51
|
Ji X, Xu W, Cui J, Ma Y, Zhou S. Goat and buffalo milk fat globule membranes exhibit better effects at inducing apoptosis and reduction the viability of HT-29 cells. Sci Rep 2019; 9:2577. [PMID: 30796323 PMCID: PMC6385370 DOI: 10.1038/s41598-019-39546-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
Bovine milk fat globule membrane (MFGM) has shown many health benefits, however, there has not been much study on non-cattle MFGMs. The purpose of this study was to compare the anti-proliferation effects and investigate the mechanisms of MFGMs from bovine, goat, buffalo, yak and camel milk in HT-29 cells. Results showed that protein content in MFGM of yak milk is the highest among five MFGM. All MFGMs reduced cellular viability which was in agreement with cell morphology and apoptosis. However, the number of cells in S-phase from 24 h to 72 h was increased significantly by treatment with goat, buffalo and bovine MFGMs (100 μg/mL), but not yak and camel. All MFGMs treatment significantly reduced the mitochondrial membrane potential (with an order of goat > buffalo > bovine > camel > yak) and Bcl-2 expression, but increased the expression of both Bax and Caspase-3. Taken together, the results indicate that all MFGMs, especially goat and buffalo MFGMs, showed better effects at inducing apoptosis and reduction the viability of HT-29 cells. The mechanism might be arresting the cell cycle at S phase, depolarization of mitochondrial membrane potential, down-regulation of Bcl-2 expression and increase of Bax and Caspase-3 expression.
Collapse
Affiliation(s)
- Xiaoxi Ji
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Key Laboratory of Shandong Provincial Education Department: Past-harvest QC and Multiutilization of Characteristic Agricultural Products, Shandong Agriculture and Food Engineering University, Jinan, Shandong, 250100, P. R. China
| | - Weili Xu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jie Cui
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ying Ma
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, LU1 3JU, UK.
| |
Collapse
|
52
|
Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons. Mol Cell Neurosci 2019; 96:10-24. [PMID: 30776416 DOI: 10.1016/j.mcn.2019.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023] Open
Abstract
Cerebral blood flow disturbances lead to the massive death of brain cells. The death of >80% of cells is observed in hippocampal cell cultures after 40 min of oxygen and glucose deprivation (ischemia-like conditions, OGD). However, there are some populations of GABAergic neurons which are characterized by increased vulnerability to oxygen-glucose deprivation conditions. Using fluorescent microscopy, immunocytochemical assay, vitality tests and PCR-analysis, we have shown that population of GABAergic neurons are characterized by a different (faster) Ca2+ dynamics in response to OGD and increased basal ROS production under OGD conditions. A plant flavonoid taxifolin inhibited an excessive ROS production and an irreversible cytosolic Ca2+ concentration increase in GABAergic neurons, preventing the death of these neurons and further excitation of a neuronal network; neuroprotective effect of taxifolin increased after incubation of 24 h and correlated with increased expression of antiapoptocic and antioxidant genes Stat3 Nrf-2 Bcl-2, Bcl-xL, Ikk2, and genes coding for AMPA and kainate receptor subunits; in addition, taxifolin decreased expression of prooxidant enzyme NOS and proinflammatory cytokine IL-1β.
Collapse
|
53
|
Lin KY, Chung CH, Ciou JS, Su PF, Wang PW, Shieh DB, Wang TC. Molecular damage and responses of oral keratinocyte to hydrogen peroxide. BMC Oral Health 2019; 19:10. [PMID: 30634966 PMCID: PMC6329095 DOI: 10.1186/s12903-018-0694-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2)-based tooth bleaching reagents have recently increased in popularity and controversy. H2O2 gel (3%) is used in a Nightguard for vital bleaching; transient tooth sensitivity and oral mucosa irritation have been reported. Genotoxicity and carcinogenicity have also been significant concerns. METHODS We used primary cultured normal human oral keratinocytes (NHOKs) as an in vitro model to investigate the pathological effects to mitochondria functions on human oral keratinocytes exposed to different doses of H2O2 for different durations. RESULTS An MTT assay showed compromised cell viability at a dose over 5 mM. The treatments induced nuclear DNA damage, measured using a single-cell gel electrophoresis assay. A real-time quantitative polymerase chain reaction showed H2O2 induced significant increase in mitochondrial 4977-bp deletion. Mitochondrial membrane potential and apoptosis assays suggested that oxidative damage defense mechanisms were activated after prolonged exposure to H2O2. Reduced intracellular glutathione was an effective defense against oxidative damage from 5 mM of H2O2. CONCLUSION Our study suggests the importance for keratinocyte damage of the dose and the duration of the exposure to H2O2 in at-home-bleaching. A treatment dose ≥100 mM directly causes severe cytotoxicity with as little as 15 min of exposure.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Harrisburg, PA, 16803, USA
| | - Ching-Hung Chung
- Department of Stomatology, National Cheng-Kung University Hospital, Tainan, 70101, Taiwan
| | - Jheng-Sian Ciou
- Graduate Institute of Pharmaceutical Science, Chia-Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Wen Wang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Dar-Bin Shieh
- Department of Stomatology, National Cheng-Kung University Hospital, Tainan, 70101, Taiwan. .,Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology, Advanced Optronic Technology Center, Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tzu-Chueh Wang
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, 71710, Taiwan.
| |
Collapse
|
54
|
Wael Youssef E. Age-Dependent Differential Expression of Apoptotic Markers in Rat Oral Mucosa. Asian Pac J Cancer Prev 2018; 19:3245-3250. [PMID: 30486627 PMCID: PMC6318412 DOI: 10.31557/apjcp.2018.19.11.3245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/07/2018] [Indexed: 12/31/2022] Open
Abstract
Objective: This study tests the hypothesis that gingival tissue produces age-dependent activation of apoptotic markers. Methods: To address the hypothesis, a prospective experimental study was conducted on 20 adult male albino rats, which were divided into two groups. Group 1 comprised rats aged six months (weighing 150–200 g), and group 2 included old rats aged one year (weighing 250–300 g). Gingival tissue and buccal mucosa biopsy samples were obtained from both groups. Histological and immunohistochemical (Bax apoptotic protein marker) sections were analyzed for both groups. Results: Our data showed a significant decrease in the proliferative activity of oral mucosa (gingiva and buccal mucosa) in old rats and an increase in the immunoreactivity of Bax apoptotic proteins related to increased susceptibility of cells to apoptosis. The mucosal structures (epithelium and lamina propria) were significantly different between the two groups. Furthermore, immunoreactivity for Bax was different between young and old rats. Conclusions: Aging is associated with changes that lead to progressive, irreversible deterioration of the functional capacities of several tissues and organs. Our study demonstrated the effect of age on the histological and apoptotic behavior of oral mucosa (gingiva and buccal mucosa) cells.
Collapse
Affiliation(s)
- Elias Wael Youssef
- Oral Diagnostic Science Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
55
|
Makoukji J, Saadeh F, Mansour KA, El-Sitt S, Al Ali J, Kinarivala N, Trippier PC, Boustany RM. Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses. Ann Clin Transl Neurol 2018; 5:1089-1103. [PMID: 30250865 PMCID: PMC6144451 DOI: 10.1002/acn3.625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/17/2022] Open
Abstract
Objective Neuronal Ceroid Lipofuscinoses (NCL) are fatal inherited neurodegenerative diseases with established neuronal cell death and increased ceramide levels in brain, hence, a need for disease‐modifying drug candidates, with potential to enhance growth, reduce apoptosis and lower ceramide in neuronal precursor PC12 cells and human NCL cell lines using enhanced flupirtine aromatic carbamate derivatives in vitro. Methods Aromatic carbamate derivatives were tested by establishing growth curves under pro‐apoptotic conditions and activity evaluated by trypan blue and JC‐1 staining, as well as a drop in pro‐apoptotic ceramide in neuronal precursor PC12 cells following siRNA knockdown of the CLN3 gene, and CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts. Ceramide levels were determined in CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts before and after treatment. Expression of BCL‐2, ceramide synthesis enzymes (CERS2/CERS6/SMPD1/DEGS2) and Caspases 3/8/9 levels were compared in treated versus untreated CLN3‐deficient PC12 cells by qRT‐PCR. Results Retigabine, the benzyl‐derivatized carbamate and an allyl carbamate derivative were neuroprotective in CLN3‐defective PC12 cells and rescued CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts from diminished growth and accelerated apoptosis. All drugs decreased ceramide in CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts. Increased BCL‐2 and decreased ceramide synthesis enzyme expression were established in CLN3‐derived PC12 cells treated with the benzyl and allyl carbamate derivatives. They down‐regulated Caspase 3/Caspase 8 expression. Caspase 9 expression was reduced by the benzyl‐derivatized carbamate. Interpretation These findings establish that compounds analogous to flupirtine demonstrate anti‐apoptotic activity with potential for treatment of NCL disease and use of ceramide as a marker for these diseases.
Collapse
Affiliation(s)
- Joelle Makoukji
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Fadi Saadeh
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Karl Albert Mansour
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Sally El-Sitt
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Jamal Al Ali
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Nihar Kinarivala
- Department of Pharmaceutical Sciences School of Pharmacy Texas Tech University Health Sciences Center Amarillo Texas
| | - Paul C Trippier
- Department of Pharmaceutical Sciences School of Pharmacy Texas Tech University Health Sciences Center Amarillo Texas
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon.,Neurogenetics Program AUBMC Special Kids Clinic Division of Pediatric Neurology Department of Pediatrics and Adolescent Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
56
|
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacol Res 2018; 131:87-101. [DOI: 10.1016/j.phrs.2018.03.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
|
57
|
Abstract
Cancer metabolism is emerging as a chemotherapeutic target. Enhanced glycolysis and suppression of mitochondrial metabolism characterize the Warburg phenotype in cancer cells. The flux of respiratory substrates, ADP, and Pi into mitochondria and the release of mitochondrial ATP to the cytosol occur through voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane. Catabolism of respiratory substrates in the Krebs cycle generates NADH and FADH2 that enter the electron transport chain (ETC) to generate a proton motive force that maintains mitochondrial membrane potential (ΔΨ) and is utilized to generate ATP. The ETC is also the major cellular source of mitochondrial reactive oxygen species (ROS). αβ-Tubulin heterodimers decrease VDAC conductance in lipid bilayers. High constitutive levels of cytosolic free tubulin in intact cancer cells close VDAC decreasing mitochondrial ΔΨ and mitochondrial metabolism. The VDAC-tubulin interaction regulates VDAC opening and globally controls mitochondrial metabolism, ROS formation, and the intracellular flow of energy. Erastin, a VDAC-binding molecule lethal to some cancer cell types, and erastin-like compounds identified in a high-throughput screening antagonize the inhibitory effect of tubulin on VDAC. Reversal of tubulin inhibition of VDAC increases VDAC conductance and the flux of metabolites into and out of mitochondria. VDAC opening promotes a higher mitochondrial ΔΨ and a global increase in mitochondrial metabolism leading to high cytosolic ATP/ADP ratios that inhibit glycolysis. VDAC opening also increases ROS production causing oxidative stress that, in turn, leads to mitochondrial dysfunction, bioenergetic failure, and cell death. In summary, antagonism of the VDAC-tubulin interaction promotes cell death by a "double-hit model" characterized by reversion of the proproliferative Warburg phenotype (anti-Warburg) and promotion of oxidative stress.
Collapse
Affiliation(s)
- Diana Fang
- Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N Maldonado
- Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
58
|
The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1308692. [PMID: 29456783 PMCID: PMC5804373 DOI: 10.1155/2017/1308692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a posttranslational modification that is increasingly recognized as a signal transduction mechanism. Unlike other glycans, O-GlcNAc is a highly dynamic and reversible process that involves the addition and removal of a single N-acetylglucosamine molecule to Ser/Thr residues of proteins. UDP-GlcNAc—the direct substrate for O-GlcNAc modification—is controlled by the rate of cellular metabolism, and thus O-GlcNAc is dependent on substrate availability. Serving as a feedback mechanism, O-GlcNAc influences the regulation of insulin signaling and glucose transport. Besides nutrient sensing, O-GlcNAc was also implicated in the regulation of various physiological and pathophysiological processes. Due to improvements of mass spectrometry techniques, more than one thousand proteins were detected to carry the O-GlcNAc moiety; many of them are known to participate in the regulation of metabolites, ions, or protein transport across biological membranes. Recent studies also indicated that O-GlcNAc is involved in stress adaptation; overwhelming evidences suggest that O-GlcNAc levels increase upon stress. O-GlcNAc elevation is generally considered to be beneficial during stress, although the exact nature of its protective effect is not understood. In this review, we summarize the current data regarding the oxidative stress-related changes of O-GlcNAc levels and discuss the implications related to membrane trafficking.
Collapse
|
59
|
Camara AKS, Zhou Y, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 2017; 8:460. [PMID: 28713289 PMCID: PMC5491678 DOI: 10.3389/fphys.2017.00460] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are the key source of ATP that fuels cellular functions, and they are also central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has been implicated in a wide range of diseases, including neurodegenerative and cardiac diseases, and various types of cancer. One of the key proteins that regulate mitochondrial function is the voltage-dependent anion channel 1 (VDAC1), the most abundant protein on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2 family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of evidence have confirmed the involvement of VDAC1 in several diseases. Consequently, modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate pathophysiological conditions. Understanding the role of VDAC1 in health and disease could lead to selective protection of cells in different tissues and diverse diseases. The purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases and as a potentially effective target for therapeutic management of various pathologies.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States
| | - YiFan Zhou
- Department of Assay Development, HD BiosciencesShanghai, China
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, WI, United States
| |
Collapse
|
60
|
Song J, Li Y, Song J, Hou F, Liu B, Li A. Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1829-1839. [PMID: 28478227 DOI: 10.1016/j.bbadis.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/15/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023]
Abstract
Hexokinase-II (HK-II) confers protection against cell death and this study was designed to investigate the effect of mangiferin on the regulation of mitochondrial HK-II. In vessel endothelial cells, saturated fatty acid palmitate (PA) stimulation induced HK-II detachment from mitochondria due to cellular acidification. Mangiferin reduced lactate accumulation by improving pyruvate dehydrogenase activity, promoted Akt translocation to HK-II and prevented HK-II detachment from mitochondria. Knockdown of Akt2 diminished the protective effect of mangiferin on mitochondrial HK-II, confirming the role of Akt in the regulation of HK-II. Mangiferin prevented mitochondrial permeability transition pore opening, restored mitochondrial membrane potential and thereby protected cell from apoptosis. In high-fat diet fed mice, oral administration of mangiferin induced Akt phosphorylation, increased HK-II binding to mitochondria and resultantly protected vessel endothelial function, demonstrating its protective effect on endothelial integrity in vivo. This finding provided a novel strategy for the protection of mitochondrial function in the endothelium.
Collapse
Affiliation(s)
- Junna Song
- Department of Pharmaceutical Botany, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Junmei Song
- Exploration & Development Research Institute of Huabei Oil Field Company, China
| | - Fangjie Hou
- Department of Pharmaceutical Botany, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Aiying Li
- Department of Biochemistry and Molecular Biology, Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, China.
| |
Collapse
|
61
|
Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC). Sci Rep 2017; 7:45184. [PMID: 28327594 PMCID: PMC5361111 DOI: 10.1038/srep45184] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Aspirin induces apoptotic cell death in various cancer cell lines. Here we showed that silencing of VDAC1 protected HeLa cells from aspirin-induced cell death. Compared to the wild type cells, VDAC1 knocked down cells showed lesser change of mitochondrial membrane potential (Δψm), upon aspirin treatment. Aspirin augmented ATP and ionomycin-induced mitochondrial Ca2+ uptake which was abolished in VDAC1 knocked down cells. Aspirin dissociated bound hexokinase II (HK-II) from mitochondria. Further, aspirin promoted the closure of recombinant human VDAC1, reconstituted in planar lipid bilayer. Taken together, these results imply that VDAC1 serves as a novel target for aspirin. Modulation of VDAC1 is possibly associated with the cell death and anticancer effects of aspirin.
Collapse
|
62
|
Bakthavachalam P, Shanmugam PST. Mitochondrial dysfunction - Silent killer in cerebral ischemia. J Neurol Sci 2017; 375:417-423. [PMID: 28320180 DOI: 10.1016/j.jns.2017.02.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial dysfunction aggravates ischemic neuronal injury through activation of various pathophysiological and molecular mechanisms. Ischemic neuronal injury is particularly intensified during reperfusion due to impairment of mitochondrial function. Mitochondrial mutilation instigates alterations in calcium homeostasis in neurons, which plays a pivotal role in the maintenance of normal neuronal function. Increase in intracellular calcium level in mitochondria triggers the opening of mitochondrial transition pore and over production of reactive oxygen species (ROS). Several investigations have concluded that ROS not only contribute to lipids and proteins damage, but also transduce apoptotic signals leading to neuronal death. In addition to the above mentioned reasons, endoplasmic reticulum (ER) stress due to excitotoxicity also leads to neuronal death. Recently, some newer proteins have been claimed to induce "mitophagy" by triggering the receptors on autophagic membranes leading to neurodegeneration. This review summarizes the mechanisms underlying neuronal death involving mitochondrial dysfunction and mitophagy.
Collapse
Affiliation(s)
- Pramila Bakthavachalam
- Sri Ramachandra University, No. 1, Ramachandra Nagar, Porur, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
63
|
Gibson GE, Thakkar A. Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer's Disease: A Calcinist Point of View. Neurochem Res 2017; 42:1636-1648. [PMID: 28181072 DOI: 10.1007/s11064-017-2182-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer's Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets.
Collapse
Affiliation(s)
- Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA.
| | - Ankita Thakkar
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
| |
Collapse
|
64
|
Maldonado EN. VDAC-Tubulin, an Anti-Warburg Pro-Oxidant Switch. Front Oncol 2017; 7:4. [PMID: 28168164 PMCID: PMC5256068 DOI: 10.3389/fonc.2017.00004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Aerobic enhanced glycolysis characterizes the Warburg phenotype. In cancer cells, suppression of mitochondrial metabolism contributes to maintain a low ATP/ADP ratio that favors glycolysis. We propose that the voltage-dependent anion channel (VDAC) located in the mitochondrial outer membrane is a metabolic link between glycolysis and oxidative phosphorylation in the Warburg phenotype. Most metabolites including respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. Oxidation of respiratory substrates in the Krebs cycle generates NADH that enters the electron transport chain (ETC) to generate a proton motive force utilized to generate ATP and to maintain mitochondrial membrane potential (ΔΨ). The ETC is also the major source of mitochondrial reactive oxygen species (ROS) formation. Dimeric α-β tubulin decreases conductance of VDAC inserted in lipid bilayers, and high free tubulin in cancer cells by closing VDAC, limits the ingress of respiratory substrates and ATP decreasing mitochondrial ΔΨ. VDAC opening regulated by free tubulin operates as a “master key” that “seal–unseal” mitochondria to modulate mitochondrial metabolism, ROS formation, and the intracellular flow of energy. Erastin, a small molecule that binds to VDAC and kills cancer cells, and erastin-like compounds antagonize the inhibitory effect of tubulin on VDAC. Blockage of the VDAC–tubulin switch increases mitochondrial metabolism leading to decreased glycolysis and oxidative stress that promotes mitochondrial dysfunction, bioenergetic failure, and cell death. In summary, VDAC opening-dependent cell death follows a “metabolic double-hit model” characterized by oxidative stress and reversion of the pro-proliferative Warburg phenotype.
Collapse
Affiliation(s)
- Eduardo N Maldonado
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Center for Cell Death, Injury and Regeneration, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
65
|
Chhabra A, Mukherji B, Batra D. Activation induced cell death (AICD) of human melanoma antigen-specific TCR engineered CD8 T cells involves JNK, Bim and p53. Expert Opin Ther Targets 2016; 21:117-129. [PMID: 27935327 DOI: 10.1080/14728222.2017.1270941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Adoptive cancer immunotherapy (ACT) with transgenic T cell receptor (TCR) engineered (TCReng) anti-tumor T cells has produced encouraging results, however, efficacy of these approaches need improvement. Since premature activation induced cell death (AICD) of adoptively administered T cells could be a major impediment, we examined the mechanism(s) underlying AICD in TCReng CD8+ cytolytic T lymphocytes (CTL). METHODS AICD in human tumor antigen-specific MHC class I restricted TCR engineered CD8+ CTL was induced by exposing them to cognate peptide epitope. RESULTS We show that TCReng CD8+ human primary CTL undergo AICD even upon encountering their cognate peptide epitope for the very first time. AICD in TCReng CTL is a death-receptor-independent, JNK activation-driven intrinsic processes, in which p53-mediated mitochondria-centric, non-transcription-dependent pathway plays an essential role. Activated JNK modulates mitochondrial membrane integrity in CTL undergoing AICD by directly interacting with Bcl family protein, Bim, and the mitochondrial membrane pore complex, voltage dependent anion channel (VDAC), leading to the release of caspase-independent death executioner, apoptosis inducing factor (AIF), accumulation of single strand DNA breaks and eventually to cell death. CONCLUSIONS Our findings offer opportunities to interfere with AICD in TCReng CD8+ anti-tumor CTL for sustaining them longer for producing better clinical outcomes.
Collapse
Affiliation(s)
- Arvind Chhabra
- a Department of Medicine , University of Connecticut Health Center , Farmington , CT , USA
| | - Bijay Mukherji
- a Department of Medicine , University of Connecticut Health Center , Farmington , CT , USA
| | - Deepika Batra
- a Department of Medicine , University of Connecticut Health Center , Farmington , CT , USA
| |
Collapse
|
66
|
M'Angale PG, Staveley BE. Loss of porin function in dopaminergic neurons of Drosophila is suppressed by Buffy. J Biomed Sci 2016; 23:84. [PMID: 27881168 PMCID: PMC5122015 DOI: 10.1186/s12929-016-0300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial porin, also known as the voltage-dependent anion channel (VDAC), is a multi-functional channel protein that shuttles metabolites between the mitochondria and the cytosol and implicated in cellular life and death decisions. The inhibition of porin under the control of neuronal Ddc-Gal4 result in short lifespan and in an age-dependent loss in locomotor function, phenotypes that are strongly associated with Drosophila models of Parkinson disease. METHODS Loss of porin function was achieved through exploitation of RNA interference while derivative lines were generated by homologous recombination and tested by PCR. The UAS/Gal4 expression system was exploited with directed expression in neurons achieved with the use of the Dopa decarboxylase and in the developing eye with the Glass multiple reporter transgenes. Statistical analyses for ageing assay employed Log rank (Mantel-Cox) test, climbing indices were fitted with a non-linear curve and confidence intervals compared at 95%. Biometric analysis of the eye phenotypes was obtained by unpaired student T-test. RESULTS The expression of α-synuclein in neuronal populations that include dopamine producing neurons under the control of Ddc-Gal4 produces a robust Parkinson disease model, and results in severely reduced lifespan and locomotor dysfunction. In addition, the porin-induced phenotypes are greatly suppressed when the pro-survival Bcl-2 homologue Buffy is overexpressed in these neurons and in the developing eye adding to the cellular advantages of altered expression of this anti-apoptotic gene. When we co-expressed α-synuclein along with porin, it results in a decrease in lifespan and impaired climbing ability. This enhancement of the α-synuclein-induced phenotypes observed in neurons was demonstrated in the neuron rich eye, where the simultaneous co-expression of porin-RNAi and α-synuclein resulted in an enhanced eye phenotype, marked by reduced number of ommatidia and increased disarray of the ommatidia. CONCLUSIONS The inhibition of porin in dopaminergic neurons among others result in reduced lifespan and age-dependent loss in climbing ability, phenotypes that are suppressed by the overexpression of the sole pro-survival Bcl-2 homologue Buffy. The inhibition of porin phenocopies Parkinson disease phenotypes in Drosophila, while the overexpression of Buffy can counteract these phenotypes to improve the overall "healthspan" of the organism.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada.
| |
Collapse
|
67
|
Senkiv J, Finiuk N, Kaminskyy D, Havrylyuk D, Wojtyra M, Kril I, Gzella A, Stoika R, Lesyk R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur J Med Chem 2016; 117:33-46. [DOI: 10.1016/j.ejmech.2016.03.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
68
|
Tewari D, Mukhopadhyay M, Nekkanti MS, Vallabhaneni S, Sahu G, Jetti SK, Preethidan D, Bera AK. Cytoprotective effect of Centella asiatica is mediated through the modulation of mitochondrial voltage-dependent anion channel (VDAC) and scavenging of free radicals. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
69
|
Huang L, Han J, Ben-Hail D, He L, Li B, Chen Z, Wang Y, Yang Y, Liu L, Zhu Y, Shoshan-Barmatz V, Liu H, Chen Q. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells. J Biol Chem 2015; 290:23563-78. [PMID: 26253170 DOI: 10.1074/jbc.m115.648774] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/26/2023] Open
Abstract
The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.
Collapse
Affiliation(s)
- Li Huang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Han
- the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danya Ben-Hail
- the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Luwei He
- the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baowei Li
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ziheng Chen
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Wang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Yang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yushan Zhu
- the Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 30071, China
| | - Varda Shoshan-Barmatz
- the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Hongwei Liu
- the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,
| | - Quan Chen
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China,
| |
Collapse
|
70
|
Mato E, Barceló-Batllori S, Orera I, Selva L, Corra M, González C, Bell O, Lerma E, Moral A, Pérez JI, de Leiva A. The proteomic 2D-DIGE approach reveals the protein voltage-dependent anion channel 2 as a potential therapeutic target in epithelial thyroid tumours. Mol Cell Endocrinol 2015; 404:37-45. [PMID: 25617717 DOI: 10.1016/j.mce.2015.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/15/2015] [Indexed: 02/08/2023]
Abstract
We investigated the role of VDAC2 in human epithelial thyroid tumours using proteomic 2D-DIGE analysis and qRT-PCR. We found a significant up-regulation of VDAC2 in thyroid tumours and in thyroid tumour cell lines (TPC-1 and CAL-62). We did not detect overexpression of VDAC2 in a normal thyroid cell line (Nthy-ori 3-1). Silico analysis revealed that two proteins, BAK1 and BAX, had a strong relationship with VDAC2. BAK1 gene expression showed down-regulation in thyroid tumours (follicular and papillary tumours) and in TPC-1 and CAL-62 cell lines. Transient knockdown of VDAC2 in TPC-1 and CAL-62 promoted upregulation of the BAK1 gene and protein expression, and increased susceptibility to sorafenib treatment. Overexpression of the BAK1 gene in CAL-62 showed lower sorafenib sensitivity than VDAC2 knockdown cells. We propose the VDAC2 gene as a novel therapeutic target in these tumours.
Collapse
Affiliation(s)
- Eugenia Mato
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain.
| | - Sílvia Barceló-Batllori
- Proteomics Unit, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Irene Orera
- Centro Investigaciones Biomédicas Aragón (CIBA), Instituto Aragonés de Ciencias de la Salud-Instituto de Investigación Sanitaria Aragón (IACS-IIS), Zaragoza, Spain
| | - Laia Selva
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Martina Corra
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Cintia González
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain
| | - Olga Bell
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Enrique Lerma
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Autonomous University, Barcelona, Spain
| | - Antonio Moral
- General Surgery, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | | | - Alberto de Leiva
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| |
Collapse
|
71
|
Thind GS, Agrawal PR, Hirsh B, Saravolatz L, Chen-Scarabelli C, Narula J, Scarabelli TM. Mechanisms of myocardial ischemia–reperfusion injury and the cytoprotective role of minocycline: scope and limitations. Future Cardiol 2015; 11:61-76. [DOI: 10.2217/fca.14.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ABSTRACT Deep insight into the complex mechanisms of myocardial ischemia–reperfusion injury has been attained in the past years. Minocycline is a second-generation tetracycline with US FDA approval for clinical use in various infections. Lately, several noninfectious cytoprotective activities of minocycline have been discovered as well. There now exists encouraging evidence of its protective role in cardiovascular pathology and its activity against myocardial ischemia–reperfusion injury. In this article, an overview of the major mechanisms involved in myocardial ischemia–reperfusion injury is presented. This is followed by an analysis of the mechanisms by which minocycline exerts its cytoprotective role and of studies that have been conducted in order to analyze minocycline, along with a review of the scope and limitations of its role as a cytoprotective agent.
Collapse
Affiliation(s)
| | - Pratik R Agrawal
- Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029-6574, USA
- Surat Municipal Institute of Medical Education & Research, Gujarat, India
| | - Benjamin Hirsh
- Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029-6574, USA
| | - Louis Saravolatz
- St John Hospital & Medical Center, Wayne State University Medical School, Detroit, MI, USA
| | | | - Jagat Narula
- Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029-6574, USA
| | - Tiziano M Scarabelli
- Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029-6574, USA
- St John Hospital & Medical Center, Wayne State University Medical School, Detroit, MI, USA
| |
Collapse
|
72
|
Tsuchiya M, Nakajima Y, Waku T, Hiyoshi H, Morishita T, Furumai R, Hayashi Y, Kishimoto H, Kimura K, Yanagisawa J. CHIP buffers heterogeneous Bcl-2 expression levels to prevent augmentation of anticancer drug-resistant cell population. Oncogene 2014; 34:4656-63. [DOI: 10.1038/onc.2014.387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/25/2014] [Accepted: 10/14/2014] [Indexed: 01/12/2023]
|
73
|
Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. J Bioenerg Biomembr 2014; 46:1-15. [PMID: 24078116 DOI: 10.1007/s10863-013-9527-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023]
Abstract
Bcl-2 family proteins, known for their apoptosis functioning at the mitochondria, have been shown to localize to other cellular compartments to mediate calcium (Ca2+) signals. Since the proper supply of Ca2+ in cells serves as an important mechanism for cellular survival and bioenergetics, we propose an integrating role for Bcl-2 family proteins in modulating Ca2+ signaling. The endoplasmic reticulum (ER) is the main Ca2+ storage for the cell and Bcl-2 family proteins competitively regulate its Ca2+ concentration. Bcl-2 family proteins also regulate the flux of Ca2+ from the ER by physically interacting with inositol 1,4,5-trisphosphate receptors (IP3Rs) to mediate their opening. Type 1 IP3Rs reside at the bulk ER to coordinate cytosolic Ca2+ signals, while type 3 IP3Rs reside at mitochondria-associated ER membrane (MAM) to facilitate mitochondrial Ca2+ uptake. In healthy cells, mitochondrial Ca2+ drives pyruvate into the citric acid (TCA) cycle to facilitate ATP production, while a continuous accumulation of Ca2+ can trigger the release of cytochrome c, thus initiating apoptosis. Since multiple organelles and Bcl-2 family proteins are involved in Ca2+ signaling, we aim to clarify the role that Bcl-2 family proteins play in facilitating Ca2+ signaling and how mitochondrial Ca2+ is relevant in both bioenergetics and apoptosis. We also explore how these insights could be useful in controlling bioenergetics in apoptosis-resistant cell lines.
Collapse
|
74
|
Tewari D, Ahmed T, Chirasani VR, Singh PK, Maji SK, Senapati S, Bera AK. Modulation of the mitochondrial voltage dependent anion channel (VDAC) by curcumin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:151-8. [PMID: 25459681 DOI: 10.1016/j.bbamem.2014.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/06/2014] [Accepted: 10/13/2014] [Indexed: 01/30/2023]
Abstract
Voltage dependent anion channel (VDAC) of mitochondria plays a crucial role in apoptosis. Human VDAC-1, reconstituted in planar lipid bilayer showed reduced conductance when treated with curcumin. Curcumin interacts with residues in the α helical N-terminus of VDAC and in the channel wall, as revealed by molecular docking, followed by mutational analysis. N-terminus mimicking peptide showed conformational changes in circular dichroism, upon curcumin treatment. We propose that the interaction of curcumin with amino acids in N-terminus and in channel wall fixes the α helix in closed conformation. This restricts its movement which is required for the opening of the channel.
Collapse
Affiliation(s)
- Debanjan Tewari
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tofayel Ahmed
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai 600036, India
| | - Venkat R Chirasani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pradeep K Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Senapati
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai 600036, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
75
|
Pan X, Chen Z, Yang X, Liu G. Arabidopsis voltage-dependent anion channel 1 (AtVDAC1) is required for female development and maintenance of mitochondrial functions related to energy-transaction. PLoS One 2014; 9:e106941. [PMID: 25192453 PMCID: PMC4156401 DOI: 10.1371/journal.pone.0106941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/10/2014] [Indexed: 11/18/2022] Open
Abstract
The voltage-dependent anion channels (VDACs), prominently localized in the outer mitochondrial membrane, play important roles in the metabolite exchange, energy metabolism and mitochondria-mediated apoptosis process in mammalian cells. However, relatively little is known about the functions of VDACs in plants. To further investigate the function of AtVDAC1 in Arabidopsis, we analyzed a T-DNA insertion line for the AtVDAC1 gene. The knock-out mutant atvdac1 showed reduced seed set due to a large number of undeveloped ovules in siliques. Genetic analyses indicated that the mutation of AtVDAC1 affected female fertility and belonged to a sporophytic mutation. Abnormal ovules in the process of female gametogenesis were observed using a confocal laser scanning microscope. Interestingly, both mitochondrial transmembrane potential (ΔΨ) and ATP synthesis rate were obviously reduced in the mitochondria isolated from atvdac1 plants.
Collapse
Affiliation(s)
- Xiaodi Pan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziwei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoqin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
76
|
Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death Differ 2014; 21:1925-35. [PMID: 25146925 DOI: 10.1038/cdd.2014.119] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 06/24/2014] [Accepted: 07/13/2014] [Indexed: 01/15/2023] Open
Abstract
In non-apoptotic cells, Bak constitutively resides in the mitochondrial outer membrane. In contrast, Bax is in a dynamic equilibrium between the cytosol and mitochondria, and is commonly predominant in the cytosol. In response to an apoptotic stimulus, Bax and Bak change conformation, leading to Bax accumulation at mitochondria and Bak/Bax oligomerization to form a pore in the mitochondrial outer membrane that is responsible for cell death. Using blue native-PAGE to investigate how Bax oligomerizes in the mitochondrial outer membrane, we observed that, like Bak, a proportion of Bax that constitutively resides at mitochondria associates with voltage-dependent anion channel (VDAC)2 prior to an apoptotic stimulus. During apoptosis, Bax dissociates from VDAC2 and homo-oligomerizes to form high molecular weight oligomers. In cells that lack VDAC2, constitutive mitochondrial localization of Bax and Bak was impaired, suggesting that VDAC2 has a role in Bax and Bak import to, or stability at, the mitochondrial outer membrane. However, following an apoptotic stimulus, Bak and Bax retained the ability to accumulate at VDAC2-deficient mitochondria and to mediate cell death. Silencing of Bak in VDAC2-deficient cells indicated that Bax required either VDAC2 or Bak in order to translocate to and oligomerize at the mitochondrial outer membrane to efficiently mediate apoptosis. In contrast, efficient Bak homo-oligomerization at the mitochondrial outer membrane and its pro-apoptotic function required neither VDAC2 nor Bax. Even a C-terminal mutant of Bax (S184L) that localizes to mitochondria did not constitutively target mitochondria deficient in VDAC2, but was recruited to mitochondria following an apoptotic stimulus dependent on Bak or upon over-expression of Bcl-xL. Together, our data suggest that Bax localizes to the mitochondrial outer membrane via alternate mechanisms, either constitutively via an interaction with VDAC2 or after activation via interaction with Bcl-2 family proteins.
Collapse
|
77
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
78
|
Cui ZG, Piao JL, Kondo T, Ogawa R, Tsuneyama K, Zhao QL, Feril LB, Inadera H. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by docosahexaenoic acid: Implication for cancer therapy. Chem Biol Interact 2014; 215:46-53. [DOI: 10.1016/j.cbi.2014.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/08/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
79
|
Prudent J, Popgeorgiev N, Bonneau B, Thibaut J, Gadet R, Lopez J, Gonzalo P, Rimokh R, Manon S, Houart C, Herbomel P, Aouacheria A, Gillet G. Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. Nat Commun 2014; 4:2330. [PMID: 23942336 DOI: 10.1038/ncomms3330] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/18/2013] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 proteins are acknowledged as key regulators of programmed cell death. However, increasing data suggest additional roles, including regulation of the cell cycle, metabolism and cytoskeletal dynamics. Here we report the discovery and characterization of a new Bcl-2-related multidomain apoptosis accelerator, Bcl-wav, found in fish and frogs. Genetic and molecular studies in zebrafish indicate that Bcl-wav and the recently identified mitochondrial calcium uniporter (MCU) contribute to the formation of the notochord axis by controlling blastomere convergence and extension movements during gastrulation. Furthermore, we found that Bcl-wav controls intracellular Ca(2+) trafficking by acting on the mitochondrial voltage-dependent anion channel, and possibly on MCU, with direct consequences on actin microfilament dynamics and blastomere migration guidance. Thus, from an evolutionary point of view, the original function of Bcl-2 proteins might have been to contribute in controlling the global positioning system of blastomeres during gastrulation, a critical step in metazoan development.
Collapse
Affiliation(s)
- Julien Prudent
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMS 3453 CNRS, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, Lyon 69008, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Li DW, Liu ZQ, Chen W, Yao M, Li GR. Association of glycogen synthase kinase-3β with Parkinson's disease (review). Mol Med Rep 2014; 9:2043-50. [PMID: 24681994 PMCID: PMC4055480 DOI: 10.3892/mmr.2014.2080] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/25/2014] [Indexed: 12/21/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a pleiotropic serine/threonine protein kinase found in almost all eukaryotes. It is structurally highly conserved and has been identified as a multifaceted enzyme affecting a wide range of biological functions, including gene expression and cellular processes. There are two closely related isoforms of GSK-3; GSK-3α and GSK-3β. The latter appears to play crucial roles in regulating the pathogenesis of diverse diseases, including neurodegenerative disease. The present review focuses on the involvement of this protein in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by the gradually progressive and selective loss of dopaminergic neurons, and by intracellular inclusions known as Lewy bodies (LBs) expressed in surviving neurons of the substantia nigra (SN). GSK-3β is involved in multiple signaling pathways and has several phosphorylation targets. Numerous apoptotic conditions can be facilitated by the GSK-3β signaling pathways. Studies have shown that GSK-3β inhibition protects the dopaminergic neurons from various stress-induced injuries, indicating the involvement of GSK-3β in PD pathogenesis. However, the underlying mechanisms of the protective effect of GSK-3β inhibition on dopaminergic neurons in PD is not completely understood. Multiple pathological events have been recognized to be responsible for the loss of dopaminergic neurons in PD, including mitochondrial dysfunction, oxidative stress, protein aggregation and neuroinflammation. The present review stresses the regulatory roles of GSK-3β in these events and in dopaminergic neuron degeneration, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective therapeutic target for PD.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China
| | - Zhi-Qiang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Chen
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Yao
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
81
|
Mitochondrial ion channels as oncological targets. Oncogene 2014; 33:5569-81. [DOI: 10.1038/onc.2013.578] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
|
82
|
Naoi M, Maruyama W, Inaba-Hasegawa K. Revelation in the neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms. Expert Rev Neurother 2014; 13:671-84. [PMID: 23739004 DOI: 10.1586/ern.13.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Parkinson's disease, cell death of dopamine neurons in the substantia nigra progresses and neuroprotective therapy is required to halt neuronal loss. In cellular and animal models, selegiline [(-)deprenyl] and rasagiline, inhibitors of type B monoamine oxidase (MAO)-B, protect neuronal cells from programmed cell death. In this paper, the authors review their recent results on the molecular mechanisms by which MAO inhibitors prevent the cell death through the induction of antiapoptotic, prosurvival genes. MAO-A mediates the induction of antiapoptotic bcl-2 and mao-a itself by rasagiline, whereas a different mechanism is associated with selegiline. Rasagiline and selegiline preferentially increase GDNF and BDNF in nonhuman primates and Parkinsonian patients, respectively. Enhanced neurotrophic factors might be applicable to monitor the neurorescuing activity of neuroprotection.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan.
| | | | | |
Collapse
|
83
|
Cui ZG, Piao JL, Rehman MU, Ogawa R, Li P, Zhao QL, Kondo T, Inadera H. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A. Eur J Pharmacol 2014; 723:99-107. [DOI: 10.1016/j.ejphar.2013.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 11/13/2013] [Accepted: 11/23/2013] [Indexed: 01/02/2023]
|
84
|
Liu H, Liu YZ, Zhang F, Wang HS, Zhang G, Zhou BH, Zuo YL, Cai SH, Bu XZ, Du J. Identification of potential pathways involved in the induction of cell cycle arrest and apoptosis by a new 4-arylidene curcumin analogue T63 in lung cancer cells: a comparative proteomic analysis. MOLECULAR BIOSYSTEMS 2014; 10:1320-31. [DOI: 10.1039/c3mb70553f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
85
|
Roberts ER, Thomas KJ. The role of mitochondria in the development and progression of lung cancer. Comput Struct Biotechnol J 2013; 6:e201303019. [PMID: 24688727 PMCID: PMC3962144 DOI: 10.5936/csbj.201303019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of mitochondria in human health and disease is a rapidly expanding topic in the scientific literature due to their integral roles in cellular death and survival. Mitochondrial biology and alterations in function were first linked to cancer in the 1920s with the discovery of the Warburg effect. The utilization of aerobic glycolysis in ATP synthesis was the first of many observations of metabolic reprogramming in cancer. Mitochondrial dysfunction in cancer has expanded to include defects in mitochondrial genomics and biogenesis, apoptotic signaling and mitochondrial dynamics. This review will focus on the role of mitochondria and their influence on cancer initiation, progression and treatment in the lung.
Collapse
Affiliation(s)
- Emily R Roberts
- Colorado Mesa University, Biological Sciences Department, 1100 North Ave, Grand Junction, CO 81501, USA
| | - Kelly Jean Thomas
- Colorado Mesa University, Biological Sciences Department, 1100 North Ave, Grand Junction, CO 81501, USA
| |
Collapse
|
86
|
Jonas EA. Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1168-78. [PMID: 24240091 DOI: 10.1016/j.bbadis.2013.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/23/2022]
Abstract
Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease.
Collapse
Affiliation(s)
- Elizabeth A Jonas
- Dept. of Internal Medicine, P.O. Box 208001, Yale University School of Medicine, New Haven, CT 06520, USA; Dept. of Neurobiology, P.O. Box 208020, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
87
|
Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013; 4:227. [PMID: 24027528 PMCID: PMC3759743 DOI: 10.3389/fphys.2013.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 02/02/2023] Open
Abstract
Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|
88
|
Godbole A, Dubey AK, Reddy PS, Udayakumar M, Mathew MK. Mitochondrial VDAC and hexokinase together modulate plant programmed cell death. PROTOPLASMA 2013; 250:875-884. [PMID: 23247919 DOI: 10.1007/s00709-012-0470-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
The voltage-dependent anion channel (VDAC) and mitochondrially located hexokinase have been implicated both in pathways leading to cell death on the one hand, and immortalization in tumor formation on the other. While both proteins have also been implicated in death processes in plants, their interaction has not been explored. We have examined cell death following heterologous expression of a rice VDAC in the tobacco cell line BY2 and in leaves of tobacco plants and show that it is ameliorated by co-expression of hexokinase. Hexokinase also abrogates death induced by H2O2. We conclude that the ratio of expression of the two proteins and their interaction play a major role in modulating death pathways in plants.
Collapse
Affiliation(s)
- Ashwini Godbole
- National Centre for Biological Sciences, TIFR,UAS-GKVK Campus, Bangalore 560065, India
| | | | | | | | | |
Collapse
|
89
|
Rasagiline prevents apoptosis induced by PK11195, a ligand of the outer membrane translocator protein (18 kDa), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria. J Neural Transm (Vienna) 2013; 120:1539-51. [PMID: 23681678 DOI: 10.1007/s00702-013-1033-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022]
Abstract
Rasagiline protects neuronal cells from cell death caused by various lines of insults. Its neuroprotective function is due to suppression of mitochondrial apoptosis signaling and induction of neuroprotective genes, including Bcl-2 and neurotrophic factors. Rasagiline inhibits the mitochondrial membrane permeabilization, an initial stage in apoptosis, but the mechanism has been elusive. In this paper, it was investigated how rasagiline regulates mitochondrial death cascade in apoptosis induced in SH-SY5Y cells by PK11195, a ligand of the outer membrane translocator protein of 18 kDa. Rasagiline prevented release of cytochrome c (Cyt-c), and the following caspase 3 activation, ATP depletion and apoptosis, but did not inhibit the mitochondrial membrane potential collapse, in contrast to Bcl-2 overexpression. Rasagiline stabilized the mitochondrial contact site and suppressed Cyt-c release into cytoplasm, which should be the critical point for the regulation of apoptosis. Monoamine oxidase was not associated with anti-apoptotic activity of rasagiline in PK11195-induced apoptosis.
Collapse
|
90
|
Li DW, Li GR, Lu Y, Liu ZQ, Chang M, Yao M, Cheng W, Hu LS. α-lipoic acid protects dopaminergic neurons against MPP+-induced apoptosis by attenuating reactive oxygen species formation. Int J Mol Med 2013; 32:108-14. [PMID: 23615851 DOI: 10.3892/ijmm.2013.1361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) elicited by oxidative stress are widely recognized as a major initiator in the dege-neration of dopaminergic neurons distinctive of Parkinson's disease (PD). The interaction of ROS with mitochondria triggers sequential events in the mitochondrial cell death pathway, which is thought to be responsible for ROS-mediated neurodegeneration in PD. α-lipoic acid (LA) is a pleiotropic compound with potential pharmacotherapeutic value against a range of pathophysiological insults. Its protective actions against oxidative damage by scavenging ROS and reducing production of free radicals have been reported in various in vitro and in vivo systems. This study analyzed the ability of LA to protect PC12 neuronal cells from toxicity of 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which is known to kill dopaminergic neurons selectively and to cause severe parkinsonism-like symptoms in humans and primate animals. Our results demonstrate that the apoptosis of PC12 cells elicited by MPP+ could be significantly prevented by pretreatment with LA for 1 h. In addition, LA inhibits intercellular ROS levels and the mitochondrial transmembrane permeability, the key players in the pathogenesis of PD, thereby protecting dopaminergic neuronal cells against oxidative damage.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Plourde MB, Morchid A, Iranezereza L, Berthoux L. The Bcl-2/Bcl-xL inhibitor BH3I-2′ affects the dynamics and subcellular localization of sumoylated proteins. Int J Biochem Cell Biol 2013; 45:826-35. [DOI: 10.1016/j.biocel.2013.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
|
92
|
Bax induces cytochrome c release by multiple mechanisms in mitochondria from MCF7 cells. J Bioenerg Biomembr 2013; 45:441-8. [PMID: 23536162 DOI: 10.1007/s10863-013-9508-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
Bax, a pro-apoptotic member of the Bcl-2 family of proteins has the ability to form transmembrane pores large enough to allow cytochrome c (Cyt c) release, as well as to activate the mitochondrial permeability transition pore (mPTP); however, no differential study has been conducted to clarify which one of these mechanisms predominates over the other in the same system. In the present study, we treated isolated mitochondria from MCF7 cells with recombinant protein Bax and tested the efficacy of the mPTP inhibitor cyclosporin A (CsA) and of the Bax channel blocker (Bcb) to inhibit cytochrome c release. We also, induced apoptosis in MCF7 cell cultures with TNF-α plus cycloheximide to determine the effect of such compounds in apoptosis induction via mPTP or Bax oligomerization. Cytochrome c release was totally prevented by CsA and partially by Bcb when apoptosis was induced with recombinant Bax in isolated mitochondria from MCF7 cells. CsA increased the number of living cells in cell culture, as compared with the effect of Bax channel blocker. These results indicate that mPTP activation is the predominant pathway for Bax-induced cytochrome c release from MCF7 mitochondria and for apoptosis induction in the whole cell.
Collapse
|
93
|
NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem 2013; 378:47-64. [DOI: 10.1007/s11010-013-1593-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/08/2013] [Indexed: 01/30/2023]
|
94
|
Liu Y, Cheng H, Zhou Y, Zhu Y, Bian R, Chen Y, Li C, Ma Q, Zheng Q, Zhang Y, Jin H, Wang X, Chen Q, Zhu D. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells. Cell Death Dis 2013; 4:e494. [PMID: 23412387 PMCID: PMC3734823 DOI: 10.1038/cddis.2013.31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Y Liu
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Fang Z, Yang Q, Luo W, Li GH, Xiao J, Li F, Xiong W. Differentiation of GFP-Bcl-2-engineered mesenchymal stem cells towards a nucleus pulposus-like phenotype under hypoxia in vitro. Biochem Biophys Res Commun 2013; 432:444-50. [PMID: 23416353 DOI: 10.1016/j.bbrc.2013.01.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/29/2013] [Indexed: 01/08/2023]
Abstract
Differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into a nucleus pulposus-like phenotype under hypoxia has been proposed as a potential therapeutic approach for intervertebral disc degeneration. However, limited cell viability under hypoxic conditions has restricted MSC differentiation capacity and thus restricted its clinical application. In this study, we genetically modified MSCs with an anti-apoptotic GFP-Bcl-2 gene and evaluated cell survival and functional improvement under hypoxia in vitro. Rat bone marrow MSCs were transfected by lentiviral vectors with the GFP-Bcl-2 gene (GFP-Bcl-2-MSCs). Cell proliferation and apoptosis were assessed, and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was carried out to evaluate phenotypic and biosynthetic activities. In addition, Alcian blue staining was used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells. We found that the Bcl-2 gene protected MSCs against apoptosis. We also observed that Bcl-2 over-expression reduced apoptosis by 40.61% in non-transfected MSCs and 38.43% in vector-MSCs to 18.33% in Bcl-2-MSCs. At 3days, the number of viable Bcl-2-MSCs was approximately two times higher than the number of MSCs or vector-MSCs under hypoxic conditions. RT-PCR showed higher expression of chondrocyte-related genes (Sox-9, aggrecan and type II collagen) in GFP-Bcl-2-MSCs cultured under hypoxia. The accumulation of proteoglycans in the pellet was 86% higher in GFP-Bcl-2-MSCs than in the control groups. Furthermore, the ratio of proteoglycans/collagen II in GFP-Bcl-2-MSCs was 6.2-fold higher compared to the MSC and vector-MSC groups, which denoted a nucleus pulposus-like differentiation phenotype. Our findings support the hypothesis that anti-apoptotic gene-modified MSCs can differentiate into cells with a nucleus pulposus-like phenotype in vitro, which may have value for the regeneration of intervertebral discs using cell transplantation therapy.
Collapse
Affiliation(s)
- Zhong Fang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
96
|
Holst CM, Johansson VM, Alm K, Oredsson SM. Novel anti-apoptotic effect of Bcl-2: Prevention of polyamine depletion-induced cell death. Cell Biol Int 2013; 32:66-74. [DOI: 10.1016/j.cellbi.2007.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/29/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
|
97
|
Luciani DS, White SA, Widenmaier SB, Saran VV, Taghizadeh F, Hu X, Allard MF, Johnson JD. Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic β-cells. Diabetes 2013; 62:170-82. [PMID: 22933114 PMCID: PMC3526034 DOI: 10.2337/db11-1464] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 2 (Bcl-2) family proteins are established regulators of cell survival, but their involvement in the normal function of primary cells has only recently begun to receive attention. In this study, we demonstrate that chemical and genetic loss-of-function of antiapoptotic Bcl-2 and Bcl-x(L) significantly augments glucose-dependent metabolic and Ca(2+) signals in primary pancreatic β-cells. Antagonism of Bcl-2/Bcl-x(L) by two distinct small-molecule compounds rapidly hyperpolarized β-cell mitochondria, increased cytosolic Ca(2+), and stimulated insulin release via the ATP-dependent pathway in β-cell under substimulatory glucose conditions. Experiments with single and double Bax-Bak knockout β-cells established that this occurred independently of these proapoptotic binding partners. Pancreatic β-cells from Bcl-2(-/-) mice responded to glucose with significantly increased NAD(P)H levels and cytosolic Ca(2+) signals, as well as significantly augmented insulin secretion. Inducible deletion of Bcl-x(L) in adult mouse β-cells also increased glucose-stimulated NAD(P)H and Ca(2+) responses and resulted in an improvement of in vivo glucose tolerance in the conditional Bcl-x(L) knockout animals. Our work suggests that prosurvival Bcl proteins normally dampen the β-cell response to glucose and thus reveals these core apoptosis proteins as integrators of cell death and physiology in pancreatic β-cells.
Collapse
Affiliation(s)
- Dan S. Luciani
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
- Corresponding authors: James D. Johnson, , and Dan S. Luciani,
| | - Sarah A. White
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Scott B. Widenmaier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Varun V. Saran
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada the
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Farnaz Taghizadeh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael F. Allard
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada the
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding authors: James D. Johnson, , and Dan S. Luciani,
| |
Collapse
|
98
|
Wang K, Lin B. Pathophysiological Significance of Hepatic Apoptosis. ISRN HEPATOLOGY 2012; 2013:740149. [PMID: 27335822 PMCID: PMC4890876 DOI: 10.1155/2013/740149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Apoptosis is a classical pathological feature in liver diseases caused by various etiological factors such as drugs, viruses, alcohol, and cholestasis. Hepatic apoptosis and its deleterious effects exacerbate liver function as well as involvement in fibrosis/cirrhosis and carcinogenesis. An imbalance between apoptotic and antiapoptotic capabilities is a prominent characteristic of liver injury. The regulation of apoptosis and antiapoptosis can be a pivotal step in the treatment of liver diseases.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery and Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Bingliang Lin
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
99
|
Heaton MB, Siler-Marsiglio K, Paiva M, Kotler A, Rogozinski J, Kubovec S, Coursen M, Madorsky V. Ethanol influences on Bax associations with mitochondrial membrane proteins in neonatal rat cerebellum. Dev Neurobiol 2012; 73:127-41. [PMID: 22767450 DOI: 10.1002/dneu.22042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/13/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
These studies investigated interactions taking place at the mitochondrial membrane in neonatal rat cerebellum following ethanol exposure and focused on interactions between proapoptotic Bax and proteins of the permeability transition pore (PTP), voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT) of the outer and inner mitochondrial membranes, respectively. Cultured cerebellar granule cells were used to assess the role of these interactions in ethanol neurotoxicity. Analyses were made at the age of maximal cerebellar ethanol vulnerability (P4), compared to the later age of relative resistance (P7), to determine whether differential ethanol sensitivity was mirrored by differences in these molecular interactions. We found that, following ethanol exposure, Bax proapoptotic associations with both VDAC and ANT were increased, particularly at the age of greater ethanol sensitivity, and these interactions were sustained at this age for at least 2 h postexposure. Since Bax:VDAC interactions disrupt protective VDAC interactions with mitochondrial hexokinase (HXK), we also assessed VDAC:HXK associations following ethanol treatment and found such interactions were altered by ethanol treatment, but only at 2 h postexposure and only in the P4, ethanol-sensitive cerebellum. Ethanol neurotoxicity in cultured neuronal preparations was abolished by pharmacological inhibition of both VDAC and ANT interactions with Bax but not by a Bax channel blocker. Therefore, we conclude that, at this age, within the constraints of our experimental model, a primary mode of Bax-induced initiation of the apoptosis cascade following ethanol insult involves interactions with proteins of the PTP complex and not channel formation independent of PTP constituents.
Collapse
Affiliation(s)
- Marieta Barrow Heaton
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610-0244, USA.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Kim JY, So KJ, Lee S, Park JH. Bcl-rambo induces apoptosis via interaction with the adenine nucleotide translocator. FEBS Lett 2012; 586:3142-9. [PMID: 22921587 DOI: 10.1016/j.febslet.2012.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
The Bcl-2 family proteins plays a central role in apoptosis. The pro- or anti-apoptotic activities of Bcl-2 family are dependent on the Bcl-2 homology (BH) regions. Bcl-rambo, a new pro-apoptotic member, is unusual in that its pro-apoptotic activity is independent of its BH domains. However, the mechanism underlying Bcl-rambo-induced apoptosis is largely unknown. Mitochondrial localization is indispensable for the pro-apoptotic function of Bcl-rambo. Bcl-rambo interacts physically with the adenine nucleotide translocator (ANT), suppresses the ADT/ATP-dependent translocation activity of ANT. Collectively, our data indicate Bcl-rambo is a pro-apoptotic member of the Bcl-2 family, induces the permeability transition via interaction with ANT.
Collapse
Affiliation(s)
- Jee-Youn Kim
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|