51
|
Dixit R, Raza M, Kumar M, Basu S, Shukla VK. Expression Analysis of Survivin and XIAP in Gallbladder Cancer: a Case-control Study in Indo-Gangetic Plain. J Gastrointest Cancer 2017; 49:487-492. [DOI: 10.1007/s12029-017-0008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
52
|
Sharma A. Chemoresistance in cancer cells: exosomes as potential regulators of therapeutic tumor heterogeneity. Nanomedicine (Lond) 2017; 12:2137-2148. [DOI: 10.2217/nnm-2017-0184] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug resistance in cancer cells remains a fundamental challenge. Be it nontargeted or targeted drugs, the presence of intrinsic or acquired cancer cell resistance remains a great obstacle in chemotherapy. Conventionally, a spectrum of cellular mechanisms defines drug resistance including overexpression of antiapoptotic proteins and drug efflux pumps, mutations in target and synergistic activation of prosurvival pathways in tumor cells. In addition to these well-studied routes, exosome-induced chemoresistance is emerging as a novel mechanism. Mechanistically, exosomes impart resistance by direct drug export, transport of drug efflux pumps and miRNAs exchange among cells. Moreover, exosome signaling creates ‘therapeutic tumor heterogeneity’ and favorably condition tumor microenvironment. Here, we discuss exosomes’ role in chemoresistance and possibilities of developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Pvt Ltd, L4, 400 NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
53
|
Guenat D, Hermetet F, Prétet JL, Mougin C. Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis. Viruses 2017; 9:v9080211. [PMID: 28783104 PMCID: PMC5580468 DOI: 10.3390/v9080211] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes (Exos), microvesicles (MVs) and apoptotic bodies (ABs) are released in biofluids by virtually all living cells. Tumor-derived Exos and MVs are garnering increasing attention because of their ability to participate in cellular communication or transfer of bioactive molecules (mRNAs, microRNAs, DNA and proteins) between neighboring cancerous or normal cells, and to contribute to human cancer progression. Malignant traits can also be transferred from apoptotic cancer cells to phagocytizing cells, either professional or non-professional. In this review, we focus on Exos and ABs and their relationship with human papillomavirus (HPV)-associated tumor development. The potential implication of EVs as theranostic biomarkers is also addressed.
Collapse
Affiliation(s)
- David Guenat
- EA3181, University Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Rue Ambroise Paré, 25000 Besançon, France.
- CNR Papillomavirus, CHRU, Boulevard Alexandre Fleming, 25000 Besançon, France.
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA.
| | - François Hermetet
- INSERM LNC-UMR1231, University Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Fondation de Coopération Scientifique Bourgogne Franche-Comté, 21000 Dijon, France.
| | - Jean-Luc Prétet
- EA3181, University Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Rue Ambroise Paré, 25000 Besançon, France.
- CNR Papillomavirus, CHRU, Boulevard Alexandre Fleming, 25000 Besançon, France.
| | - Christiane Mougin
- EA3181, University Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Rue Ambroise Paré, 25000 Besançon, France.
- CNR Papillomavirus, CHRU, Boulevard Alexandre Fleming, 25000 Besançon, France.
| |
Collapse
|
54
|
Mirzaei H, Sahebkar A, Jaafari MR, Goodarzi M, Mirzaei HR. Diagnostic and Therapeutic Potential of Exosomes in Cancer: The Beginning of a New Tale? J Cell Physiol 2017; 232:3251-3260. [PMID: 27966794 DOI: 10.1002/jcp.25739] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Abstract
Exosomes have emerged as one of the main players in intercellular communication. These small nano-sized particles have many roles in various physiological pathways in normal and abnormal cells. Exosomes can carry various cargos such as proteins, mRNAs, and miRNAs to recipient cells. Uptake of exosomes and their cargo can induce and/or inhibit different cellular and molecular pathways that lead to the alteration of cell behavior. Multiple lines of evidence have indicated that exosomes released from cancer cells can effect development of cancer in different stages. These particles and their cargo could regulate different processes such as tumor growth, metastasis, drug resistance, angiogenesis, and immune system functioning. It has been observed that exosomes can be used as potential diagnostic biomarkers in various cancer types. Moreover, some studies have used these particles as biological vehicles for delivery of various drugs such as doxorubicin, siRNAs, and miRNAs. Here, we summarized the findings on the role of exosomes in different pathological processes involved in cancer. Moreover, application of these particles as diagnostic and therapeutic biomarkers in different types of cancers is discussed. J. Cell. Physiol. 232: 3251-3260, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Goodarzi
- Faculty of Bioscience Engineering, Department of Biosystems, Katholieke Universiteit Leuven-KU Leuven, Heverlee, Belgium
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
55
|
Ferguson Bennit HR, Gonda A, Oppegard LJ, Chi DP, Khan S, Wall NR. Uptake of lymphoma-derived exosomes by peripheral blood leukocytes. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2017; 7:9-23. [PMID: 31360082 PMCID: PMC6467345 DOI: 10.2147/blctt.s130826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are nanosized lipid vesicles secreted into blood and other body fluids and serve as vehicles for intercellular communication. Despite being an important component of the tumor microenvironment (TME), exosomal targeting and uptake into recipient cells are still not fully understood. Few studies have looked at lymphoma exosomes and their interactions with circulating blood cells. In this study, we examine the exosomal uptake distribution among peripheral blood leukocytes (PBLs) using vesicles derived from a diffuse large B cell lymphoma cell line, WSU-DLCL2. Lymphoma cells survive, proliferate, and are protected from the cytotoxic effects of chemotherapeutic agents by soluble factors or by direct contact with inflammatory and stromal cells within the TME. In an attempt to close the gap in knowledge concerning lymphoma TME immunosuppression, we have treated normal human PBLs with PKH67-labeled lymphoma exosomes and monitored the uptake by measuring fluorescence at different time points using flow cytometry and fluorescent microscopy. Our results show that of the four populations examined, B cells and monocytes demonstrated uptake of PKH67-labeled exosomes, while T cells and NK cells displayed significantly less uptake.
Collapse
Affiliation(s)
- Heather R Ferguson Bennit
- Center for Health Disparities & Molecular Medicine, .,Division of Biochemistry, Department of Basic Sciences,
| | - Amber Gonda
- Center for Health Disparities & Molecular Medicine, .,Department of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - David P Chi
- Division of Biochemistry, Department of Basic Sciences,
| | - Salma Khan
- Center for Health Disparities & Molecular Medicine, .,Division of Biochemistry, Department of Basic Sciences,
| | - Nathan R Wall
- Center for Health Disparities & Molecular Medicine, .,Division of Biochemistry, Department of Basic Sciences,
| |
Collapse
|
56
|
Sullivan R, Maresh G, Zhang X, Salomon C, Hooper J, Margolin D, Li L. The Emerging Roles of Extracellular Vesicles As Communication Vehicles within the Tumor Microenvironment and Beyond. Front Endocrinol (Lausanne) 2017; 8:194. [PMID: 28848498 PMCID: PMC5550719 DOI: 10.3389/fendo.2017.00194] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Tumors evolve in complex and dynamic microenvironments that they rely on for sustained growth, invasion, and metastasis. Within this space, tumor cells and non-malignant cells are in frequent communication. One specific mode of communication that has gained recent attention is the release of extracellular vesicles (EVs). EVs are lipid bilayer-bound vehicles that are released from the cell membrane and carry nucleic acids, proteins, and lipids to neighboring or distant cells. EVs have been demonstrated to influence a multitude of processes that aid in tumor progression including cellular proliferation, angiogenesis, migration, invasion, metastasis, immunoediting, and drug resistance. The ubiquitous involvement of EVs on cancer progression makes them very suitable targets for novel therapeutics. Furthermore, they are being studied as specific markers for cancer diagnostics, prognosis, and even as chemotherapy drug-delivery systems. This review focuses on the most recent advances in EV knowledge, some current and potential problems with their use, and some proposed solutions to consider for the future.
Collapse
Affiliation(s)
- Ryan Sullivan
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Grace Maresh
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Xin Zhang
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
| | - John Hooper
- Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - David Margolin
- Department of Colon and Rectal Surgery, Ochsner Clinic Foundation, New Orleans, LA, United States
- Ochsner Clinical School, School of Medicine, University Queensland, New Orleans, LA, United States
| | - Li Li
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
- Ochsner Clinical School, School of Medicine, University Queensland, New Orleans, LA, United States
- *Correspondence: Li Li,
| |
Collapse
|
57
|
Induction of IFNT-Stimulated Genes by Conceptus-Derived Exosomes during the Attachment Period. PLoS One 2016; 11:e0158278. [PMID: 27351483 PMCID: PMC4924817 DOI: 10.1371/journal.pone.0158278] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Biochemical and/or physical communication between the conceptus and the uterine endometrium is required for conceptus implantation to the maternal endometrium, leading to placentation and the establishment of pregnancy. We previously reported that in vitro co-culture system with bovine trophoblast CT-1 cells, primary uterine endometrial epithelial cells (EECs), and uterine flushings (UFs) mimics in vivo conceptus attachment process. To identify molecules in UFs responsible for this change, we first characterized protein contents of UFs from day 17 cyclic (C17) and pregnant (P17) ewes through the use of two dimensional-Polyacrylamide Gel Electrophoresis (2D-PAGE), followed by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) analysis. These analyses identified 266 proteins specific for P17 UFs, from which 172 proteins were identified as exosomal proteins. Among 172 exosomal proteins, 8 proteins that had been identified as exosomal proteins were chosen for further analysis, including macrophage-capping protein (CAPG), aldo-keto reductase family 1, member B1 protein (AKR1B1), bcl-2-like protein 15 (BCL2L15), carbonic anhydrase 2 (CA2), isocitrate dehydrogenase 2 (IDH2), eukaryotic translation elongation factor 2 (EEF2), moesin (MSN), and ezrin (EZR). CAPG and AKR1B1 were again confirmed in P15 and P17 UFs, and more importantly CAPG and AKR1B1, mRNA and protein, were found only in P15 and P17 conceptuses. Moreover, exosomes were isolated from C15, C17, P15, or P17 UFs. Only P15 and P17 exosomes, originated from the conceptus, contained interferon tau (IFNT) as well as CAPG and AKR1B1, and up-regulated STAT1, STAT2, MX1, MX2, BST2, and ISG15 transcripts in EECs. These observations indicate that in addition to endometrial derived exosomes previously described, conceptus-derived exosomes are present in UFs and could function to modify endometrial response. These results suggest that exosomes secreted from conceptuses as well as endometria are involved in cell to cell interactions for conceptus implantation to the maternal endometrium.
Collapse
|
58
|
Garg H, Suri P, Gupta JC, Talwar GP, Dubey S. Survivin: a unique target for tumor therapy. Cancer Cell Int 2016; 16:49. [PMID: 27340370 PMCID: PMC4917988 DOI: 10.1186/s12935-016-0326-1] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Survivin is the smallest member of the Inhibitor of apoptosis (IAP) family of proteins, involved in inhibition of apoptosis and regulation of cell cycle. These functional attributes make Survivin a unique protein exhibiting divergent functions i.e. regulating cell proliferation and cell death. Expression pattern of Survivin is also distinctive; it is prominently expressed during embryonal development, absent in most normal, terminally differentiated tissues but upregulated in a variety of human cancers. Expression of Survivin in tumours correlates with not only inhibition of apoptosis and a decreased rate of cell death, but also resistance to chemotherapy and aggressiveness of tumours. Therefore, Survivin is an important target for cancer vaccines and therapeutics. Survivin has also been found to be prominently expressed on both human and embryonic stem cells and many somatic stem cell types indicating its yet unexplored role in stem cell generation and maintenance. Overall, Survivin emerges as a molecule with much wider role in cellular homeostasis. This review will discuss various aspects of Survivin biology and its role in regulation of apoptosis, cell division, chemo-resistance and tumour progression. Various molecular and immunotherapeutic approaches targeting Survivin will also be discussed.
Collapse
Affiliation(s)
- Himani Garg
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, J-3 Block, Room No: LG21, Sector 125, Noida, Uttar Pradesh 201303 India
| | - Prerna Suri
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Jagdish C Gupta
- Talwar Research Foundation, E-8 Neb Valley, Neb Sarai, New Delhi, 110 068 India
| | - G P Talwar
- Talwar Research Foundation, E-8 Neb Valley, Neb Sarai, New Delhi, 110 068 India
| | - Shweta Dubey
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, J-3 Block, Room No: LG21, Sector 125, Noida, Uttar Pradesh 201303 India
| |
Collapse
|
59
|
Abstract
Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.
Collapse
Affiliation(s)
- Theresa L Whiteside
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|
60
|
Wang JC, Yu Z, Hu YM, Wang T, Zeng YL, Tan N, Xu Q. Lanatoside C promotes apoptosis and inhibits survivin expression in hepatocarcinoma SMMC-7721 cells. Shijie Huaren Xiaohua Zazhi 2016; 24:1331-1341. [DOI: 10.11569/wcjd.v24.i9.1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the effect of lanatoside C on the proliferation of human hepatocarcinoma SMMC-7721 cells and to explore the underlying mechanism.
METHODS: SMMC-7721 cells were treated with lanatoside C. Then cell proliferation assay and colony formation assay were applied to detect the cell proliferation. The effect of lanatoside C on the cell cycle and apoptosis of SMMC-7721 cells were detected by flow cytometry. Western blot assay was used to detect survivin protein expression.
RESULTS: Compared with control cells, lanatoside C significantly inhibited the proliferation of SMMC-7721 cells (P < 0.01) in a dose-dependent manner. Results of flow cytometry indicated that lanatoside C arrested SMMC-7721 cells at the S phase and induced their apoptosis. Western blot assay showed that lanatoside C down-regulated the expression of survivin protein in SMMC-7721 cells.
CONCLUSION: Lanatoside C could inhibit the proliferation of SMMC-7721 cells obviously, arrest the SMMC-7721 cells at S phase and induce their apoptosis. The mechanism may be associated with the down-regulation of survivin expression.
Collapse
|
61
|
Hong CS, Funk S, Muller L, Boyiadzis M, Whiteside TL. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer. J Extracell Vesicles 2016; 5:29289. [PMID: 27018366 PMCID: PMC4808740 DOI: 10.3402/jev.v5.29289] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/20/2015] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Objective Isolation from human plasma of exosomes that retain functional and morphological integrity for probing their protein, lipid and nucleic acid content is a priority for the future use of exosomes as biomarkers. A method that meets these criteria and can be scaled up for patient monitoring is thus desirable. Methods Plasma specimens (1 mL) of patients with acute myeloid leukaemia (AML) or a head and neck squamous cell carcinoma (HNSCC) were differentially centrifuged, ultrafiltered and fractionated by size exclusion chromatography in small disposable columns (mini-SEC). Exosomes were eluted in phosphate-buffered saline and were evaluated by qNano for particle size and counts, morphology by transmission electron microscopy, protein content, molecular profiles by western blots, and for ability to modify functions of immune cells. Results Exosomes eluting in fractions #3–5 had a diameter ranging from 50 to 200 nm by qNano, with the fraction #4 containing the bulk of clean, unaggregated exosomes. The exosome elution profiles remained constant for repeated runs of the same plasma. Larger plasma volumes could be fractionated running multiple mini-SEC columns in parallel. Particle concentrations per millilitre of plasma in #4 fractions of AML and HNSCC were comparable and were higher (p<0.003) than those in normal controls. Isolated AML exosomes co-incubated with normal human NK cells inhibited NKG2D expression levels (p<0.004), and HNSCC exosomes suppressed activation (p<0.01) and proliferation of activated T lymphocytes (p<0.03). Conclusions Mini-SEC allows for simple and reproducible isolation from human plasma of exosomes retaining structural integrity and functional activity. It enables molecular/functional analysis of the exosome content in serial specimens of human plasma for clinical applications.
Collapse
Affiliation(s)
- Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Sonja Funk
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Otolaryngology, University of Duisburg-Essen, Essen, Germany
| | - Laurent Muller
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Head & Neck Surgery, University Hospital, Basel, Switzerland
| | - Michael Boyiadzis
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA;
| |
Collapse
|
62
|
Sharma A, Khatun Z, Shiras A. Tumor exosomes: cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine (Lond) 2016; 11:421-37. [PMID: 26784674 DOI: 10.2217/nnm.15.210] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanosized (30-150 nm) extracellular vesicles 'exosomes' are secreted by cells for intercellular communication during normal and pathological conditions. Exosomes carry biomacromolecules from cell-of-origin and, therefore, represent molecular bioprint of the cell. Tumor-derived exosomes or TDEx modulate tumor microenvironment by transfer of macromolecules locally as well as at distant metastatic sites. Due to their biological stability, TDEx are rich source of biomarkers in cancer patients. TDEx focused cancer diagnosis allows liquid biopsy-based tumor typing and may facilitate therapy response monitoring by developing novel exosomes diagnostics. Therefore, efficient and specific capturing of exosomes for subsequent amplification of the biomessages; for example, DNA, RNA, miRNA can reinvent cancer diagnosis. Here, in this review, we discuss advancements in exosomes isolation strategies, presence of exosomes biomarkers and importance of TDEx in gauging tumor heterogeneity for their potential use in cancer diagnosis, therapy.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Pvt Ltd, L4, 100 NCL Innovation Park, Dr Homi Bhabha Road, Pune-411008, India.,National Centre for Cell Science, SP Pune University Campus, Ganeshkhind, Pune411007
| | - Zamila Khatun
- ExoCan Healthcare Technologies Pvt Ltd, L4, 100 NCL Innovation Park, Dr Homi Bhabha Road, Pune-411008, India
| | - Anjali Shiras
- National Centre for Cell Science, SP Pune University Campus, Ganeshkhind, Pune411007
| |
Collapse
|
63
|
Maida Y, Takakura M, Nishiuchi T, Yoshimoto T, Kyo S. Exosomal transfer of functional small RNAs mediates cancer-stroma communication in human endometrium. Cancer Med 2015; 5:304-14. [PMID: 26700550 PMCID: PMC4735775 DOI: 10.1002/cam4.545] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/26/2015] [Accepted: 08/29/2015] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small membrane vesicles secreted from a variety of cell types. Recent evidence indicates that human cells communicate with each other by exchanging exosomes. Cancer cells closely interact with neighboring stromal cells, and together they cooperatively promote disease via bidirectional communication. Here, we investigated whether exosomes can play roles in intercellular communication between cancer cells and neighboring fibroblasts. Endometrial fibroblasts were isolated from normal endometrial tissues and from endometrial cancer tissues, and cell-to-cell transfer of endometrial cancer cell line Ishikawa-derived exosomes was examined. The isolated fibroblasts were cultured in conditioned media from CD63-GFP-expressing Ishikawa cells, and we found that GFP-positive exosomes were transferred from Ishikawa cells to the fibroblasts. Next, we introduced a shRNA for a luciferase gene into Ishikawa cells. This shRNA was encapsulated into exosomes, was transferred to the fibroblasts, and then downregulated luciferase expression in the fibroblasts. The mature microRNAs naturally expressed in Ishikawa-derived exosomes were also transported into the endometrial fibroblasts, and they altered the microRNA expression profiles of the fibroblasts. These results indicated that endometrial cancer cells could transmit small regulatory RNAs to endometrial fibroblasts via exosomes. Our findings document a previously unknown mode of intercellular communication between cancer cells and related fibroblasts in human endometrium.
Collapse
Affiliation(s)
- Yoshiko Maida
- Department of Obstetrics and Gynecology, Kanazawa University School of Medicine, Kanazawa, Japan.,Department of Molecular Pharmacology, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Masahiro Takakura
- Department of Obstetrics and Gynecology, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University Advanced Science Research Center, Kanazawa, Japan
| | - Tanihiro Yoshimoto
- Department of Molecular Pharmacology, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
64
|
Turay D, Khan S, Diaz Osterman CJ, Curtis MP, Khaira B, Neidigh JW, Mirshahidi S, Casiano CA, Wall NR. Proteomic Profiling of Serum-Derived Exosomes from Ethnically Diverse Prostate Cancer Patients. Cancer Invest 2015; 34:1-11. [PMID: 26536157 DOI: 10.3109/07357907.2015.1081921] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prostate cancer (PCa) remains the most frequently diagnosed male malignancy in Western countries and the second most common cause of male cancer death in the United States. The relatively elevated PCa incidence and mortality among African American men makes this cancer type a challenging health disparity disease. To increase the chance for successful trea tment, earlier detection and prediction of tumor aggress iveness will be important and need to be resolved. This study demonstrates that small membrane-bound vesicles shed from the tumor called exosomes contain ethnically and tumor-specific biomarkers, and could be exploited for their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- David Turay
- a Center for Health Disparities & Molecular Medicine , Loma Linda University School of Medicine , Loma Linda , California , USA.,b Department of Basic Science and Division of Biochemistry , Loma Linda University School of Medicine , Loma Linda , California , USA
| | - Salma Khan
- a Center for Health Disparities & Molecular Medicine , Loma Linda University School of Medicine , Loma Linda , California , USA.,b Department of Basic Science and Division of Biochemistry , Loma Linda University School of Medicine , Loma Linda , California , USA
| | - Carlos J Diaz Osterman
- a Center for Health Disparities & Molecular Medicine , Loma Linda University School of Medicine , Loma Linda , California , USA.,b Department of Basic Science and Division of Biochemistry , Loma Linda University School of Medicine , Loma Linda , California , USA
| | - Matthew P Curtis
- b Department of Basic Science and Division of Biochemistry , Loma Linda University School of Medicine , Loma Linda , California , USA
| | - Balreet Khaira
- b Department of Basic Science and Division of Biochemistry , Loma Linda University School of Medicine , Loma Linda , California , USA
| | - Jonathan W Neidigh
- b Department of Basic Science and Division of Biochemistry , Loma Linda University School of Medicine , Loma Linda , California , USA
| | - Saied Mirshahidi
- c Department of Basic Science and Division of Microbiology and Molecular Genetics , Loma Linda University School of Medicine , Loma Linda , California , USA.,d Cancer Center & Biospecimen Laboratory , Loma Linda University School of Medicine , Loma Linda , California , USA
| | - Carlos A Casiano
- a Center for Health Disparities & Molecular Medicine , Loma Linda University School of Medicine , Loma Linda , California , USA.,c Department of Basic Science and Division of Microbiology and Molecular Genetics , Loma Linda University School of Medicine , Loma Linda , California , USA.,e Department of Medicine, Division of Rheumatology , Loma Linda University School of Medicine , Loma Linda , California , USA
| | - Nathan R Wall
- a Center for Health Disparities & Molecular Medicine , Loma Linda University School of Medicine , Loma Linda , California , USA.,b Department of Basic Science and Division of Biochemistry , Loma Linda University School of Medicine , Loma Linda , California , USA
| |
Collapse
|
65
|
Role of Extracellular Vesicles in Hematological Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821613. [PMID: 26583135 PMCID: PMC4637071 DOI: 10.1155/2015/821613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules), a key role has been attributed to extracellular vesicles (EV), released from different cell types. EV (microvesicles and exosomes) may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies.
Collapse
|
66
|
Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function. PLoS One 2015; 10:e0132845. [PMID: 26177391 PMCID: PMC4503627 DOI: 10.1371/journal.pone.0132845] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin's effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through exosomal facilitation.
Collapse
|
67
|
Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol 2015; 8:83. [PMID: 26156517 PMCID: PMC4496882 DOI: 10.1186/s13045-015-0181-x] [Citation(s) in RCA: 567] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xiao Yuan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Lijun Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
68
|
Khan S, Ferguson Bennit H, Asuncion Valenzuela MM, Turay D, Diaz Osterman CJ, Moyron RB, Esebanmen GE, Ashok A, Wall NR. Localization and upregulation of survivin in cancer health disparities: a clinical perspective. Biologics 2015; 9:57-67. [PMID: 26185415 PMCID: PMC4501680 DOI: 10.2147/btt.s83864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Survivin is one of the most important members of the inhibitors of apoptosis protein family, as it is expressed in most human cancers but is absent in normal, differentiated tissues. Lending to its importance, survivin has proven associations with apoptosis and cell cycle control, and has more recently been shown to modulate the tumor microenvironment and immune evasion as a result of its extracellular localization. Upregulation of survivin has been found in many cancers including breast, prostate, pancreatic, and hematological malignancies, and it may prove to be associated with the advanced presentation, poorer prognosis, and lower survival rates observed in ethnically diverse populations.
Collapse
Affiliation(s)
- Salma Khan
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Heather Ferguson Bennit
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Malyn May Asuncion Valenzuela
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David Turay
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Department of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ron B Moyron
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grace E Esebanmen
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arjun Ashok
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
69
|
Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release 2015; 219:278-294. [PMID: 26143224 DOI: 10.1016/j.jconrel.2015.06.029] [Citation(s) in RCA: 534] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022]
Abstract
It is clear that exosomes (endosome derived vesicles) serve important roles in cellular communication both locally and distally and that the exosomal process is abnormal in cancer. Cancer cells are not malicious cells; they are cells that represent 'survival of the fittest' at its finest. All of the mutations, abnormalities, and phenomenal adaptations to a hostile microenvironment, such as hypoxia and nutrient depletion, represent the astute ability of cancer cells to adapt to their environment and to intracellular changes to achieve a single goal - survival. The aberrant exosomal process in cancer represents yet another adaptation that promotes survival of cancer. Cancer cells can secrete more exosomes than healthy cells, but more importantly, the content of cancer cells is distinct. An illustrative distinction is that exosomes derived from cancer cells contain more microRNA than healthy cells and unlike exosomes released from healthy cells, this microRNA can be associated with the RNA-induced silencing complex (RISC) which is required for processing mature and biologically active microRNA. Cancer derived exosomes have the ability to transfer metastatic potential to a recipient cell and cancer exosomes function in the physical process of invasion. In this review we conceptualize the aberrant exosomal process (formation, content selection, loading, trafficking, and release) in cancer as being partially attributed to cancer specific differences in the endocytotic process of receptor recycling/degradation and plasma membrane remodeling and the function of the endosome as a signaling entity. We discuss this concept and, to advance comprehension of exosomal function in cancer as mediators of communication, we detail and discuss exosome biology, formation, and communication in health and cancer; exosomal content in cancer; exosomal biomarkers in cancer; exosome mediated communication in cancer metastasis, drug resistance, and interfacing with the immune system; and discuss the therapeutic manipulation of exosomal content for cancer treatment including current clinical trials of exosomal therapeutics. Often referred to as cellular nanoparticles, understanding exosomes, and how cancer cells use these cellular nanoparticles in communication is at the cutting edge frontier of advancing cancer biology.
Collapse
Affiliation(s)
- Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Amit Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Megha Suresh
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
70
|
Exosomes Secreted from Human Cancer Cell Lines Contain Inhibitors of Apoptosis (IAP). CANCER MICROENVIRONMENT 2015; 8:65-73. [PMID: 25982218 DOI: 10.1007/s12307-015-0167-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
Exosomes are endosomal-derived nanovesicles released by normal and tumor cells which have been shown to transfer functionally active protein, lipids, mRNAs and miRNAs between cells. Varying in molecular profiles, biological roles, functional roles and protein contents, exosomes have been described as "multi-purpose carriers" playing a role in supporting the survival and growth of tumor cells. The IAP Survivin has been found to be present in tumor exosomes. However, the existence of other IAPs in tumor exosomes is still unknown. Survivin, cIAP1, cIAP2 and XIAP mRNA and protein are differently expressed in a panel of tumor cell lines: DLCL2, HeLa, MCF-7, Panc-1, and PC3. Exosomes were isolated from conditioned media collected from the cells from which RNA and protein were extracted. Our results provide evidence that like Survivin, XIAP, cIAP1 and cIAP2 proteins are found in tumor exosomes. The mRNA expression, however, is differentially expressed across the tumor cell lines. The presence of these bioactive molecules in exosomes may not only serve as warning signals, but also play a role in providing protection to the cancer cells against changes that are constantly occurring in the tumor microenvironment.
Collapse
|
71
|
Asuncion Valenzuela MM, Castro I, Gonda A, Diaz Osterman CJ, Jutzy JM, Aspe JR, Khan S, Neidigh JW, Wall NR. Cell death in response to antimetabolites directed at ribonucleotide reductase and thymidylate synthase. Onco Targets Ther 2015; 8:495-507. [PMID: 25767396 PMCID: PMC4354452 DOI: 10.2147/ott.s79647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
New agent development, mechanistic understanding, and combinatorial partnerships with known and novel modalities continue to be important in the study of pancreatic cancer and its improved treatment. In this study, known antimetabolite drugs such as gemcitabine (ribonucleotide reductase inhibitor) and 5-fluorouracil (thymidylate synthase inhibitor) were compared with novel members of these two drug families in the treatment of a chemoresistant pancreatic cancer cell line PANC-1. Cellular survival data, along with protein and messenger ribonucleic acid expression for survivin, XIAP, cIAP1, and cIAP2, were compared from both the cell cytoplasm and from exosomes after single modality treatment. While all antimetabolite drugs killed PANC-1 cells in a time- and dose-dependent manner, neither family significantly altered the cytosolic protein level of the four inhibitors of apoptosis (IAPs) investigated. Survivin, XIAP, cIAP1, and cIAP2 were found localized to exosomes where no significant difference in expression was recorded. This inability for significant and long-lasting expression may be a reason why pancreatic cancer lacks responsiveness to these and other cancer-killing agents. Continued investigation is required to determine the responsibilities of these IAPs in their role in chemoresistance in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Malyn M Asuncion Valenzuela
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Imilce Castro
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Amber Gonda
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Jessica M Jutzy
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Jonathan R Aspe
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Salma Khan
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Jonathan W Neidigh
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Nathan R Wall
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
72
|
Gaipl US, Multhoff G, Scheithauer H, Lauber K, Hehlgans S, Frey B, Rödel F. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 2015; 6:597-610. [PMID: 24896628 DOI: 10.2217/imt.14.38] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Besides the direct, targeted effects of ionizing irradiation (x-ray) on cancer cells, namely DNA damage and cell death induction, indirect, nontargeted ones exist, which are mediated in large part by the immune system. Immunogenic forms of tumor cell death induced by x-ray, including immune modulating danger signals like the heat shock protein 70, adenosine triphosphate, and high-mobility group box 1 protein are presented. Further, antitumor effects exerted by cells of the innate (natural killer cells) as well as adaptive immune system (T cells activated by dendritic cells) are outlined. Tumor cell death inhibiting molecules such as survivin are introduced as suitable target for molecularly tailored therapies in combination with x-ray. Finally, reasonable combinations of immune therapies with radiotherapy are discussed.
Collapse
Affiliation(s)
- Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | |
Collapse
|
73
|
Human dermal fibroblasts HDFa can be used as an appropriate healthy control for PMMA nanoparticles-survivin molecular beacon cellular uptake studies. Biomed Pharmacother 2015; 69:228-32. [DOI: 10.1016/j.biopha.2014.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 12/17/2022] Open
|
74
|
Hewson C, Morris KV. Form and Function of Exosome-Associated Long Non-coding RNAs in Cancer. Curr Top Microbiol Immunol 2015; 394:41-56. [PMID: 26739961 DOI: 10.1007/82_2015_486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The recent discovery that long non-coding RNAs (lncRNAs) are functional and are not merely "transcriptional noise" has spawned an entirely new arena of investigation. LncRNAs have been found to be functional in the regulation of a wide variety of genes, including those involved in cancer. Studies have identified that lncRNAs play a role in the development and regulation of cancer and can also act as prognostic markers. Meanwhile, exosomes , which are extracellular particles generated endogenously by cells, have been observed to act as transport vesicles for a variety of biological components, particularly proteins and RNAs. This transportation of biological components has been shown to impact a variety of biological processes including the development of cancer. Collectively, these observations, along with those of several recent studies, suggest that lncRNAs and exosomes may function together to disseminate cell signals that alter and/or control local cellular microenvironments. This review will identify the various roles that lncRNAs and exosomes play in cancer development, as well as the possibility that exosomes may transfer functional lncRNAs between cells as a means of cell-to-cell communication.
Collapse
Affiliation(s)
- Chris Hewson
- Biotechnology and Biomedical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kevin V Morris
- Biotechnology and Biomedical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia. .,Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
75
|
Zhao L, Liu W, Xiao J, Cao B. The role of exosomes and “exosomal shuttle microRNA” in tumorigenesis and drug resistance. Cancer Lett 2015; 356:339-46. [DOI: 10.1016/j.canlet.2014.10.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
|
76
|
Villagrasa A, Álvarez PJ, Osuna A, Garrido JM, Aránega A, Rodríguez-Serrano F. Exosomes Derived from Breast Cancer Cells, Small Trojan Horses? J Mammary Gland Biol Neoplasia 2014; 19:303-13. [PMID: 26130410 DOI: 10.1007/s10911-015-9332-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small extracellular vesicles secreted to the extracellular environment by several cell types, including tumor cells. It has been demonstrated that exosomes have an important role in intercellular communication, but they have recently been implicated in various tumor processes, including the oncogenic transformation of cells in the tumor microenvironment, tumor drug resistance, and the transport of tumor factors. Tumors appear to use exosomes to dialogue with and transform neighboring cells to create an ideal environment for their growth and expansion. On the other hand, the structure and function of exosomes may make them useful in cancer diagnosis and prognosis, because they contain molecules that could serve as biomarkers, including oncogenes, miRNAs, and certain proteins. They have the ability to travel via body fluids, from which they could be isolated and used to transport drugs to specific targets. This review aims to provide an update on the role of exosomes derived from breast cancer cells.
Collapse
Affiliation(s)
- Alejandro Villagrasa
- Institute of Biopathology and Regenerative Medicine, Biomedical Research Centre, University of Granada, 18016, Granada, Spain
| | | | | | | | | | | |
Collapse
|
77
|
Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 2014; 32:623-42. [PMID: 23709120 DOI: 10.1007/s10555-013-9441-9] [Citation(s) in RCA: 879] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trafficking of biological material across membranes is an evolutionary conserved mechanism and is part of any normal cell homeostasis. Such transport is composed of active, passive, export through microparticles, and vesicular transport (exosomes) that collectively maintain proper compartmentalization of important micro- and macromolecules. In pathological states, such as cancer, aberrant activity of the export machinery results in expulsion of a number of key proteins and microRNAs resulting in their misexpression. Exosome-mediated expulsion of intracellular drugs could be another barrier in the proper action of most of the commonly used therapeutics, targeted agents, and their intracellular metabolites. Over the last decade, a number of studies have revealed that exosomes cross-talk and/or influence major tumor-related pathways, such as hypoxia-driven epithelial-to-mesenchymal transition, cancer stemness, angiogenesis, and metastasis involving many cell types within the tumor microenvironment. Emerging evidence suggests that exosome-secreted proteins can also propel fibroblast growth, resulting in desmoplastic reaction, a major barrier in effective cancer drug delivery. This comprehensive review highlights the advancements in the understanding of the biology of exosomes secretions and the consequence on cancer drug resistance. We propose that the successful combination of cancer treatments to tackle exosome-mediated drug resistance requires an interdisciplinary understanding of these cellular exclusion mechanisms, and how secreted biomolecules are involved in cellular cross-talk within the tumor microenvironment.
Collapse
Affiliation(s)
- Asfar S Azmi
- Department of Pathology, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA,
| | | | | |
Collapse
|
78
|
Ung TH, Madsen HJ, Hellwinkel JE, Lencioni AM, Graner MW. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci 2014; 105:1384-92. [PMID: 25220623 PMCID: PMC4454399 DOI: 10.1111/cas.12534] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/21/2022] Open
Abstract
Exosomes are virus-sized, membrane-enclosed vesicles with origins in the cellular endosomal system, but are released extracellularly. As a population, these tiny vesicles carry relatively enormous amounts of information in their protein, lipid and nucleic acid content, and the vesicles can have profound impacts on recipient cells. This review employs publically-available data combined with gene ontology applications to propose a novel concept, that exosomes transport transcriptional and translational machinery that may have direct impacts on gene expression in recipient cells. Here, we examine the previously published proteomic contents of medulloblastoma-derived exosomes, focusing on transcriptional regulators; we found that there are numerous proteins that may have potential roles in transcriptional and translational regulation with putative influence on downstream, cancer-related pathways. We expanded this search to all of the proteins in the Vesiclepedia database; using gene ontology approaches, we see that these regulatory factors are implicated in many of the processes involved in cancer initiation and progression. This information suggests that some of the effects of exosomes on recipient cells may be due to the delivery of protein factors that can directly and fundamentally change the transcriptional landscape of the cells. Within a tumor environment, this has potential to tilt the advantage towards the cancer.
Collapse
Affiliation(s)
- Timothy H Ung
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
79
|
Bikov A, Bocskei R, Eszes N, Bohacs A, Losonczy G, Rigo J, Horvath I, Tamasi L. Circulating survivin levels in healthy and asthmatic pregnancy. Reprod Biol Endocrinol 2014; 12:93. [PMID: 25248821 PMCID: PMC4189549 DOI: 10.1186/1477-7827-12-93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma is one of the most common conditions which complicate pregnancy. Pro- and anti-apoptotic mechanisms can be modulated by asthma accompanying pregnancy. Survivin, an anti-apoptotic protein has been implicated in the pathomechanism of asthma and also in the development of pathological pregnancies; however survivin has not been studied in pregnant asthmatics. METHODS Twenty-eight asthmatic pregnant (AP), 25 asthmatic non-pregnant (ANP), 21 healthy pregnant (HP) and 29 healthy non-pregnant (HNP) women were enrolled in this cross-sectional study. Plasma survivin concentration was determined by ELISA. RESULTS Plasma survivin was significantly lower in HP (1.64 /0-74.9/ pg/ml) than in HNP (24.6 /0-333.3/ pg/ml, p = 0.01). However, this difference was not observed between the asthmatic groups (p = 0.64). Similarly, there was no difference either between HNP and ANP (10.5 /0-215.4/ pg/ml, p = 0.23) or between HP and AP (13.9 /0-364.1/ pg/ml, p = 0.30) groups. CONCLUSIONS Decreased plasma survivin levels in physiological but not in asthmatic pregnancy may suggest that the normal apoptotic mechanisms are compromised in asthmatic gestation.
Collapse
Affiliation(s)
- Andras Bikov
- Department of Pulmonology, Semmelweis University, 1/C Dios arok, Budapest, H-1125 Hungary
| | - Renata Bocskei
- Department of Pulmonology, Semmelweis University, 1/C Dios arok, Budapest, H-1125 Hungary
| | - Noemi Eszes
- Department of Pulmonology, Semmelweis University, 1/C Dios arok, Budapest, H-1125 Hungary
| | - Aniko Bohacs
- Department of Pulmonology, Semmelweis University, 1/C Dios arok, Budapest, H-1125 Hungary
| | - Gyorgy Losonczy
- Department of Pulmonology, Semmelweis University, 1/C Dios arok, Budapest, H-1125 Hungary
| | - Janos Rigo
- First Department of Obstetrics and Gynecology, Semmelweis University, 27 Baross utca, Budapest, H-1085 Hungary
| | - Ildiko Horvath
- Department of Pulmonology, Semmelweis University, 1/C Dios arok, Budapest, H-1125 Hungary
| | - Lilla Tamasi
- Department of Pulmonology, Semmelweis University, 1/C Dios arok, Budapest, H-1125 Hungary
| |
Collapse
|
80
|
Wei X, Wang J, He J, Ma B, Chen J. Biological characteristics of CD133(+) cancer stem cells derived from human laryngeal carcinoma cell line. Int J Clin Exp Med 2014; 7:2453-2462. [PMID: 25356097 PMCID: PMC4211747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/24/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To investigate the in vitro invasive capability, clone-forming ability, resistance to anti-tumor treatments of CD133(+) human laryngeal carcinoma stem cells, and characterize the related signaling pathways in these cells. METHODS Human laryngeal carcinoma Hep-2 cells were subjected to flow cytometry sorting to obtain CD133(+) stem cells. Transwell chamber assay and clone-formation forming test were performed to evaluate the invasive capability and the clone-forming ability of CD133(+) laryngeal carcinoma tumor stem cells, respectively. MTT assay was used to assess the resistance of CD133(+) Hep-2 cells to radiotherapy and chemotherapy, respectively. Western blot and real-time PCR were applied to characterize the signaling pathways in these stem cells. RESULTS Our results from the transwell chamber assay indicated that the migrating capability of CD133(+) Hep-2 cells was significantly higher than CD133(-) cells, and the invasive capability of CD133(+) Hep-2 cells was also significantly elevated. Moreover, clone-formation forming test showed higher clone-forming ability for CD133(+) Hep-2 cells, compared with CD133(-) cells. Furthermore, CD133(+) Hep-2 cells displayed significant resistance to radiotherapy and chemotherapy. The Bcl-2/Bax ratio was increased, and Hedgehog, Wnt, and Bmi-l signaling pathways were all activated, in CD133(+) laryngeal carcinoma stem cells, which might be involved in the self-renewal process of these stem cells. CONCLUSION The invasive capability, clone-forming ability, and resistance to anti-tumor treatments are enhanced, and anti-apoptotic and proliferation-related signaling pathways are activated in CD133(+) laryngeal carcinoma tumor stem cells. These findings might provide new insights into the prevention and/or treatment of laryngeal carcinoma, especially concerning target-oriented therapies.
Collapse
Affiliation(s)
- Xudong Wei
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial HospitalLanzhou 730000, China
| | - Jingyu Wang
- Institute of Pathophysiology, Lanzhou UniversityLanzhou 730000, China
| | - Jian He
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial HospitalLanzhou 730000, China
| | - Bingjuan Ma
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial HospitalLanzhou 730000, China
| | - Jing Chen
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial HospitalLanzhou 730000, China
| |
Collapse
|
81
|
Lv X, Pang X, Jin X, Song Y, Li H. β-catenin knockdown enhances the effects of fluorouracil in the breast cancer cell line MDA-MB-468. Biomed Rep 2014; 2:910-914. [PMID: 25279168 DOI: 10.3892/br.2014.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/02/2023] Open
Abstract
Tumor proliferation, drug resistance and cell stemness are major difficulties that are encountered during breast cancer therapy and are often responsible for disease progression and cancer-related mortality. β-catenin is considered to be an invasion gene in breast cancer. However, how β-catenin regulates breast cancer cell proliferation and stemness remains unclear. In the present study, β-catenin knockdown by small interfering RNA in MDA-MB-468, a highly metastatic breast cancer cell line, inhibited the expression of β-catenin, Oct3/4 (stemness), survivin (anti-apoptosis) and BCRP (drug resistance). Knockdown of β-catenin enhanced the effects of fluorouracil (5-FU) chemotherapy on the proliferation of MDA-MB-468 cells. Thus, these preliminary results indicate that β-catenin knockdown enhanced 5-FU-induced proliferation inhibition in the breast cancer cell line MDA-MB-468, and indicate that combining 5-FU with gene silencing could be an advantageous option for enhancing the curative effect of chemotherapy in breast cancer and other malignancies.
Collapse
Affiliation(s)
- Xinquan Lv
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xia Pang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiangdong Jin
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yimin Song
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
82
|
Khan S, Bennit HF, Wall NR. The emerging role of exosomes in survivin secretion. Histol Histopathol 2014; 30:43-50. [PMID: 25020159 DOI: 10.14670/hh-30.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment plays an integral part in the biology of cancer, participating in tumor initiation, progression, and response to therapy. Factors released by tumor cells themselves contribute in creating an environment mostly favorable but sometimes detrimental to the tumor. Survivin, one of the key members of the inhibitor of apoptosis (IAP) family of proteins, has been shown in the cytoplasm, mitochondria, nucleus, and most recently in the extracellular space, transported via small membrane bound vesicles called exosomes. Exosomes are secreted from hematopoietic, non-hematopoietic, tumor, and non-tumor cells, shuttling essential molecules such as proteins, RNAs, and microRNAs, all believed to be important for cell-cell and cell-extracellular communication. In this review, we discuss exosomal Survivin and its role in modifying the tumor microenvironment.
Collapse
Affiliation(s)
- Salma Khan
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Heather Ferguson Bennit
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
83
|
Chua CEL, Chan SN, Tang BL. Non-Cell Autonomous or Secretory Tumor Suppression. J Cell Physiol 2014; 229:1346-52. [DOI: 10.1002/jcp.24574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Shu Ning Chan
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
| | - Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| |
Collapse
|
84
|
The combined effect of survivin-targeted shRNA and emodin on the proliferation and invasion of ovarian cancer cells. Anticancer Drugs 2014; 24:937-44. [PMID: 23921083 DOI: 10.1097/cad.0b013e328364efe0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Survivin has been shown to be highly expressed in ovarian cancers, but not normal ovarian tissue, which makes it an attractive target for ovarian cancer treatment. Emodin is a traditional Chinese medicine that has been found to inhibit proliferation and induce apoptosis in ovarian cancer cells. Thus, in our study, we combined survivin-targeted shRNA (sur-shRNA) with emodin and tested the effects of this combination on ovarian cancer cells to identify more effective therapeutics against ovarian cancer. A sur-shRNA plasmid was constructed and transfected into the ovarian cancer cell lines SKOV3 and HO8910, and the cells were cultured for 24 h. The cells were then treated with emodin for specific time periods and assessed for viability and apoptosis using the MTT assay and flow cytometry, respectively. Cell invasion was also measured using a Matrigel invasion assay. The shRNA specific for survivin effectively reduced the expression of survivin at the mRNA and protein levels in SKOV3 and HO8910 cells. Both emodin and shRNA-mediated knockdown of survivin significantly inhibited cell proliferation, induced apoptosis, and suppressed invasion in SKOV3 and HO8910 cells (P<0.05). Moreover, the combination of the agents significantly enhanced these effects (P<0.05). We found that the combination of sur-shRNA and emodin could be effective in the treatment of ovarian cancer.
Collapse
|
85
|
Survivin beyond physiology: orchestration of multistep carcinogenesis and therapeutic potentials. Cancer Lett 2014; 347:175-82. [PMID: 24560928 DOI: 10.1016/j.canlet.2014.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 12/21/2022]
Abstract
Survivin, a member of the inhibitor of apoptosis protein family, has been associated with protection from cell apoptosis and regulation of mitosis. Survivin exhibits low to undetectable expression in most finally differentiated adult tissues but is abundantly over-expressed in almost all cancers. The aberrant high expression of survivin in cancers is associated with advanced disease, increased rate of tumor recurrence, abbreviated overall survival and resistance to chemo- and radio- therapy. Survivin touches nearly every aspect of cancer and is involved in the initiation, maintenance and development of tumor. Therefore, its significance in cancer dictates the pursuit for anti-survivin cancer therapies.
Collapse
|
86
|
Aspe JR, Diaz Osterman CJ, Jutzy JMS, Deshields S, Whang S, Wall NR. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles 2014; 3:23244. [PMID: 24624263 PMCID: PMC3929070 DOI: 10.3402/jev.v3.23244] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Background Current therapeutic options for advanced pancreatic cancer have been largely disappointing with modest results at best, and though adjuvant therapy remains controversial, most remain in agreement that Gemcitabine should stand as part of any combination study. The inhibitor of apoptosis (IAP) protein Survivin is a key factor in maintaining apoptosis resistance, and its dominant-negative mutant (Survivin-T34A) has been shown to block Survivin, inducing caspase activation and apoptosis. Methods In this study, exosomes, collected from a melanoma cell line built to harbor a tetracycline-regulated Survivin-T34A, were plated on the pancreatic adenocarcinoma (MIA PaCa-2) cell line. Evaluation of the presence of Survivin-T34A in these exosomes followed by their ability to induce Gemcitabine-potentiative cell killing was the objective of this work. Results Here we show that exosomes collected in the absence of tetracycline (tet-off) from the engineered melanoma cell do contain Survivin-T34A and when used alone or in combination with Gemcitabine, induced a significant increase in apoptotic cell death when compared to Gemcitabine alone on a variety of pancreatic cancer cell lines. Conclusion This exosomes/Survivin-T34A study shows that a new delivery method for anticancer proteins within the cancer microenvironment may prove useful in targeting cancers of the pancreas.
Collapse
Affiliation(s)
- Jonathan R Aspe
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jessica M S Jutzy
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Simone Deshields
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sonia Whang
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Nathan R Wall
- Division of Biochemistry & Microbiology, Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
87
|
Lee PJH, Rudenko D, Kuliszewski MA, Liao C, Kabir MG, Connelly KA, Leong-Poi H. Survivin gene therapy attenuates left ventricular systolic dysfunction in doxorubicin cardiomyopathy by reducing apoptosis and fibrosis. Cardiovasc Res 2014; 101:423-33. [PMID: 24403316 DOI: 10.1093/cvr/cvu001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS The aim of this study was to investigate anti-apoptotic gene therapy using ultrasound-mediated plasmid delivery of survivin, an inhibitor of apoptosis protein, to prevent apoptosis and to attenuate left ventricular (LV) systolic dysfunction in a model of heart failure induced by doxorubicin. METHODS AND RESULTS Effect of survivin transduction was investigated in vitro in rat cardiomyoblasts. After survivin transduction, survivin protein was detected in cell culture supernate confirming secretion of extracellular survivin. Under doxorubicin stimulation, survivin-transduced cells had significantly reduced apoptosis; however, incubation with survivin-conditioned media also showed reduced apoptosis that was absent with null-conditioned media. Doxorubicin-induced cardiomyopathy was established in Fischer rats. Subsets of animals underwent ultrasound-mediated survivin gene delivery or empty vector gene delivery at Week 3. Control rats received doxorubicin alone. Animals were studied using PCR, immunohistochemistry, echocardiography, and invasive haemodynamic studies out to Week 6. By Week 6, LV % fractional shortening by echocardiography and systolic function by pressure-volume loops were greater in survivin treated when compared with control- and empty-treated animals. There was reduced apoptosis by TUNEL and caspase activity in survivin-treated animals compared with control and empty treated at Week 4, with reduced interstitial fibrosis at Week 6. CONCLUSION Survivin gene therapy can attenuate the progression of LV systolic dysfunction in doxorubicin cardiomyopathy. This effect can be attributed to decreased myocyte apoptosis and prevention of maladaptive LV remodelling, by both direct myocyte transfection and potentially by paracrine mechanisms.
Collapse
Affiliation(s)
- Paul J H Lee
- Division of Cardiology, Keenan Research Centre in the Li Ka Shing Knowledge Institute, 6-044 Donnelly Wing, St Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON, Canada M5B 1W8
| | | | | | | | | | | | | |
Collapse
|
88
|
Werbeck JL, Thudi NK, Martin CK, Premanandan C, Yu L, Ostrowksi MC, Rosol TJ. Tumor microenvironment regulates metastasis and metastasis genes of mouse MMTV-PymT mammary cancer cells in vivo. Vet Pathol 2013; 51:868-81. [PMID: 24091811 DOI: 10.1177/0300985813505116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastasis is the primary cause of death in breast cancer patients, yet there are challenges to modeling this process in vivo. The goal of this study was to analyze the effects of injection site on tumor growth and metastasis and gene expression of breast cancer cells in vivo using the MMTV-PymT breast cancer model (Met-1 cells). Met-1 cells were injected into 5 sites (subcutaneous, mammary fat pad, tail vein, intracardiac, and intratibial), and tumors and metastases were monitored using bioluminescent imaging and confirmed with gross necropsy and histopathology. Met-1 tumors were analyzed based on morphology and changes in gene expression in each tissue microenvironment. There were 6 permissible sites of Met-1 tumor growth (mammary gland, subcutis, lung, adrenal gland, ovary, bone). Met-1 cells grew faster in the subcutis compared to mammary fat pad tumors (highest Ki-67 index). Morphologic differences were evident in each tumor microenvironment. Finally, 7 genes were differentially expressed in the Met-1 tumors in the 6 sites of growth or metastasis. This investigation demonstrates that breast cancer progression and metastasis are regulated by not only the tumor cells but also the experimental model and unique molecular signals from the tumor microenvironment.
Collapse
Affiliation(s)
- J L Werbeck
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - N K Thudi
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - C K Martin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - C Premanandan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - L Yu
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - M C Ostrowksi
- Department of Cellular Biochemistry, The Ohio State University, Columbus, OH, USA
| | - T J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
89
|
Yang L, Wu XH, Wang D, Luo CL, Chen LX. Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Mol Med Rep 2013; 8:1272-8. [PMID: 23969721 DOI: 10.3892/mmr.2013.1634] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022] Open
Abstract
Exosomes are small membrane vesicles released by a variety of mammalian cells into the extracellular space and are involved in cell‑to‑cell signaling. This study aimed to investigate the effects of bladder cancer cell‑derived exosomes on the regulation of tumor cell viability and apoptosis, as well as the underlying molecular events. Exosomes were purified from the supernatants of human bladder cancer T24 cell cultures. Transmission electron microscopy was used to confirm their morphology and western blot analyses determined the protein content of cells. Subsequently, bladder cancer cell lines were treated with different concentrations of exosomes. Tumor cell viability was shown to be reduced, as detected by the Cell Counting Kit‑8 assay. Annexin V/flow cytometric assays showed that exosomes inhibited apoptosis of bladder cancer cell lines in a dose- and time‑dependent manner. Exosomes were demonstrated to upregulate the expression of Bcl‑2 and Cyclin D1 proteins, but reduce the levels of Bax and caspase‑3 proteins in these cells. Moreover, exosomes dose‑dependently increased the expression of phosphorylated Akt and extracellular signal‑regulated protein kinase (ERK). In conclusion, this study demonstrated that bladder cancer cell‑derived exosomes inhibited tumor cell apoptosis, which was associated with the activation of Akt and ERK pathway genes, suggesting that tumor‑derived exosomes are involved in bladder cancer progression. Inhibition of exosome formation and release may therefore be a novel strategy in future treatment of bladder cancer.
Collapse
Affiliation(s)
- Lin Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | | | | | | | | |
Collapse
|
90
|
Nogueira-Ferreira R, Vitorino R, Ferreira-Pinto MJ, Ferreira R, Henriques-Coelho T. Exploring the role of post-translational modifications on protein-protein interactions with survivin. Arch Biochem Biophys 2013; 538:64-70. [PMID: 23938875 DOI: 10.1016/j.abb.2013.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022]
Abstract
Survivin is a member of the inhibitor of apoptosis protein (IAP) family with crucial roles in apoptosis and cell cycle regulation. Post-translational modifications (PTMs) have a ubiquitous role in the regulation of a diverse range of proteins' cellular functions and survivin is not an exception. Phosphorylation, acetylation and ubiquitination seem to regulate survivin anti-apoptotic and mitotic roles and also its nuclear localization. In the present review we explore the role of PTMs on protein-protein interactions focused on survivin to provide new insights into the functions and cell localization of this IAP in pathophysiological conditions, which might help the envisioning of novel targeted therapies for diseases characterized by impaired survivin activity. Protein-protein interaction analysis was performed with bioinformatics tools based on published data aiming to give an integrated perspective of this IAP's role in the cell.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
91
|
Loss of survivin in the prostate epithelium impedes carcinogenesis in a mouse model of prostate adenocarcinoma. PLoS One 2013; 8:e69484. [PMID: 23936028 PMCID: PMC3729965 DOI: 10.1371/journal.pone.0069484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
The inhibitor of apoptosis protein survivin is expressed in most cancers. Using the conditional PTEN deletion mouse model, we previously reported that survivin levels increase with prostate tumor growth. Here we evaluated the functional role of survivin in prostate tumor growth. First, we demonstrated that mice lacking the survivin gene in prostate epithelium were fertile and had normal prostate growth and development. We then serially, from about 10-56 weeks of age, evaluated histopathologic changes in the prostate of mice with PTEN deletion combined with survivin mono- or bi-allelic gene deletion. While within this time period most of the animals with wild-type or monoallelic survivin deletion developed adenocarcinomas, the most severe lesions in the biallelic survivin deleted mice were high-grade prostatic intra-epithelial neoplasia with distinct histopathology. Many atypical cells contained large hypertrophic cytoplasm and desmoplastic reaction in the prostatic intra-epithelial neoplasia lesions of this group was minimal until the late ages. A reduced proliferation index as well as apoptotic and senescent cells were detected in the lesions of mice with compound PTEN/survivin deficiency throughout the time points examined. Survivin deletion was also associated with reduced tumor expression of another inhibitor of apoptosis member, the X-linked inhibitor of apoptosis. Our findings suggest that survivin participates in the progression of prostatic intraepithelial neoplasia to adenocarcinoma, and that survivin interference at the prostatic intraepithelial neoplasia stages may be a potential therapeutic strategy to halt or delay further progression.
Collapse
|
92
|
Necochea-Campion RD, Chen CS, Mirshahidi S, Howard FD, Wall NR. Clinico-pathologic relevance of Survivin splice variant expression in cancer. Cancer Lett 2013; 339:167-74. [PMID: 23791888 DOI: 10.1016/j.canlet.2013.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/13/2013] [Accepted: 06/08/2013] [Indexed: 01/28/2023]
Abstract
Survivin is a member of the inhibitor of apoptosis (IAP) family and has multifunctional properties that include aspects of proliferation, invasion and cell survival control. Survivin is a promising candidate for targeted cancer therapy as its expression is associated with poor clinical outcome, more aggressive clinico-pathologic features, and resistance to radiation and chemotherapy. In the present review the different properties of the Survivin splice variants are discussed and their activities correlated with different aspects of cancer cell biology, to include subcellular location. Special emphasis is placed on our current understanding of these Survivin splice variants influence on each other and on the phenotypic responses to therapy that they may control.
Collapse
Affiliation(s)
- Rosalia de Necochea-Campion
- Cancer Center & Department of Internal Medicine, Division of Hematology and Medical Oncology & Biospecimen Laboratory, Loma Linda University, Loma Linda, CA 92350, United States
| | | | | | | | | |
Collapse
|
93
|
Honegger A, Leitz J, Bulkescher J, Hoppe-Seyler K, Hoppe-Seyler F. Silencing of human papillomavirus (HPV)E6/E7oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 2013; 133:1631-42. [DOI: 10.1002/ijc.28164] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/14/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Anja Honegger
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Jenny Leitz
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| |
Collapse
|
94
|
The effectiveness of cucurbitacin B in BRCA1 defective breast cancer cells. PLoS One 2013; 8:e55732. [PMID: 23393598 PMCID: PMC3564916 DOI: 10.1371/journal.pone.0055732] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/30/2012] [Indexed: 11/26/2022] Open
Abstract
Cucurbitacin B (CuB) is one of the potential agents for long term anticancer chemoprevention. Cumulative evidences has shown that cucurbitacin B provides potent cellular biological activities such as hepatoprotective, anti-inflammatory and antimicrobial effects, but the precise mechanism of this agent is not clearly understood. We examine the biological effects on cancer cells of cucurbitacin B extracted from a Thai herb, Trichosanthes cucumerina L. The wild type (wt) BRCA1, mutant BRCA1, BRCA1 knocked-down and BRCA1 overexpressed breast cancer cells were treated with the cucurbitacin B and determined for the inhibitory effects on the cell proliferation, migration, invasion, anchorage-independent growth. The gene expressions in the treated cells were analyzed for p21/Waf1, p27Kip1 and survivin. Our previous study revealed that loss of BRCA1 expression leads to an increase in survivin expression, which is responsible for a reduction in sensitivity to paclitaxel. In this work, we showed that cucurbitacin B obviously inhibited knocked-down and mutant BRCA1 breast cancer cells rather than the wild type BRCA1 breast cancer cells in regards to the cellular proliferation, migration, invasion and anchorage-independent growth. Furthermore, forcing the cells to overexpress wild type BRCA1 significantly reduced effectiveness of cucurbitacin B on growth inhibition of the endogenous mutant BRCA1 cells. Interestingly, cucurbitacin B promotes the expression of p21/Waf1 and p27Kip1 but inhibit the expression of survivin. We suggest that survivin could be an important target of cucurbitacin B in BRCA1 defective breast cancer cells.
Collapse
|
95
|
Li H, Gong J, Jiang X, Shao H. Arsenic trioxide treatment of rabbit liver VX-2 carcinoma via hepatic arterial cannulation-induced apoptosis and decreased levels of survivin in the tumor tissue. Croat Med J 2013; 54:12-6. [PMID: 23444241 PMCID: PMC3583389 DOI: 10.3325/cmj.2013.54.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 02/04/2013] [Indexed: 11/05/2022] Open
Abstract
AIM To investigate the role of tumor apoptosis-inhibitory protein survivin in arsenic trioxide-induced apoptosis in VX-2 carcinoma in the rabbit liver by means of transcatheter arterial chemoembolization. METHODS Sixteen rabbits with 32 implanted hepatic VX-2 tumors were randomly divided into two groups. The experimental group received 2 mg of arsenic trioxide and 1 mL of ultra-fluid lipiodol co-injected via hepatic arterial cannulation and the control group received only 1 mL of lipiodol. Animals were sacrificed 3 weeks after trans-catheterial arterial chemoembolization. Tumor tissue and tumor-peripheral tissue were collected for analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling staining was used to assess tumor cells apoptosis. Immunohistochemistry was used to assess the presence of survivin protein. Reverse transcription polymerase chain reaction was used to determine the expression of survivin gene. RESULTS The number of apoptotic cells significantly increased in the tumor tissue (5.20 ± 0.60%) compared to tumor-peripheral tissue (1.29 ± 0.42%) of the arsenic trioxide-treated group. Survivin expression levels in the tumor tissue were significantly reduced in arsenic trioxide-treated group (7.68 ± 0.65) compared to the control group (35.30 ± 4.63). CONCLUSION Transcatheter arterial chemoembolization with arsenic trioxide induced apoptosis of VX-2 carcinoma, in which tumor apoptosis-inhibitory protein survivin may have played a role.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiology, First Affiliated Hospital of China Medical University, 155 Nanjing St, Shenyang 110001, China.
| | | | | | | |
Collapse
|
96
|
Liman N, Alan E. The process of apoptosis in a holocrine gland as shown by the avian uropygial gland. Anat Rec (Hoboken) 2013; 296:504-20. [PMID: 23362229 DOI: 10.1002/ar.22645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study was designed to elucidate the presence of apoptosis and the localization of apoptosis-related Bax and survivin proteins and proliferating cell nuclear antigen (PCNA) within the chicken uropygial gland, a specialized holocrine secretory gland. In day-old chicks, survivin and Bax immunoreactivities were observed in the cell cytoplasm of the germinative and secretory layers of the luminal epithelium and tubules. During this period, the TUNEL reaction, an indication of apoptosis, was only sporadically positive in the tubules. From the 7th day to the 150th day of posthatching, survivin was detected in the cytoplasm of cells in the germinative layer and in the nuclei of some cells in the secretory layers of the gland. The germinative layer cells showed weak homogeneous cytoplasmic staining for Bax, whereas the cells of the secretory and intermediate layers of luminal epithelium and tubules exhibited granular cytoplasmic staining. After day 7, TUNEL-positive cells were observed in the secretory and degenerative layers of the luminal epithelium and central tubules. After day 12, some TUNEL-positive cells were also seen in the peripheral tubules. At all posthatch ages, the cytoplasm and nucleus of the germinative layers of luminal epithelium and tubules reacted with PCNA, whereas only a small number of cell nuclei in the secretory layers were immunopositive. These results support the theory that specific PCNA/Bax/survivin expression patterns could reflect particular cell differentiation states in the uropygial gland and that holocrine secretion in the gland is realized mainly by way of apoptosis.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey.
| | | |
Collapse
|
97
|
Khan S, Jutzy JMS, Valenzuela MMA, Turay D, Aspe JR, Ashok A, Mirshahidi S, Mercola D, Lilly MB, Wall NR. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One 2012; 7:e46737. [PMID: 23091600 PMCID: PMC3473028 DOI: 10.1371/journal.pone.0046737] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/04/2012] [Indexed: 01/12/2023] Open
Abstract
Background Survivin is expressed in prostate cancer (PCa), and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment. Methods Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively. Results Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six) or high (nine) Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls. Conclusions These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.
Collapse
Affiliation(s)
- Salma Khan
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Jessica M. S. Jutzy
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Malyn May A. Valenzuela
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - David Turay
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Jonathan R. Aspe
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Arjun Ashok
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Saied Mirshahidi
- Cancer Center and Department of Microbiology and Biospecimen Laboratory, Loma Linda University, Loma Linda, California, United States of America
| | - Dan Mercola
- Department of Pathology and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States of America
| | - Michael B. Lilly
- Division of Hematology/Oncology, Department of Medicine and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States of America
| | - Nathan R. Wall
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
98
|
Cai X, Ma S, Gu M, Zu C, Qu W, Zheng X. Survivin regulates the expression of VEGF-C in lymphatic metastasis of breast cancer. Diagn Pathol 2012; 7:52. [PMID: 22607367 PMCID: PMC3487795 DOI: 10.1186/1746-1596-7-52] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/08/2012] [Indexed: 01/11/2023] Open
Abstract
Background As a known regulator of apoptosis, survivin has positive relationship with lymphatic metastasis in breast cancer. This study aims to detect the difference in expression between survivin and vascular endothelial growth factor-C (VEGF-C) in treated breast cancer cells and tissues, and to analyze the correlation among survivin, VEGF-C and lymphatic metastasis. Methods Plasmid with survivin and VEGF-C shRNA and lentivirus with survivin gene were constructed and transfected into breast cancer cell ZR-75-30. Then the expressions of the two genes were examined using western blot analysis and real-time PCR. The change of invasiveness of breast cancer cells was assessed using matrigel invasion assay. Using immunohistochemistry, the expression of survivin and VEGF-C were analyzed in 108 clinical breast cancer cases with breast cancer tissue and lymph node. Results Survivin regulated the expression of VEGF-C at both protein and mRNA levels in breast cancer cells. Immunohistochemical analysis showed that the level of VEGF-C expression was significantly related with that of survivin in breast cancer tissues (p<0.05). VEGF-C was found to participate in the process of breast cancer cells invasion mediated by survivin. The co-expression of the two and the single expression of any one took significant difference in positive lymph node (p<0.05). Conclusions Survivin takes an important part in regulating the expression of VEGF-C. VEGF-C could influence the invasive ability mediated by survivin. The co-expression of survivin and VEGF-C is more statistically significant to assess lymphatic metastasis in breast cancer. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9193530897100952
Collapse
Affiliation(s)
- Xiaopeng Cai
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, No, 155 North Nanjing Street, Shenyang, Liaoning Province, 110001, China
| | | | | | | | | | | |
Collapse
|
99
|
Ge R, Tan E, Sharghi-Namini S, Asada HH. Exosomes in Cancer Microenvironment and Beyond: have we Overlooked these Extracellular Messengers? CANCER MICROENVIRONMENT 2012; 5:323-32. [PMID: 22585423 DOI: 10.1007/s12307-012-0110-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
Abstract
Cancer is a complex organ whose behavior is not only influenced by genetic and epigenetic changes in cancer cells but also by stromal cells, local extracellular matrix and specific tissue architecture. Intercellular communications within the cancer microenvironment are critical to coordinate the assembly of multiple cell types for an amalgamated form and function of a cancer. Exosomes are small membrane vesicles with an endosome origin that are released by cells into the extracellular environment. They carry a cargo of proteins, lipids, and nucleic acids and transfer their cargo to recipient cells and altering the recipient cells' biochemical composition, signaling pathways, and gene regulation. Exosomes can thus serve as extracellular messengers mediating cell-cell communication. Both cancer cells and stromal cells release exosomes not only into the cancer microenvironment but also into the circulation. In this review, we summarize the research done so far on cancer-derived exosomes and assess their roles as extracellular messengers facilitating cancer progression and metastasis.
Collapse
Affiliation(s)
- Ruowen Ge
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore, 117543,
| | | | | | | |
Collapse
|
100
|
Tumor-released survivin induces a type-2 t cell response and decreases cytotoxic T cell function, in vitro. CANCER MICROENVIRONMENT 2012; 6:57-68. [PMID: 22322461 DOI: 10.1007/s12307-012-0096-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/03/2012] [Indexed: 12/30/2022]
Abstract
Clinical studies of T cell profiles from cancer patients have shown a skewing toward a type-2 T cell response with decreased cytotoxic T cell function. However, the primary cause of this shift remains unknown. Here we show that tumor-released Survivin, an inhibitor of apoptosis (IAP) protein and tumor-specific antigen, is taken up by T cells and alters their response. The addition of Survivin to T cell cultures resulted in decreased T cell proliferation and reduced cytotoxic CD8(+) T cell function. Additionally, type 1 cell numbers and IFN-γ and IL-2 production were significantly reduced, while IL-4 release and type 2 T cell numbers increased. In contrast, the function and numbers of Th17 and T regulatory cells were not affected. These studies show that tumor-released Survivin modulates T cells resulting in a phenotype similar to that observed in cancer patients with a polarity shift from a type 1 to a type 2 response.
Collapse
|