51
|
Lister strain of vaccinia virus armed with endostatin-angiostatin fusion gene as a novel therapeutic agent for human pancreatic cancer. Gene Ther 2009; 16:1223-33. [PMID: 19587709 PMCID: PMC2762962 DOI: 10.1038/gt.2009.74] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Survival following pancreatic cancer remains poor despite incremental advances in surgical and adjuvant therapy, and new strategies for treatment are needed. Oncolytic virotherapy is an attractive approach for cancer treatment. In this study, we have evaluated the effectiveness of the Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapeutic approach for pancreatic cancer. The Lister vaccine strain of vaccinia virus was effective against all human pancreatic carcinoma cells tested in vitro, especially those insensitive to oncolytic adenovirus. The virus displayed inherently high selectivity for cancer cells, sparing normal cells both in vitro and in vivo, with effective infection of tumors after both intravenous (IV) and intratumoral (IT) administration. The expression of endostatin-angiostatin fusion protein was confirmed in a pancreatic cancer model both in vitro and in vivo, with evidence of inhibition of angiogenesis. This novel vaccinia virus demonstrated significant antitumor potency in vivo against the Suit-2 model by IT administration. The present study suggests that the novel Lister strain of vaccinia virus armed with the endostatin-angiostatin fusion gene is a potential therapeutic agent for pancreatic cancer.
Collapse
|
52
|
Dorer DE, Nettelbeck DM. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev 2009; 61:554-71. [PMID: 19394376 DOI: 10.1016/j.addr.2009.03.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/05/2009] [Indexed: 01/02/2023]
Abstract
Cancer-specificity is the key requirement for a drug or treatment regimen to be effective against malignant disease--and has rarely been achieved adequately to date. Therefore, targeting strategies need to be implemented for future therapies to ensure efficient activity at the site of patients' tumors or metastases without causing intolerable side-effects. Gene therapy and viral oncolysis represent treatment modalities that offer unique opportunities for tumor targeting. This is because both the transfer of genes with anti-cancer activity and viral replication-induced cell killing, respectively, facilitate the incorporation of multiple mechanisms restricting their activity to cancer. To this end, cellular mechanisms of gene regulation have been successfully exploited to direct therapeutic gene expression and viral cell lysis to cancer cells. Here, transcriptional targeting has been the role model and most widely investigated. This approach exploits cellular gene regulatory elements that mediate cell type-specific transcription to restrict the expression of therapeutic genes or essential viral genes, ideally to cancer cells. In this review, we first discuss the rationale for such promoter targeting and its limitations. We then give an overview how tissue-/tumor-specific promoters are being identified and characterized. Strategies to apply and optimize such promoters for the engineering of targeted viral gene transfer vectors and oncolytic viruses-with respect to promoter size, selectivity and activity in the context of viral genomes-are described. Finally, we discuss in more detail individual examples for transcriptionally targeted virus drugs. First highlighting oncolytic viruses targeted by prostate-specific promoters and by the telomerase promoter as representatives of tissue-targeted and pan-cancer-specific virus drugs respectively, and secondly recent developments of the last two years.
Collapse
Affiliation(s)
- Dominik E Dorer
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
53
|
Bortolanza S, Bunuales M, Alzuguren P, Lamas O, Aldabe R, Prieto J, Hernandez-Alcoceba R. Deletion of the E3-6.7K/gp19K region reduces the persistence of wild-type adenovirus in a permissive tumor model in Syrian hamsters. Cancer Gene Ther 2009; 16:703-12. [PMID: 19229289 DOI: 10.1038/cgt.2009.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A partial deletion of the adenovirus E3 region, comprising the overlapping 6.7K/gp19K genes, has been described for the incorporation of therapeutic genes in 'armed' oncolytic adenoviruses. This deletion allows the insertion of up to 2.5 kb genetic material into the virus and ensures strong expression of transgenes without reducing the replication and cytolytic potency of viruses in vitro. E3-gp19K and 6.7K proteins are involved in avoiding recognition and elimination of infected cells by the host immune system. Therefore, we have studied the effect of this deletion on the replication and transgene expression of the virus in immunocompetent models based on Syrian hamsters. Tumors were established by intrahepatic injection of pancreatic cancer cells with moderate (HaP-T1, HP-1) or low (H2T) permissivity for adenovirus replication. The wild-type human adenovirus 5 (Ad5) or a modified version containing the luciferase gene in the E3-6.7K/gp19K locus (Ad-WTLuc) were injected intratumorally. We found that elimination of Ad-WTLuc was faster than Ad5 in HaP-T1 and HP-1 tumors. In contrast, no differences were observed when the same tumor was established in severely immunocompromised NOD-scid IL2Rgamma(null) mice. In addition, virus-mediated luciferase expression was more stable in these animals. These results suggest that the lack of E3-6.7K/gp19K genes may accelerate the clearance of oncolytic adenoviruses in some immunocompetent tumor models.
Collapse
Affiliation(s)
- S Bortolanza
- Division of Hepatology and Gene Therapy, CIMA, Foundation for Applied Medical Research, School of Medicine, University of Navarra, Pamplona 31008, Spain
| | | | | | | | | | | | | |
Collapse
|
54
|
He LF, Gu JF, Tang WH, Fan JK, Wei N, Zou WG, Zhang YH, Zhao LL, Liu XY. Significant antitumor activity of oncolytic adenovirus expressing human interferon-beta for hepatocellular carcinoma. J Gene Med 2009; 10:983-92. [PMID: 18618506 DOI: 10.1002/jgm.1231] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human interferon-beta (IFN-beta) has been widely used in gene therapy for its antitumor activity but its therapeutic effect is limited. The conditionally replicative adenovirus ONYX-015 (a E1B-55-kDa-deleted adenovirus) targets well to tumor cells, but is not potent enough to cause significant tumor regression. To solve these problems, a tumor-selective replicating adenovirus expressing IFN-beta was constructed in this study. METHODS The oncolytic adenoviruses were generated by homologous recombination in packaging cells. The expression of the IFN-beta protein was detected by enzyme-linked immunosorbent assay (ELISA). The antitumor efficacy of ZD55-IFN-beta was evaluated in cell lines and human hepatocellular carcinoma xenografts in nude mice. RESULTS ZD55-IFN-beta can express much more IFN-beta than Ad-IFN-beta because of the replication of the ZD55 vector. Our data showed that ZD55-IFN-beta could exert a strong cytopathic effect on tumor cells (about 100-fold higher than Ad-IFN-beta or ONYX-015). Moreover, no obvious cytotoxic or apoptotic effects were detected in normal cells infected with ZD55-IFN-beta. CONCLUSIONS The antitumor efficacy of IFN-beta could be significantly improved due to the increased gene expression level from the tumor-selective replicating vector. The oncolytic adenovirus expressing IFN-beta may provide a novel approach for cancer gene therapy.
Collapse
Affiliation(s)
- Ling Feng He
- Laboratory of Cancer Therapy, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Effect of preexisting immunity on oncolytic adenovirus vector INGN 007 antitumor efficacy in immunocompetent and immunosuppressed Syrian hamsters. J Virol 2008; 83:2130-9. [PMID: 19073718 DOI: 10.1128/jvi.02127-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune responses against adenovirus (Ad) vectors pose a possible concern for the outcome of treatment efficacy. To address the role of preexisting immunity in oncolytic Ad vector antitumor efficacy following intratumoral injection of vector as well as tumor-to-tissue spread of the vector, we employed the Syrian hamster model. These animals are immunocompetent, and their tumors and tissues are permissive for replication of Ad type 5 (Ad5). We used the adenovirus death protein-overexpressing Ad5-based vector INGN 007. Subcutaneous tumors were established in groups of hamsters that were or were not immunized with Ad5. Half of the hamsters in these groups were immunosuppressed with cyclophosphamide. For all groups, tumors injected with INGN 007 grew significantly more slowly than those injected with buffer. Under immunocompetent conditions, there was no significant effect of preexisting immunity on vector antitumor efficacy. Soon after the tumors in naïve animals were injected with vector, the hamsters developed neutralizing antibody (NAb) and the difference in NAb titers between the naïve and immunized groups diminished. Under immunosuppressed conditions, preexisting NAb did significantly reduce vector efficacy. Thus, NAb do reduce vector efficacy to some extent, but immunosuppression is required to observe the effect. Regarding vector toxicity, there was spillover of vector from the tumor to the liver and lungs in naïve immunocompetent hamsters, and this was nearly eliminated in the immunized hamsters. Thus, preexisting immunity to Ad5 does not affect INGN 007 antitumor efficacy following intratumoral injection, but immunity prevents vector spillover from the tumor to the liver and lungs.
Collapse
|
56
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
57
|
Kuhn I, Harden P, Bauzon M, Chartier C, Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, Seymour L, Rubanyi GM, Harkins RN, Hermiston TW. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008; 3:e2409. [PMID: 18560559 PMCID: PMC2423470 DOI: 10.1371/journal.pone.0002409] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/30/2008] [Indexed: 12/22/2022] Open
Abstract
Background Viral-mediated oncolysis is a novel cancer therapeutic approach with the potential to be more effective and less toxic than current therapies due to the agents selective growth and amplification in tumor cells. To date, these agents have been highly safe in patients but have generally fallen short of their expected therapeutic value as monotherapies. Consequently, new approaches to generating highly potent oncolytic viruses are needed. To address this need, we developed a new method that we term “Directed Evolution” for creating highly potent oncolytic viruses. Methodology/Principal Findings Taking the “Directed Evolution” approach, viral diversity was increased by pooling an array of serotypes, then passaging the pools under conditions that invite recombination between serotypes. These highly diverse viral pools were then placed under stringent directed selection to generate and identify highly potent agents. ColoAd1, a complex Ad3/Ad11p chimeric virus, was the initial oncolytic virus derived by this novel methodology. ColoAd1, the first described non-Ad5-based oncolytic Ad, is 2–3 logs more potent and selective than the parent serotypes or the most clinically advanced oncolytic Ad, ONYX-015, in vitro. ColoAd1's efficacy was further tested in vivo in a colon cancer liver metastasis xenograft model following intravenous injection and its ex vivo selectivity was demonstrated on surgically-derived human colorectal tumor tissues. Lastly, we demonstrated the ability to arm ColoAd1 with an exogenous gene establishing the potential to impact the treatment of cancer on multiple levels from a single agent. Conclusions/Significance Using the “Directed Evolution” methodology, we have generated ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus demonstrated a >2 log increase in both potency and selectivity when compared to ONYX-015 on colon cancer cells. These results were further supported by in vivo and ex vivo studies. Furthermore, these results have validated this methodology as a new general approach for deriving clinically-relevant, highly potent anti-cancer virotherapies.
Collapse
Affiliation(s)
- Irene Kuhn
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Paul Harden
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Maxine Bauzon
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Cecile Chartier
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Julie Nye
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Steve Thorne
- Palo Alto Veteran's Hospital and Stanford University, Palo Alto, California, United States of America
| | - Tony Reid
- Palo Alto Veteran's Hospital and Stanford University, Palo Alto, California, United States of America
| | - Shaoheng Ni
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Andre Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Len Seymour
- Hybrid systems Ltd, Oxfordshire, United Kingdom
| | - Gabor M. Rubanyi
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Richard N. Harkins
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
| | - Terry W. Hermiston
- Novel Technologies, Bayer Healthcare, Richmond, California, United States of America
- * E-mail:
| |
Collapse
|
58
|
Luo J, Xia Q, Zhang R, Lv C, Zhang W, Wang Y, Cui Q, Liu L, Cai R, Qian C. Treatment of Cancer with a Novel Dual-Targeted Conditionally Replicative Adenovirus Armed with mda-7/IL-24 Gene. Clin Cancer Res 2008; 14:2450-7. [DOI: 10.1158/1078-0432.ccr-07-4596] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
59
|
Su C, Na M, Chen J, Wang X, Liu Y, Wang W, Zhang Q, Li L, Long J, Liu X, Wu M, Fan X, Qian Q. Gene-viral cancer therapy using dual-regulated oncolytic adenovirus with antiangiogenesis gene for increased efficacy. Mol Cancer Res 2008; 6:568-75. [PMID: 18344493 DOI: 10.1158/1541-7786.mcr-07-0073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conditionally replicative adenovirus (CRAD) represents a promising approach for cancer therapy. Several CRADs controlled by the human telomerase reverse transcriptase promoter have been developed. However, because of their replicative capacity, the importance of cancer specificity for CRADs needs to be further emphasized. In this study, we have developed a novel dual-regulated CRAD, CNHK500-mE, which has its E1a and E1b gene controlled by the human telomerase reverse transcriptase promoter and the hypoxia response element, respectively. It also carries a mouse endostatin expression cassette controlled by the cytomegalovirus promoter. These properties allow for increased cancer cell targeting specificity and decreased adverse side effects. We showed that CNHK500-mE preferentially replicated in cancer cells. Compared with a replication-defective vector carrying the same endostatin expression cassette, CNHK500-mE-mediated transgene expression level was markedly increased via viral replication within cancer cells. In the nasopharyngeal tumor xenograft model, CNHK500-mE injection resulted in antitumor efficacy at day 7 after therapy. Three weeks later, it led to significant inhibition of xenograft tumor growth due to the combined effects of viral oncolytic therapy and antiangiogenesis gene therapy. Pathologic examination showed that most cancer cells were positive for adenoviral capsid protein and for apoptotic terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling in the CNHK500-mE-treated tumor tissues, and the microvessels in these tumor tissues were diminished in quantity and abnormal in morphology. These results suggest that, as a potential cancer therapeutic agent, the CNHK500-mE is endowed with higher specificity to cancer cells and low cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Changqing Su
- Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Rohmer S, Mainka A, Knippertz I, Hesse A, Nettelbeck DM. Insulated hsp70B′ promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses. J Gene Med 2008; 10:340-54. [DOI: 10.1002/jgm.1157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
61
|
Schierer S, Hesse A, Müller I, Kämpgen E, Curiel DT, Schuler G, Steinkasserer A, Nettelbeck DM. Modulation of viability and maturation of human monocyte-derived dendritic cells by oncolytic adenoviruses. Int J Cancer 2007; 122:219-29. [PMID: 17764070 DOI: 10.1002/ijc.23074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenoviral oncolysis is a promising new modality for treatment of cancer based on selective viral replication in tumor cells. However, tumor cell killing by adenoviral oncolysis needs to be improved to achieve therapeutic benefit in the clinic. Towards this end, the activation of anti-tumor immunity by adenoviral oncolysis might constitute a potent mechanism for systemic killing of uninfected tumor cells, thereby effectively complementing direct tumor cell killing by the virus. Knowledge of anti-tumor immune induction by adenoviral oncolysis, however, is lacking mostly due to species-specificity of adenovirus replication, which has hampered studies of human oncolytic adenoviruses in animals. We suggest the analysis of interactions of oncolytic adenoviruses with human immune cells as rational basis for the implementation of adenoviral oncolysis-induced anti-tumor immune activation. The goal of our study was to investigate how oncolytic adenoviruses affect human dendritic cells (DCs), key regulators of innate and adoptive immunity that are widely investigated as tumor vaccines. We report that melanoma-directed oncolytic adenoviruses, like replication-deficient adenoviruses but unlike adenoviruses with unrestricted replication potential, are not toxic to monocyte-derived immature DCs and do not block DC maturation by external stimuli. Of note, this is in contrast to reports for other viruses/viral vectors and represents a prerequisite for anti-tumor immune activation by adenoviral oncolysis. Furthermore, we show that these oncolytic adenoviruses alone do not or only partially induce DC maturation. Thus additional signals are required for optimal immune activation. These could be delivered, for example, by inserting immunoregulatory transgenes into the oncolytic adenovirus genome.
Collapse
Affiliation(s)
- Stephan Schierer
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Kirn DH, Wang Y, Le Boeuf F, Bell J, Thorne SH. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med 2007; 4:e353. [PMID: 18162040 PMCID: PMC2222946 DOI: 10.1371/journal.pmed.0040353] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 10/30/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oncolytic viruses hold much promise for clinical treatment of many cancers, but a lack of systemic delivery and insufficient tumor cell killing have limited their usefulness. We have previously demonstrated that vaccinia virus strains are capable of systemic delivery to tumors in mouse models, but infection of normal tissues remains an issue. We hypothesized that interferon-beta (IFN-beta) expression from an oncolytic vaccinia strain incapable of responding to this cytokine would have dual benefits as a cancer therapeutic: increased anticancer effects and enhanced virus inactivation in normal tissues. We report the construction and preclinical testing of this virus. METHODS AND FINDINGS In vitro screening of viral strains by cytotoxicity and replication assay was coupled to cellular characterization by phospho-flow cytometry in order to select a novel oncolytic vaccinia virus. This virus was then examined in vivo in mouse models by non-invasive imaging techniques. A vaccinia B18R deletion mutant was selected as the backbone for IFN-beta expression, because the B18R gene product neutralizes secreted type-I IFNs. The oncolytic B18R deletion mutant demonstrated IFN-dependent cancer selectivity and efficacy in vitro, and tumor targeting and efficacy in mouse models in vivo. Both tumor cells and tumor-associated vascular endothelial cells were targeted. Complete tumor responses in preclinical models were accompanied by immune-mediated protection against tumor rechallenge. Cancer selectivity was also demonstrated in primary human tumor explant tissues and adjacent normal tissues. The IFN-beta gene was then cloned into the thymidine kinase (TK) region of this virus to create JX-795 (TK-/B18R-/IFN-beta+). JX-795 had superior tumor selectivity and systemic intravenous efficacy when compared with the TK-/B18R- control or wild-type vaccinia in preclinical models. CONCLUSIONS By combining IFN-dependent cancer selectivity with IFN-beta expression to optimize both anticancer effects and normal tissue antiviral effects, we were able to achieve, to our knowledge for the first time, tumor-specific replication, IFN-beta gene expression, and efficacy following systemic delivery in preclinical models.
Collapse
MESH Headings
- Animals
- Cell Survival
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Genes, Reporter
- HCT116 Cells
- Haplorhini
- Humans
- Interferon-alpha/metabolism
- Interferon-beta/genetics
- Interferon-beta/metabolism
- Luciferases
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NIH 3T3 Cells
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Oncolytic Virotherapy
- Oncolytic Viruses/genetics
- Oncolytic Viruses/metabolism
- Sequence Deletion
- Thymidine Kinase/genetics
- Thymidine Kinase/metabolism
- Time Factors
- Tissue Distribution
- Vaccinia virus/enzymology
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- David H Kirn
- Jennerex Biotherapeutics, San Francisco, California, United States of America
- Clinical Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Yaohe Wang
- Cancer Research UK Molecular Oncology Centre, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London, United Kingdom
| | | | - John Bell
- Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Steve H Thorne
- Jennerex Biotherapeutics, San Francisco, California, United States of America
- Department of Pediatrics and Bio-X Program, Stanford University, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
63
|
Singleton DC, Li D, Bai SY, Syddall SP, Smaill JB, Shen Y, Denny WA, Wilson WR, Patterson AV. The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411NTR. Cancer Gene Ther 2007; 14:953-67. [DOI: 10.1038/sj.cgt.7701088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
64
|
Ungerechts G, Springfeld C, Frenzke ME, Lampe J, Parker WB, Sorscher EJ, Cattaneo R. An Immunocompetent Murine Model for Oncolysis with an Armed and Targeted Measles Virus. Mol Ther 2007; 15:1991-7. [PMID: 17712331 DOI: 10.1038/sj.mt.6300291] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An immunocompetent model is required to test therapeutic regimens for clinical trials with the oncolytic measles virus (MV). Toward developing this model, a retargeted MV that enters murine colon adenocarcinoma cells forming tumors in syngeneic C57BL/6 mice was generated. Since MV infection tends to be less efficient in murine than in human cells, the targeted virus was also armed with the prodrug convertase, purine nucleoside phosphorylase (PNP), and named MV-PNP-antiCEA. We have shown before that in cultured cells, infection with this virus activated the prodrug, 6-methylpurine-2'-deoxyriboside (MeP-dR), causing extensive cytotoxicity. When injected intratumorally (IT), MV-PNP-antiCEA inhibited subcutaneous tumor growth marginally, but subsequent administration of the prodrug enhanced the oncolytic effect. Systemic delivery of MV-PNP-antiCEA alone had no substantial oncolytic effects, but in combination with the prodrug it was therapeutic, revealing synergistic effects between virus and prodrug. Immunosuppression with cyclophosphamide (CPA) retarded the appearance of MV neutralizing antibodies and enhanced oncolytic efficacy: survival was 100%, with 9 out of 10 animals going into complete remission. This immunocompetent murine model facilitates the testing of therapeutic regimens for clinical trials.
Collapse
Affiliation(s)
- Guy Ungerechts
- Molecular Medicine Program and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Gene therapy represents a potentially useful approach for the treatment of diseases refractory to conventional therapies. Various preclinical and clinical strategies have been explored for treatment of gynaecological diseases. Given the most severe unmet clinical need, much of the work has been performed with gynaecological cancers and ovarian cancer in particular. Although the safety of many treatment strategies has been demonstrated in early phase clinical trials, efficacy has been mostly limited heretofore. Major challenges include improving the vectors used with the aim of more effective and selective delivery. In addition, effective penetration into and spreading within advanced and complex tumour masses and metastases remains challenging. This review focuses on existing and developmental gene transfer applications for gynaecological diseases.
Collapse
Affiliation(s)
- Anna Kanerva
- University of Helsinki, Cancer Gene Therapy Group, Transplantation Laboratory and Haartman Institute, P.O. Box 63 (Haartmaninkatu 8, 00290 Helsinki), Biomedicum, Helsinki 00014, Finland
| | | | | |
Collapse
|
66
|
Robinson M, Ge Y, Ko D, Yendluri S, Laflamme G, Hawkins L, Jooss K. Comparison of the E3 and L3 regions for arming oncolytic adenoviruses to achieve a high level of tumor-specific transgene expression. Cancer Gene Ther 2007; 15:9-17. [PMID: 17853920 DOI: 10.1038/sj.cgt.7701093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arming oncolytic adenoviral vectors with anticancer transgenes that can be expressed in a tumor-selective manner may enable the engineering of vectors with increased potency, while retaining their safety profile. Armed oncolytic adenoviral vectors were constructed in which transgene expression has been linked via modified splice acceptor sequences that did not necessitate the deletion of any part of the adenoviral genome. Several oncolytic adenoviral vectors were compared in which the transgene was inserted in place of either the E3 or the L3 region. While all vectors had similar viral growth and cytotoxicity characteristics, the highest level of transgene expression was observed from a vector in which the transgene had been inserted downstream of the L3 23K protease gene, the Ad-23K-GM vector. Notably, no transgene expression occurred with this vector in the absence of DNA replication either in vitro or in vivo. In contrast, viruses in which the transgene was inserted into E3 locations exhibited a low level of transgene expression even in the absence of DNA replication. In summary, by utilizing the L3 region for arming oncolytic viruses, higher levels of tumor-specific transgene expression can be obtained without the need to delete any parts of the viral genome.
Collapse
Affiliation(s)
- M Robinson
- Cell Genesys Inc., South San Francisco, California, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Raki M, Hakkarainen T, Bauerschmitz GJ, Särkioja M, Desmond RA, Kanerva A, Hemminki A. Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Ther 2007; 14:1380-8. [PMID: 17611584 DOI: 10.1038/sj.gt.3302992] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arming oncolytic adenoviruses with therapeutic transgenes and enhancing transduction of tumor cells are useful strategies for eradication of advanced tumor masses. Herpes simplex virus thymidine kinase (TK) together with ganciclovir (GCV) has been promising when coupled with viruses featuring low oncolytic potential, but their utility is unknown in the context of highly effective infectivity-enhanced viruses. We constructed Ad5/3-Delta24-TK-GFP, a serotype 3 receptor-targeted, Rb/p16 pathway-selective oncolytic adenovirus, where a fusion gene encoding TK and green fluorescent protein (GFP) was inserted into 6.7K/gp19K-deleted E3 region. Ad5/3-Delta24-TK-GFP killed ovarian cancer cells effectively, which correlated with GFP expression. Delivery of GCV immediately after infection abrogated viral replication, which might have utility as a safety switch. Due to the bystander effect, killing of some cell lines in vitro was enhanced by GCV regardless of timing. In murine models of metastatic ovarian cancer, Ad5/3-Delta24-TK-GFP improved antitumor efficacy over the respective replication-deficient virus with GCV. However, GCV did not further enhance efficacy of Ad5/3-Delta24-TK-GFP in vivo. Simultaneous detection of tumor load and virus replication with bioluminescence and fluorescence imaging provided insight into the in vivo kinetics of oncolysis. In summary, TK/GCV may not add antitumor activity in the context of highly potent oncolysis.
Collapse
Affiliation(s)
- M Raki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
68
|
Bourbeau D, Lau CJ, Jaime J, Koty Z, Zehntner SP, Lavoie G, Mes-Masson AM, Nalbantoglu J, Massie B. Improvement of Antitumor Activity by Gene Amplification with a Replicating but Nondisseminating Adenovirus. Cancer Res 2007; 67:3387-95. [PMID: 17409449 DOI: 10.1158/0008-5472.can-06-4317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene therapy is a promising approach for cancer treatment; however, efficacy of current vectors remains insufficient. To improve the success of suicide gene therapy, we constructed a replication-competent adenoviral vector that has its protease gene deleted and expresses bacterial cytosine deaminase fused with bacterial uracil phosphoribosyltransferase (CU). The prodrug, 5-fluorocytosine, is transformed into the highly toxic and tissue-diffusible 5-fluorouracil by CU in infected cells. This vector is incapable of producing infectious particles but is able to undergo a single round of replication, thereby increasing transgene copy number and expression. In the presence of 5-FC, compared with the first-generation vector (AdCU), the replication-competent vector, Ad(dPS)CU-IRES-E1A, was significantly more efficacious for in vitro tumor cell killing and in bystander assays, whereas 25-fold fewer viral particles were required in a three-dimensional spheroid model. For in vivo experiments, in which virus was injected into preestablished intracranial glioma xenografts, followed by 5-FC treatment, mice receiving Ad(dPS)CU-IRES-E1A had significantly smaller tumors at 35 days postinjection as well as significantly longer median survival than mice treated with the replication-deficient, protease-deleted vector [Ad(dPS)CU]. In an immunocompetent syngeneic model, Ad(dPS)CU + 5-FC-treated mice had a median survival of only 23 days, whereas Ad(dPS)CU-IRES-E1A + 5-FC-treated animals had a survival of 57.1% at 365 days. In conclusion, Ad(dPS)CU-IRES-E1A in the presence of 5-FC produces more potent tumoricidal effects than its replication-deficient counterparts.
Collapse
Affiliation(s)
- Denis Bourbeau
- Groupe de Vecteurs de Génomique et Thérapie Génique, Biotechnology Research Institute, National Research Council, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Yoo JY, Kim JH, Kwon YG, Kim EC, Kim NK, Choi HJ, Yun CO. VEGF-specific Short Hairpin RNA–expressing Oncolytic Adenovirus Elicits Potent Inhibition of Angiogenesis and Tumor Growth. Mol Ther 2007; 15:295-302. [PMID: 17235307 DOI: 10.1038/sj.mt.6300023] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RNA interference is being developed to treat cancer. Although highly target specific, its use has been limited by its short duration of expression. To overcome this shortcoming, we constructed an oncolytic adenovirus (Ad)-based short hairpin RNA (shRNA) expression system (Ad-DeltaB7-shVEGF) against vascular endothelial growth factor (VEGF), a key mediator in angiogenesis. To demonstrate the VEGF-specific nature of this Ad-based shRNA, replication-incompetent Ad expressing VEGF-specific shRNA (Ad-DeltaE1-shVEGF) was also generated. Ad-DeltaE1-shVEGF was highly effective in reducing VEGF expression, and elicited an antiangiogenic effect in vitro and in vivo. Similarly, Ad-DeltaB7-shVEGF exhibited potent antiangiogenic effects in the matrigel plug assay. Moreover, Ad-DeltaB7-shVEGF demonstrated a greater antitumor effect and enhanced survival compared to the cognate control oncolytic Ad, Ad-DeltaB7. Ad-DeltaB7-shVEGF induced significant reduction in tumor vasculature, verifying the antiangiogenic mechanism. Furthermore, both the duration and magnitude of gene silencing by Ad-DeltaB7-shVEGF was greater than Ad-DeltaE1-shVEGF. These results suggest that the combined effects of oncolytic viral therapy and cancer cell-specific expression of VEGF-targeted shRNA elicits greater antitumor effect than an oncolytic Ad alone.
Collapse
Affiliation(s)
- Ji Young Yoo
- Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
70
|
Thorne SH. Strategies to achieve systemic delivery of therapeutic cells and microbes to tumors. Expert Opin Biol Ther 2007; 7:41-51. [PMID: 17150018 DOI: 10.1517/14712598.7.1.41] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to more effectively treat cancer, targeted delivery of therapeutic agents will be needed. The creation of delivery vehicles capable of locating and entering tumors before delivering a therapeutic payload will, therefore, enable the design of more beneficial and less toxic treatment platforms. Although nanoparticles, microbubbles and liposomes may also partially address these issues, the use of biological agents as delivery vehicles presently holds much promise. Through the hijacking of natural pathogen or cell trafficking pathways it is possible to actively target such agents to the tumor; they are then capable of selective replication (multiplying their therapeutic potential) and may be directly cytolytic themselves and/or may be utilized to deliver therapeutic genes. These agents, such as oncolytic viruses, attenuated bacteria and eukaryotic cells (cellular immunotherapeutics and progenitor and stem cells) will be discussed along with the mechanisms employed to deliver them systemically to tumors, including disseminated disease and micrometsastases.
Collapse
Affiliation(s)
- Steve H Thorne
- Stanford University, Bio-X Programme and Department of Pediatrics, Clark Center, California 94305, USA.
| |
Collapse
|
71
|
Kim JH, Oh JY, Park BH, Lee DE, Kim JS, Park HE, Roh MS, Je JE, Yoon JH, Thorne SH, Kirn D, Hwang TH. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther 2006; 14:361-70. [PMID: 16905462 DOI: 10.1016/j.ymthe.2006.05.008] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 05/16/2006] [Accepted: 05/16/2006] [Indexed: 12/17/2022] Open
Abstract
Targeted oncolytic viruses and immunostimulatory therapeutics are being developed as novel cancer treatment platforms. These approaches can be combined through the expression of immunostimulatory cytokines from targeted viruses, including adenoviruses and herpesviruses. Although intratumoral injection of such viruses has been associated with tumor growth inhibition, eradication of distant metastases was not reported. The major limitations for this approach to date have been (1) inefficient intravenous virus delivery to tumors and (2) the lack of predictive, immunocompetent preclinical models. To overcome these hurdles, we developed JX-594, a targeted, thymidine kinase(-) vaccinia virus expressing human GM-CSF (hGM-CSF), for intravenous (i.v.) delivery. We evaluated two immunocompetent liver tumor models: a rabbit model with reproducible, time-dependent metastases to the lungs and a carcinogen-induced rat liver cancer model. Intravenous JX-594 was well tolerated and had highly significant efficacy, including complete responses, against intrahepatic primary tumors in both models. In addition, whereas lung metastases developed in all control rabbits, none of the i.v. JX-594-treated rabbits developed detectable metastases. Tumor-specific virus replication and gene expression, systemically detectable levels of hGM-CSF, and tumor-infiltrating CTLs were also demonstrated. JX-594 holds promise as an i.v.-delivered, targeted virotherapeutic. These two tumor models hold promise for the optimization of this approach.
Collapse
Affiliation(s)
- J H Kim
- Department of Pharmacology and MRCCMT, Dong-A University Medical College, Busan 604-714, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Lun X, Senger DL, Alain T, Oprea A, Parato K, Stojdl D, Lichty B, Power A, Johnston RN, Hamilton M, Parney I, Bell JC, Forsyth PA. Effects of intravenously administered recombinant vesicular stomatitis virus (VSV(deltaM51)) on multifocal and invasive gliomas. J Natl Cancer Inst 2006; 98:1546-57. [PMID: 17077357 DOI: 10.1093/jnci/djj413] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND An ideal virus for the treatment of cancer should have effective delivery into multiple sites within the tumor, evade immune responses, produce rapid viral replication, spread within the tumor, and infect multiple tumors. Vesicular stomatitis virus (VSV) has been shown to be an effective oncolytic virus in a variety of tumor models, and mutations in the matrix (M) protein enhance VSV's effectiveness in animal models. METHODS We evaluated the susceptibility of 14 glioma cell lines to infection and killing by mutant strain VSV(deltaM51), which contains a single-amino acid deletion in the M protein. We also examined the activity and safety of this strain against the U87 and U118 experimental models of human malignant glioma in nude mice and analyzed the distribution of the virus in the brains of U87 tumor-bearing mice using fluorescence labeling. Finally, we examined the effect of VSV(deltaM51) on 15 primary human gliomas cultured from surgical specimens. All statistical tests were two-sided. RESULTS All 14 glioma cell lines were susceptible to VSV(deltaM51) infection and killing. Intratumoral administration of VSV(deltaM51) produced marked regression of malignant gliomas in nude mice. When administered systemically, live VSV(deltaM51) virus, as compared with dead virus, statistically significantly prolonged survival of mice with unilateral U87 tumors (median survival: 113 versus 46 days, P = .0001) and bilateral U87 tumors (median survival: 73 versus 46 days, P = .0025). VSV(deltaM51) infected multifocal gliomas, invasive glioma cells that migrated beyond the main glioma, and all 15 primary human gliomas. There was no evidence of toxicity. CONCLUSIONS Systemically delivered VSV(deltaM51) was an effective and safe oncolytic agent against laboratory models of multifocal and invasive malignant gliomas, the most challenging clinical manifestations of this disease.
Collapse
Affiliation(s)
- XueQing Lun
- Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/pro-drug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition, gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy. These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.
Collapse
|
74
|
Liu TC, Zhang T, Fukuhara H, Kuroda T, Todo T, Martuza RL, Rabkin SD, Kurtz A. Oncolytic HSV armed with platelet factor 4, an antiangiogenic agent, shows enhanced efficacy. Mol Ther 2006; 14:789-97. [PMID: 17045531 DOI: 10.1016/j.ymthe.2006.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Revised: 07/19/2006] [Accepted: 07/31/2006] [Indexed: 12/23/2022] Open
Abstract
Oncolytic herpes simplex viruses (HSV) have emerged as a promising platform for cancer therapy. However, efficacy as single agents has thus far been unsatisfactory. Tumor vasculature is critical in supporting tumor growth, but successful antiangiogenic approaches often require maintaining constant levels of antiangiogenic products. We hypothesized that oncolytic HSV has the potential to destroy tumor vasculature and that this effect can be enhanced by combination with antiangiogenic gene transfer. We examined the strategy of arming oncolytic HSV with an antiangiogenic transgene, platelet factor 4 (PF4). The PF4 transgene was inserted into oncolytic HSV G47Delta utilizing a bacterial artificial chromosome construction system. Whereas bG47Delta-empty showed robust cell killing and migration inhibition of proliferating endothelial cells (HUVEC and Py-4-1), the effect was further enhanced by PF4 expression. Importantly, enhanced potency did not impede viral replication. In vivo, bG47Delta-PF4 was more efficacious than its nonexpressing parent bG47Delta-empty at inhibiting tumor growth and angiogenesis in both human U87 glioma and mouse 37-3-18-4 malignant peripheral nerve sheath tumor models. Enhancing the antiangiogenic properties of oncolytic HSV through the expression of antiangiogenic factors such as PF4 is a powerful new strategy that targets both the tumor cells and tumor vasculature.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital and Harvard Medical School, CPZN-3800 Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Raki M, Rein DT, Kanerva A, Hemminki A. Gene Transfer Approaches for Gynecological Diseases. Mol Ther 2006; 14:154-63. [PMID: 16650808 DOI: 10.1016/j.ymthe.2006.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/13/2005] [Accepted: 02/06/2006] [Indexed: 11/25/2022] Open
Abstract
Gene transfer presents a potentially useful approach for the treatment of diseases refractory to conventional therapies. Various preclinical and clinical strategies have been explored for treatment of gynecological diseases. Given the direst need for novel treatments, much of the work has been performed with gynecological cancers and ovarian cancer in particular. Although the safety of many approaches has been demonstrated in early phase clinical trials, efficacy has been mostly limited so far. Major challenges include improving gene transfer vectors for enhanced and selective delivery and achieving effective penetration and spread within advanced and complex tumor masses. This review will focus on current and developmental gene transfer applications for gynecological diseases.
Collapse
Affiliation(s)
- Mari Raki
- Cancer Gene Therapy Group, Rational Drug Design Program, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
76
|
Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. J Transl Med 2006; 86:748-66. [PMID: 16751779 DOI: 10.1038/labinvest.3700444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical outcome for osteosarcoma (OS) remains discouraging despite efforts to optimize treatment using conventional modalities including surgery, radiotherapy and chemotherapy. Novel therapeutic approaches based on our expanding understanding of the mechanisms of tumor cell killing have the potential to alter this situation. Tumor suppressor gene therapy aims to restore the function of a tumor suppressor gene lost or functionally inactivated in cancer cells. One such molecule, the p53 tumor suppressor gene plays a critical role in safeguarding the integrity of the genome and preventing tumorigenesis. Introduction of wild-type (wt) p53 into transformed cells has been shown to be lethal for most cancer cells in vitro, but clinical trials of p53 gene replacement have had limited success. Analysis of these clinical trials highlighted the insufficient efficacy of current vectors and low proapoptotic activity of wt p53 as a single agent in vivo. In this review, a contemporary summarization of the current status of adenovirus-mediated p53 gene therapy of OS is presented. Advancement in our understanding of p53 tumor suppressor activity, the molecular biology of chemoresistant OS, and recent advances in tumor targeting with adenoviral vectors are also addressed. Based on these parameters, prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Vladimir V Ternovoi
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | |
Collapse
|
77
|
Kretschmer PJ, Jin F, Chartier C, Hermiston TW. Development of a transposon-based approach for identifying novel transgene insertion sites within the replicating adenovirus. Mol Ther 2006; 12:118-27. [PMID: 15963927 DOI: 10.1016/j.ymthe.2005.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022] Open
Abstract
Therapeutic gene delivery from an oncolytic adenovirus (Ad) is one approach to enhancing the potency of Ad-based virotherapies for cancer. To identify therapeutic transgene insertion sites compatible with the replicating virus, a methodology that broadly scans the viral genome is needed. To address this we modified a transposon (Tn7)-based in vitro transposition system to take advantage of its nonprejudiced scanning ability to identify insertion sites compatible with viral replication. Using this system with a plasmid containing an E3-deleted Ad5, we identified several unique sites for promoter-based expression cassette insertions within the Ad genome. The transposon-based expression cassette is bounded by PmeI restriction endonuclease sites unique to the transposon, making expression cassette substitutions easy to perform. Additional expression cassettes containing different promoters and reporter genes were substituted into two of the newly identified transgene insertion sites. The results suggest that the ease and orientation of expression cassette substitution depend on both the insertion site location and the promoter and gene of the replacement expression cassette. These studies establish the transposon-based system as an efficient approach to scanning the Ad genome and identifying insertion sites compatible with viral replication and represents a powerful tool for the development of armed therapeutic viruses for cancer.
Collapse
Affiliation(s)
- Peter J Kretschmer
- Gene Therapy Research Department, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA
| | | | | | | |
Collapse
|
78
|
Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J Pathol 2006; 208:299-318. [PMID: 16362990 DOI: 10.1002/path.1896] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major impediment to the successful application of gene therapy for the treatment of a range of diseases is not a paucity of therapeutic genes, but the lack of an efficient non-toxic gene delivery system. Having evolved to deliver their genes to target cells, viruses are currently the most effective means of gene delivery and can be manipulated to express therapeutic genes or to replicate specifically in certain cells. Gene therapy is being developed for a range of diseases including inherited monogenic disorders and cardiovascular disease, but it is in the treatment of cancer that this approach has been most evident, resulting in the recent licensing of a gene therapy for the routine treatment of head and neck cancer in China. A variety of virus vectors have been employed to deliver genes to cells to provide either transient (eg adenovirus, vaccinia virus) or permanent (eg retrovirus, adeno-associated virus) transgene expression and each approach has its own advantages and disadvantages. Paramount is the safety of these virus vectors and a greater understanding of the virus-host interaction is key to optimizing the use of these vectors for routine clinical use. Recent developments in the modification of the virus coat allow more targeted approaches and herald the advent of systemic delivery of therapeutic viruses. In the context of cancer, the ability of attenuated viruses to replicate specifically in tumour cells has already yielded some impressive results in clinical trials and bodes well for the future of this approach, particularly when combined with more traditional anti-cancer therapies.
Collapse
Affiliation(s)
- Lawrence S Young
- Cancer Research UK Institute for Cancer Studies, University of Birmingham Medical School, UK.
| | | | | | | |
Collapse
|
79
|
Su C, Peng L, Sham J, Wang X, Zhang Q, Chua D, Liu C, Cui Z, Xue H, Wu H, Yang Q, Zhang B, Liu X, Wu M, Qian Q. Immune gene-viral therapy with triplex efficacy mediated by oncolytic adenovirus carrying an interferon-gamma gene yields efficient antitumor activity in immunodeficient and immunocompetent mice. Mol Ther 2006; 13:918-27. [PMID: 16497559 DOI: 10.1016/j.ymthe.2005.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/11/2005] [Accepted: 12/28/2005] [Indexed: 11/25/2022] Open
Abstract
Among numerous gene therapeutic strategies for cancer treatment, gene transfer by conditionally replicative adenovirus (CRAd) of interferon-gamma (IFN-gamma) may be useful because of the possibility that it will yield IFN-gamma-mediated antiangiogenesis, immune responses, and CRAd-mediated oncolysis. In this study, we constructed a human TERT promoter-mediated oncolytic adenovirus targeting telomerase-positive cancers and armed with a mouse or human IFN-gamma gene to generate novel immune gene-viral therapeutic systems, CNHK300-mIFN-gamma and CNHK300-hIFN-gamma, respectively. The systems can specifically target, replicate in, and lyse cancer cells, while sparing normal cells. The advantage of these systems is that the number of transgene copies and their expression increase markedly via viral replication within infected cancer cells, and replicated viral progeny can then infect additional cancer cells within the tumor mass. CNHK300-mIFN-gamma induced regression of xenografts in liver cancer models in both immunodeficient and immunocompetent mice by triplex mechanisms including selective oncolysis, antiangiogenesis, and immune responses. We conclude that combining immune gene therapy and oncolytic virotherapy can enhance antitumor efficacy as a result of synergism between CRAd oncolysis and transgene composite antitumor responses.
Collapse
Affiliation(s)
- Changqing Su
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Thorne SH, Tam BYY, Kirn DH, Contag CH, Kuo CJ. Selective intratumoral amplification of an antiangiogenic vector by an oncolytic virus produces enhanced antivascular and anti-tumor efficacy. Mol Ther 2006; 13:938-46. [PMID: 16469543 DOI: 10.1016/j.ymthe.2005.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 12/02/2005] [Accepted: 12/06/2005] [Indexed: 11/20/2022] Open
Abstract
The development of effective cancer therapy will require the simultaneous targeting of multiple steps in tumor development. We have previously described an antiangiogenic gene therapy vector, Ad Flk1-Fc, which expresses a soluble VEGF receptor capable of inhibiting tumor angiogenesis and growth. We have also described an oncolytic virus, dl922/947, whose replication and subsequent cytotoxicity are restricted to cancer cells with a loss of the G1-S cell cycle checkpoint. Here we have optimized methods for combining these therapies, yielding significantly greater anti-tumor effects than the respective monotherapies. In cultured tumor lines, co-infection with both Ad Flk1-Fc and dl922/947 allowed replication and repackaging of the replication-deficient Ad Flk1-Fc and enhanced soluble VEGF receptor expression. Similar repackaging and increased gene expression were demonstrated in vivo using bioluminescence imaging studies. Finally, coadministration of these therapeutic viral therapies in vivo produced significantly enhanced anti-tumor effects in colon HCT 116 and prostate PC-3 xenografts in mice. This increased therapeutic benefit correlated with replication of Ad Flk1-Fc viral genomes, increased intratumoral levels of Flk1-Fc protein, and decreased microvessel density, consistent with enhanced antiangiogenic activity.
Collapse
Affiliation(s)
- Stephen H Thorne
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
81
|
Abstract
Although gene therapy has huge potential for modern medicine, our enthusiasm for its powerful potential must not cloud our judgment about the dangers of using increasingly diverse, yet relatively untested, replicating viruses
Collapse
Affiliation(s)
- Yuti Chernajovsky
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ.
| | | | | |
Collapse
|
82
|
Tai CK, Wang WJ, Chen TC, Kasahara N. Single-shot, multicycle suicide gene therapy by replication-competent retrovirus vectors achieves long-term survival benefit in experimental glioma. Mol Ther 2006; 12:842-51. [PMID: 16257382 PMCID: PMC8185609 DOI: 10.1016/j.ymthe.2005.03.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/16/2005] [Accepted: 03/17/2005] [Indexed: 10/25/2022] Open
Abstract
Achieving therapeutically efficacious levels of gene transfer in tumors has been a major obstacle for cancer gene therapy using replication-defective virus vectors. Recently, replicating viruses have emerged as attractive tools for cancer therapy, but generally achieve only transitory tumor regression. In contrast to other replicating virus systems, transduction by replication-competent retrovirus (RCR) vectors is efficient, tumor-selective, and persistent. Correlating with its efficient replicative spread, RCR vector expressing the yeast cytosine deaminase suicide gene exhibited remarkably enhanced cytotoxicity in vitro after administration of the prodrug 5-fluorocytosine. In vivo, RCR vectors replicated throughout preestablished primary gliomas without spread to adjacent normal brain, resulting in profound tumor inhibition after a single injection of virus and single cycle of prodrug administration. Furthermore, stable integration of the replicating vector resulted in persistent infection that achieved complete transduction of ectopic glioma foci that had migrated away from the primary tumor site. Thus, efficient and stable integration of suicide genes represents a unique property of the RCR vector that achieved multiple cycles of synchronous cell killing upon repeated prodrug administration, resulting in chronic suppression of tumor growth and prolonged survival.
Collapse
Affiliation(s)
- Chien-Kuo Tai
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Jun Wang
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Thomas C. Chen
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Noriyuki Kasahara
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- To whom correspondence and reprint request should be addressed at the UCLA Geffen School of Medicine, MRL-1551, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA. Fax: +1 (310) 825 5204.
| |
Collapse
|
83
|
Abstract
The application of replicating viruses for the treatment of cancers represents a novel therapy that is distinct from traditional treatment modalities. It is apparent that the genetic changes that a virus produces within an infected cell in order to create an environment conducive to viral replication are often similar to the processes involved in cellular transformation. These include uncontrolled cellular proliferation, prevention of apoptosis, and resistance to host organism immune effector mechanisms. Deletions of viral genes involved in these processes have been exploited to produce viral mutants whose replication is selective for transformed cells. The use of tissue-specific transcriptional response or RNA stability elements to control the expression of critical viral genes has also resulted in targeted viruses. Work also is being undertaken to restrict or alter the tropism of viruses by altering their ability to infect certain cell types. Finally, the addition of exogenous genes can be used to increase the virus's lytic potential and/or bystander killing; to further induce the host's immune response against cancer cells; and/or to permit the controlled downregulation of viral replication if necessary. The combination of different tumor-targeting mutations in parallel with the expression of foreign genes has resulted in the evolution of second- and third-generation viruses that continue to become further distinct from their native parental strains. The movement of these viruses into the clinic has begun to demonstrate the potential of this approach in the treatment of cancers.
Collapse
Affiliation(s)
- Stephen H Thorne
- Department of Pediatrics and Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5427, USA.
| | | | | |
Collapse
|
84
|
Gillet L, Dewals B, Farnir F, de Leval L, Vanderplasschen A. Bovine herpesvirus 4 induces apoptosis of human carcinoma cell lines in vitro and in vivo. Cancer Res 2005; 65:9463-72. [PMID: 16230410 DOI: 10.1158/0008-5472.can-05-1076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea of using oncolytic viruses for the treatment of cancers was proposed a century ago. During the last two decades, viruses able to replicate specifically in cancer cells and to induce their lysis were identified and were genetically modified to improve their viro-oncolytic properties. More recently, a new approach consisting of inducing selective apoptosis in cancer cells through viral infection has been proposed; this approach has been called viro-oncoapoptosis. In the present study, we report the property of bovine herpesvirus-4 (BoHV-4) to induce, in vitro and in vivo, apoptosis of some human carcinomas. This conclusion relies on the following observations: (a) In vitro, BoHV-4 infection induced apoptosis of A549 and OVCAR carcinoma cell lines in a time- and dose-dependent manner. (b) Apoptosis was induced by the expression of an immediate-early or an early BoHV-4 gene, but did not require viral replication. (c) Cell treatment with caspase inhibitors showed that apoptosis induced by BoHV-4 relied mainly on caspase-10 activation. (d) Infection of cocultures of A549 or OVCAR cells mixed with human 293 cells (in which BoHV-4 does not induce apoptosis) showed that BoHV-4 specifically eradicated A549 or OVCAR cancer cells from the cocultures. (e) Finally, in vivo experiments done with nude mice showed that BoHV-4 intratumoral injections reduced drastically the growth of preestablished A549 xenografts. Taken together, these results suggest that BoHV-4 may have potential as a viro-oncoapoptotic agent for the treatment of some human carcinomas. Moreover, further identification of BoHV-4 proapoptotic gene(s) and the cellular pathways targeted by this or these gene(s) could lead to the design of new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Laurent Gillet
- Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
85
|
Nagayama Y. Gene therapy for thyroid cancer. Cancer Treat Res 2005; 122:369-79. [PMID: 16209056 DOI: 10.1007/1-4020-8107-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Yuji Nagayama
- Department of Pharmacology 1, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
86
|
Zhang Z, Zou W, Wang J, Gu J, Dang Y, Li B, Zhao L, Qian C, Qian Q, Liu X. Suppression of tumor growth by oncolytic adenovirus-mediated delivery of an antiangiogenic gene, soluble Flt-1. Mol Ther 2005; 11:553-62. [PMID: 15771958 DOI: 10.1016/j.ymthe.2004.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 12/24/2004] [Indexed: 12/14/2022] Open
Abstract
Armed oncolytic adenoviruses represent an appealing tumor treatment approach, as they can attack tumors at multiple levels. In this study, considering that angiogenesis plays a central role in tumor growth, we inserted an antiangiogenic gene, sflt-1(1-3) (the first three extracellular domains of FLT1, the hVEGF receptor-1), into an E1B-55-kDa-deleted oncolytic adenovirus (ZD55) to construct ZD55-sflt-1. Although soluble (s) Flt-1 did not affect tumor cell growth, ZD55-sflt-1 could specifically induce a cytopathic effect in tumor cells, like ONYX-015. The secretion of sFlt-1 from ZD55-sflt-1 was much higher than that from replication-deficient Ad-sflt-1 upon infection of SW620 human colon tumor cells, leading to a stronger inhibitory effect on VEGF-induced proliferation and tube formation ability of HUVECs. Moreover, marked reduction of tumor growth and long-term survival rates were observed in ZD55-sflt-1-treated nude mice with subcutaneous SW620 tumor. Its efficacy correlated with a decrease in microvessel density and an increase in apoptotic tumor cells. In addition, ZD55-sflt-1 showed a synergic effect with the chemotherapeutic agent 5-FU. These results indicate that ZD55-sflt-1, combining the advantages of oncolytic adenovirus and antiangiogenic gene therapy, is a powerful agent for human tumor treatment.
Collapse
Affiliation(s)
- Zilai Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Hermiston TW, Kirn DH. Genetically based therapeutics for cancer: similarities and contrasts with traditional drug discovery and development. Mol Ther 2005; 11:496-507. [PMID: 15771953 DOI: 10.1016/j.ymthe.2004.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 12/07/2004] [Indexed: 11/22/2022] Open
Abstract
The field of molecular therapeutics is in its infancy and represents a promising and novel avenue for targeted cancer treatments. Like the small-molecule and antibody therapeutics before them, however, the genetic-based therapies will face significant research and development challenges in their maturation toward an approved cancer therapy. To facilitate this process, we outline and examine in this review the drug development process, briefly summarizing the research and development paradigms that have accompanied the recent successes of the small-molecule and antibody-based cancer therapeutics. Using this background, we compare and contrast the research and development experiences of small-molecule and antibody therapeutics with genetic-based cancer therapeutics, using oncolytic viruses as a defined example of an experimental molecular therapeutic for cancer.
Collapse
Affiliation(s)
- Terry W Hermiston
- Department of Gene Therapy, Berlex Biosciences, Richmond, CA 94941, USA.
| | | |
Collapse
|
88
|
Jin F, Kretschmer PJ, Hermiston TW. Identification of novel insertion sites in the Ad5 genome that utilize the Ad splicing machinery for therapeutic gene expression. Mol Ther 2005; 12:1052-63. [PMID: 16165398 DOI: 10.1016/j.ymthe.2005.07.696] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/28/2005] [Accepted: 07/28/2005] [Indexed: 11/18/2022] Open
Abstract
Therapeutic transgene expression from oncolytic viruses represents one approach to increasing the effectiveness of these agents as cancer therapeutics. In the case of the oncolytic adenovirus (Ad), however, the genomic packaging capacity is constrained. To address this, we explored whether a transposon-based system could identify sites in the viral genome where endogenous Ad promoters could drive transgene expression via splicing and still maintain the replication capacity of the virus. Using GFP as a reporter gene and an E3-deleted Ad genome as a target, we tested three splicing signals. RACE analysis confirmed that gene expression from the GFP-expressing Ads occurs via splicing and traced expression to the Ad major late promoter (MLP). Replacement of the GFP transposon by an equivalent splice acceptor-luciferase expression cassette in the same orientation confirmed that substitute transgenes are also expressed via splicing from the MLP. Interestingly, insertion of the substitute transgene in the opposite orientation also resulted in expression that, in some cases, originated from within the ITR region of the viral genome. In summary, splice acceptor sequences can be used to control transgene expression from endogenous Ad promoters and this represents a genomically economical approach to arming oncolytic Ads.
Collapse
Affiliation(s)
- Fang Jin
- Gene Therapy Research Department, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA
| | | | | |
Collapse
|
89
|
Liu TC, Wang Y, Hallden G, Brooks G, Francis J, Lemoine NR, Kirn D. Functional interactions of antiapoptotic proteins and tumor necrosis factor in the context of a replication-competent adenovirus. Gene Ther 2005; 12:1333-46. [PMID: 15920462 DOI: 10.1038/sj.gt.3302555] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Replication-selective oncolytic adenoviruses hold promise, but novel mechanisms must be identified to maximize intratumoral virus persistence, spread and therapeutic transgene-carrying capacity while maintaining safety. One of the main approaches to engineering cancer-selectivity has been to delete a viral gene that is theoretically expendable in cancer cells. Results with this approach have been mixed, however, as evidenced by controversy over Onyx-015 (E1B-55kD(-)) selectivity. We hypothesized that the functional redundancy between viral gene products might limit selectivity and/or potency with this approach. Antiviral immune inducers of apoptosis (eg TNF-alpha) have not been thoroughly investigated in previous studies. We therefore explored whether deletion of functionally redundant viral genes, E1B-19kD and E3B, both independently antagonize TNF-alpha, could lead to enhanced oncolytic potency while maintaining selectivity. Since tumors have numerous blocks in apoptotic pathways, we hypothesized that deletion of one or both gene regions would result in cancer-selectivity in the presence of TNF-alpha. We have previously shown that the E1B-19kD deletion resulted in enhanced viral spread in vitro and in immunocompetent tumor models in vivo. In contrast, the impact of E3B deletion, especially its in vitro selectivity and potency, was not thoroughly characterized, although it resulted in rapid immune-mediated viral clearance in vivo. Furthermore, previous publications indicated that double-deleted mutants have selectivity but unsatisfactory efficacy. We compared the selectivity and potency of E1B-19kD(-), E3B(-) and E1B-19kD(-)/E3B(-) mutants to wild-type adenovirus. In cancer cells, the E1B-19kD(-) mutant had superior replication, spread and cytolysis (+) or (-) TNF-alpha; deletion of both E1B-19kD and E3B was relatively deleterious. In normal cells without TNF-alpha, similar results were obtained. In contrast, all three mutants were significantly inhibited in the presence of TNF-alpha. In immunocompetent mice, all three mutants were significantly inhibited in normal tissue. In tumors, only the E1B-19kD(-) mutant demonstrated enhanced replication, spread and antitumoral efficacy. Therefore, E1B-19kD deletion and E3B retention should be incorporated in oncolytic adenoviruses for enhanced safety and efficacy. In addition, functional redundant viral genes and their biological mediators/targets need to be carefully examined for the next generation of gene-deleted oncolytic viruses.
Collapse
Affiliation(s)
- T-C Liu
- Viral and Genetic Therapy Program, Cancer Research UK Molecular Oncology Unit, Barts & The London School of Medicine and Imperial College Faculty of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
90
|
Thorne SH, Kirn DH. Future directions for the field of oncolytic virotherapy: a perspective on the use of vaccinia virus. Expert Opin Biol Ther 2005; 4:1307-21. [PMID: 15268664 DOI: 10.1517/14712598.4.8.1307] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oncolytic virotherapy is an emerging biotherapeutic platform based on genetic engineering of viruses capable of selectively infecting and replicating within cancer cells. Such viruses have been found to be both safe and to produce antitumour effects in a number of Phase I and II clinical trials. Early work in this field has been pioneered with strains of adenovirus which, although well suited to gene therapy approaches, have displayed certain limitations in their ability to directly destroy and spread through tumour tissues, particularly after systemic administration. Investigators have subsequently been examining the feasibility of using a variety of different viruses as oncolytic agents. Vaccinia virus is perhaps the most widely administered and successful medical product in history; it displays many of the qualities thought necessary for an effective antitumour agent and is particularly well characterised in people due to its role in the eradication of smallpox. Vaccinia has a short life cycle and rapid spread, strong lytic ability, inherent systemic tumour targeting, a large cloning capacity and well-defined molecular biology. In addition, the virus produces no known disease in humans, has been delivered safely to millions of people and has already demonstrated antitumoural efficacy in trials with vaccine strains. These qualities, along with strategies for further improving the safety and antitumour effectiveness of vaccinia, will be discussed in relation to the broad spectrum of clinical experience already achieved with this virus in cancer therapy.
Collapse
Affiliation(s)
- Steve H Thorne
- Bio-X Program, Dept of Pediatrics, School of Medicine, Stanford University, CA, USA
| | | |
Collapse
|
91
|
Shen Y, Nemunaitis J. Fighting Cancer with Vaccinia Virus: Teaching New Tricks to an Old Dog. Mol Ther 2005; 11:180-95. [PMID: 15668130 DOI: 10.1016/j.ymthe.2004.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/22/2004] [Indexed: 11/22/2022] Open
Abstract
Vaccinia virus has played a huge part in human beings' victory over smallpox. With smallpox being eradicated and large-scale vaccination stopped worldwide, vaccinia has assumed a new role in our fight against another serious threat to human health: cancer. Recent advances in molecular biology, virology, immunology, and cancer genetics have led to the design of novel cancer therapeutics based on vaccinia virus backbones. With the ability to infect efficiently a wide range of host cells, a genome that can accommodate large DNA inserts and express multiple genes, high immunogenicity, and cytoplasmic replication without the possibility of chromosomal integration, vaccinia virus has become the platform of many exploratory approaches to treat cancer. Vaccinia virus has been used as (1) a delivery vehicle for anti-cancer transgenes, (2) a vaccine carrier for tumor-associated antigens and immunoregulatory molecules in cancer immunotherapy, and (3) an oncolytic agent that selectively replicates in and lyses cancer cells.
Collapse
Affiliation(s)
- Yuqiao Shen
- Mary Crowley Medical Research Center, 1717 Main Street, 60th Floor, Dallas, TX 75201, USA
| | | |
Collapse
|
92
|
Lu W, Zheng S, Li XF, Huang JJ, Zheng X, Li Z. Intra-tumor injection of H101, a recombinant adenovirus, in combination with chemotherapy in patients with advanced cancers: A pilot phase II clinical trial. World J Gastroenterol 2004; 10:3634-8. [PMID: 15534920 PMCID: PMC4612006 DOI: 10.3748/wjg.v10.i24.3634] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: H101, an E1B 55 kD gene deleted adenovirus, has been shown to possess oncolysis activity experimentally and proved to be safe in preliminary phase I study. The current study was designed to evaluate its anti-tumor activity and toxicity in combination with chemotherapy in patients with late stage cancers.
METHODS: H101 5.0 × 1011 virus particles were given by intra-tumor injection daily for five consecutive days at every three-week cycle, combined with routine chemotherapy, to one of the tumor lesions of 50 patients with different malignant tumors. Tumor lesions without H101 injection in the same individuals were used as controls. The efficacy and toxicity were recorded.
RESULTS: Forty-six patients were evaluable with a 30.4% response rate. H101 injection in combination with chemotherapy induced three complete response (CR) and 11 partial response (PR), giving an overall response rate of 28.0% (14/50) among intention-to-treat patients. The response rate for the control lesions was 13.0%, including one case with CR and five cases with PR, which was significantly lower than that for the injected lesions (P < 0.05). Main side effects were fever (30.2%) and pain at the injected sites (26.9%). Grade 1 hepatic dysfunction was found in four patients, grade 2 in one patient, and grade 4 in one patient. Hematological toxicity (grade 4) was found in four patients.
CONCLUSION: Intra-tumor injection of the genetically engineered adenovirus H101 exhibits potential anti-tumor activity to refractory malignant tumors in combination with chemotherapy. Low toxicity and good tolerance of patients to H101were observed.
Collapse
Affiliation(s)
- Wei Lu
- Cancer Center, Second Affiliated Hospital, Medical College, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
93
|
Lee CT, Park KH, Yanagisawa K, Adachi Y, Ohm JE, Nadaf S, Dikov MM, Curiel DT, Carbone DP. Combination Therapy with Conditionally Replicating Adenovirus and Replication Defective Adenovirus. Cancer Res 2004; 64:6660-5. [PMID: 15374981 DOI: 10.1158/0008-5472.can-04-1200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low gene transfer rate is the most substantial hurdle in the practical application of gene therapy. One strategy to improve transfer efficiency is the use of a conditionally replicating adenovirus (CRAD) that can selectively replicate in tumor cells. We hypothesized that conventional E1-deleted adenoviruses (ad) can become replication-competent when cotransduced with a CRAD to selectively supply E1 in trans in tumors. The resulting selective production of large numbers of the E1-deleted ad within the tumor mass will increase the transduction efficiency. We used a CRAD (Delta24RGD) that produces a mutant E1 without the ability to bind retinoblastoma but retaining viral replication competence in cancer cells with a defective pRb/p16. Ad-lacZ, adenovirus-luciferase (ad-luc), and adenovirus insulin-like growth factor-1R/dominant-negative (ad-IGF-1R/dn; 482, 950) are E1-deleted replication-defective adenoviruses. The combination of CRAD and ad-lacZ increased the transduction efficiency of lacZ to 100% from 15% observed with ad-lacZ alone. Transfer of media of CRAD and ad-lacZ cotransduced cells induced the transfer of lacZ (media transferable bystander effect). Combination of CRAD and ad-IGF-1R/dn increased the production of truncated IGF-1R or soluble IGF-1R > 10 times compared with transduction with ad-IGF-1R/dn alone. Combined intratumoral injection of CRAD and ad-luc increased the luciferase expression about 70 times compared with ad-luc alone without substantial systemic spread. Combined intratumoral injection of CRAD and ad-IGF-1R/482 induced stronger growth suppression of established lung cancer xenografts than single injections. The combination of CRAD and E1-deleted ad induced tumor-specific replication of CRAD and E1-deleted ad and increased the transduction rate and therapeutic efficacy of these viruses in model tumors.
Collapse
Affiliation(s)
- Choon-Taek Lee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37322-6838, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ries SJ, Brandts CH. Oncolytic viruses for the treatment of cancer: current strategies and clinical trials. Drug Discov Today 2004; 9:759-68. [PMID: 15450242 DOI: 10.1016/s1359-6446(04)03221-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tumor-selective replicating viruses offer appealing advantages over conventional cancer therapy and are a promising new approach for the treatment of human cancer. The development of virotherapeutics is based on several strategies that each provides a different foundation for tumor-selective targeting and replication. Results emerging from clinical trials with oncolytic viruses demonstrate the safety and feasibility of a virotherapeutic approach and provide early indications of efficacy. Strategies to overcome potential obstacles and challenges to virotherapy are currently being explored and are discussed here. Importantly, the successful development of systemic administration of oncolytic viruses will extend the range of tumors that can be treated using this novel treatment modality.
Collapse
Affiliation(s)
- Stefan J Ries
- University of Müster, Department of Medicine, Hematology and Oncology, Albert-Schweitzer-Strasse 33, D-48129 Münster, Germany.
| | | |
Collapse
|
95
|
Abstract
Oncolytic viruses offer a promising new modality for cancer treatment. The strategy of this therapy is to develop viruses capable of selectively infecting and replicating in malignant tumor cells. Oncolytic viruses can spread and destroy malignant tumors without deleterious effects in normal tissues. These viruses are genetically engineered based on both the biology of replicating viruses and the major genetic defects in human cancer cells, so that they can replicate in cancer cells but not in normal cells. The key to the development of such viruses is the identification of viral genes, the deletion or modification of which enables tumor-specific cell destruction. Several clinical trials have demonstrated the safety of oncolytic viruses as cancer therapy and have also shown some encouraging results. Much evidence suggests that oncolytic viral therapy works in synergy with standard cancer therapies. In this review, we will focus on the oncolytic viruses that may be beneficial to patients with lung cancer in the near future.
Collapse
Affiliation(s)
- Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA
| | | | | | | | | |
Collapse
|
96
|
Liu TC, Hallden G, Wang Y, Brooks G, Francis J, Lemoine N, Kirn D. An E1B-19 kDa gene deletion mutant adenovirus demonstrates tumor necrosis factor-enhanced cancer selectivity and enhanced oncolytic potency. Mol Ther 2004; 9:786-803. [PMID: 15194046 DOI: 10.1016/j.ymthe.2004.03.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2004] [Accepted: 03/22/2004] [Indexed: 11/16/2022] Open
Abstract
Oncolytic adenoviruses hold promise as a new treatment platform for cancer, but limitations have been identified, including limited spread and potency. The adenoviral protein E1B-19 kDa is a Bcl-2 homologue that blocks apoptosis induction via the intrinsic and extrinsic pathways, specifically including tumor necrosis factor-mediated cell death. We demonstrate that an E1B-19 kDa gene deletion mutant had tumor necrosis factor-enhanced cancer selectivity, in vitro and in vivo, due to genetic blocks in apoptosis pathways in cancer cells. In addition, this mutant demonstrated significantly enhanced viral spread and antitumoral potency relative to dl1520 (aka Onyx-015) and wild-type adenovirus in vitro. Significant antitumoral efficacy was demonstrated in vivo by intratumoral and intravenous routes of administration. E1B-19 kDa deletion should be considered as a feature of oncolytic adenoviruses to enhance their safety, spread, and efficacy.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Viral and Genetic Therapy Program, Cancer Research UK, Imperial College Faculty of Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|
97
|
Santhakumaran LM, Thomas T, Thomas TJ. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res 2004; 32:2102-12. [PMID: 15087489 PMCID: PMC407813 DOI: 10.1093/nar/gkh526] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We used polypropylenimine dendrimers for delivering a 31 nt triplex-forming oligonucleotide (ODN) in breast, prostate and ovarian cancer cell lines, using 32P-labeled ODN. Dendrimers enhanced the uptake of ODN by approximately 14-fold in MDA-MB-231 breast cancer cells, compared with control ODN uptake. Dendrimers exerted their effect in a concentration- and molecular weight-dependent manner, with generation 4 (G-4) dendrimer having maximum efficacy. A similar increase in ODN uptake was found with MCF-7 and SK-BR-3 (breast), LNCaP (prostate) and SK-OV-3 (ovarian) cancer cells. The dendrimers had no significant effect on cell viability at concentrations at which maximum ODN uptake occurred. [3H]Thymidine incorporation showed that complexing the ODN with G-4 significantly increased the growth-inhibitory effect of the ODN. Western blot analysis showed a significant 65% reduction of c-myc protein level in ODN-G-4 treated cells compared with that of ODN-treated/control cells. Gel electrophoretic analysis showed that ODN remained intact in cells even after 48 h of treatment. The hydrodynamic radii of nanoparticles formed from ODN in the presence of the dendrimers were in the range of 130-280 nm, as determined by dynamic laser light scattering. Taken together, our results indicate that polypropylenimine dendrimers might be useful vehicles for delivering therapeutic oligonucleotides in cancer cells.
Collapse
Affiliation(s)
- Latha M Santhakumaran
- Department of Medicine, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
98
|
Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY, Qian QJ, Liu XY. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2004; 13:481-9. [PMID: 14728805 DOI: 10.1038/sj.cr.7290191] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them. To date, clinical trials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone. In this paper, we put forward a novel concept of Gene-ViroTherapy strategy and in this way, we constructed an armed therapeutic oncolytic adenovirus system, ZD55-gene, which is not only deleted of E1B 55-kD gene similar to ONYX-015, but also armed with foreign antitumor gene. ZD55-gene exhibited similar cytopathic effects and replication kinetics to that of ONYX-015 in vitro. Importantly, the carried gene is expressed and the expression level can increase with the replication of virus. Consequently, a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer. Our data demonstrated that ZD55-gene, which utilizing the Gene-ViroTherapy strategy, is more efficacious than each individual component in vivo.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cells, Cultured
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytopathogenic Effect, Viral/drug effects
- Female
- Fluorouracil/therapeutic use
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Genetic Therapy
- Genetic Vectors
- HeLa Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Oncogenes/drug effects
- Transplantation, Heterologous
- Virus Replication
Collapse
Affiliation(s)
- Zi Lai Zhang
- Laboratory of Biotechnology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Shinya K, Fujii Y, Ito H, Ito T, Kawaoka Y. Characterization of a neuraminidase-deficient influenza a virus as a potential gene delivery vector and a live vaccine. J Virol 2004; 78:3083-8. [PMID: 14990727 PMCID: PMC353727 DOI: 10.1128/jvi.78.6.3083-3088.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified a packaging signal in the neuraminidase (NA) viral RNA (vRNA) segment of an influenza A virus, allowing us to produce a mutant virus [GFP(NA)-Flu] that lacks most of the NA open reading frame but contains instead the gene encoding green fluorescent protein (GFP). To exploit the expanding knowledge of vRNA packaging signals to establish influenza virus vectors for the expression of foreign genes, we studied the replicative properties of this virus in cell culture and mice. Compared to wild-type virus, GFP(NA)-Flu was highly attenuated in normal cultured cells but was able to grow to a titer of >10(6) PFU/ml in a mutant cell line expressing reduced levels of sialic acid on the cell surface. GFP expression from this virus was stable even after five passages in the latter cells. In intranasally infected mice, GFP was detected in the epithelial cells of nasal mucosa, bronchioles, and alveoli for up to 4 days postinfection. We attribute the attenuated growth of GFP(NA)-Flu to virion aggregation at the surface of bronchiolar epithelia. In studies to test the potential of this mutant as a live attenuated influenza vaccine, all mice vaccinated with >/==" BORDER="0">10(5) PFU of GFP(NA)-Flu survived when challenged with lethal doses of the parent virus. These results suggest that influenza virus could be a useful vector for expressing foreign genes and that a sialidase-deficient virus may offer an alternative to the live influenza vaccines recently approved for human use.
Collapse
Affiliation(s)
- Kyoko Shinya
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, USA
| | | | | | | | | |
Collapse
|
100
|
Banerjee NS, Rivera AA, Wang M, Chow LT, Broker TR, Curiel DT, Nettelbeck DM. Analyses of melanoma-targeted oncolytic adenoviruses with tyrosinase enhancer/promoter-driven E1A, E4, or both in submerged cells and organotypic cultures. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.437.3.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
We have generated novel conditionally replicative adenoviruses (CRAds) targeted to melanoma cells. In these adenoviruses, the E4 region (AdΔ24TyrE4) or both E1 and E4 regions (Ad2xTyr) were controlled by a synthetic tyrosinase enhancer/promoter (Tyr2E/P) specific for melanocytes. The properties of these CRAds were compared with wild-type adenovirus (Adwt) and our previous CRAd with a targeted E1A CRII mutation (AdTyrΔ24) in submerged cultures of melanoma cells and nonmelanoma control cells. We showed that AdΔ24TyrE4 had a cell type selectivity similar to AdTyrΔ24 but had a distinct block in viral reproduction in nonmelanoma cells and that Ad2xTyr had an augmented selectivity for melanoma cells. These viruses were additionally tested in organotypic cultures of melanoma cell lines, primary human keratinocytes (PHKs), or mixed cell populations. Unexpectedly, the CRAds exhibited somewhat different cell type selectivity profiles in these cultures relative to those observed in submerged cultures, demonstrating the importance of multiple assay systems. Specifically, AdTyrΔ24 and Ad2xTyr were selective for melanoma cells, whereas AdΔ24TyrE4 exhibited no selectivity, similar to Adwt. AdTyrΔ24 and Ad2xTyr were strongly attenuated in their ability to lyse PHKs in organotypic cultures. Furthermore, Ad2xTyr had a superior melanoma selectivity in organotypic cultures of cocultivated melanoma cells and PHKs. The enhanced selectivity for melanoma cells exhibited by Ad2xTyr provides a window of opportunity for therapeutic application. These studies also demonstrate that organotypic cultures derived from mixtures of tumor and normal cells represent a promising new model for analysis of CRAd specificity and toxicity.
Collapse
Affiliation(s)
| | - Angel A. Rivera
- 2Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL and
| | - Minghui Wang
- 2Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL and
| | | | | | - David T. Curiel
- 2Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL and
| | - Dirk M. Nettelbeck
- 2Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL and
- 3Department of Dermatology, University Medical Center Erlangen, Erlangen, Germany
| |
Collapse
|