affect adipogenesis in normotensive and hypertensive states. In this study, we hypothesize that activation of PIEZO1 reduces adipogenesis in PVAT preadipocytes. The hypothesis was tested using pharmacological and mechanical activation of PIEZO1. Thoracic aorta PVAT (APVAT) was collected from 10-wk old male SD rats (n=15) to harvest preadipocytes that were differentiated to adipocytes in the presence of the PIEZO1 agonist Yoda1 (10 µM). Mechanical stretch was applied with the FlexCell System at 12% elongation, half-sine at 1 Hz simultaneously during the 4 d of adipogenesis (MS+, mechanical force applied; MS-, no mechanical force used). Yoda1 reduced adipogenesis by 33% compared with CON and, as expected, increased cytoplasmic Ca2+ flux. MS+ reduced adipogenesis efficiency compared with MS-. When Piezo1 expression was blocked with siRNA [siPiezo1; NC=non-coding siRNA], the anti-adipogenic effect of Yoda1 was reversed in siPiezo1 cells but not in NC; in contrast, siPiezo1 did not alter the inhibitory effect of MS+ on adipogenesis. These data demonstrate that PIEZO1 activation in PVAT reduces adipogenesis and lipogenesis and provides initial evidence for an adaptive response to excessive mechanical forces in PVAT during hypertension.
Collapse
Affiliation(s)
- C. Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Emma Flood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Janice M. Thompson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
70
|
Li Q, Wang Z, Wang C, Wang HL. Characterizing the respiratory-induced mechanical stimulation at the maxillary sinus floor following sinus augmentation by computational fluid dynamics. Front Bioeng Biotechnol 2022; 10:885130. [PMID: 35957638 PMCID: PMC9360545 DOI: 10.3389/fbioe.2022.885130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Background: The relationship between maxillary sinus pneumatization and respiratory-induced fluid mechanics remains unclear. The purpose of this study was to simulate and measure the respiratory-induced mechanical stimulation at the sinus floor under different respiratory conditions and to investigate its potential effect on the elevated sinus following sinus-lifting procedures. Methods: The nasal airway together with the bilateral maxillary sinuses of the selected patient was segmented and digitally modeled from a computed tomographic image. The sinus floors of the models were elevated by simulated sinus augmentations using computer-aided design. The numerical simulations of sinus fluid motion under different respiratory conditions were performed using a computational fluid dynamics (CFD) algorithm. Sinus wall shear stress and static pressure on the pre-surgical and altered sinus floors were examined and quantitatively compared. Results: Streamlines with minimum airflow velocity were visualized in the sinus. The sinus floor pressure and the wall shear stress increased with the elevated inlet flow rate, but the magnitude of these mechanical stimulations remained at a negligible level. The surgical technique and elevated height had no significant influence on the wall pressure and the fluid mechanics. Conclusion: This study shows that respiratory-induced mechanical stimulation in the sinus floor is negligible before and after sinus augmentation.
Collapse
Affiliation(s)
- Qing Li
- Center of Digital Dentistry, Second Clinical Division, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zhongyu Wang
- Center of Digital Dentistry, Second Clinical Division, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Chao Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- *Correspondence: Chao Wang, ; Hom-Lay Wang,
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- *Correspondence: Chao Wang, ; Hom-Lay Wang,
| |
Collapse
|
71
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
72
|
Lin CY, Song X, Ke Y, Raha A, Wu Y, Wasi M, Wang L, Geng F, You L. Yoda1 Enhanced Low-Magnitude High-Frequency Vibration on Osteocytes in Regulation of MDA-MB-231 Breast Cancer Cell Migration. Cancers (Basel) 2022; 14:3395. [PMID: 35884459 PMCID: PMC9324638 DOI: 10.3390/cancers14143395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Low-magnitude (≤1 g) high-frequency (≥30 Hz) (LMHF) vibration has been shown to enhance bone mineral density. However, its regulation in breast cancer bone metastasis remains controversial for breast cancer patients and elder populations. Yoda1, an activator of the mechanosensitive Piezo1 channel, could potentially intensify the effect of LMHF vibration by enhancing the mechanoresponse of osteocytes, the major mechanosensory bone cells with high expression of Piezo1. In this study, we treated osteocytes with mono- (Yoda1 only or vibration only) or combined treatment (Yoda1 and LMHF vibration) and examined the further regulation of osteoclasts and breast cancer cells through the conditioned medium. Moreover, we studied the effects of combined treatment on breast cancer cells in regulation of osteocytes. Combined treatment on osteocytes showed beneficial effects, including increasing the nuclear translocation of Yes-associated protein (YAP) in osteocytes (488.0%, p < 0.0001), suppressing osteoclastogenesis (34.3%, p = 0.004), and further reducing migration of MDA-MB-231 (15.1%, p = 0.02) but not Py8119 breast cancer cells (4.2%, p = 0.66). Finally, MDA-MB-231 breast cancer cells subjected to the combined treatment decreased the percentage of apoptotic osteocytes (34.5%, p = 0.04) but did not affect the intracellular calcium influx. This study showed the potential of stimulating Piezo1 in enhancing the mechanoresponse of osteocytes to LMHF vibration and further suppressing breast cancer migration via osteoclasts.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
| | - Xin Song
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
| | - Yaji Ke
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
| | - Arjun Raha
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Yuning Wu
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Murtaza Wasi
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (M.W.); (L.W.)
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (M.W.); (L.W.)
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
| |
Collapse
|
73
|
Wang B, Li G, Zhu Q, Liu W, Ke W, Hua W, Zhou Y, Zeng X, Sun X, Wen Z, Yang C, Pan Y. Bone Repairment via Mechanosensation of Piezo1 Using Wearable Pulsed Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201056. [PMID: 35652171 DOI: 10.1002/smll.202201056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Bone repair in real time is a challenging medical issue for elderly patients; this is mainly because aged bone marrow mesenchymal stem cells (BMSCs) possess limited osteogenesis potential and repair capacity. In this study, triboelectric stimulation technology is used to achieve bone repair via mechanosensation of Piezo1 by fabricating a wearable pulsed triboelectric nanogenerator (WP-TENG) driven by human body movement. A peak value of 30 µA has the optimal effects to rejuvenate aged BMSCs, enhance their osteogenic differentiation, and promote human umbilical vein endothelial cell tube formation. Further, previous studies demonstrate that triboelectric stimulation of a WP-TENG can reinforce osteogenesis of BMSCs and promote the angiogenesis of human umbilical vein endothelial cells (HUVECs). Mechanistically, aged BMSCs are rejuvenated by triboelectric stimulation via the mechanosensitive ion channel Piezo1. Thus, the osteogenesis potential of BMSCs is enhanced and the tube formation capacity of HUVECs is improved, which is further confirmed by augmented bone repair and regeneration in in vivo investigations. This study provides a potential signal transduction mechanism for rejuvenating aged BMSCs and a theoretical basis for bone regeneration using triboelectric stimulation generated by a WP-TENG.
Collapse
Affiliation(s)
- Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianqian Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xianlin Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
74
|
Nie X, Chung MK. Piezo channels for skeletal development and homeostasis: Insights from mouse genetic models. Differentiation 2022; 126:10-15. [DOI: 10.1016/j.diff.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
|
75
|
Yuan J, Ye Z, Zeng Y, Pan Z, Feng Z, Bao Y, Li Y, Liu X, He Y, Feng Q. Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Mater Today Bio 2022; 15:100318. [PMID: 35734197 PMCID: PMC9207581 DOI: 10.1016/j.mtbio.2022.100318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 10/26/2022] Open
Abstract
Bone tumor patients often face the problems with cancer cell residues and bone defects after the operation. Therefore, researchers have developed many bifunctional scaffolds with both tumor treatment and bone repair functions. Therapeutic agents are usually combined with bioactive scaffolds to achieve the "bifunctional". However, the synergistic effect of bifunctional scaffolds on tumor therapy and bone repair, as well as the interplay between therapeutic agents and scaffold materials in bifunctional scaffolds, have not been emphasized and discussed. This review proposes a promising design scheme for bifunctional scaffolds: the synergistic effect and interplay between the therapeutic agents and scaffold materials. This review summarizes the latest research progress in bifunctional scaffolds for therapeutic applications and regeneration. In particular, it summarizes the role of tumor therapeutic agents in bone regeneration and the role of scaffold materials in tumor treatment. Finally, a perspective on the future development of bifunctional scaffolds for tumor therapy and bone regeneration is discussed.
Collapse
Affiliation(s)
- Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - ZhenZhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingling Feng
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
76
|
Sautchuk R, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep 2022; 16:101594. [PMID: 35669927 PMCID: PMC9162940 DOI: 10.1016/j.bonr.2022.101594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| |
Collapse
|
77
|
Li X, Hu J, Zhao X, Li J, Chen Y. Piezo channels in the urinary system. Exp Mol Med 2022; 54:697-710. [PMID: 35701561 PMCID: PMC9256749 DOI: 10.1038/s12276-022-00777-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Piezo channel family, including Piezo1 and Piezo2, includes essential mechanosensitive transduction molecules in mammals. Functioning in the conversion of mechanical signals to biological signals to regulate a plethora of physiological processes, Piezo channels, which have a unique homotrimeric three-blade propeller-shaped structure, utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways. Piezo channels have a wide range of biological roles in various human systems, both in vitro and in vivo. Currently, there is a lack of comprehensive understanding of their antagonists and agonists, and therefore further investigation is needed. Remarkably, increasingly compelling evidence demonstrates that Piezo channel function in the urinary system is important. This review article systematically summarizes the existing evidence of the importance of Piezo channels, including protein structure, mechanogating mechanisms, and pharmacological characteristics, with a particular focus on their physiological and pathophysiological roles in the urinary system. Collectively, this review aims to provide a direction for future clinical applications in urinary system diseases.
Collapse
Affiliation(s)
- Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Junwei Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xuedan Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Juanjuan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
78
|
Jia Y, Yao Y, Zhuo L, Chen X, Yan C, Ji Y, Tao J, Zhu Y. Aerobic Physical Exercise as a Non-medical Intervention for Brain Dysfunction: State of the Art and Beyond. Front Neurol 2022; 13:862078. [PMID: 35645958 PMCID: PMC9136296 DOI: 10.3389/fneur.2022.862078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Brain disorders, including stroke, Alzheimer's disease, depression, and chronic pain, are difficult to effectively treat. These major brain disorders have high incidence and mortality rates in the general population, and seriously affect not only the patient's quality of life, but also increases the burden of social medical care. Aerobic physical exercise is considered an effective adjuvant therapy for preventing and treating major brain disorders. Although the underlying regulatory mechanisms are still unknown, systemic processes may be involved. Here, this review aimed to reveal that aerobic physical exercise improved depression and several brain functions, including cognitive functions, and provided chronic pain relief. We concluded that aerobic physical exercise helps to maintain the regulatory mechanisms of brain homeostasis through anti-inflammatory mechanisms and enhanced synaptic plasticity and inhibition of hippocampal atrophy and neuronal apoptosis. In addition, we also discussed the cross-system mechanisms of aerobic exercise in regulating imbalances in brain function, such as the “bone-brain axis.” Furthermore, our findings provide a scientific basis for the clinical application of aerobic physical exercise in the fight against brain disorders.
Collapse
Affiliation(s)
- Yuxiang Jia
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Yu Yao
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Limin Zhuo
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingxing Chen
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cuina Yan
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Yonghua Ji
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jie Tao
| | - Yudan Zhu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yudan Zhu
| |
Collapse
|
79
|
Zhou Y, Zhang C, Zhou Z, Zhang C, Wang J. Identification of Key Genes and Pathways Associated with PIEZO1 in Bone-Related Disease Based on Bioinformatics. Int J Mol Sci 2022; 23:5250. [PMID: 35563641 PMCID: PMC9104149 DOI: 10.3390/ijms23095250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
PIEZO1 is a mechano-sensitive ion channel that can sense various forms of mechanical stimuli and convert them into biological signals, affecting bone-related diseases. The present study aimed to identify key genes and signaling pathways in Piezo1-regulated bone-related diseases and to explain the potential mechanisms using bioinformatic analysis. The differentially expressed genes (DEGs) in tendon, femur, and humerus bone tissue; cortical bone; and bone-marrow-derived macrophages were identified with the criteria of |log2FC| > 1 and adjusted p-value < 0.05 analysis based on a dataset from GSE169261, GSE139121, GSE135282, and GSE133069, respectively, and visualized in a volcano plot. Venn diagram analyses were performed to identify the overlapping DEGs expressed in the above-mentioned tissues. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein−protein interaction (PPI) analysis, and module analysis were also conducted. Furthermore, qRT-PCR was performed to validate the above results using primary chondrocytes. As a result, a total of 222 overlapping DEGs and 12 mostly overlapping DEGs were identified. Key Piezo1-related genes, such as Lcn2, Dkk3, Obscn, and Tnnt1, were identified, and pathways, such as Wnt/β-catenin and PI3k-Akt, were also identified. The present informatic study provides insight, for the first time, into the potential therapeutic targets of Piezo1-regulated bone-related diseases
Collapse
Affiliation(s)
- Yuanyuan Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Chen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Zhongguo Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane City 4072, Australia;
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| |
Collapse
|
80
|
Tang H, Zeng R, He E, Zhang I, Ding C, Zhang A. Piezo-Type Mechanosensitive Ion Channel Component 1 (Piezo1): A Promising Therapeutic Target and Its Modulators. J Med Chem 2022; 65:6441-6453. [DOI: 10.1021/acs.jmedchem.2c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hairong Tang
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruoqing Zeng
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ende He
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Chunyong Ding
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ao Zhang
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Lingang National Laboratory, Shanghai 200210,China
| |
Collapse
|
81
|
Kong K, Chang Y, Hu Y, Qiao H, Zhao C, Rong K, Zhang P, Zhang J, Zhai Z, Li H. TiO2 Nanotubes Promote Osteogenic Differentiation Through Regulation of Yap and Piezo1. Front Bioeng Biotechnol 2022; 10:872088. [PMID: 35464728 PMCID: PMC9023332 DOI: 10.3389/fbioe.2022.872088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
Surface modification of titanium has been a hot topic to promote bone integration between implants and bone tissue. Titanium dioxide nanotubes fabricated on the surface of titanium by anodic oxidation have been a mature scheme that has shown to promote osteogenesis in vitro. However, mechanisms behind such a phenomenon remain elusive. In this study, we verified the enhanced osteogenesis of BMSCs on nanotopographic titanium in vitro and proved its effect in vivo by constructing a bone defect model in rats. In addition, the role of the mechanosensitive molecule Yap is studied in this research by the application of the Yap inhibitor verteporfin and knockdown/overexpression of Yap in MC3T3-E1 cells. Piezo1 is a mechanosensitive ion channel discovered in recent years and found to be elemental in bone metabolism. In our study, we preliminarily figured out the regulatory relationship between Yap and Piezo1 and proved Piezo1 as a downstream effector of Yap and nanotube-stimulated osteogenesis. In conclusion, this research proved that nanotopography promoted osteogenesis by increasing nuclear localization of Yap and activating the expression of Piezo1 downstream.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huiwu Li
- *Correspondence: Zanjing Zhai, ; Huiwu Li,
| |
Collapse
|
82
|
Store-Operated Ca 2+ Entry Contributes to Piezo1-Induced Ca 2+ Increase in Human Endometrial Stem Cells. Int J Mol Sci 2022; 23:ijms23073763. [PMID: 35409116 PMCID: PMC8998223 DOI: 10.3390/ijms23073763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial mesenchymal stem cells (eMSCs) are a specific class of stromal cells which have the capability to migrate, develop and differentiate into different types of cells such as adipocytes, osteocytes or chondrocytes. It is this unique plasticity that makes the eMSCs significant for cellular therapy and regenerative medicine. Stem cells choose their way of development by analyzing the extracellular and intracellular signals generated by a mechanical force from the microenvironment. Mechanosensitive channels are part of the cellular toolkit that feels the mechanical environment and can transduce mechanical stimuli to intracellular signaling pathways. Here, we identify previously recorded, mechanosensitive (MS), stretch-activated channels as Piezo1 proteins in the plasma membrane of eMSCs. Piezo1 activity triggered by the channel agonist Yoda1 elicits influx of Ca2+, a known modulator of cytoskeleton reorganization and cell motility. We found that store-operated Ca2+ entry (SOCE) formed by Ca2+-selective channel ORAI1 and Ca2+ sensors STIM1/STIM2 contributes to Piezo1-induced Ca2+ influx in eMSCs. Particularly, the Yoda1-induced increase in intracellular Ca2+ ([Ca2+]i) is partially abolished by 2-APB, a well-known inhibitor of SOCE. Flow cytometry analysis and wound healing assay showed that long-term activation of Piezo1 or SOCE does not have a cytotoxic effect on eMSCs but suppresses their migratory capacity and the rate of cell proliferation. We propose that the Piezo1 and SOCE are both important determinants in [Ca2+]i regulation, which critically affects the migratory activity of eMSCs and, therefore, could influence the regenerative potential of these cells.
Collapse
|
83
|
Ma N, Chen D, Lee JH, Kuri P, Hernandez EB, Kocan J, Mahmood H, Tichy ED, Rompolas P, Mourkioti F. Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states. SCIENCE ADVANCES 2022; 8:eabn0485. [PMID: 35302846 PMCID: PMC8932657 DOI: 10.1126/sciadv.abn0485] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/26/2022] [Indexed: 05/08/2023]
Abstract
Muscle stem cells (MuSCs) are essential for tissue homeostasis and regeneration, but the potential contribution of MuSC morphology to in vivo function remains unknown. Here, we demonstrate that quiescent MuSCs are morphologically heterogeneous and exhibit different patterns of cellular protrusions. We classified quiescent MuSCs into three functionally distinct stem cell states: responsive, intermediate, and sensory. We demonstrate that the shift between different stem cell states promotes regeneration and is regulated by the sensing protein Piezo1. Pharmacological activation of Piezo1 is sufficient to prime MuSCs toward more responsive cells. Piezo1 deletion in MuSCs shifts the distribution toward less responsive cells, mimicking the disease phenotype we find in dystrophic muscles. We further demonstrate that Piezo1 reactivation ameliorates the MuSC morphological and regenerative defects of dystrophic muscles. These findings advance our fundamental understanding of how stem cells respond to injury and identify Piezo1 as a key regulator for adjusting stem cell states essential for regeneration.
Collapse
Affiliation(s)
- Nuoying Ma
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia Chen
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ji-Hyung Lee
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paola Kuri
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Blake Hernandez
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Kocan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamd Mahmood
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elisia D. Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
84
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
85
|
Mine Y, Okuda K, Yoshioka R, Sasaki Y, Peng TY, Kaku M, Yoshiko Y, Nikawa H, Murayama T. Occlusal Trauma and Bisphosphonate-Related Osteonecrosis of the Jaw in Mice. Calcif Tissue Int 2022; 110:380-392. [PMID: 34580750 DOI: 10.1007/s00223-021-00916-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023]
Abstract
Osteonecrosis of the jaw (ONJ) is a serious adverse event that is associated with antiresorptive agents, and it manifests as bone exposure in the maxillofacial region. Previous clinical reports suggest that mechanical trauma would trigger ONJ in a manner that is similar to tooth extractions. To the best of our knowledge, there have been few detailed pathophysiological investigations of the mechanisms by which occlusal/mechanical trauma influences ONJ. Here, we developed a novel mouse model that exhibits ONJ following experimental hyperocclusion and nitrogen-containing bisphosphonate (N-BP) treatment. This in vivo model exhibited ONJ in alveolar bone, particularly in the mandible. Moreover, the experimental hyperocclusion induced remarkable alveolar bone resorption in both mouse mandible and maxilla, whereas N-BP treatment completely prevented alveolar bone resorption. In this study, we also modeled trauma by exposing clumps of mesenchymal stem cells (MSCs)/extracellular matrix complex to hydrostatic pressure in combination with N-BP. Hydrostatic pressure loading induced lactate dehydrogenase (LDH) release by calcified cell clumps that were differentiated from MSCs; this LDH release was enhanced by N-BP priming. These in vivo and in vitro models may contribute further insights into the effect of excessive mechanical loading on ONJ onset in patients with occlusal trauma.
Collapse
Affiliation(s)
- Yuichi Mine
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
| | - Karin Okuda
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Reina Yoshioka
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Yuuki Sasaki
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Tzu-Yu Peng
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
- Department of Anatomy and Functional Restorations, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Masato Kaku
- Department of Anatomy and Functional Restorations, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Takeshi Murayama
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
86
|
Fang Y, Li Q, Li X, Luo GH, Kuang SJ, Luo XS, Li QQ, Yang H, Liu Y, Deng CY, Xue YM, Wu SL, Rao F. Piezo1 Participated in Decreased L-Type Calcium Current Induced by High Hydrostatic Pressure via. CaM/Src/Pitx2 Activation in Atrial Myocytes. Front Cardiovasc Med 2022; 9:842885. [PMID: 35252406 PMCID: PMC8891577 DOI: 10.3389/fcvm.2022.842885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypertension is a major cardiovascular risk factor for atrial fibrillation (AF) worldwide. However, the role of mechanical stress caused by hypertension on downregulating the L-type calcium current (ICa,L), which is vital for AF occurrence, remains unclear. Therefore, the aim of the present study was to investigate the role of Piezo1, a mechanically activated ion channel, in the decrease of ICa,L in response to high hydrostatic pressure (HHP, one of the principal mechanical stresses) at 40 mmHg, and to elucidate the underlying pathways. Experiments were conducted using left atrial appendages from patients with AF, spontaneously hypertensive rats (SHRs) treated with valsartan (Val) at 30 mg/kg/day and atrium-derived HL-1 cells exposed to HHP. The protein expression levels of Piezo1, Calmodulin (CaM), and Src increased, while that of the L-type calcium channel a1c subunit protein (Cav1.2) decreased in the left atrial tissue of AF patients and SHRs. SHRs were more vulnerable to AF, with decreased ICa,L and shortened action potential duration, which were ameliorated by Val treatment. Validation of these results in HL-1 cells in the context of HHP also demonstrated that Piezo1 is required for the decrease of ICa,L by regulating Ca2+ transient and activating CaM/Src pathway to increase the expression of paired like homeodomain-2 (Pitx2) in atrial myocytes. Together, these data demonstrate that HHP stimulation increases AF susceptibility through Piezo1 activation, which is required for the decrease of ICa,Lvia. the CaM/Src/Pitx2 pathway in atrial myocytes.
Collapse
Affiliation(s)
- Yuan Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qian Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guan-Hao Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Su-Juan Kuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Shan Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiao-Qiao Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu-Mei Xue
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shu-Lin Wu
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Fang Rao
| |
Collapse
|
87
|
Reeh PW, Fischer MJM. Nobel somatosensations and pain. Pflugers Arch 2022; 474:405-420. [PMID: 35157132 PMCID: PMC8924131 DOI: 10.1007/s00424-022-02667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are shortly treated.
Collapse
|
88
|
Zhang M, Che C, Cheng J, Li P, Yang Y. Ion channels in stem cells and their roles in stem cell biology and vascular diseases. J Mol Cell Cardiol 2022; 166:63-73. [PMID: 35143836 DOI: 10.1016/j.yjmcc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
Stem cell therapy may be a promising option for the treatment of vascular diseases. In recent years, significant progress has been made in stem cell research, especially in the mechanism of stem cell activation, homing and differentiation in vascular repair and reconstruction. Current research on stem cells focuses on protein expression and transcriptional networks. Ion channels are considered to be the basis for the generation of bioelectrical signals, which control the proliferation, differentiation and migration of various cell types. Although heterogeneity of multiple ion channels has been found in different types of stem cells, it is unclear whether the heterogeneous expression of ion channels is related to different cell subpopulations and/or different stages of the cell cycle. There is still a long way to go in clinical treatment by using the regulation of stem cell ion channels. In this review, we reviewed the main ion channels found on stem cells, their expression and function in stem cell proliferation, differentiation and migration, and the research status of stem cells' involvement in vascular diseases.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Chang Che
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China.
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China.
| |
Collapse
|
89
|
Ambattu LA, Gelmi A, Yeo LY. Short-Duration High Frequency MegaHertz-Order Nanomechanostimulation Drives Early and Persistent Osteogenic Differentiation in Mesenchymal Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106823. [PMID: 35023629 DOI: 10.1002/smll.202106823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Stem cell fate can be directed through the application of various external physical stimuli, enabling a controlled approach to targeted differentiation. Studies involving the use of dynamic mechanical cues driven by vibrational excitation to date have, however, been limited to low frequency (Hz to kHz) forcing over extended durations (typically continuous treatment for >7 days). Contrary to previous assertions that there is little benefit in applying frequencies beyond 1 kHz, we show here that high frequency MHz-order mechanostimulation in the form of nanoscale amplitude surface reflected bulk waves are capable of triggering differentiation of human mesenchymal stem cells from various donor sources toward an osteoblast lineage, with early, short time stimuli inducing long-term osteogenic commitment. More specifically, rapid treatments (10 min daily over 5 days) of the high frequency (10 MHz) mechanostimulation are shown to trigger significant upregulation in early osteogenic markers (RUNX2, COL1A1) and sustained increase in late markers (osteocalcin, osteopontin) through a mechanistic pathway involving piezo channel activation and Rho-associated protein kinase signaling. Given the miniaturizability and low cost of the devices, the possibility for upscaling the platform toward practical bioreactors, to address a pressing need for more efficient stem cell differentiation technologies in the pursuit of translatable regenerative medicine strategies, is ensivaged.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Amy Gelmi
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
90
|
Sun Y, Wan B, Wang R, Zhang B, Luo P, Wang D, Nie JJ, Chen D, Wu X. Mechanical Stimulation on Mesenchymal Stem Cells and Surrounding Microenvironments in Bone Regeneration: Regulations and Applications. Front Cell Dev Biol 2022; 10:808303. [PMID: 35127684 PMCID: PMC8815029 DOI: 10.3389/fcell.2022.808303] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023] Open
Abstract
Treatment of bone defects remains a challenge in the clinic. Artificial bone grafts are the most promising alternative to autologous bone grafting. However, one of the limiting factors of artificial bone grafts is the limited means of regulating stem cell differentiation during bone regeneration. As a weight-bearing organ, bone is in a continuous mechanical environment. External mechanical force, a type of biophysical stimulation, plays an essential role in bone regeneration. It is generally accepted that osteocytes are mechanosensitive cells in bone. However, recent studies have shown that mesenchymal stem cells (MSCs) can also respond to mechanical signals. This article reviews the mechanotransduction mechanisms of MSCs, the regulation of mechanical stimulation on microenvironments surrounding MSCs by modulating the immune response, angiogenesis and osteogenesis, and the application of mechanical stimulation of MSCs in bone regeneration. The review provides a deep and extensive understanding of mechanical stimulation mechanisms, and prospects feasible designs of biomaterials for bone regeneration and the potential clinical applications of mechanical stimulation.
Collapse
Affiliation(s)
- Yuyang Sun
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Ben Wan
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Bowen Zhang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Diaodiao Wang
- Department of Joint Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Jing-Jun Nie, ; Dafu Chen,
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Jing-Jun Nie, ; Dafu Chen,
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
91
|
Deng R, Li C, Wang X, Chang L, Ni S, Zhang W, Xue P, Pan D, Wan M, Deng L, Cao X. Periosteal CD68 + F4/80 + Macrophages Are Mechanosensitive for Cortical Bone Formation by Secretion and Activation of TGF-β1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103343. [PMID: 34854257 PMCID: PMC8787385 DOI: 10.1002/advs.202103343] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Indexed: 05/16/2023]
Abstract
Mechanical force regulates bone density, modeling, and homeostasis. Substantial periosteal bone formation is generated by external mechanical stimuli, yet its mechanism is poorly understood. Here, it is shown that myeloid-lineage cells differentiate into subgroups and regulate periosteal bone formation in response to mechanical loading. Mechanical loading on tibiae significantly increases the number of periosteal myeloid-lineage cells and the levels of active transforming growth factor β (TGF-β), resulting in cortical bone formation. Knockout of Tgfb1 in myeloid-lineage cells attenuates mechanical loading-induced periosteal bone formation in mice. Moreover, CD68+ F4/80+ macrophages, a subtype of myeloid-lineage cells, express and activate TGF-β1 for recruitment of osteoprogenitors. Particularly, mechanical loading induces the differentiation of periosteal CD68+ F4/80- myeloid-lineage cells to the CD68+ F4/80+ macrophages via signaling of piezo-type mechanosensitive ion channel component 1 (Piezo1) for TGF-β1 secretion. Importantly, CD68+ F4/80+ macrophages activate TGF-β1 by expression and secretion of thrombospondin-1 (Thbs1). Administration of Thbs1 inhibitor significantly impairs loading-induced TGF-β activation and recruitment of osteoprogenitors in the periosteum. The results suggest that periosteal myeloid-lineage cells respond to mechanical forces and consequently produce and activate TGF-β1 for periosteal bone formation.
Collapse
Affiliation(s)
- Ruoxian Deng
- Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreMD21205USA
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Xiao Wang
- Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Leilei Chang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Shuangfei Ni
- Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Weixin Zhang
- Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Peng Xue
- Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Dayu Pan
- Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Xu Cao
- Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreMD21205USA
| |
Collapse
|
92
|
Piezo1 activation induces fibronectin reduction and PGF2α secretion via arachidonic acid cascade. Exp Eye Res 2021; 215:108917. [PMID: 34973946 DOI: 10.1016/j.exer.2021.108917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 01/13/2023]
Abstract
Glaucoma is a neurodegenerative disease that leads to blindness, and lowering intraocular pressure (IOP) is very important in glaucoma treatment. The trabecular meshwork is responsible for aqueous humor outflow, and the accumulation of fibronectin in trabecular meshwork is known to cause ocular hypertension. We have already shown that Piezo1 activation has an IOP lowering effect in mice and suppresses fibronectin expression level in human trabecular meshwork cells (HTMC). In this study, we report the mechanism of the reduction of fibronectin caused by Piezo1 activation. Activation of Piezo1 in HTMC showed increased expression of matrix metalloproteinase-2 (MMP-2) and cyclooxygenase (COX)-2, and decreased fibronectin expression. In addition, Piezo1 activation enhanced phosphorylation of cytosolic phospholipase A2 (cPLA2), and inhibitors targeting cPLA2 and COX-2 suppressed Yoda 1, a Piezo1 agonist, induced fibronectin reduction. These results indicate that the arachidonic acid cascade underlies this reaction, and, in support of this hypothesis, activation of Piezo1 promoted secretion of prostaglandin F2α (PGF2α) in HTMC. These results indicate that the activation of Piezo1 in HTMC promotes the degrading of fibronectin by promoting the arachidonic acid cascade and increasing the expression of PGF2α and MMP-2.
Collapse
|
93
|
Jiang Y, Guan Y, Lan Y, Chen S, Li T, Zou S, Hu Z, Ye Q. Mechanosensitive Piezo1 in Periodontal Ligament Cells Promotes Alveolar Bone Remodeling During Orthodontic Tooth Movement. Front Physiol 2021; 12:767136. [PMID: 34880779 PMCID: PMC8645976 DOI: 10.3389/fphys.2021.767136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023] Open
Abstract
Orthodontic tooth movement (OTM) is a process depending on the remodeling of periodontal tissues surrounding the roots. Orthodontic forces trigger the conversion of mechanical stimuli into intercellular chemical signals within periodontal ligament (PDL) cells, activating alveolar bone remodeling, and thereby, initiating OTM. Recently, the mechanosensitive ion channel Piezo1 has been found to play pivotal roles in the different types of human cells by transforming external physical stimuli into intercellular chemical signals. However, the function of Piezo1 during the mechanotransduction process of PDL cells has rarely been reported. Herein, we established a rat OTM model to study the potential role of Piezo1 during the mechanotransduction process of PDL cells and investigate its effects on the tension side of alveolar bone remodeling. A total of 60 male Sprague-Dawley rats were randomly assigned into three groups: the OTM + inhibitor (INH) group, the OTM group, and the control (CON) group. Nickel-titanium orthodontic springs were applied to trigger tooth movement. Mice were sacrificed on days 0, 3, 7, and 14 after orthodontic movement for the radiographic, histological, immunohistochemical, and molecular biological analyses. Our results revealed that the Piezo1 channel was activated by orthodontic force and mainly expressed in the PDL cells during the whole tooth movement period. The activation of the Piezo1 channel was essential for maintaining the rate of orthodontic tooth movement and facilitation of new alveolar bone formation on the tension side. Reduced osteogenesis-associated transcription factors such as Runt-related transcription factor 2 (RUNX2), Osterix (OSX), and receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio were examined when the function of Piezo1 was inhibited. In summary, Piezo1 plays a critical role in mediating both the osteogenesis and osteoclastic activities on the tension side during OTM.
Collapse
Affiliation(s)
- Yukun Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuzhe Guan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanchen Lan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiai Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
94
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
95
|
Wang L, Liu X, Zhang K, Liu Z, Yi Q, Jiang J, Xia Y. A bibliometric analysis and review of recent researches on Piezo (2010-2020). Channels (Austin) 2021; 15:310-321. [PMID: 33722169 PMCID: PMC7971259 DOI: 10.1080/19336950.2021.1893453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Lifu Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Xuening Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Kun Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Zhongcheng Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Qiong Yi
- The Second Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Jin Jiang
- Department of Orthopedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yayi Xia
- Department of Orthopedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, China
| |
Collapse
|
96
|
Liang W, Wu X, Dong Y, Chen X, Zhou P, Xu F. Mechanical stimuli-mediated modulation of bone cell function-implications for bone remodeling and angiogenesis. Cell Tissue Res 2021; 386:445-454. [PMID: 34665321 DOI: 10.1007/s00441-021-03532-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Bone remodeling, expressed as bone formation and turnover, is a complex and dynamic process closely related to its form and function. Different events, such as development, aging, and function, play a critical role in bone remodeling and metabolism. The ability of the bone to adapt to new loads and forces has been well known and has proven useful in orthopedics and insightful for research in bone and cell biology. Mechanical stimulation is one of the most important drivers of bone metabolism. Interestingly, different types of forces will have specific consequences in bone remodeling, and their beneficial effects can be traced using different biomarkers. In this narrative review, we summarize the major mediators and events in bone remodeling, focusing on the effects of mechanical stimulation on bone metabolism, cell populations, and ultimately, bone health.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
97
|
Qin L, He T, Chen S, Yang D, Yi W, Cao H, Xiao G. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res 2021; 9:44. [PMID: 34667178 PMCID: PMC8526690 DOI: 10.1038/s41413-021-00168-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanotransduction is a fundamental ability that allows living organisms to receive and respond to physical signals from both the external and internal environments. The mechanotransduction process requires a range of special proteins termed mechanotransducers to convert mechanical forces into biochemical signals in cells. The Piezo proteins are mechanically activated nonselective cation channels and the largest plasma membrane ion channels reported thus far. The regulation of two family members, Piezo1 and Piezo2, has been reported to have essential functions in mechanosensation and transduction in different organs and tissues. Recently, the predominant contributions of the Piezo family were reported to occur in the skeletal system, especially in bone development and mechano-stimulated bone homeostasis. Here we review current studies focused on the tissue-specific functions of Piezo1 and Piezo2 in various backgrounds with special highlights on their importance in regulating skeletal cell mechanotransduction. In this review, we emphasize the diverse functions of Piezo1 and Piezo2 and related signaling pathways in osteoblast lineage cells and chondrocytes. We also summarize our current understanding of Piezo channel structures and the key findings about PIEZO gene mutations in human diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Sheng Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
98
|
Kasprzycka W, Trębińska-Stryjewska A, Lewandowski RB, Stępińska M, Osuchowska PN, Dobrzyńska M, Achour Y, Osuchowski ŁP, Starzyński J, Mierczyk Z, Trafny EA. Nanosecond Pulsed Electric Field Only Transiently Affects the Cellular and Molecular Processes of Leydig Cells. Int J Mol Sci 2021; 22:ijms222011236. [PMID: 34681896 PMCID: PMC8541366 DOI: 10.3390/ijms222011236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to verify whether the nanosecond pulsed electric field, not eliciting thermal effects, permanently changes the molecular processes and gene expression of Leydig TM3 cells. The cells were exposed to a moderate electric field (80 quasi-rectangular shape pulses, 60 ns pulse width, and an electric field of 14 kV/cm). The putative disturbances were recorded over 24 h. After exposure to the nanosecond pulsed electric field, a 19% increase in cell diameter, a loss of microvilli, and a 70% reduction in cell adhesion were observed. Some cells showed the nonapoptotic externalization of phosphatidylserine through the pores in the plasma membrane. The cell proportion in the subG1 phase increased by 8% at the expense of the S and G2/M phases, and the DNA was fragmented in a small proportion of the cells. The membrane mitochondrial potential and superoxide content decreased by 37% and 23%, respectively. Microarray’s transcriptome analysis demonstrated a negative transient effect on the expression of genes involved in oxidative phosphorylation, DNA repair, cell proliferation, and the overexpression of plasma membrane proteins. We conclude that nanosecond pulsed electric field affected the physiology and gene expression of TM3 cells transiently, with a noticeable heterogeneity of cellular responses.
Collapse
Affiliation(s)
- Wiktoria Kasprzycka
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Alicja Trębińska-Stryjewska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Rafał Bogdan Lewandowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Małgorzata Stępińska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Paulina Natalia Osuchowska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Monika Dobrzyńska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Yahia Achour
- Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; (Y.A.); (J.S.)
| | - Łukasz Paweł Osuchowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Jacek Starzyński
- Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; (Y.A.); (J.S.)
| | - Zygmunt Mierczyk
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Elżbieta Anna Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
- Correspondence:
| |
Collapse
|
99
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
100
|
Role of K + and Ca 2+-Permeable Channels in Osteoblast Functions. Int J Mol Sci 2021; 22:ijms221910459. [PMID: 34638799 PMCID: PMC8509041 DOI: 10.3390/ijms221910459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Bone-forming cells or osteoblasts play an important role in bone modeling and remodeling processes. Osteoblast differentiation or osteoblastogenesis is orchestrated by multiple intracellular signaling pathways (e.g., bone morphogenetic proteins (BMP) and Wnt signaling pathways) and is modulated by the extracellular environment (e.g., parathyroid hormone (PTH), vitamin D, transforming growth factor β (TGF-β), and integrins). The regulation of bone homeostasis depends on the proper differentiation and function of osteoblast lineage cells from osteogenic precursors to osteocytes. Intracellular Ca2+ signaling relies on the control of numerous processes in osteoblast lineage cells, including cell growth, differentiation, migration, and gene expression. In addition, hyperpolarization via the activation of K+ channels indirectly promotes Ca2+ signaling in osteoblast lineage cells. An improved understanding of the fundamental physiological and pathophysiological processes in bone homeostasis requires detailed investigations of osteoblast lineage cells. This review summarizes the current knowledge on the functional impacts of K+ channels and Ca2+-permeable channels, which critically regulate Ca2+ signaling in osteoblast lineage cells to maintain bone homeostasis.
Collapse
|