51
|
Wang W, Li Z, Duan J, Wang C, Fang Y, Yang XD. In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide. NANOSCALE RESEARCH LETTERS 2014; 9:311. [PMID: 25024678 PMCID: PMC4082417 DOI: 10.1186/1556-276x-9-311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Malignant glioma has extremely poor prognosis despite combination treatments with surgery, radiation, and chemotherapy. Dendritic cell (DC)-based immunotherapy may potentially serve as an adjuvant treatment of glioma, but its efficacy generally needs further improvement. Here we explored whether graphene oxide (GO) nanosheets could modulate the DC-mediated anti-glioma immune response in vitro, using the T98G human glioma cell line as the study model. Pulsing DCs with a glioma peptide antigen (Ag) generated a limited anti-glioma response compared to un-pulsed DCs. Pulsing DCs with GO alone failed to produce obvious immune modulation effects. However, stimulating DCs with a mixture of GO and Ag (GO-Ag) significantly enhanced the anti-glioma immune reaction (p < 0.05). The secretion of interferon gamma (IFN-γ) by the lymphocytes was also markedly boosted by GO-Ag. Additionally, the anti-glioma immune response induced by GO-Ag appeared to be target-specific. Furthermore, at the concentration used in this study, GO exhibited a negligible effect on the viability of the DCs. These results suggested that GO might have potential utility for boosting a DC-mediated anti-glioma immune response.
Collapse
Affiliation(s)
- Wei Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing 100044, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhongjun Li
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jinhong Duan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chen Wang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ying Fang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xian-Da Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
52
|
|
53
|
Everson RG, Jin RM, Wang X, Safaee M, Scharnweber R, Lisiero DN, Soto H, Liau LM, Prins RM. Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2014; 2:10. [PMID: 24883189 PMCID: PMC4039989 DOI: 10.1186/2051-1426-2-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022] Open
Abstract
Background Immunotherapeutic approaches, such as dendritic cell (DC) vaccination, have emerged as promising strategies in the treatment of glioblastoma. Despite their promise, however, the absence of objective biomarkers and/or immunological monitoring techniques to assess the clinical efficacy of immunotherapy still remains a primary limitation. To address this, we sought to identify a functional biomarker for anti-tumor immune responsiveness associated with extended survival in glioblastoma patients undergoing DC vaccination. Methods 28 patients were enrolled and treated in two different Phase 1 DC vaccination clinical trials at UCLA. To assess the anti-tumor immune response elicited by therapy, we studied the functional responsiveness of pre- and post-vaccination peripheral blood lymphocytes (PBLs) to the immunostimulatory cytokines interferon-gamma (IFN-γ) and interleukin-2 (IL-2) in 21 of these patients for whom we had adequate material. Immune responsiveness was quantified by measuring downstream phosphorylation events of the transcription factors, STAT-1 and STAT-5, via phospho-specific flow cytometry. Results DC vaccination induced a significant decrease in the half-maximal concentration (EC-50) of IL-2 required to upregulate pSTAT-5 specifically in CD3+CD8+ T lymphocytes (p < 0.045). Extended survival was also associated with an increased per cell phosphorylation of STAT-5 in cytotoxic T-cells following IL-2 stimulation when the median post/pre pSTAT-5 ratio was used to dichotomize the patients (p = 0.0015, log-rank survival; hazard ratio = 0.1834, p = 0.018). Patients whose survival was longer than two years had a significantly greater pSTAT-5 ratio (p = 0.015), but, contrary to our expectations, a significantly lower pSTAT-1 ratio (p = 0.038). Conclusions Our results suggest that monitoring the pSTAT signaling changes in PBL may provide a functional immune monitoring measure predictive of clinical efficacy in DC-vaccinated patients.
Collapse
Affiliation(s)
- Richard G Everson
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Richard M Jin
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Safaee
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rudi Scharnweber
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dominique N Lisiero
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Horacio Soto
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Linda M Liau
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robert M Prins
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.,Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
54
|
Dejaegher J, Van Gool S, De Vleeschouwer S. Dendritic cell vaccination for glioblastoma multiforme: review with focus on predictive factors for treatment response. Immunotargets Ther 2014; 3:55-66. [PMID: 27471700 PMCID: PMC4918234 DOI: 10.2147/itt.s40121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive type of primary brain cancer. Since median overall survival with multimodal standard therapy is only 15 months, there is a clear need for additional effective and long-lasting treatments. Dendritic cell (DC) vaccination is an experimental immunotherapy being tested in several Phase I and Phase II clinical trials. In these trials, safety and feasibility have been proven, and promising clinical results have been reported. On the other hand, it is becoming clear that not every GBM patient will benefit from this highly personalized treatment. Defining the subgroup of patients likely to respond to DC vaccination will position this option correctly amongst other new GBM treatment modalities, and pave the way to incorporation in standard therapy. This review provides an overview of GBM treatment options and focuses on the currently known prognostic and predictive factors for response to DC vaccination. In this way, it will provide the clinician with the theoretical background to refer patients who might benefit from this treatment.
Collapse
Affiliation(s)
| | - Stefaan Van Gool
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
55
|
Olin MR, Low W, McKenna DH, Haines SJ, Dahlheimer T, Nascene D, Gustafson MP, Dietz AB, Clark HB, Chen W, Blazar B, Ohlfest JR, Moertel C. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J Immunother Cancer 2014; 2:4. [PMID: 24829761 PMCID: PMC4019901 DOI: 10.1186/2051-1426-2-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/31/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We tested the hypothesis that a novel vaccine developed from autologous dendritic cells (DC) loaded with cells from a unique allogeneic brain tumor cell line (GBM6-AD) would be well-tolerated and would generate an immune response. METHOD Patients with recurrent primary brain tumors underwent vaccination with GBM6-AD/DC vaccine. Subjects were treated at escalating DC cell doses: 5 × 10(6) (one patient), 10 × 10(6) (one patient) and 15 × 10(6) (6 patients). Subcutaneous injections were planned for days 0, 14, 28, 42, 56, and monthly thereafter. The primary endpoint was the safety of the GBM6-AD/DC vaccination. The secondary endpoints were immune response, measured by flow cytometry, and the clinical outcome of tumor response defined by time to progression and overall survival. RESULTS Eight patients were treated. The first three patients were treated in the dose escalation phase of the trial; the remaining five patients received the maximum dose of 15 × 10(6) DC. No dose limiting toxicity was observed. The best response per modified McDonald criteria was partial response in one patient. Flow cytometric immune profiling revealed significant differences in CD4(+)IL17(+) lymphocytes and myeloid derived suppressor cell populations between patients characterized as having stable vs. non-stable disease. CONCLUSION This first-in-human study shows that the GBM6-AD/DC vaccine was well tolerated and was associated with an immune response in a subset of patients. No MTD was achieved in this trial. This small-scale pilot provides information for larger scale investigations into the use of this allogeneic vaccine source.
Collapse
Affiliation(s)
- Michael R Olin
- Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, 3-136 CCRB, 2231 6th St SE, Minneapolis, MN 55455, USA
| | - Walter Low
- Department of Neurosurgery, University of Minnesota, 2001 6th St SE, Rm 4-216, Minneapolis, MN 55455, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, 8609B, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Stephen J Haines
- Department of Radiology, University of Minnesota, 8292A, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Tambra Dahlheimer
- Department of Laboratory Medicine and Pathology, 200 First St, Mayo Clinic, Rochester, MN 55901, USA
| | - David Nascene
- Department of Radiology, University of Minnesota, 8292A, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Michael P Gustafson
- Department of Laboratory Medicine and Pathology, 200 First St, Mayo Clinic, Rochester, MN 55901, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, 200 First St, Mayo Clinic, Rochester, MN 55901, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, 8609B, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Wei Chen
- Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, 3-136 CCRB, 2231 6th St SE, Minneapolis, MN 55455, USA
| | - Bruce Blazar
- Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, 3-136 CCRB, 2231 6th St SE, Minneapolis, MN 55455, USA
| | - John R Ohlfest
- Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, 3-136 CCRB, 2231 6th St SE, Minneapolis, MN 55455, USA
| | - Christopher Moertel
- Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, 3-136 CCRB, 2231 6th St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
56
|
Mangiola A, Anile C, Pompucci A, Capone G, Rigante L, De Bonis P. Glioblastoma therapy: going beyond Hercules Columns. Expert Rev Neurother 2014; 10:507-14. [DOI: 10.1586/ern.09.158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
57
|
Reardon DA, Wucherpfennig KW, Freeman G, Wu CJ, Chiocca EA, Wen PY, Curry WT, Mitchell DA, Fecci PE, Sampson JH, Dranoff G. An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 2013; 12:597-615. [PMID: 23750791 DOI: 10.1586/erv.13.41] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Outcome for glioblastoma (GBM), the most common primary CNS malignancy, remains poor. The overall survival benefit recently achieved with immunotherapeutics for melanoma and prostate cancer support evaluation of immunotherapies for other challenging cancers, including GBM. Much historical dogma depicting the CNS as immunoprivileged has been replaced by data demonstrating CNS immunocompetence and active interaction with the peripheral immune system. Several glioma antigens have been identified for potential immunotherapeutic exploitation. Active immunotherapy studies for GBM, supported by preclinical data, have focused on tumor lysate and synthetic antigen vaccination strategies. Results to date confirm consistent safety, including a lack of autoimmune reactivity; however, modest efficacy and variable immunogenicity have been observed. These findings underscore the need to optimize vaccination variables and to address challenges posed by systemic and local immunosuppression inherent to GBM tumors. Additional immunotherapy strategies are also in development for GBM. Future studies may consider combinatorial immunotherapy strategies with complimentary actions.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Kühnöl C, Herbarth M, Föll J, Staege MS, Kramm C. CD137 stimulation and p38 MAPK inhibition improve reactivity in an in vitro model of glioblastoma immunotherapy. Cancer Immunol Immunother 2013; 62:1797-809. [PMID: 24129764 PMCID: PMC11028552 DOI: 10.1007/s00262-013-1484-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
Dendritic cell vaccination has become an interesting option for cancer immunotherapy. Tumor-lysate-pulsed dendritic cells (DC) can prime naïve T cells and induce the regression of established tumors including gliomas as shown in various animal models. Despite hopeful results even in clinical studies, the outcome for many patients is still unsatisfying. In the present study, we tested the combination of tumor-lysate-pulsed dendritic cells (TPDC) with a monoclonal antibody against CD137, a monoclonal antibody against CD25 (daclizumab) and a specific p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580) for improving immunostimulation in an in vitro model of immunotherapy for human gliomas. We observed a higher secretion of interferon gamma by TPDC-primed peripheral blood mononuclear cells (PBMC) that were incubated with an antibody against CD137 or the p38 MAPK inhibitor. In addition, we observed higher specific lysis of tumor cells after incubation of PBMC with the p38 MAPK inhibitor or the anti-CD137 antibody. In contrast, incubation of TPDC-primed PBMC with the anti-CD25 antibody did enhance neither interferon gamma secretion nor cellular cytotoxicity. Cell depletion experiments demonstrated that the immune reaction induced by TPDC is strongly dependent on CD4-positive and CD8-positive cells. Incubation of DC during maturation and antigen loading with the anti-CD137 antibody did not enhance cytotoxicity and interferon gamma secretion in comparison with application of the anti-CD137 antibody during priming. In conclusion, our data suggest that p38 MAPK inhibition and anti-CD137 antibodies can enhance the immune response against glioblastoma cells.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Blotting, Western
- Brain Neoplasms/immunology
- Brain Neoplasms/metabolism
- Brain Neoplasms/therapy
- Cell Proliferation
- Cells, Cultured
- Cytotoxicity, Immunologic
- Daclizumab
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Glioblastoma/immunology
- Glioblastoma/metabolism
- Glioblastoma/therapy
- Humans
- Imidazoles/pharmacology
- Immunoglobulin G/pharmacology
- Immunosuppressive Agents/pharmacology
- Immunotherapy
- Interferon-gamma
- Interleukin-2 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-2 Receptor alpha Subunit/immunology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Pyridines/pharmacology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/immunology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Caspar Kühnöl
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Monique Herbarth
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Jürgen Föll
- Department of Pediatrics and Juvenile Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martin S. Staege
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Christof Kramm
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
59
|
Badhiwala J, Decker WK, Berens ME, Bhardwaj RD. Clinical trials in cellular immunotherapy for brain/CNS tumors. Expert Rev Neurother 2013; 13:405-24. [PMID: 23545055 DOI: 10.1586/ern.13.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade gliomas are the most common type of primary malignant brain/CNS tumor. There have been only modest advances in surgical techniques, radiotherapy and chemotherapy for high-grade gliomas over the past several decades. None of these have provided a major improvement in survival for patients. Recently, immunotherapy has been explored for the treatment of high-grade gliomas. Immunotherapy capitalizes on the specificity of the host immune system to selectively target tumor cells for destruction, while sparing normal brain parenchyma, thus making it a particularly attractive option. This article provides a comprehensive review of published clinical trials evaluating cellular immunotherapy in primary brain/CNS tumors.
Collapse
Affiliation(s)
- Jetan Badhiwala
- Michael G DeGroote School of Medicine, McMaster University, 1280 Main Street W, Hamilton, ON, L8S 4K1, Canada
| | | | | | | |
Collapse
|
60
|
Alexander BM, Lee EQ, Reardon DA, Wen PY. Current and future directions for Phase II trials in high-grade glioma. Expert Rev Neurother 2013; 13:369-87. [PMID: 23545053 DOI: 10.1586/ern.12.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite surgery, radiation and chemotherapy, the prognosis for high-grade glioma (HGG) is poor. Our understanding of the molecular pathways involved in gliomagenesis and progression has increased in recent years, leading to the development of novel agents that specifically target these pathways. Results from most single-agent trials have been modest at best, however. Despite the initial success of antiangiogenesis agents in HGG, the clinical benefit is short-lived and most patients eventually progress. Several novel agents, multi-targeted agents and combination therapies are now in clinical trials for HGG and several more strategies are being pursued.
Collapse
Affiliation(s)
- Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
61
|
Thomas AA, Fisher JL, Ernstoff MS, Fadul CE. Vaccine-based immunotherapy for glioblastoma. CNS Oncol 2013; 2:331-49. [PMID: 25054578 PMCID: PMC6166520 DOI: 10.2217/cns.13.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains the most lethal human brain tumor, despite the advent of multimodal treatment approaches. Because immune tolerance plays an important role in tumor progression, adding immunotherapy has become an attractive and innovative treatment approach for these aggressive tumors. Several early-phase clinical trials have demonstrated that vaccine-based immunotherapies, including dendritic cell therapy, peptide-based vaccines and vaccines containing autologous tumor lysates, are feasible and well tolerated. These trials have revealed promising trends in overall survival and progression-free survival for patients with glioblastoma, and have paved the way for ongoing randomized controlled trials.
Collapse
Affiliation(s)
- Alissa A Thomas
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Jan L Fisher
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Marc S Ernstoff
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Camilo E Fadul
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
62
|
Bregy A, Wong TM, Shah AH, Goldberg JM, Komotar RJ. Active immunotherapy using dendritic cells in the treatment of glioblastoma multiforme. Cancer Treat Rev 2013; 39:891-907. [PMID: 23790634 DOI: 10.1016/j.ctrv.2013.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 05/20/2013] [Accepted: 05/26/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Glioblastoma multiforme, the most common malignant brain tumor still has a dismal prognosis with conventional treatment. Therefore, it is necessary to explore new and/or adjuvant treatment options to improve patient outcomes. Active immunotherapy is a new area of research that may be a successful treatment option. The focus is on vaccines that consist of antigen presenting cells (APCs) loaded with tumor antigen. We have conducted a systematic review of prospective studies, case reports and clinical trials. The goal of this study was to examine the efficacy and safety in terms of complications, median overall survival (OS), progression free survival (PFS) and quality of life. METHODS A PubMed search was performed to include all relevant studies that reported the characteristics, outcomes and complications of patients with GBM treated with active immunotherapy using dendritic cells. Reported parameters were immune response, radiological findings, median PFS and median OS. Complications were categorized based on association with the craniotomy or with the vaccine itself. RESULTS A total of 21 studies with 403 patients were included in our review. Vaccination with dendritic cells (DCs) loaded with autologous tumor cells resulted in increased median OS in patients with recurrent GBM (71.6-138.0 wks) as well as those newly diagnosed (65.0-230.4 wks) compared to average survival of 58.4 wks. CONCLUSIONS Active immunotherapy, specifically with autologous DCs loaded with autologous tumor cells, seems to have the potential of increasing median OS and prolonged tumor PFS with minimal complications. Larger clinical trials are needed to show the potential benefits of active immunotherapy.
Collapse
Affiliation(s)
- Amade Bregy
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, FL, USA
| | | | | | | | | |
Collapse
|
63
|
Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H. Expression of Indoleamine 2,3-Dioxygenase and Correlation With Pathological Malignancy in Gliomas. Neurosurgery 2013; 72:1031-8; discussion 1038-9. [DOI: 10.1227/neu.0b013e31828cf945] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
BACKGROUND:
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan catabolic enzyme involved in immune tolerance and tumor immune escape processes. Recently, IDO expression has been found to correlate with the prognosis of malignant tumors, but the implication of IDO in glioma progression remains unknown.
OBJECTIVE:
To investigate the relationship between IDO expression and histological malignancy in gliomas.
METHODS:
IDO expression was examined in a total of 75 surgical specimens obtained from 68 patients with glioma using immunohistochemical staining. The 75 specimens included 15 diffuse astrocytomas, 21 anaplastic astrocytomas, and 39 glioblastomas. Six of 39 glioblastomas were secondary glioblastomas, transforming from grade II or III gliomas that had been determined at the first surgery. IDO expression rate was compared in each histological grade, and patient survival was analyzed.
RESULTS:
Expression of IDO was found in 72 of 75 gliomas at varying intensities. Stronger expression of IDO was more likely to be observed in malignant gliomas compared with low-grade gliomas. IDO expression in the 6 cases of secondary glioblastoma was stronger than in the initial low-grade glioma. Survival analysis using the Kaplan-Meier method revealed that grade IV patients with strong IDO expression had significantly worse overall survival rates (P = .04) than patients with weak IDO expression.
CONCLUSION:
IDO is expressed more strongly in both primary and secondary glioblastoma tissue than low-grade glioma and may affect clinical outcome. If IDO promotes glioma cells to escape from the immune system, IDO may be a crucial therapeutic target for malignant gliomas.
Collapse
Affiliation(s)
- Kentaro Mitsuka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tomoyuki Kawataki
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Eiji Satoh
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takayuki Asahara
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Toru Horikoshi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
64
|
Neidert MC, Schoor O, Trautwein C, Trautwein N, Christ L, Melms A, Honegger J, Rammensee HG, Herold-Mende C, Dietrich PY, Stevanović S. Natural HLA class I ligands from glioblastoma: extending the options for immunotherapy. J Neurooncol 2012; 111:285-94. [PMID: 23263746 DOI: 10.1007/s11060-012-1028-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 12/08/2012] [Indexed: 12/30/2022]
Abstract
Glioblastoma multiforme is the most frequent and most malignant primary brain tumor with poor prognosis despite surgical removal and radio-chemotherapy. In this setting, immunotherapeutical strategies have great potential, but the reported repertoire of tumor associated antigens is only for HLA-A 02 positive tumors. We describe the first analysis of HLA-peptide presentation patterns in HLA-A 02 negative glioma tissue combined with gene expression profiling of the tumor samples by oligonucleotide microarrays. We identified numerous candidate peptides for immunotherapy. These are peptides derived from proteins with a well-described role in glioma tumor biology and suitable gene expression profiles such as PTPRZ1, EGFR, SEC61G and TNC. Information obtained from complementary analyses of HLA-A 02 negative tumors not only contributes to the discovery of novel shared glioma antigens, but most importantly provides the opportunity to tailor a patient-individual cocktail of tumor-associated peptides for a personalized, targeted immunotherapeutic approach in HLA-A 02 negative patients.
Collapse
Affiliation(s)
- Marian Christoph Neidert
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Valle RD, Cerio ALDD, Inoges S, Tejada S, Pastor F, Villanueva H, Gallego J, Espinos J, Aristu J, Idoate MA, Andreu E, Bendandi M. Dendritic cell vaccination in glioblastoma after fluorescence-guided resection. World J Clin Oncol 2012; 3:142-149. [PMID: 23293753 PMCID: PMC3536842 DOI: 10.5306/wjco.v3.i11.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/04/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess whether the addition of a customized, active immunotherapy to standard of care including fluorescence-guided surgery, may provide hints of an improved survival for patients with poor-prognosis, incurable glioblastoma multiform.
METHODS: Preliminary to our ongoing, phase-II clinical trial, we conducted a small pilot study enrolling five consecutive patients with resectable glioblastoma. In terms of Recursive Partitioning Analysis, four patients were class V and one was class IV. In all five cases, fluorescence-guided surgery was employed, followed by rapid steroid discontinuation. Patients were then treated with a combination of standard radio-chemotherapy with temozolomide and tumor lysate-pulsed, mature dendritic cell-based vaccinations.
RESULTS: Though all five patients ultimately progressed, with any further treatment left to the sole decision of the treating oncologist, active immunotherapy was very well tolerated and induced specific immune responses in all three patients for whom enough material was available for such an assessment. Median progression-free survival was 16.1 mo. Even more important, median and mean overall survival were 27 mo and 26 mo, respectively. Three patients have died with an overall survival of 9 mo, 27 mo and 27.4 mo, while the other two are still alive at 32 mo and 36 mo, the former receiving treatment with bevacizumab, while the latter has now been off therapy for 12 mo. Four of five patients were alive at two years.
CONCLUSION: Active immunotherapy with tumor lysate-pulsed, autologous dendritic cells is feasible, safe, well tolerated and biologically efficacious. A phase-II study is ongoing to possibly improve further on our very encouraging clinical results.
Collapse
|
66
|
Ardon H, Van Gool SW, Verschuere T, Maes W, Fieuws S, Sciot R, Wilms G, Demaerel P, Goffin J, Van Calenbergh F, Menten J, Clement P, Debiec-Rychter M, De Vleeschouwer S. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother 2012; 61:2033-44. [PMID: 22527250 PMCID: PMC11028710 DOI: 10.1007/s00262-012-1261-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/02/2012] [Indexed: 01/04/2023]
Abstract
PURPOSE Dendritic cell (DC)-based tumor vaccination has rendered promising results in relapsed high-grade glioma patients. In the HGG-2006 trial (EudraCT 2006-002881-20), feasibility, toxicity, and clinical efficacy of the full integration of DC-based tumor vaccination into standard postoperative radiochemotherapy are studied in 77 patients with newly diagnosed glioblastoma. PATIENTS AND METHODS Autologous DC are generated after leukapheresis, which is performed before the start of radiochemotherapy. Four weekly induction vaccines are administered after the 6-week course of concomitant radiochemotherapy. During maintenance chemotherapy, 4 boost vaccines are given. Feasibility and progression-free survival (PFS) at 6 months (6mo-PFS) are the primary end points. Overall survival (OS) and immune profiling, rather than monitoring, as assessed in patients' blood samples, are the secondary end points. Analysis has been done on intent-to-treat basis. RESULTS The treatment was feasible without major toxicity. The 6mo-PFS was 70.1 % from inclusion. Median OS was 18.3 months. Outcome improved significantly with lower EORTC RPA classification. Median OS was 39.7, 18.3, and 10.7 months for RPA classes III, IV, and V, respectively. Patients with a methylated MGMT promoter had significantly better PFS (p = 0.0027) and OS (p = 0.0082) as compared to patients with an unmethylated status. Exploratory "immunological profiles" were built to compare to clinical outcome, but no statistical significant evidence was found for these profiles to predict clinical outcome. CONCLUSION Full integration of autologous DC-based tumor vaccination into standard postoperative radiochemotherapy for newly diagnosed glioblastoma seems safe and possibly beneficial. These results were used to power the currently running phase IIb randomized clinical trial.
Collapse
Affiliation(s)
- Hilko Ardon
- Department of Neurosurgery, Catholic University of Leuven, Leuven, Belgium
| | - Stefaan W. Van Gool
- Department of Experimental Medicine, Catholic University of Leuven, Leuven, Belgium
- Department of Child and Women, Catholic University of Leuven, Leuven, Belgium
| | - Tina Verschuere
- Department of Experimental Medicine, Catholic University of Leuven, Leuven, Belgium
| | - Wim Maes
- Department of Experimental Medicine, Catholic University of Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Department of Biostatistics and Statistical Bioinformatics, Catholic University of Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, Catholic University of Leuven, Leuven, Belgium
| | - Guido Wilms
- Department of Imaging, Catholic University of Leuven, Leuven, Belgium
| | - Philippe Demaerel
- Department of Imaging, Catholic University of Leuven, Leuven, Belgium
| | - Jan Goffin
- Department of Neurosurgery, Catholic University of Leuven, Leuven, Belgium
| | | | - Johan Menten
- Department of Radiotherapy, Catholic University of Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, Catholic University of Leuven, Leuven, Belgium
| | | | - Steven De Vleeschouwer
- Department of Neurosurgery, Catholic University of Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
67
|
De Vleeschouwer S, Ardon H, Van Calenbergh F, Sciot R, Wilms G, van Loon J, Goffin J, Van Gool S. Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination. Cancer Immunol Immunother 2012; 61:2105-12. [PMID: 22565485 PMCID: PMC11028672 DOI: 10.1007/s00262-012-1271-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/19/2012] [Indexed: 11/29/2022]
Abstract
PURPOSE Adult patients with relapsed high-grade glioma are a very heterogenous group with, however, an invariably dismal prognosis. We stratified patients with relapsed high-grade glioma treated with re-operation and postoperative dendritic cell (DC) vaccination according to a simple recursive partitioning analysis (RPA) model to predict outcome. PATIENTS AND METHODS Based on age, pathology, Karnofsky performance score, and mental status, 117 adult patients with relapsed malignant glioma, undergoing re-operation, and postoperative adjuvant dendritic cell (DC) vaccination were stratified into 4 classes. Kaplan-Meier survival estimates were generated for each class of this HGG-IMMUNO RPA model. Extent of resection was documented but not included in the prognostic model. RESULTS Kaplan-Meier overall survival estimates revealed significant (p < 0.0001) differences among the 4 HGG-IMMUNO RPA classes. Long-term survivors, surviving more than 24 months after the re-operation and vaccination, are seen in 54.5, 26.7, 11.5, and 0 % for the classes I, II, III, and IV respectively. CONCLUSION This HGG-IMMUNO RPA classification is able to predict overall survival in a large group of adult patients with a relapsed malignant glioma, treated with re-operation and postoperative adjuvant DC vaccination in the HGG-IMMUNO-2003 cohort comparison trial. The model appears useful for prognostic patient counseling for patients participating in DC vaccination trials. A substantial number of long-term survivors after relapse are seen in class I to III, but not in class IV patients.
Collapse
Affiliation(s)
- Steven De Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
|
69
|
Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2012; 19:171-8. [PMID: 21874278 DOI: 10.1007/s00534-011-0437-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The prognosis of patients with intrahepatic cholangiocarcinoma (ICC) is extremely poor and the recurrence rate after curative operation is very high. There is no standard treatment to prevent recurrence of ICC. In this study, we investigated the clinical utilization of a dendritic cell vaccine plus activated T-cell transfer in an adjuvant setting for postoperative ICC. METHODS 36 patients with ICC were vaccinated at least 3 times with autologous tumor lysate pulsed dendritic cells plus ex-vivo activated T-cell transfer. The 5-year progression-free survival (PFS) and overall survival (OS) were measured and compared with those of 26 patients who received the curative operation alone as a concurrent control. The registration number was UMIN000005820. RESULTS The median PFS and OS were 18.3 and 31.9 months in the patients receiving adjuvant immunotherapy and 7.7 and 17.4 months in the group receiving surgery alone (p = 0.005 and 0.022, respectively). In the treated group, patients whose skin reactions were 3 cm or more at the vaccine site showed dramatically better prognosis (PFS p < 0.001, OS p = 0.001). CONCLUSIONS A postoperative dendritic cell vaccine plus activated T-cell transfer would be a feasible and effective treatment for preventing recurrence and achieving long-term survival in ICC patients.
Collapse
|
70
|
Jones C, Perryman L, Hargrave D. Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 2012; 9:400-13. [PMID: 22641364 DOI: 10.1038/nrclinonc.2012.87] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliomas in children differ from their adult counterparts by their distribution of histological grade, site of presentation and rate of malignant transformation. Although rare in the paediatric population, patients with high-grade gliomas have, for the most part, a comparably dismal clinical outcome to older patients with morphologically similar lesions. Molecular profiling data have begun to reveal the major genetic alterations underpinning these malignant tumours in children. Indeed, the accumulation of large datasets on adult high-grade glioma has revealed key biological differences between the adult and paediatric disease. Furthermore, subclassifications within the childhood age group can be made depending on age at diagnosis and tumour site. However, challenges remain on how to reconcile clinical data from adult patients to tailor novel treatment strategies specifically for paediatric patients.
Collapse
Affiliation(s)
- Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | | | | |
Collapse
|
71
|
Pellegatta S, Cuppini L, Finocchiaro G. Brain cancer immunoediting: novel examples provided by immunotherapy of malignant gliomas. Expert Rev Anticancer Ther 2012; 11:1759-74. [PMID: 22050025 DOI: 10.1586/era.11.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of studies in murine models have suggested that the immune system may edit different tumors by forcing their expression profiles so that they escape immune reactions and proliferate. Glioblastoma (GB), the most frequent and aggressive primary brain tumor, provides a good example of this, thanks to the production of numerous immunosuppressive molecules (with TGF-β being of paramount importance), downregulation of the MHC complex and deregulation of the potential for antigen presentation by the surrounding microglia. Given that surgery, radiotherapy and chemotherapy with available protocols have limited effects on the survival of GB patients, different immunotherapy strategies have been developed, based on the use of dendritic cells, antibodies and peptide vaccination. Presently, bevacizumab, a humanized anti-VEGF antibody, provides the most successful example for immune-based treatment of GB, however, its action is limited in time, as the often tumor relapses due to still undefined immunoediting mechanisms. Altered function of EGF receptor-driven pathways is common in GB and is most frequently due to the presence of a deleted form named EGFRvIII, providing a unique cancer epitope that has been targeted by immunotherapy. A recent trial of GB immunotherapy based on vaccination with the EGFRvIII peptide has shown clinical benefit: interestingly most GBs at relapse were negative for EGFRvIII expression, a relevant, direct example of cancer immunoediting. Investigations on the mechanisms of GB immunoediting will lead to an increased understanding of the biology of this malignancy and hopefully provide novel therapeutic targets.
Collapse
Affiliation(s)
- Serena Pellegatta
- Fondazione I.R.C.C.S Istituto Neurologico C. Besta, Via Celoria 11, 20133 Milan, Italy
| | | | | |
Collapse
|
72
|
Elens I, De Vleeschouwer S, Pauwels F, Van Gool S. Resection and Immunotherapy for Recurrent Grade III Glioma. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/530179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background. Despite surgery, radiotherapy, and chemotherapy, the prognosis of relapsed grade III gliomas remains poor. After promising results of immunotherapy in grade IV gliomas, we investigated its safety and efficacy in recurrent grade III gliomas. Methods. Thirty-nine patients received vaccines containing dendritic cells loaded with autologous tumor lysate after tumor resection. Progression-free survival (PFS) and overall survival (OS) were compared with those obtained after temozolomide (TMZ) treatment as found in the literature. Results. Median PFS and OS were 4.6 and 20.5, 3.4 and 18.8, 7.8 and 13.3 months in recurrent grade III astrocytoma, oligodendroglioma, and oligoastrocytoma, respectively. Compared with TMZ, no grade III/IV toxicity was reported and median OS tended to be higher although there was no difference in median PFS. The perceived benefit of immunotherapy was more pronounced in astrocytic tumors. Conclusions. We provide the first description of immunotherapy in recurrent grade III glioma as safe, promising, and feasible.
Collapse
Affiliation(s)
- Iris Elens
- Department of Child & Women, University Hospital Leuven, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Steven De Vleeschouwer
- Department of Neurosurgery, University Hospital Leuven, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Femke Pauwels
- Department of Experimental Medicine, University Hospital Leuven, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Stefaan Van Gool
- Department of Child & Women, University Hospital Leuven, Catholic University of Leuven, 3000 Leuven, Belgium
- Department of Experimental Medicine, University Hospital Leuven, Catholic University of Leuven, 3000 Leuven, Belgium
- Pediatric Hemato-Oncology, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
73
|
|
74
|
Ikeda H, Shiku H. Antigen-receptor gene-modified T cells for treatment of glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:202-15. [PMID: 22639170 DOI: 10.1007/978-1-4614-3146-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunological effector cells and molecules have been shown to access intracranial tumor sites despite the existence of blood brain barrier (BBB) or immunosuppressive mechanisms associated with brain tumors. Recent progress in T-cell biology and tumor immunology made possible to develop strategies of tumor-associated antigen-specific immunotherapeutic approaches such as vaccination with defined antigens and adoptive T-cell therapy with antigen-specific T cells including gene-modified T cells for the treatment of patients with brain tumors. An array of recent reports on the trials of active and passive immunotherapy for patients with brain tumors have documented safety and some preliminary clinical efficacy, although the ultimate judgment for clinical benefits awaits rigorous evaluation in trials of later phases. Nevertheless, treatment with lymphocytes that are engineered to express tumor-specific receptor genes is a promising immunotherapy against glioma, based on the significant efficacy reported in the trials for patients with other types of malignancy. Overcoming the relative difficulty to apply immunotherapeutic approach to intracranial region, current advances in the understanding of human tumor immunology and the gene-therapy methodology will address the development of effective immunotherapy of brain tumors.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.
| | | |
Collapse
|
75
|
Abstract
Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma.
Collapse
Affiliation(s)
- Alissa A. Thomas
- Department of Neurology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Marc S. Ernstoff
- Department of Medicine, Section of Hematology/Oncology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Medical Oncology Immunotherapy Program, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Camilo E. Fadul
- Department of Medicine, Section of Hematology/Oncology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Department of Neurology, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Medical Oncology Immunotherapy Program, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
- Neuro-oncology Program, Norris Cotton Cancer Center, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| |
Collapse
|
76
|
Yamanaka R, Kajiwara K. Dendritic cell vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:187-200. [PMID: 22639169 DOI: 10.1007/978-1-4614-3146-6_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite progress in brain tumor therapy, the prognosis of malignant glioma patients remains dismal. Among the new treatments currently being investigated, immunotherapy is theoretically very attractive since it offers the potential for high tumor-specific cytotoxicity. Increasing numbers of reports demonstrate that systemic immunotherapy using dendritic cells is capable of inducing an antiglioma response. Therefore, dendritic cell-based immunotherapy could be a new treatment modality for patients with glioma. In this chapter, we will discuss the implications of these findings for glioma therapy, reviewing current literature on dendritic cell-based glioma immunotherapy. We will overview the role of dendritic cells in immunobiology, the central nervous system and tumor immunology, before outlining dendritic cell therapy results in clinical trials and future directions. Dendritic cell-based immunotherapy strategies appear promising as an approach to successfully induce an antitumor immune response in patients with glioma, where it seems to be safe and without major side effects. The development of methods for manipulating dendritic cells for the purpose of vaccination will enhance the clinical usefulness of these cells for biotherapy. Its efficacy should be further determined in randomized, controlled clinical trials.
Collapse
|
77
|
Verschuere T, De Vleeschouwer S, Lefranc F, Kiss R, Van Gool SW. Galectin-1 and immunotherapy for brain cancer. Expert Rev Neurother 2011; 11:533-43. [PMID: 21469926 DOI: 10.1586/ern.11.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prognosis of patients diagnosed with high-grade glioma continues to be dismal in spite of multimodal treatment. Active specific immunotherapy by means of dendritic cell vaccination is considered to be a new promising concept that aims at generating an anti-tumoral immune response. However, it is now widely accepted that the success of immunotherapeutic strategies to promote tumor regression will rely not only on enhancing the effector arm of the immune response but also on downregulation of the counteracting tolerogenic signals. In this article, we summarize evidence that galectin-1, an evolutionarily conserved glycan-binding protein that is abundantly expressed in high-grade glioma, is an important player in glioma-mediated immune escape.
Collapse
Affiliation(s)
- Tina Verschuere
- Laboratory of Experimental Immunology, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
78
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
79
|
Wheeler CJ, Black KL. Vaccines for glioblastoma and high-grade glioma. Expert Rev Vaccines 2011; 10:875-86. [PMID: 21692706 DOI: 10.1586/erv.11.71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vaccination by administering tumor antigen plus cell-free or cellular adjuvant has garnered hope for more effective, less toxic therapy for patients with malignant brain tumors including glioblastoma multiforme. To determine if this approach demonstrates ample clinical promise, all published reports of vaccination for glioma were evaluated. These reports suggest vaccination is associated with low toxicity and favorable clinical outcomes. The possibility of selection bias is evident in many published vaccine trials, but several of the more recent ones appropriately attempt to account for bias. Effective induction of antitumor immunity is consistently observed, and, in the latest trials, correlates with significant clinical improvement.
Collapse
Affiliation(s)
- Christopher J Wheeler
- Maxine Dunitz Neurosurgical Institute, Department of Neurosurgery, Cedars-Sinai Medical Center, 110 North George Burns Road, Davis 2097, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
80
|
Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 2011; 34:382-9. [PMID: 21499132 DOI: 10.1097/cji.0b013e318215e300] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Patients with glioblastoma multiforme (GBM) are profoundly immunosuppressed and may benefit from restoration of an antitumor immune response in combination with conventional radiation therapy and temozolomide (TMZ). The optimal strategies to evaluate clinically relevant immune responses to treatment have yet to be determined. The primary objective of our study was to determine immunologic response to cervical intranodal vaccination with autologous tumor lysate-loaded dendritic cells (DCs) in patients with GBM after radiation therapy and TMZ. We used a novel hierarchical clustering analysis of immune parameters measured before and after vaccination. Secondary objectives were to assess treatment feasibility and to correlate immune response with progression-free survival (PFS) and overall survival. Ten eligible patients received vaccination. Tumor-specific cytotoxic T-cell response measured after vaccination was enhanced for the precursor frequency of CD4+ T and CD4+ interferon γ-producing cells. Hierarchical clustering analysis of multiple functional outcomes discerned 2 groups of patients according to their immune response, and additionally showed that patients in the top quintile for at least one immune function parameter had improved survival. There were no serious adverse events related to DC vaccination. All patients were alive at 6 months after diagnosis and the 6-month PFS was 90%. The median PFS was 9.5 months and overall survival was 28 months. In patients with GBM, immune therapy with DC vaccination after radiation and TMZ resulted in tumor-specific immune responses that were associated with prolonged survival. Our data suggest that DC vaccination in combination with radiation and chemotherapy in patients with GBM is feasible, safe, and may induce tumor-specific immune responses.
Collapse
|
81
|
Chang CN, Huang YC, Yang DM, Kikuta K, Wei KJ, Kubota T, Yang WK. A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci 2011; 18:1048-54. [DOI: 10.1016/j.jocn.2010.11.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
|
82
|
Abstract
Malignant gliomas are the most common and aggressive form of brain tumors. Current therapy consists of surgical resection, followed by radiation therapy and concomitant chemotherapy. Despite these treatments, the prognosis for patients is poor. As such, investigative therapies including tumor vaccines have targeted this devastating condition. Recent clinical trials involving immunotherapy, specifically dendritic cell (DC) based vaccines, have shown promising results. Overall, these vaccines are well tolerated with few documented side effects. In many patients receiving vaccines, tumor progression was delayed and the median overall survival of these patients was prolonged. Despite these encouraging results, several factors have limited the efficacy of DC vaccines. Here we discuss the potential of DC vaccines as adjuvant therapy and current obstacles of generating highly pure and potent DC vaccines in the context of malignant glioma. Taken together, the results from earlier clinical studies justify additional clinical trials aimed at improving the efficacy of DC vaccines.
Collapse
|
83
|
von Bueren AO, Warmuth-Metz M, Schlegel PG, Soerensen N, Krauss J, Roggendorf W, Pietsch T, Feiden W, Graf N, Pohl F, Flentje M, Kuehl J, Rutkowski S. Late complete remission of supratentorial primitive neuroectodermal tumor (CNS-PNET) after multiple relapses. Pediatr Blood Cancer 2011; 56:503-5. [PMID: 21113945 DOI: 10.1002/pbc.22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
84
|
Coosemans A. Wilms' Tumour gene 1 (WT1) as an immunotherapeutic target. Facts Views Vis Obgyn 2011; 3:89-99. [PMID: 24753854 PMCID: PMC3987486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
High grade uterine sarcoma and recurrent endometrial carcinoma are aggressive cancers with limited treatment options, resulting in a poor prognosis. In this research we focused in the first place on the detection of a highly immunogenic tumour-associated antigen Wilms' tumour gene 1 (WT1) in uterine tumours. We were able to reveal its overexpression in the tumour cells of high grade sarcomas and carcinosarcomas . Moreover, patients with WT1 positive tumours had a significantly worse prognosis than patients who were WT1 negative. For carcinomas, WT1 was present in only a minority of tumour cells, but in the majority of intratumoural blood vessels. Small blood vessels in the normal tissue surrounding the carcinoma were also WT1 positive, suggesting a role for WT1 in angiogenesis. WT1 was hardly expressed or absent in the non-tumour or benign tumoural uterus (myoma, polyp). The next step was to develop a targeted treatment against WT1. We opted for dendritic cell (DC) based immunotherapy. Nevertheless a basal expression of WT1 in monocytes and in vitro cultured unloaded DC was observed, the electroporation of in vitro cultured DC with WT1-mRNA resulted in a higher expression of WT1 by the DC. WT1-mRNA loaded DC were used for in vivo stimulations of T cells, resulting in the rise of WT1-specific T cells and a transient molecular response (decrease of CA125) in an end stage endometrial carcinoma patient. No toxic side effects were reported. Future in vivo research, carried out in a phase I clinical trial in our center, will reveal the ability of this new therapy to induce an immunological and possible clinical response in WT1 positive uterine cancer patients.
Collapse
|
85
|
Vrabec M, Van Cauter S, Himmelreich U, Van Gool SW, Sunaert S, De Vleeschouwer S, Suput D, Demaerel P. MR perfusion and diffusion imaging in the follow-up of recurrent glioblastoma treated with dendritic cell immunotherapy: a pilot study. Neuroradiology 2010; 53:721-31. [PMID: 21107549 DOI: 10.1007/s00234-010-0802-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/04/2010] [Indexed: 11/28/2022]
Abstract
INTRODUCTION This study aims to determine the potential value of MR-PWI and MR-DWI to differentiate immune therapy-induced inflammatory response from recurrent glioblastoma tumour growth. Both can present as contrast-enhancing lesions on conventional magnetic resonance imaging (MRI). METHODS Patients with recurrent glioblastoma who could obtain a total or near-total resection were treated with dendritic cell immune therapy according to the HGG-IMMUNO-2003 trial. A retrospective analysis of 32 follow-up MRI examinations (mean follow-up time 21 months) in eight patients was performed for this pilot study. For the statistical analysis, the 32 examinations were divided into three groups: 0-obtained in patients that remained stable during the follow-up period, 1a-obtained in progressive-tumour patients at time points before definite progression and 1b-obtained in patients at or after progression. RESULTS Maximum lesional rCBV ratios were highest in group 1b (Student t test, 9.25 ± 2.68; p < 0.001) and were higher in group 1a (4.87 ± 1.61, p < 0.001) compared to group 0 (1.22 ± 0.47). The minimum apparent diffusion coefficients (ADCs) in the contrast-enhancing regions were lower in group 1a (0.62 ± 0.06 × 10(-3) mm(2)/s) than in group 0 (1.03 ± 0.43 × 10(-3) mm(2)/s, p = 0.01) and higher in group 1b (0.76 ± 0.08) compared to 1a (p = 0.02). The minimum ADCs in the FLAIR-hyperintense region were lower in group 1a (0.62 ± 0.06, p = 0.02) compared to group 0 (0.76 ± 0.16) but not significantly different in group 1b (0.68 ± 0.07) from groups 0 and 1a (p = 0.33, p = 0.10). The mean ADCs of the FLAIR-hyperintense region and the mean ADCs of the contrast-enhancing lesion were not significantly different. CONCLUSION The maximum lesional rCBV ratios and minimum ADC values in the contrast-enhancing area are potential radiological markers to differentiate between immune therapy-induced inflammatory response and recurrent glioblastoma tumour growth in glioblastoma patients treated with immune therapy.
Collapse
Affiliation(s)
- Matej Vrabec
- Department of Radiology, University Clinical Center Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Hickey MJ, Malone CC, Erickson KL, Jadus MR, Prins RM, Liau LM, Kruse CA. Cellular and vaccine therapeutic approaches for gliomas. J Transl Med 2010; 8:100. [PMID: 20946667 PMCID: PMC2964608 DOI: 10.1186/1479-5876-8-100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022] Open
Abstract
Despite new additions to the standard of care therapy for high grade primary malignant brain tumors, the prognosis for patients with this disease is still poor. A small contingent of clinical researchers are focusing their efforts on testing the safety, feasibility and efficacy of experimental active and passive immunotherapy approaches for gliomas and are primarily conducting Phase I and II clinical trials. Few trials have advanced to the Phase III arena. Here we provide an overview of the cellular therapies and vaccine trials currently open for patient accrual obtained from a search of http://www.clinicaltrials.gov. The search was refined with terms that would identify the Phase I, II and III immunotherapy trials open for adult glioma patient accrual in the United States. From the list, those that are currently open for patient accrual are discussed in this review. A variety of adoptive immunotherapy trials using ex vivo activated effector cell preparations, cell-based and non-cell-based vaccines, and several combination passive and active immunotherapy approaches are discussed.
Collapse
Affiliation(s)
- Michelle J Hickey
- The Joan S, Holmes Memorial Biotherapeutics Research Laboratory, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, McLendon RE, Mitchell DA, Reardon DA, Sawaya R, Schmittling RJ, Shi W, Vredenburgh JJ, Bigner DD. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010; 28:4722-9. [PMID: 20921459 DOI: 10.1200/jco.2010.28.6963] [Citation(s) in RCA: 601] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Immunologic targeting of tumor-specific gene mutations may allow precise eradication of neoplastic cells without toxicity. Epidermal growth factor receptor variant III (EGFRvIII) is a constitutively activated and immunogenic mutation not expressed in normal tissues but widely expressed in glioblastoma multiforme (GBM) and other neoplasms. PATIENTS AND METHODS A phase II, multicenter trial was undertaken to assess the immunogenicity of an EGFRvIII-targeted peptide vaccine and to estimate the progression-free survival (PFS) and overall survival (OS) of vaccinated patients with newly diagnosed EGFRvIII-expressing GBM with minimal residual disease. Intradermal vaccinations were given until toxicity or tumor progression was observed. Sample size was calculated to differentiate between PFS rates of 20% and 40% 6 months after vaccination. RESULTS There were no symptomatic autoimmune reactions. The 6-month PFS rate after vaccination was 67% (95% CI, 40% to 83%) and after diagnosis was 94% (95% CI, 67% to 99%; n = 18). The median OS was 26.0 months (95% CI, 21.0 to 47.7 months). After adjustment for age and Karnofsky performance status, the OS of vaccinated patients was greater than that observed in a control group matched for eligibility criteria, prognostic factors, and temozolomide treatment (hazard ratio, 5.3; P = .0013; n = 17). The development of specific antibody (P = .025) or delayed-type hypersensitivity (P = .03) responses to EGFRvIII had a significant effect on OS. At recurrence, 82% (95% CI, 48% to 97%) of patients had lost EGFRvIII expression (P < .001). CONCLUSION EGFRvIII-targeted vaccination in patients with GBM warrants investigation in a phase III, randomized trial.
Collapse
|
88
|
Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol 2010; 2010. [PMID: 20953324 PMCID: PMC2952949 DOI: 10.1155/2010/689171] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/13/2010] [Accepted: 08/27/2010] [Indexed: 12/22/2022]
Abstract
High grade gliomas (HGG) including glioblastomas (GBM) are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach could also maintain long term antitumour responses without inducing neurologic defects. Since the past 25 years, adoptive and active immunotherapies using lymphokine-activated killer cells, cytotoxic T cells, tumour-infiltrating lymphocytes, autologous tumour cells, and dendritic cells have been tested in phase I/II clinical trials with HGG patients. This paper inventories these cellular immunotherapeutic strategies and discusses their efficacy, limits, and future perspectives for optimizing the treatment to achieve clinical benefits for GBM patients.
Collapse
|
89
|
Frank MO, Kaufman J, Tian S, Suárez-Fariñas M, Parveen S, Blachère NE, Morris MJ, Slovin S, Scher HI, Albert ML, Darnell RB. Harnessing naturally occurring tumor immunity: a clinical vaccine trial in prostate cancer. PLoS One 2010; 5. [PMID: 20824184 PMCID: PMC2931687 DOI: 10.1371/journal.pone.0012367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/22/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Studies of patients with paraneoplastic neurologic disorders (PND) have revealed that apoptotic tumor serves as a potential potent trigger for the initiation of naturally occurring tumor immunity. The purpose of this study was to assess the feasibility, safety, and immunogenicity of an apoptotic tumor-autologous dendritic cell (DC) vaccine. METHODS AND FINDINGS We have modeled PND tumor immunity in a clinical trial in which apoptotic allogeneic prostate tumor cells were used to generate an apoptotic tumor-autologous dendritic cell vaccine. Twenty-four prostate cancer patients were immunized in a Phase I, randomized, single-blind, placebo-controlled study to assess the safety and immunogenicity of this vaccine. Vaccinations were safe and well tolerated. Importantly, we also found that the vaccine was immunogenic, inducing delayed type hypersensitivity (DTH) responses and CD4+ and CD8+ T cell proliferation, with no effect on FoxP3+ regulatory T cells. A statistically significant increase in T cell proliferation responses to prostate tumor cells in vitro (p = 0.002), decrease in prostate specific antigen (PSA) slope (p = 0.016), and a two-fold increase in PSA doubling time (p = 0.003) were identified when we compared data before and after vaccination. CONCLUSIONS An apoptotic cancer cell vaccine modeled on naturally occurring tumor immune responses in PND patients provides a safe and immunogenic tumor vaccine. TRIAL REGISTRATION ClinicalTrials.gov NCT00289341.
Collapse
Affiliation(s)
- Mayu O. Frank
- Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, New York, United States of America
| | - Julia Kaufman
- Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, New York, United States of America
| | - Suyan Tian
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Mayte Suárez-Fariñas
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Salina Parveen
- Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, New York, United States of America
| | - Nathalie E. Blachère
- Howard Hughes Medical Institute and Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, United States of America
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Susan Slovin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Matthew L. Albert
- Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, New York, United States of America
| | - Robert B. Darnell
- Howard Hughes Medical Institute and Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, United States of America
- Department of Neuro-Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
90
|
Newcomb EW, Lukyanov Y, Kawashima N, Alonso-Basanta M, Wang SC, Liu M, Jure-Kunkel M, Zagzag D, Demaria S, Formenti SC. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res 2010; 173:426-32. [PMID: 20334514 DOI: 10.1667/rr1904.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previously, we reported that peripheral vaccination of mice with modified autologous tumor cells secreting granulocyte-macrophage colony-stimulating factor (GM-CSF) combined with ionizing radiation to the whole brain cured 50% of mice using a syngeneic, intracranial model of murine high-grade glioma. Here, we tested the combination of radiotherapy (4 Gy x 2) with an immunotherapeutic approach using an anti-CD137 antibody directed to the co-stimulatory molecule CD137. The CD137 antibody has shown promise in generating effective antitumor responses in several animal models and has demonstrated a favorable toxicity profile in the clinic. The combination of radiation and anti-CD137 therapy resulted in complete tumor eradication and prolonged survival in six of nine (67%) mice with established brain tumors (P = 0.0009). Five of six (83%) long-term survivors in the combination group demonstrated antitumor immunity by rejecting challenge tumors. Antitumor immunity was associated with an increased number of tumor-infiltrating lymphocytes (TILs) in brain tumors and increased tumor-specific production of gammaIFN. In view of the finding that radiation enhanced the antitumor effect of anti-CD137 therapy, this approach should be studied further for clinical translation.
Collapse
Affiliation(s)
- Elizabeth W Newcomb
- Departments of Pathology, New York University School of Medicine and NYU Cancer Institute and Langone Medical Center, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JEA, Van Gool SW. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr Blood Cancer 2010; 54:519-25. [PMID: 19852061 DOI: 10.1002/pbc.22319] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND A large experience with dendritic cell (DC)-based vaccination for malignant brain tumours has been gained in adults. Here we focus on the results obtained in children with relapsed malignant brain tumours. PROCEDURE In total 45 children were vaccinated: 33 high grade glioma (HGG), 5 medulloblastoma (MB)/primitive neuro-ectodermal tumour (PNET), 4 ependymoma and 3 atypical teratoid-rhabdoid tumour (ATRT). Autologous, monocyte-derived DC were generated and loaded with tumour lysate, which was used as source of tumour-associated antigens. RESULTS In 38 patients peripheral blood mononuclear cells (PBMC) were obtained from leukapheresis and in 7 patients from fresh blood samples. 7 HGG patients are still alive with median follow-up (FU) of 35.7 months (range: 12.1-85.6). Median overall survival (OS) was 13.5 months (range: 1.4-85.6). All patients with MB/PNET died (median OS 5.7 months; range 4.3-51.2). One patient with ependymoma is still alive at 22.3 months FU. The other three patients died at, respectively, 7.7, 30.1 and 31.5 months. Two patients with ATRT are still alive at, respectively, 34.1 and 52.6 months FU. The third patient died at 50.5 months. No severe adverse events were noticed. CONCLUSIONS In this exploratory study, HGG and ATRT seem to respond more favourably to vaccination than MB/PNET and ependymoma. Although preliminary, our results are promising and support further testing of DC-based immunotherapy in new treatment protocols for HGG and ATRT.
Collapse
Affiliation(s)
- Hilko Ardon
- Department of Neurosurgery, University Hospital Gasthuisberg, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Wolff JEA, Driever PH, Erdlenbruch B, Kortmann RD, Rutkowski S, Pietsch T, Parker C, Metz MW, Gnekow A, Kramm CM. Intensive chemotherapy improves survival in pediatric high-grade glioma after gross total resection: results of the HIT-GBM-C protocol. Cancer 2010; 116:705-12. [PMID: 19957326 DOI: 10.1002/cncr.24730] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The authors hypothesized that intensified chemotherapy in protocol HIT-GBM-C would increase survival of pediatric patients with high-grade glioma (HGG) and diffuse intrinsic pontine glioma (DIPG). METHODS Pediatric patients with newly diagnosed HGG and DIPG were treated with standard fractionated radiation and simultaneous chemotherapy (cisplatin 20 mg/m2 x 5 days, etoposide 100 mg/m2 x 3 days, and vincristine, and 1 cycle of cisplatin + etoposide + ifosfamide 1.5 g/m x 5 days [PEI] during the last week of radiation). Subsequent maintenance chemotherapy included further cycles of PEI in Weeks 10, 14, 18, 22, 26, and 30, followed by oral valproic acid. RESULTS Ninety-seven (pons, 37; nonpons, 60) patients (median age, 10 years; grade IV histology, 35) were treated. Resection was complete in 21 patients, partial in 29, biopsy only in 26, and not performed in 21. Overall survival rates were 91% (standard error of the mean [SE] +/- 3%), 56%, and 19% at 6, 12, and 60 months after diagnosis, respectively. When compared with previous protocols, there was no significant benefit for patients with residual tumor, but the 5-year overall survival rate for patients with complete resection treated on HIT-GBM-C was 63% +/- 12% SE, compared with 17% +/- 10% SE for the historical control group (P = .003, log-rank test). CONCLUSIONS HIT-GBM-C chemotherapy after complete tumor resection was superior to previous protocols.
Collapse
Affiliation(s)
- Johannes E A Wolff
- Department of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 2010. [PMID: 20146084 DOI: 10.1007/s11060-010-0131.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite resection, radiochemotherapy, and maintenance temozolomide chemotherapy (TMZm), the prognosis of patients with glioblastoma multiforme (GBM) remains poor. We integrated immunotherapy in the primary standard treatment for eight pilot adult patients (median age 50 years) with GBM, to assess clinical and immunological feasibility and toxicity in preparation of a phase I/II protocol HGG-2006. After maximum, safe resection, leukapheresis was performed before radiochemotherapy, and four weekly vaccinations with autologous GBM lysate-loaded monocyte-derived dendritic cells were given after radiochemotherapy. Boost vaccines with lysates were given during TMZm. During the course of vaccination, immunophenotyping showed a relative increase in CD8+CD25+ cells in six of the seven patients, complying with the prerequisites for implementation of immunotherapy in addition to postoperative radiochemotherapy. In five patients, a more than twofold increase in tumor antigen-reacting IFN-gamma-producing T cells on Elispot was seen at the fourth vaccination compared with before vaccination. In three of these five patients this more than twofold increase persisted after three cycles of TMZm. Quality of life during vaccination remained excellent. Progression-free survival at six months was 75%. Median overall survival for all patients was 24 months (range: 13-44 months). The only serious adverse event was an ischemic stroke eight months postoperatively. We conclude that tumor vaccination, fully integrated within the standard primary postoperative treatment for patients with newly diagnosed GBM, is feasible and well tolerated. The survival data were used to power a currently running phase I/II trial.
Collapse
|
94
|
Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G, Demaerel P, Bijttebier P, Claes L, Goffin J, Van Calenbergh F, De Vleeschouwer S. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 2010; 99:261-72. [DOI: 10.1007/s11060-010-0131-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/25/2010] [Indexed: 12/29/2022]
|
95
|
Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE, Lally-Goss D, McGehee-Norman S, Paolino A, Reardon DA, Friedman AH, Friedman HS, Bigner DD. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 2010; 8:2773-9. [PMID: 19825799 DOI: 10.1158/1535-7163.mct-09-0124] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, such that their efficacy is ultimately limited by nonspecific toxicity. Immunologic targeting of tumor-specific gene mutations, however, may allow more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a consistent and tumor-specific mutation widely expressed in GBMs and other neoplasms. The safety and immunogenicity of a dendritic cell (DC)-based vaccine targeting the EGFRvIII antigen was evaluated in this study. Adults with newly diagnosed GBM, who had undergone gross-total resection and standard conformal external beam radiotherapy, received three consecutive intradermal vaccinations with autologous mature DCs pulsed with an EGFRvIII-specific peptide conjugated to keyhole limpet hemocyanin. The dose of DCs was escalated in cohorts of three patients. Patients were monitored for toxicity, immune response, radiographic and clinical progression, and death. No allergic reactions or serious adverse events were seen. Adverse events were limited to grade 2 toxicities. The maximum feasible dose of antigen-pulsed mature DCs was reached at 5.7 x 10(7) +/- 2.9 x 10(7) SD without dose-limiting toxicity. EGFRvIII-specific immune responses were evident in most patients. The mean time from histologic diagnosis to vaccination was 3.6 +/- 0.6 SD months. Median time to progression from vaccination was 6.8 months [95% confidence interval (C.I.(95)), 2.5-8.8], and median survival time from vaccination was 18.7 months (C.I.(95), 14.5-25.6). Overall median survival from time of histologic diagnosis was 22.8 months (C.I.(95), 17.5-29). This study establishes the EGFRvIII mutation as a safe and immunogenic tumor-specific target for immunotherapy.
Collapse
Affiliation(s)
- John H Sampson
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Han SJ, Kaur G, Yang I, Lim M. Biologic Principles of Immunotherapy for Malignant Gliomas. Neurosurg Clin N Am 2010; 21:1-16. [DOI: 10.1016/j.nec.2009.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
97
|
Abstract
Over the past decade, dendritic cell-based immunotherapy for central nervous system tumors has progressed from preclinical rodent models and safety assessments to phase I/II clinical trials in over 200 patients, which have produced measurable immunologic responses and some prolonged survival rates. Many questions regarding the methods and molecular mechanisms behind this new treatment option, however, remain unanswered. Results from currently ongoing and future studies will help to elucidate which dendritic cell preparations, treatment protocols, and adjuvant therapeutic regimens will optimize the efficacy of dendritic cell vaccination. As clinical studies continue to report results on dendritic cell-mediated immunotherapy, it will be critical to continue refining treatment methods and developing new ways to augment this promising form of glioma treatment.
Collapse
Affiliation(s)
- Won Kim
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| | - Linda M. Liau
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095
| |
Collapse
|
98
|
Grauer OM, Wesseling P, Adema GJ. Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol 2009; 19:674-93. [PMID: 19744040 DOI: 10.1111/j.1750-3639.2009.00315.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite aggressive multimodal treatment approaches, the prognosis for patients with diffuse gliomas remains disappointing. Glioma cells often extensively infiltrate in the surrounding brain parenchyma, a phenomenon that helps them to escape surgical removal, radiation exposure and chemotherapy. Moreover, conventional therapy is often associated with considerable local and systemic side effects. Therefore, the development of novel therapeutic approaches is essential to improve the outcome of these patients. Immunotherapy offers the opportunity to specifically target residual radio-and chemoresistant tumor cells without damaging healthy neighboring brain tissue. Significant progress has been made in recent years both in understanding the mechanisms of immune regulation in the central nervous system (CNS) as well as tumor-induced and host-mediated immunosuppression elicited by gliomas. In this review, after discussing the special requirements needed for the initiation and control of immune responses in the CNS, we focus on immunological phenomena observed in glioma patients, discuss different immunological approaches to attack glioma-associated target structures and touch on further strategies to improve the efficacy of immunotherapy of gliomas.
Collapse
Affiliation(s)
- Oliver M Grauer
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | |
Collapse
|
99
|
Van Gool S, Maes W, Ardon H, Verschuere T, Van Cauter S, De Vleeschouwer S. Dendritic cell therapy of high-grade gliomas. Brain Pathol 2009; 19:694-712. [PMID: 19744041 DOI: 10.1111/j.1750-3639.2009.00316.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prognosis of patients with malignant glioma is poor in spite of multimodal treatment approaches consisting of neurosurgery, radiochemotherapy and maintenance chemotherapy. Among innovative treatment strategies like targeted therapy, antiangiogenesis and gene therapy approaches, immunotherapy emerges as a meaningful and feasible treatment approach for inducing long-term survival in at least a subpopulation of these patients. Setting up immunotherapy for an inherent immunosuppressive tumor located in an immune-privileged environment requires integration of a lot of scientific input and knowledge of both tumor immunology and neuro-oncology. The field of immunotherapy is moving into the direction of active specific immunotherapy using autologous dendritic cells (DCs) as vehicle for immunization. In the translational research program of the authors, the whole cascade from bench to bed to bench of active specific immunotherapy for malignant glioma is covered, including proof of principle experiments to demonstrate immunogenicity of patient-derived mature DCs loaded with autologous tumor lysate, preclinical in vivo experiments in a murine orthotopic glioma model, early phase I/II clinical trials for relapsing patients, a phase II trial for patients with newly diagnosed glioblastoma (GBM) for whom immunotherapy is integrated in the current multimodal treatment, and laboratory analyses of patient samples. The strategies and results of this program are discussed in the light of the internationally available scientific literature in this fast-moving field of basic science and translational clinical research.
Collapse
Affiliation(s)
- Stefaan Van Gool
- Laboratory of Experimental Immunology, and Department of Child & Woman, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
100
|
Ardon H, Verbinnen B, Maes W, Beez T, Van Gool S, De Vleeschouwer S. Technical advancement in regulatory T cell isolation and characterization using CD127 expression in patients with malignant glioma treated with autologous dendritic cell vaccination. J Immunol Methods 2009; 352:169-73. [PMID: 19874827 DOI: 10.1016/j.jim.2009.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 11/24/2022]
Abstract
We have successfully treated over two hundred high-grade glioma (HGG) patients with immunotherapy consisting of vaccination with autologous dendritic cells (DCs) loaded with autologous tumour lysate. It has been documented that regulatory T cells (Treg) can counteract anti-tumour immune responses. Therefore, monitoring of Treg in these patients is essential. Up till now, Treg have been characterized based on the expression of the transcription factor Foxp3. Here, we validated IL-7 receptor alpha subunit (CD127)dim expression as a marker for human Treg within HGG patients, as a less laborious assay for routine use in tumour vaccination trials. We noted a strong positive correlation between Foxp3 expression and CD127dim expression in CD4+CD25+ and CD4+ cells. The suppressive function of CD4+CD127dim cells was assessed in an allogeneic mixed lymphocyte reaction (MLR). We conclude that CD127 staining is a fast, well-suited and reproducible Treg monitoring tool in HGG patients treated with immunotherapy.
Collapse
Affiliation(s)
- H Ardon
- Department of Neurosurgery, University Hospital Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|