51
|
Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J 2021; 12:559-587. [PMID: 34950252 PMCID: PMC8648878 DOI: 10.1007/s13167-021-00257-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
AbstractInflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hallmark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predictive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
Collapse
|
52
|
Junior, Lai YS, Nguyen HT, Salmanida FP, Chang KT. MERTK +/hi M2c Macrophages Induced by Baicalin Alleviate Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:10604. [PMID: 34638941 PMCID: PMC8508959 DOI: 10.3390/ijms221910604] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. An accumulation of fat, followed by inflammation, is the major cause of NAFLD progression. During inflammation, macrophages are the most abundant immune cells recruited to the site of injury. Macrophages are classified into "proinflammatory" M1 macrophages, and "anti-inflammatory" M2 macrophages. In NAFLD, M1 macrophages are the most prominent macrophages that lead to an excessive inflammatory response. Previously, we found that baicalin could polarize macrophages into anti-inflammatory M2c subtype macrophages with an increased level of MERTK expression. Several studies have also shown a strong correlation between MERTK expression and cholesterol efflux, efferocytosis, as well as phagocytosis capability. Therefore, in this study, we aim to elucidate the potential and efficacy of mononuclear-cell (MNC)-derived MERTK+/hi M2c macrophages induced by baicalin as a cell-based therapy for NAFLD treatment. In our results, we have demonstrated that a MERTK+/hi M2c macrophage injection to NAFLD mice contributes to an increased level of serum HDL secretion in the liver, a decline in the circulating CD4+CD25- and CD8+CD25- T cells and lowers the total NAFLD pathological score by lessening the inflammation, necrosis, and fibrosis. In the liver, profibrotic COL1A1 and FN, proinflammation TNFα, as well as the regulator of lipid metabolism PPARɣ expression, were also downregulated after injection. In parallel, the transcriptomic profiles of the injected MERTK+/hi M2c macrophages showed that the various genes directly or indirectly involved in NAFLD progression (e.g., SERPINE1, FADS2) were also suppressed. Downregulation of cytokines and inflammation-associated genes, such as CCR5, may promote a pro-resolving milieu in the NAFLD liver. Altogether, cell-based therapy using MERTK+/hi M2c macrophages is promising, as it ameliorates NAFLD in mice.
Collapse
Affiliation(s)
- Junior
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (J.); (H.T.N.); (F.P.S.)
| | - Yin-Siew Lai
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Huyen Thi Nguyen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (J.); (H.T.N.); (F.P.S.)
| | - Farrah P. Salmanida
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (J.); (H.T.N.); (F.P.S.)
| | - Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (J.); (H.T.N.); (F.P.S.)
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
53
|
Wang X, Zhang Y, Zhang S, Duan L. Baicalin exerts anti-tumor effects in oral squamous cell carcinoma by inhibiting the microRNA-106b-5p-Wnt/β-catenin pathway via upregulating disabled homolog 2. Arch Oral Biol 2021; 130:105219. [PMID: 34364169 DOI: 10.1016/j.archoralbio.2021.105219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the role and molecular regulatory mechanisms of baicalin in oral squamous cell carcinoma (OSCC) progression. DESIGN Gene expression in OSCC cells was detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR). OSCC cell viability, migration, invasion and stemness were measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), wound healing, Transwell, and sphere formation assays. The target genes of miR-106b-5p were predicted using bioinformatic tools. The interaction between microRNA-miR-106b-5p (miR-106b-5p) and disabled homolog 2 (DAB2) was confirmed by a luciferase reporter assay. TOP/FOP-Flash reporter assay and western blot analysis were used to analyze the activity of the Wnt/β-catenin pathway. RESULTS Baicalin inhibited OSCC cell viability, migration, invasion, and stemness. Baicalin downregulated miR-106b-5p expression. In addition, MiR-106b-5p upregulation reversed the effects of baicalin on OSCC cells. As a target gene of miR-106b-5p, DAB2 was negatively regulated by miR-106b-5p and upregulated by baicalin in OSCC cells. MiR-106b-5p activated Wnt/β-catenin pathway in OSCC cells by inhibiting DAB2. Baicalin suppressed Wnt/β-catenin pathway by upregulating DAB2. In rescue assays, miR-106b-5p overexpression-induced promotion of OSCC cellular processes was attenuated by DAB2 upregulation. CONCLUSIONS Baicalin exerts anti-tumor effects in OSCC by inhibiting the miR-106b-5p-Wnt/β-catenin pathway via upregulating DAB2.
Collapse
Affiliation(s)
- Xia Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yang Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Shiyu Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
54
|
Zurlo M, Romagnoli R, Oliva P, Gasparello J, Finotti A, Gambari R. Synergistic effects of the combined treatment of U251 and T98G glioma cells with an anti‑tubulin tetrahydrothieno[2,3‑c]pyridine derivative and a peptide nucleic acid targeting miR‑221‑3p. Int J Oncol 2021; 59:61. [PMID: 34278445 PMCID: PMC8295028 DOI: 10.3892/ijo.2021.5241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
In the development of novel and more effective anti-cancer approaches, combined treatments appear to be of great interest, based on the possibility of obtaining relevant biological or therapeutic effects using lower concentrations of single drugs. Combination therapy may prove to be of utmost significance in the management of glioblastoma (GBM), a lethal malignancy that accounts for 42% of cancer cases of the central nervous system, with a median survival rate of 15 months. As regards novel therapeutic approaches, the authors have recently demonstrated that peptide nucleic acids (PNAs) that target microRNA (miRNA/miR)-221 are very active in inducing the apoptosis of glioma cells. Furthermore, in a recent study, the authors described two novel series of tubulin polymerization inhibitors based on the 4,5,6,7-tetrahydrothieno[2,3-c]pyridine and 4,5,6,7-tetrahydrobenzo[b]thiophene scaffold, which exerted a potent anti-proliferative effect on a variety of tumor cell lines. The present study aimed to verify the activity on glioblastoma cancer cell lines of one of the most active compounds tested, corresponding to 2-(3′, 4′, 5′-trimethoxyanilino)-3-cyano/alkoxycarbonyl-6-substituted-4 5,6,7-tetrahydrothiene[2,3-c] pyridine (compound 3b), used in combination with an anti-miR-221-3p PNA, already demonstrated to be able to induce high levels of apoptosis. To the best of our knowledge, the results obtained herein demonstrate for the first time a 'combination therapy' performed by the combined use of a PNA targeting miR-221 and the tetrahydrothiene[2,3-c]pyridine derivative 3b, supporting the concept that the combined treatment of GBM cells with a PNA against a specific upregulated oncomiRNA (in the present study a PNA targeting miR-221-3p was used) and anti-tubulin agents (in the present study derivative 3b was used) is an encouraging strategy which may be used to enhance the efficacy of anticancer therapies and at the same time, to reduce side-effects.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, Ferrara University, I‑44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara University, I‑44121 Ferrara, Italy
| | - Paola Oliva
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara University, I‑44121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, I‑44121 Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, I‑44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, I‑44121 Ferrara, Italy
| |
Collapse
|
55
|
Zhang W, Liu Q, Luo L, Song J, Han K, Liu R, Gong Y, Guo X. Use Chou's 5-steps rule to study how Baicalin suppresses the malignant phenotypes and induces the apoptosis of colorectal cancer cells. Arch Biochem Biophys 2021; 705:108919. [PMID: 33992597 DOI: 10.1016/j.abb.2021.108919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/20/2023]
Abstract
Baicalin is a traditional Chinese herb purified from the root of Scutellaria baicalensis Georgi. In this study, we further analyzed the molecular mechanism behind the anti-tumor activity of Baicalin in colorectal cancer (CRC). The establishment of circular RNA (circRNA)/microRNA (miRNA)/messenger RNA (mRNA) axis was predicted by bioinformatic databases and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Baicalin dose-dependently reduced the expression of circRNA myosin heavy chain 9 (circMYH9) in CRC cells. Baicalin exposure suppressed the malignant phenotypes of CRC cells, which were largely reversed by the overexpression of circMYH9. CircMYH9 functioned as a molecular sponge for miR-761. CircMYH9 overexpression protected CRC cells from Baicalin-induced injury partly through down-regulating miR-761. MiR-761 interacted with the 3' untranslated region (3' UTR) of hepatoma-derived growth factor (HDGF) mRNA. CircMYH9 up-regulated HDGF expression partly through sponging miR-761 in CRC cells. MiR-761 silencing counteracted the anti-tumor activity of Baicalin partly through up-regulating HDGF in CRC cells. Baicalin suppresses xenograft tumor growth in vivo, and this suppressive effect was partly reversed by the overexpression of circMYH9. In conclusion, Baicalin exhibited an anti-tumor activity in CRC cells partly through down-regulating circMYH9 and HDGF and up-regulating miR-761.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Quanlin Liu
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China.
| | - Linshan Luo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Jingfeng Song
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Keshun Han
- Department of Constipation, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Ruitao Liu
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Yuesheng Gong
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Xiaoran Guo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| |
Collapse
|
56
|
Zhao L, Xiong M, Liu Y. Baicalin enhances the proliferation and invasion of trophoblasts and suppresses vascular endothelial damage by modulating long non-coding RNA NEAT1/miRNA-205-5p in hypertensive disorder complicating pregnancy. J Obstet Gynaecol Res 2021; 47:3060-3070. [PMID: 34101306 DOI: 10.1111/jog.14789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022]
Abstract
AIM Trophoblastic and vascular endothelial injuries were closely associated with the pathogenesis of hypertensive disorder complicating pregnancy (HDCP). The present study was designed to determine the functional role of baicalin in the proliferation and invasion of trophoblasts and vascular endothelial injury. METHODS Ang II was adopted to stimulate HTR-8/SVneo and human umbilical vein endothelial cells (HUVECs). Cell viability was examined by CCK-8 assay. Flow cytometry and TUNEL staining determined cell apoptosis. Invasive ability of HTR-8/SVneo cells was measured by transwell assay. In vitro angiogenesis of HUVECs was assessed by Tube formation assay. In addition, the production of reactive oxygen species (ROS) was determined by DCFH-DA staining. Furthermore, long non-coding RNA (lncRNA) NEAT1 and miRNA-205-5p levels were detected using real-time quantitative polymerase chain reaction and the binding relationship between lncRNA NEAT1 and miRNA-205-5p was verified by dual-luciferase reporter assay. Moreover, interactions among lncRNA NEAT1, miRNA-205-5p, and MMP9 or vascular endothelial growth factor (VEGF) were confirmed by RNA immunoprecipitation assay. RESULTS Baicalin visibly improved cell viability, reduced the apoptosis of Ang II-stimulated HTR-8/SVneo and HUVEC cells, and repressed overproduction of ROS. Additionally, baicalin promoted the invasion of Ang II-stimulated HTR-8/SVneo cells and induced a stronger in vitro angiogenesis of Ang II-stimulated HUVECs. What's more, baicalin upregulated lncRNA NEAT1 expression and downregulated miR-205-5p expression. LncRNA NEAT1 sponged miR-205-5p and inhibited the combination of miR-205-5p and MMP9 or VEGF. CONCLUSIONS Baicalin can facilitate the proliferation and invasion of trophoblasts and alleviate vascular endothelial damage by upregulating lncRNA NEAT1 to impede the interaction between miR-205-5p and MMP9 or VEGF.
Collapse
Affiliation(s)
- Lidong Zhao
- Department of Emergency Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai, China
| | - Miao Xiong
- Department of Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai, China
| | - Yang Liu
- Department of Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
57
|
Godzieba M, Ciesielski S. Natural DNA Intercalators as Promising Therapeutics for Cancer and Infectious Diseases. Curr Cancer Drug Targets 2021; 20:19-32. [PMID: 31589125 DOI: 10.2174/1568009619666191007112516] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, the improper use of drugs, or their abuse are conducive to the increase of morbidity and mortality caused by these diseases. The imperfections of drugs currently used in therapy for these diseases and the increasing problem of drug resistance have forced a search for new substances with therapeutic potential. Throughout history, plants, animals, fungi and microorganisms have been rich sources of biologically active compounds. Even today, despite the development of chemistry and the introduction of many synthetic chemotherapeutics, a substantial part of the new compounds being tested for treatment are still of natural origin. Natural compounds exhibit a great diversity of chemical structures, and thus possess diverse mechanisms of action and molecular targets. Nucleic acids seem to be a good molecular target for substances with anticancer potential in particular, but they may also be a target for antimicrobial compounds. There are many types of interactions of small-molecule ligands with DNA. This publication focuses on the intercalation process. Intercalators are compounds that usually have planar aromatic moieties and can insert themselves between adjacent base pairs in the DNA helix. These types of interactions change the structure of DNA, leading to various types of disorders in the functioning of cells and the cell cycle. This article presents the most promising intercalators of natural origin, which have aroused interest in recent years due to their therapeutic potential.
Collapse
Affiliation(s)
- Martyna Godzieba
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| |
Collapse
|
58
|
Zhao F, Zhao Z, Han Y, Li S, Liu C, Jia K. Baicalin suppresses lung cancer growth phenotypes via miR-340-5p/NET1 axis. Bioengineered 2021; 12:1699-1707. [PMID: 33955315 PMCID: PMC8806212 DOI: 10.1080/21655979.2021.1922052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a malignant disease, lung cancer has a high morbidity and mortality rate. Baicalin is derived from Radix Scutellariae and has anti-tumor effects, however, its role in lung cancer remains unknown. Here, functional assays suggested baicalin suppressed in vitro lung cancer phenotypes. We used micro (mi)RNA array analysis to explore baicalin effects on miRNA expression. We observed baicalin increased miR-340-5p expression, whereas inhibition of this expression abolished anti-tumor effects of baicalin. Furthermore, neuroepithelial cell transforming 1 (NET1) functioned as a miR-340-5p target, and acted in a baicalin-dependent manner to regulate lung cancer progression. Thus, baicalin elicited antitumor activities by affecting the miR-340-5p/NET1 axis, suggesting a new approach to lung cancer clinical management.
Collapse
Affiliation(s)
- Fucheng Zhao
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Zhenxia Zhao
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Yanru Han
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Sujuan Li
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Caili Liu
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Kui Jia
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| |
Collapse
|
59
|
Choi YJ, Lee J, Ha SH, Lee HK, Lim HM, Yu SH, Lee CM, Nam MJ, Yang YH, Park K, Choi YS, Jang KY, Park SH. 6,8-Diprenylorobol induces apoptosis in human colon cancer cells via activation of intracellular reactive oxygen species and p53. ENVIRONMENTAL TOXICOLOGY 2021; 36:914-925. [PMID: 33382531 DOI: 10.1002/tox.23093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
6,8-Diprenylorobol is a natural compound mainly found in Glycyrrhiza uralensis fisch and Maclura tricuspidata, which has been used traditionally as food and medicine in Asia. So far, the antiproliferative effect of 6,8-diprenylorobol has not been studied yet in colon cancer. In this study, we aimed to evaluate the antiproliferative effects of 6,8-diprenylorobol in LoVo and HCT15, two kinds of human colon cancer cells. 6,8-Diprenylorobol inhibited the proliferation of LoVo and HCT15 cells in a dose- and time-dependent manner. A 40 μM of 6,8-diprenylorobol for 72 h reduced both of cell viability under 50%. After treatment of 6,8-diprenylorobol (40 and 60 μM) for 72 h, late apoptotic cell portion in LoVo and HCT15 cells were 24, 70% and 13, 90%, respectively, which was confirmed by checking DNA fragmentation in both cells. Mechanistically, 6,8-diprenylorobol activated p53 and its phosphorylated form (Ser15, Ser20, and Ser46) expression but suppressed Akt and mitogen-activated protein kinases (MAPKs) phosphorylation in LoVo and HCT15 cells. Interestingly, 6,8-diprenylorobol induced the generation of intracellular reactive oxygen species (ROS), which was attenuated with N-acetyl cysteine (NAC) treatment. Compared to the control, 60 μM of 6,8-diprenylorobol caused to increase ROS level to 210% in LoVo and HCT15, which was reduced into 161% and 124%, respectively with NAC. Furthermore, cell viability and apoptotic cell portion by 6,8-diprenylorobol was recovered by incubation with NAC. Taken together, these results indicate that 6,8-diprenylorobol has the potential antiproliferative effect against LoVo and HCT15 colon cancer cells through activation of p53 and generation of ROS.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Bio and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Sang Hoon Ha
- Division of Biotechnology, Jeonbuk National University, Iksan, South Korea
| | - Han Ki Lee
- Department of Biological Science, Gachon University, Seongnam, South Korea
| | - Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam, South Korea
| | - Seon-Hak Yu
- Department of Bio and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Chang Min Lee
- Department of Bio and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, South Korea
| | - Kyungmoon Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University, Graduate School, Seoul, South Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, South Korea
| |
Collapse
|
60
|
Xu DD, Hou XY, Wang O, Wang D, Li DT, Qin SY, Lv B, Dai XM, Zhang ZJ, Wan JB, Xu FG. A four-component combination derived from Huang-Qin Decoction significantly enhances anticancer activity of irinotecan. Chin J Nat Med 2021; 19:364-375. [PMID: 33941341 DOI: 10.1016/s1875-5364(21)60034-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/30/2022]
Abstract
Huang-Qin Decoction (HQD) is a classic prescription for diarrhea in Chinese medicine treatment. Recent studies have demonstrated that HQD and its modified formulation PHY906 could ameliorate irinotecan (CPT-11) induced gastrointestinal (GI) toxicity and enhance its anticancer therapeutic efficacy. Nevertheless, which constituents in HQD are effective is still unclear so far. The study aims to screen out the key bioactive components combination from HQD that could enhance the anticancer effect of CPT-11. First, the potential bioactive constituents were obtained through system pharmacology strategy. Then the bioactivity of each constituent was investigated synthetically from the aspects of NCM460 cell migration, TNF-α release of THP-1-derived macrophage and MTT assay in HCT116 cell. The contribution of each constituent in HQD was evaluated using the bioactive index Ei, which taken the content and bioactivity into comprehensive consideration. And then, the most contributing constituents were selected out to form a key-component combination. At last, the bioefficacy of the key-component combination was validated in vitro and in vivo. As a result, a key-component combination (HB4) consisting of four compounds baicalin, baicalein, glycyrrhizic acid and wogonin was screened out. In vitro assessment indicated that HB4 could enhance the effect of CPT-11 on inhibiting cell proliferation and inducing apoptosis in HCT116. Furthermore, the in vivo study confirmed that HB4 and HQD have similar pharmacological activity and could both enhance the antitumor effect of CPT-11 in HCT116 xenograft model. Meanwhile, HB4 could also reduce the CPT-11 induced GI toxicity.
Collapse
Affiliation(s)
- Dou-Dou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Ying Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Ou Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Ting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Si-Yuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Min Dai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Zun-Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Feng-Guo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
61
|
Elango AV, Vasudevan S, Shanmugam K, Solomon AP, Neelakantan P. Exploring the anti-caries properties of baicalin against Streptococcus mutans: an in vitro study. BIOFOULING 2021; 37:267-275. [PMID: 33719751 DOI: 10.1080/08927014.2021.1897789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant-derived molecules are excellent alternatives to antibiotics as anti-infective agents owing to their minimal cytotoxicity. Herein, the anti-infective property of the hydroxyflavone baicalin, was investigated against biofilms of the key dental caries pathogen Streptococcus mutans. Baicalin inhibited sucrose-dependent biofilm formation at a concentration of 500 µg ml-1 without affecting bacterial growth. It significantly inhibited acid production for an extended period of 8 h. Microscopic analysis revealed a 6-fold reduction in the number of adhered cells with baicalin treatment. Transcriptomic analysis of the mid-log phase and biofilm cells showed marked downregulation of the virulence genes required for biofilm formation and acid production. This study sheds significant new light on the potential for baicalin to be developed into an anti-caries agent.
Collapse
Affiliation(s)
- Arval Viji Elango
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
62
|
Chandra A, Chaudhary M, Qamar I, Singh N, Nain V. In silico identification and validation of natural antiviral compounds as potential inhibitors of SARS-CoV-2 methyltransferase. J Biomol Struct Dyn 2021; 40:6534-6544. [PMID: 33583328 PMCID: PMC7885726 DOI: 10.1080/07391102.2021.1886174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The novel Coronavirus disease 2019 (COVID-19) is potentially fatal and caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Due to the unavailability of any proven treatment or vaccination, the outbreak of COVID-19 is wreaking havoc worldwide. Hence, there is an urgent need for therapeutics targeting SARS-CoV-2. Since, botanicals are an important resource for several efficacious antiviral agents, natural compounds gaining significant attention for COVID-19 treatment. In the present study, methyltranferase (MTase) of the SARS-CoV-2 is targeted using computational approach. The compounds were identified using molecular docking, virtual screening and molecular dynamics simulation studies. The binding mechanism of each compound was analyzed considering the stability and energetic parameter using in silico methods. We have found four natural antiviral compounds Amentoflavone, Baicalin, Daidzin and Luteoloside as strong inhibitors of methyltranferase of SARS-CoV-2. ADMET prediction and target analysis of the selected compounds showed favorable results. MD simulation was performed for four top-scored molecules to analyze the stability, binding mechanism and energy requirements. MD simulation studies indicated energetically favorable complex formation between MTase and the selected antiviral compounds. Furthermore, the structural effects on these substitutions were analyzed using the principles of each trajectories, which validated the interaction studies. Our analysis suggests that there is a very high probability that these compounds may have a good potential to inhibit Methyltransferase (MTase) of SARS-CoV-2 and to be used in the treatment of COVID-19. Further studies on these natural compounds may offer a quick therapeutic choice to treat COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Meenakshi Chaudhary
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
63
|
Shen J, Li P, Liu S, Liu Q, Li Y, Sun Y, He C, Xiao P. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113198. [PMID: 32739568 DOI: 10.1016/j.jep.2020.113198] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria (Lamiaceae), which includes approximately 360-469 accepted species, is widespread in Europe, North America, East Asia, and South America. Several species have a long history being used as traditional medicines to treat respiratory, peptic, neurological, and hepatic and gall diseases. The phytochemistry and pharmacology of the genus Scutellaria have been developed dramatically in the past ten years, and the traditional uses and clinical studies of the genus have not been systematically summarized. Therefore, it is especially valuable to review the current state of knowledge to provide a basis for further exploration of its medicinal potential. AIM OF THE REVIEW The review aims to provide updated information on the ethnopharmacology, the ten-year research progress of phytochemistry and pharmacology, and clinical studies of Scutellaria and to explore the potential medicinal values and further studies of Scutellaria. MATERIALS AND METHODS This review is based on published studies and books from the library and electronic sources, including SciFinder, Scopus, PubMed, Web of Science, Baidu Scholar, CNKI, the online ethnobotanical database, and ethnobotanical monographs. This literature is related to ethnopharmacology, the ten-year research progress on the phytochemistry and pharmacology, and clinical studies of Scutellaria. RESULTS A total of 50 species, 5 subspecies and 17 varieties of the genus Scutellaria are used as traditional medicine with various biological activities. In the past ten years, 208 chemical constituents have been identified from 16 species and 1 variety of the genus Scutellaria, such as neo-clerodane diterpenoids, sesterterpenoids, terpenoids, flavonoids. Pharmacological research has demonstrated that the extracts and compounds identified from this genus exhibit extensive biological activities, including anticancer, antioxidant, anti-inflammatory, antiviral and antibacterial activities, effects on cardiovascular, cerebrovascular diseases as well as hepatoprotective and neuroprotective effects. The species S. baicalensis, S. barbata, and S. lateriflora and the main compounds baicalein, baicalin and wogonin are involved in clinical trials, which point the way for us to conduct further studies, such as study on the anticancer, antihypertensive, anti-infective, anti-inflammatory, neuroprotective and other effects of Scutellaria. CONCLUSIONS The species included in the genus Scutellaria can be used to treat cancer, infection, hepatic disorders, cardiovascular and cerebrovascular diseases, neurodegenerative diseases, and other diseases. Some indications in traditional medicines have been confirmed by modern pharmacological studies, such as anticancer, anti-inflammatory, anti-infective activity, and hepatoprotective and neuroprotective effects. The available literature indicated that most of the bioactivities could be attributed to flavonoids and neo-clerodane diterpenoids. Although there are some uses of Scutellaria in clinical practice, the existing research on this genus is still limited. In order to expand the development of medicinal resources of Scutellaria, the already studied species in this genus are recommended for more comprehensive investigation on their active substances, pharmacological mechanisms, quality control, clinical use and new drug research. Additionally, it is necessary to study species that their chemical composition or pharmacological activity have not yet been investigated, especially those used in folk medicine.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Pei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Shuangshuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Qing Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yuhua Sun
- Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
64
|
Hu Q, Zhang W, Wu Z, Tian X, Xiang J, Li L, Li Z, Peng X, Wei S, Ma X, Zhao Y. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol Res 2021; 165:105444. [PMID: 33493657 DOI: 10.1016/j.phrs.2021.105444] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
With the development of high-throughput screening and bioinformatics technology, natural products with a range of pharmacological targets in multiple diseases have become important sources of new drug discovery. These compounds are derived from various plants, including the dried root of Scutellaria baicalensis Georgi, which is often used as a traditional Chinese herb named Huangqin, a popular medication used for thousands of years in China. Many studies have shown that baicalin, an extract from Scutellaria baicalensis Georgi, exerts various protective effects on liver and gut diseases. Baicalin plays a therapeutic role mainly by mediating downstream apoptosis and immune response pathways induced by upstream oxidative stress and inflammation. During oxidative stress regulation, PI3K/Akt/NRF2, Keap-1, NF-κB and HO-1 are key factors associated with the healing effects of baicalin on NAFLD/NASH, ulcerative colitis and cholestasis. In the inflammatory response, IL-6, IL-1β, TNF-α, MIP-2 and MIP-1α are involved in the alleviation of NAFLD/NASH, cholestasis and liver fibrosis by baicalin, as are TGF-β1/Smads, STAT3 and NF-κB. Regarding the apoptosis pathway, Bax, Bcl-2, Caspase-3 and Caspase-9 are key factors related to the suppression of hepatocellular carcinoma and attenuation of liver injury and colorectal cancer. In addition to immune regulation, PD-1/PDL-1 and TLR4-NF-κB are correlated with the alleviation of hepatocellular carcinoma, ulcerative colitis and colorectal cancer by baicalin. Moreover, baicalin regulates intestinal flora by promoting the production of SCFAs. Furthermore, BA is involved in the interactions of the liver-gut axis by regulating TGR5, FXR, bile acids and the microbiota. In general, a comprehensive analysis of this natural compound was conducted to determine the mechanism by which it regulates bile acid metabolism, the intestinal flora and related signaling pathways, providing new insights into the pharmacological effects of baicalin. The mechanism linking the liver and gut systems needs to be elucidated to draw attention to its great clinical importance.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhihao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shizhang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
65
|
Ghosh K, Amin SA, Gayen S, Jha T. Chemical-informatics approach to COVID-19 drug discovery: Exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors. J Mol Struct 2021; 1224:129026. [PMID: 32834115 PMCID: PMC7405777 DOI: 10.1016/j.molstruc.2020.129026] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
As the world struggles against current global pandemic of novel coronavirus disease (COVID-19), it is challenging to trigger drug discovery efforts to search broad-spectrum antiviral agents. Thus, there is a need of strong and sustainable global collaborative works especially in terms of new and existing data analysis and sharing which will join the dots of knowledge gap. Our present chemical-informatics based data analysis approach is an attempt of application of previous activity data of SARS-CoV main protease (Mpro) inhibitors to accelerate the search of present SARS-CoV-2 Mpro inhibitors. The study design was composed of three major aspects: (1) classification QSAR based data mining of diverse SARS-CoV Mpro inhibitors, (2) identification of favourable and/or unfavourable molecular features/fingerprints/substructures regulating the Mpro inhibitory properties, (3) data mining based prediction to validate recently reported virtual hits from natural origin against SARS-CoV-2 Mpro enzyme. Our Structural and physico-chemical interpretation (SPCI) analysis suggested that heterocyclic nucleus like diazole, furan and pyridine have clear positive contribution while, thiophen, thiazole and pyrimidine may exhibit negative contribution to the SARS-CoV Mpro inhibition. Several Monte Carlo optimization based QSAR models were developed and the best model was used for screening of some natural product hits from recent publications. The resulted active molecules were analysed further from the aspects of fragment analysis. This approach set a stage for fragment exploration and QSAR based screening of active molecules against putative SARS-CoV-2 Mpro enzyme. We believe the future in vitro and in vivo studies would provide more perspectives for anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, 470003, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, 470003, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, 700032, India
| |
Collapse
|
66
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
67
|
Goldstein J, Nuñez-Goluboay K, Pinto A. Therapeutic Strategies to Protect the Central Nervous System against Shiga Toxin from Enterohemorrhagic Escherichia coli. Curr Neuropharmacol 2021; 19:24-44. [PMID: 32077828 PMCID: PMC7903495 DOI: 10.2174/1570159x18666200220143001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.
Collapse
Affiliation(s)
- Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Krista Nuñez-Goluboay
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| |
Collapse
|
68
|
Baicalin mediated regulation of key signaling pathways in cancer. Pharmacol Res 2020; 164:105387. [PMID: 33352232 DOI: 10.1016/j.phrs.2020.105387] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Baicalin has been widely investigated against different types of malignancies both at the cellular and molecular levels over the past few years. Due to its remarkable anti-proliferative potential in numerous cancer cell lines, it has created immense interest as a potential chemotherapeutic modality compared to other flavonoids. Thus, this review focuses on the recent accomplishments of baicalin and its limitations in cancer prevention and treatment. Further, combination studies and nanoformulations using baicalin to treat cancer along with the metabolism, bioavailability, toxicity, and pharmacokinetics have been discussed. The present review explains biological source, and anti-proliferative potential of baicalin against cancers including breast, colon, hepatic, leukemia, lung, and skin, as well as the relevant mechanism of action to modulate diverse signaling pathways including apoptosis, cell cycle, invasion, and migration, angiogenesis, and autophagy. The anticancer mechanism of baicalin in orthotropic and xenograft mice models have been deliberated. The combination studies of baicalin in novel therapies as chemotherapeutic adjuvants have also been summarized. The low bioavailability, fast metabolism, and poor solubility, and other significant factors that limit the clinical use of baicalin have been examined as a challenge. The improvement in the pharmacokinetics and pharmacodynamics of baicalin with newer approaches and the gaps are highlighted, which could establish baicalin as an effective and safe compound for cancer treatment as well as help to translate its potential from bench to bedside.
Collapse
|
69
|
Yan Z, Huang C, Huang G, Wu Y, Wang J, Yi J, Mao W, Wang W. The effect of Jiedu Huoxue decoction on rat model of experimental nonbacterial prostatitis via regulation of miRNAs. PHARMACEUTICAL BIOLOGY 2020; 58:745-759. [PMID: 32758035 PMCID: PMC7470117 DOI: 10.1080/13880209.2020.1797124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT The underlying mechanisms of Jiedu Huoxue decoction (JDHXD) in treating chronic prostatitis have not been fully explored. OBJECTIVE This study investigates the miRNAs as potential biomarkers and the effect of JDHXD on the rat model of experimental nonbacterial prostatitis. MATERIALS AND METHODS Fifty-four Sprague-Dawley male rats were randomly divided into normal control, model, JDHXD low dose (0.5 g/kg/day), medium dose (1 g/kg/day), high dose (2 g/kg/day) and western medicine (cernilton 0.094 g/kg/day) groups, and intragastrically administered once daily for 30 days. The control and model (upon successful establishment) groups received distilled water. Differential expression of miRNAs was analysed with high-throughput miRNA sequencing and validated with qRT-PCR and Northern blot. Prediction of specific target genes and functional enrichment analysis were performed with bioinformatics. RESULTS LD50 test showed no sign of toxicity with maximum feasible dose 4 g/kg JDHXD. Compared with control, 495 miRNAs showed expression changes in CAP/CPPS rats, of which 211 were significantly different and 37 were prostatic-related. There were 181 differentially expressed miRNAs between the model and high dose JDHXD groups, of which 23 were identical with the control and model groups. Compared with control, miR-146a, miR-423 and miR-205 expression increased significantly in the model group, decreased dose-dependently in the JDHXD groups (p < 0.05), and vice-versa for miR-96 (p < 0.05). The effect of low dose JDHXD was comparable to cernilton (p > 0.05). DISCUSSION AND CONCLUSIONS Future studies may explore the contributions of the active components in JDHXD. The study design is generalisable. The effect can be repeatedly verified in clinical trials.
Collapse
Affiliation(s)
- Zhangren Yan
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Chunhua Huang
- Department of Neurology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Gang Huang
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Yunbo Wu
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Jiangang Wang
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Jun Yi
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Wenli Mao
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Wanchun Wang
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
- CONTACT Wanchun Wang Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, No. 445 Bayi Avenue, Nanchang, 330006, P.R. China
| |
Collapse
|
70
|
Deng Y, Li S, Wang M, Chen X, Tian L, Wang L, Yang W, Chen L, He F, Yin W. Flavonoid-rich extracts from okra flowers exert antitumor activity in colorectal cancer through induction of mitochondrial dysfunction-associated apoptosis, senescence and autophagy. Food Funct 2020; 11:10448-10466. [PMID: 33241810 DOI: 10.1039/d0fo02081h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Okra flowers contain a higher content of total flavonoids than most other flowers; however little research has been conducted on their potential benefits, including antitumor activity. In this study, we extracted and purified flavonoids from okra flower (AFE), and aimed to evaluate the effect of AFE and its underlying mechanism on colorectal cancer (CRC) cell growth in vitro and in vivo. Here, we identify that AFE is a safe, natural antioxidant and exerts significant antitumor efficacy on the inhibition of CRC cell proliferation and metastasis as well as tumour growth in vivo. We further reveal that AFE inhibits CRC cell proliferation by inducing mitochondrial dysfunction, which results from the activation of p53 and induction of apoptosis and senescence, and inhibits autophagic degradation. Furthermore, AFE inhibited migration and invasion of CRC cells by regulating the balance of MMP2/TIMP2 and MMP9 expression levels. Of note, administration of AFE as a preventive agent achieves a more effective antitumor effect than the therapeutic agent in a xenograft mouse model. Our results reveal, for the first time, that AFE is a safe, natural antioxidant with significant antitumor efficacy, which has great potential in the application for CRC prevention and treatment.
Collapse
Affiliation(s)
- Yuanle Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
72
|
Chota A, George BP, Abrahamse H. Potential Treatment of Breast and Lung Cancer Using Dicoma anomala, an African Medicinal Plant. Molecules 2020; 25:molecules25194435. [PMID: 32992537 PMCID: PMC7582250 DOI: 10.3390/molecules25194435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022] Open
Abstract
Globally, cancer has been identified as one of the leading causes of death in public health. Its etiology is based on consistent exposure to carcinogenic. Plant-derived anticancer compounds are known to be less toxic to the normal cells and are classified into acetylenic compounds, phenolics, terpenes, and phytosterols. Dicoma anomala is a perennial herb belonging to the family Asteraceae and is widely distributed in Sub-Saharan Africa and used in the treatment of cancer, malaria, fever, diabetes, ulcers, cold, and cough. This review aimed at highlighting the benefits of D. anomala in various therapeutic applications with special reference to the treatment of cancers and the mechanisms through which the plant-derived agents induce cell death.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Correspondence: ; Tel.: +27-11-559-6550; Fax: +27-11-559-6448
| |
Collapse
|
73
|
Du HW, Cong W, Wang B, Zhao XL, Meng XC. High-throughput metabolomic method based on liquid chromatography: high resolution mass spectrometry with chemometrics for metabolic biomarkers and pathway analysis to reveal the protective effects of baicalin on thyroid cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4139-4149. [PMID: 32776035 DOI: 10.1039/d0ay00977f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell metabonomics focuses on discovering metabolic biomarkers and pathway changes in cells from biological systems to obtain the cell properties and functional information under different conditions. Baicalin possesses various pharmacological activities, and plays a vital role in the oncology research field. However, the detailed mechanism of its action is still unclear. In this work, we employed ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) based non-targeted metabolomics method associated with chemometrics analysis to explore metabolic pathways and biomarkers for investigating the efficacy and pharmacological targets of baicalin against thyroid cancer cells. In addition, morphological observation, parameter calculation of cell proliferation and apoptosis were carried out, which assisted in elucidation of pharmacological activity of baicalin on the human thyroid cancer cells. The results showed that baicalin possesses an intense stimulative apoptosis and inhibits proliferation activity on SW579 human thyroid cancer cells, and partially reversed the cell metabolite abnormalities. A total of nineteen differentiated metabolites in SW579 cells were identified and deemed as potential biomarkers after the baicalin treatment, involving nine metabolic pathways, such as taurine and hypotaurine metabolism, pyrimidine metabolism, fructose and mannose metabolism, steroid hormone biosynthesis and sphingolipid metabolism. High-throughput non-targeted metabolomics provide an insight into specialized mechanism of baicalin against thyroid cancer and contributes to novel drug discovery and thyroid cancer management in clinical practice.
Collapse
Affiliation(s)
- Hong-Wei Du
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, Heilongjiang Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
74
|
Lee GY, Lee JS, Son CG, Lee NH. Combating Drug Resistance in Colorectal Cancer Using Herbal Medicines. Chin J Integr Med 2020; 27:551-560. [PMID: 32740824 DOI: 10.1007/s11655-020-3425-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancer types around the world. Most of the CRC patients are treated with chemotherapeutic drugs alone or combined. However, up to 90% of metastatic cancer patients experience the failure of treatment mostly because of the acquired drug resistance, which can be led to multidrug resistance (MDR). In this study, we reviewed the recent literature which studied potential CRC MDR reversal agents among herbal medicines (HMs). Among abundant HMs, 6 single herbs, Andrographis paniculata, Salvia miltiorrhiza, Hedyotis diffusa, Sophora flavescens, Curcuma longa, Bufo gargarizans, and 2 formulae, Pien Tze Huang and Zhi Zhen Fang, were found to overcome CRC MDR by two or more different mechanisms, which could be a promising candidate in the development of new drugs for adjuvant CRC chemotherapy.
Collapse
Affiliation(s)
- Ga-Young Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea.,Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Jin-Seok Lee
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Chang-Gue Son
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Nam-Hun Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea. .,Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea. .,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
75
|
Kong MY, Li LY, Lou YM, Chi HY, Wu JJ. Chinese herbal medicines for prevention and treatment of colorectal cancer: From molecular mechanisms to potential clinical applications. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:369-384. [PMID: 32758397 DOI: 10.1016/j.joim.2020.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Worldwide, colorectal cancer (CRC) is one of the most common malignant tumors, leading to immense social and economic burdens. Currently, the main treatments for CRC include surgery, chemotherapy, radiotherapy and immunotherapy. Despite advances in the diagnosis and treatment of CRC, the prognosis for CRC patients remains poor. Furthermore, the occurrence of side effects and toxicities severely limits the clinical use of these therapies. Therefore, alternative medications with high efficacy but few side effects are needed. An increasing number of modern pharmacological studies and clinical trials have supported the effectiveness of Chinese herbal medicines (CHMs) for the prevention and treatment of CRC. CHMs may be able to effectively reduce the risk of CRC, alleviate the adverse reactions caused by chemotherapy, and prolong the survival time of patients with advanced CRC. Studies of molecular mechanisms have provided deeper insight into the roles of molecules from CHMs in treating CRC. This paper summarizes the current understanding of the use of CHMs for the prevention and treatment of CRC, the main molecular mechanisms involved in these processes, the role of CHMs in modulating chemotherapy-induced adverse reactions, and CHM's potential role in epigenetic regulation of CRC. The current study provides beneficial information on the use of CHMs for the prevention and treatment of CRC in the clinic, and suggests novel directions for new drug discovery against CRC.
Collapse
Affiliation(s)
- Mu-Yan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Le-Yan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yan-Mei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Hong-Yu Chi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Jin-Jun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| |
Collapse
|
76
|
Song M, Yoon G, Choi JS, Kim E, Liu X, Oh HN, Chae JI, Lee MH, Shim JH. Janus kinase 2 inhibition by Licochalcone B suppresses esophageal squamous cell carcinoma growth. Phytother Res 2020; 34:2032-2043. [PMID: 32144852 DOI: 10.1002/ptr.6661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/06/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, 85 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| |
Collapse
|
77
|
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol 2020; 10:1614. [PMID: 32116665 PMCID: PMC7025531 DOI: 10.3389/fphar.2019.01614] [Citation(s) in RCA: 435] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a severe health problem that continues to be a leading cause of death worldwide. Increasing knowledge of the molecular mechanisms underlying cancer progression has led to the development of a vast number of anticancer drugs. However, the use of chemically synthesized drugs has not significantly improved the overall survival rate over the past few decades. As a result, new strategies and novel chemoprevention agents are needed to complement current cancer therapies to improve efficiency. Naturally occurring compounds from plants known as phytochemicals, serve as vital resources for novel drugs and are also sources for cancer therapy. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, and podophyllotoxin analogs. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancer. The specific mechanisms include increasing antioxidant status, carcinogen inactivation, inhibiting proliferation, induction of cell cycle arrest and apoptosis; and regulation of the immune system. The primary objective of this review is to describe what we know to date of the active compounds in the natural products, along with their pharmacologic action and molecular or specific targets. Recent trends and gaps in phytochemical based anticancer drug discovery are also explored. The authors wish to expand the phytochemical research area not only for their scientific soundness but also for their potential druggability. Hence, the emphasis is given to information about anticancer phytochemicals which are evaluated at preclinical and clinical level.
Collapse
Affiliation(s)
- Amit S Choudhari
- Combi-Chem Bio-Resource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Pallavi C Mandave
- Interactive Research School of Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Manasi Deshpande
- Department of Dravyaguna Vigan, Ayurved Pharmacology, College of Ayurved, Bharati Vidyapeeth Deemed University, Pune, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
78
|
Duan X, Guo G, Pei X, Wang X, Li L, Xiong Y, Qiu X. Baicalin Inhibits Cell Viability, Migration and Invasion in Breast Cancer by Regulating miR-338-3p and MORC4. Onco Targets Ther 2019; 12:11183-11193. [PMID: 31908485 PMCID: PMC6930519 DOI: 10.2147/ott.s217101] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background Baicalin is a natural compound from the roots of Scutellaria lateriflora Georgi, which plays anti-cancer role in multiple cancers. However, the exact role and potential underlying mechanism of baicalin in breast cancer (BC) remain poorly understood. Methods Thirty BC patients were recruited in this study. MCF-10A, MCF-7 and MDA-MB-231 cells were used to investigate the anti-cancer role of baicalin in vitro. Cell viability, migration, invasion and apoptosis were measured by MTT, trans-well and flow cytometry, respectively. The expression levels of microRNA-338-3p (miR-338-3p) and microrchidia family CW-type zinc-finger 4 (MORC4) were measured by quantitative real-time polymerase chain reaction or Western blot. The interaction between miR-338-3p and MORC4 was explored by luciferase reporter assay and RNA immunoprecipitation. Results We found that Baicalin treatment inhibited cell viability, migration and invasion but promoted apoptosis of BC cells. The expression of miR-338-3p was decreased in BC tissues and cells and miR-338-3p overexpression suppressed cell viability, migration and invasion but induced apoptosis. MiR-338-3p expression was reversed by baicalin exposure and inhibition of miR-338-3p attenuated the role of baicalin in viability, apoptosis, migration and invasion. MORC4 mRNA level was increased in BC tissues and cells, which was decreased by baicalin exposure. MORC4 was a target of miR-338-3p and its overexpression alleviated the effect of miR-338-3p on cell viability, apoptosis, migration and invasion. Conclusion In conclusion, baicalin suppressed cell viability, migration and invasion but promoted apoptosis in BC cells by regulating miR-338-3p and MORC4, indicating the promising pharmacological value of baicalin in BC treatment.
Collapse
Affiliation(s)
- Xin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guangcheng Guo
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinguang Qiu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
79
|
Huang Q, Zhang J, Peng J, Zhang Y, Wang L, Wu J, Ye L, Fang C. Effect of baicalin on proliferation and apoptosis in pancreatic cancer cells. Am J Transl Res 2019; 11:5645-5654. [PMID: 31632536 PMCID: PMC6789237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal cancer types. Pancreatic cancer is highly malignant and characterized by rapid and uncontrolled growth. This study was designed to investigate the effect of baicalin on proliferation and apoptosis in pancreatic cancer cells. METHODS CCK-8 assay and Clone formation assay were performed to detect the effect of baicalin on proliferation in pancreatic cancer cells. Cell invasion and migration were all assessed with Wound healing assay and Transwell invasion assay. Flow Cytometry Analysis and DAPI staining were performed to detect the effect of baicalin on apoptosis in pancreatic cancer cells. Furthermore, proliferation-associated protein and apoptosis-related protein were detected to evaluate the cell proliferation and apoptosis levels. P-JNK protein, t-JNK protein, Foxo1 protein and BIM protein were examined by western blot to verify whether baicalin could regulate the proliferation and apoptosis via the JNK/Foxo1/BIM signaling pathway in pancreatic cancer cells. RESULTS The cell proliferation level was significantly decreased while the cell apoptosis level was significantly increased in pancreatic cancer SW1990 cells treated with baicalin. As the same, baicalin downregulated the ability of invasion and migration in pancreatic cancer SW1990 cells. CONCLUSION Baicalin might inhibit cell proliferation and promote cell apoptosis via JNK/Foxo1/BIM signaling pathway in pancreatic cancer SW1990 cells.
Collapse
Affiliation(s)
- Qin Huang
- Department of Gastroenterology, En-ze Medical Group Taizhou Hospital Luqiao, Taizhou 318050, Zhejiang, China
| | - Jinshun Zhang
- Department of Gastroenterology, En-ze Medical Group Taizhou Hospital Luqiao, Taizhou 318050, Zhejiang, China
| | - Jinbang Peng
- Department of Gastroenterology, En-ze Medical Group Taizhou Hospital Luqiao, Taizhou 318050, Zhejiang, China
| | - Yan Zhang
- Department of Gastroenterology, En-ze Medical Group Taizhou Hospital Luqiao, Taizhou 318050, Zhejiang, China
| | - Linlin Wang
- Department of Gastroenterology, En-ze Medical Group Taizhou Hospital Luqiao, Taizhou 318050, Zhejiang, China
| | - Juju Wu
- Department of Gastroenterology, En-ze Medical Group Taizhou Hospital Luqiao, Taizhou 318050, Zhejiang, China
| | - Liping Ye
- Department of Gastroenterology, En-ze Medical Group Taizhou Hospital Luqiao, Taizhou 318050, Zhejiang, China
| | - Congcheng Fang
- Department of Gastroenterology, En-ze Medical Group Taizhou Hospital Luqiao, Taizhou 318050, Zhejiang, China
| |
Collapse
|
80
|
I El-Gogary R, Gaber SAA, Nasr M. Polymeric nanocapsular baicalin: Chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines. Sci Rep 2019; 9:11064. [PMID: 31363132 PMCID: PMC6667692 DOI: 10.1038/s41598-019-47586-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023] Open
Abstract
Baicalin is a multi-purpose flavonoid known for its anticancer properties, but its application is hindered by its low water solubility and bioavailability. Polymeric nanocapsules were proposed in this work as a promising system for enhancing baicalin delivery, and potentiating its anticancer properties. The characterization of nanocapsules was augmented with chemometric analysis, and the selected formulations were tested on two breast cancer cell lines (MCF-7 and MDA-MB-231), with mechanistic anticancer elucidation using MTT assay, confocal microscopy uptake, flow cytometry, mechanism of cell death, reactive oxygen species production, caspase 3/7 activity and death biomarker expression using quantitative real time PCR. Results showed that baicalin nanocapsules displayed favorable pharmaceutical properties; with the formulation variables affecting their properties elucidated using chemometric factorial analysis. Nanocapsules enhanced the anticancer activity of baicalin up to 216 times for MCF-7 cells and 31 times for MDA-MB-231 after 24 hr incubation. Cellular internalization of the fluorescently labeled nanocapsules was confirmed after 4 hr incubation for both cell lines. Apoptosis was the dominant cell death mechanism, with significant up-regulation of P53 in baicalin nanocapsules treated cells. Data here presented drive to further preclinical studies to investigate the delivery of baicalin polymeric nanocapsules and their anti-cancer activity.
Collapse
Affiliation(s)
- Riham I El-Gogary
- Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
81
|
Han Y, Ma L, Zhao L, Feng W, Zheng X. Rosmarinic inhibits cell proliferation, invasion and migration via up-regulating miR-506 and suppressing MMP2/16 expression in pancreatic cancer. Biomed Pharmacother 2019; 115:108878. [PMID: 31060006 DOI: 10.1016/j.biopha.2019.108878] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths worldwide. However, therapeutic strategies for the treatment of pancreatic cancer are still limited. Therefore, it is urgent for us to develop novel effective therapies for pancreatic cancer. In this study, we explored the effects of rosmarinic acid on pancreatic progression and explored the underlying molecular mechanisms. Rosmarinic acid significantly suppressed cell viability, cell growth, cell invasion and migration as well as epithelial mesenchymal transition (EMT) of pancreatic cancer cells, and induced cell apoptosis in pancreatic cells. In addition, rosmarinic acid significantly up-regulated the expression of miR-506 in pancreatic cancer cells, and knockdown of miR-506 attenuated the suppressive effects of rosmarinic acid on cell growth, cell invasion and migration and EMT, and prevented the enhanced effects of rosmarinic acid on cell apoptosis in pancreatic cancer cells. Mechanistically, the luciferase reporter assay showed that miR-506 targeted the 3' untranslated region of matrix metalloproteinase (MMP)-2/16, and miR-506 overexpression and rosmarinic acid treatment suppressed the expression of MMP2/16 in pancreatic cancer cells. Overexpression of MMP2/16 attenuated the inhibitory effects of rosmarinic acid on pancreatic cell invasion and migration. In vivo studies showed that rosmarinic acid dose-dependently suppressed tumor growth of pancreatic cancer cells, and increased the expression of miR-506, while suppressed the expression of MMP2/16 and Ki-67 in dissected tumor tissues from xenograft nude mice. Collectively, our results for the first time revealed the anti-tumor effects of rosmarinic acid in pancreatic cancer, and the anti-tumor effects of rosmarinic acid were via regulating the miR-506/MMP2/16 axis in pancreatic cancer.
Collapse
Affiliation(s)
- Yongguang Han
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ligang Ma
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Le Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
82
|
Feng Y, Zhang Y, Zhou D, Chen G, Li N. MicroRNAs, intestinal inflammatory and tumor. Bioorg Med Chem Lett 2019; 29:2051-2058. [PMID: 31213403 DOI: 10.1016/j.bmcl.2019.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is the third most malignant tumor. Inflammatory bowel disease (IBD) can increase the risk of colorectal cancer. And colitis-associated cancer (CAC) is a CRC subtype, representing the inflammation-related colorectal cancer. For the past decades, we have known that ectopic microRNA (miRNA) expression was involved in the pathogenesis of IBD and CRC, playing a pivotal role in the progression of inflammation to colorectal cancer. Thus, this review provides the recent advances in altered human tissue-specific miRNAs that contribute to IBD, CRC and CAC pathogenesis, diagnosis and treatment. Meanwhile, the potential utilization of miRNAs as novel therapeutic targets for the prevention of CRC was also discussed.
Collapse
Affiliation(s)
- Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Yuan Zhang
- Tianjin Vocational College of Bioengineering, Tianjin 300462, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
83
|
Wang L, Zhang D, Wang N, Li S, Tan HY, Feng Y. Polyphenols of Chinese skullcap roots: from chemical profiles to anticancer effects. RSC Adv 2019; 9:25518-25532. [PMID: 35530094 PMCID: PMC9070317 DOI: 10.1039/c9ra03229k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 11/21/2022] Open
Abstract
Great efforts have been made to identify the principle bioactive constituents of Chinese herbs and to unravel the molecular mechanisms behind their anticancer effects.
Collapse
Affiliation(s)
- Lingchong Wang
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing City
- P. R. China
- School of Chinese Medicine
| | - Dapeng Zhang
- School of Chinese Medicine
- LKS Faculty of Medicine
- The University of Hong Kong
- P. R. China
- First Affiliated Hospital of Guangzhou Medical University
| | - Ning Wang
- School of Chinese Medicine
- LKS Faculty of Medicine
- The University of Hong Kong
- P. R. China
| | - Sha Li
- School of Chinese Medicine
- LKS Faculty of Medicine
- The University of Hong Kong
- P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine
- LKS Faculty of Medicine
- The University of Hong Kong
- P. R. China
| | - Yibin Feng
- School of Chinese Medicine
- LKS Faculty of Medicine
- The University of Hong Kong
- P. R. China
| |
Collapse
|