51
|
Neale C, Chakrabarti N, Pomorski P, Pai EF, Pomès R. Hydrophobic Gating of Ion Permeation in Magnesium Channel CorA. PLoS Comput Biol 2015; 11:e1004303. [PMID: 26181442 PMCID: PMC4504495 DOI: 10.1371/journal.pcbi.1004303] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
Ion channels catalyze ionic permeation across membranes via water-filled pores. To understand how changes in intracellular magnesium concentration regulate the influx of Mg2+ into cells, we examine early events in the relaxation of Mg2+ channel CorA toward its open state using massively-repeated molecular dynamics simulations conducted either with or without regulatory ions. The pore of CorA contains a 2-nm-long hydrophobic bottleneck which remained dehydrated in most simulations. However, rapid hydration or “wetting” events concurrent with small-amplitude fluctuations in pore diameter occurred spontaneously and reversibly. In the absence of regulatory ions, wetting transitions are more likely and include a wet state that is significantly more stable and more hydrated. The free energy profile for Mg2+ permeation presents a barrier whose magnitude is anticorrelated to pore diameter and the extent of hydrophobic hydration. These findings support an allosteric mechanism whereby wetting of a hydrophobic gate couples changes in intracellular magnesium concentration to the onset of ionic conduction. This study shows how rapid wetting/dewetting transitions in the pores of ion channels participate in the control of biological ion permeation. Ion channels catalyze ionic permeation across non-polar membranes via water-filled pores. However, non-polar stretches or hydrophobic bottlenecks are present in the pores of many ion channels. To clarify the relationship between channel regulation, pore hydration, and ion permeation, we examine how the slow relaxation of magnesium channel CorA from its closed state towards its open state modulates wetting of its hydrophobic bottleneck. Results provide a quantitative description of wetting and dewetting probabilities and kinetics and a quantitative relationship between the extent of pore hydration and the energetics of ion permeation, consistent with a mechanism of hydrophobic gating.
Collapse
Affiliation(s)
- Chris Neale
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nilmadhab Chakrabarti
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pawel Pomorski
- Shared Hierarchical Academic Research Computing Network, Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Emil F. Pai
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute/Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
52
|
Mao D, Chen J, Tian L, Liu Z, Yang L, Tang R, Li J, Lu C, Yang Y, Shi J, Chen L, Li D, Luan S. Arabidopsis Transporter MGT6 Mediates Magnesium Uptake and Is Required for Growth under Magnesium Limitation. THE PLANT CELL 2014; 26:2234-2248. [PMID: 24794135 PMCID: PMC4079380 DOI: 10.1105/tpc.114.124628] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although magnesium (Mg2+) is the most abundant divalent cation in plant cells, little is known about the mechanism of Mg2+ uptake by plant roots. Here, we report a key function of Magnesium Transport6 (MGT6)/Mitochondrial RNA Splicing2-4 in Mg2+ uptake and low-Mg2+ tolerance in Arabidopsis thaliana. MGT6 is expressed mainly in plant aerial tissues when Mg2+ levels are high in the soil or growth medium. Its expression is highly induced in the roots during Mg2+ deficiency, suggesting a role for MGT6 in response to the low-Mg2+ status in roots. Silencing of MGT6 in transgenic plants by RNA interference (RNAi) resulted in growth retardation under the low-Mg2+ condition, and the phenotype was restored to normal growth after RNAi plants were transferred to Mg2+-sufficient medium. RNAi plants contained lower levels of Mg2+ compared with wild-type plants under low Mg2+ but not under Mg2+-sufficient conditions. Further analysis indicated that MGT6 was localized in the plasma membrane and played a key role in Mg2+ uptake by roots under Mg2+ limitation. We conclude that MGT6 mediates Mg2+ uptake in roots and is required for plant adaptation to a low-Mg2+ environment.
Collapse
Affiliation(s)
- Dandan Mao
- College of Life Sciences, Hunan Normal University, Changsha 410081, China Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jian Chen
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lianfu Tian
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhenhua Liu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lei Yang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Jian Li
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Changqing Lu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yonghua Yang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jisen Shi
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, MOF Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Liangbi Chen
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Dongping Li
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Sheng Luan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
53
|
Dalmas O, Sompornpisut P, Bezanilla F, Perozo E. Molecular mechanism of Mg2+-dependent gating in CorA. Nat Commun 2014; 5:3590. [PMID: 24694723 PMCID: PMC4066822 DOI: 10.1038/ncomms4590] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 11/09/2022] Open
Abstract
CorA is the major transport system responsible for Mg2+ uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg2+ uptake remains to be established. Here we use EPR spectroscopy, electrophysiology and molecular dynamic simulations to show that CorA is regulated by cytoplasmic Mg2+ acting as a ligand and elucidate the basic conformational rearrangements responsible for Mg2+-dependent gating. Mg2+ unbinding at the divalent cation sensor triggers a conformational change that leads to the inward motion of the stalk helix, which propagates to the pore forming transmembrane helix TM1. Helical tilting and rotation in TM1 generates an iris-like motion that increases the diameter of the permeation pathway, triggering ion conduction. This work establishes the molecular basis of a Mg2+-driven negative feedback loop in CorA as the key physiological event controlling Mg2+ uptake and homeostasis in prokaryotes.
Collapse
Affiliation(s)
- Olivier Dalmas
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Pornthep Sompornpisut
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
54
|
A repulsion mechanism explains magnesium permeation and selectivity in CorA. Proc Natl Acad Sci U S A 2014; 111:3002-7. [PMID: 24516146 DOI: 10.1073/pnas.1319054111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnesium (Mg(2+)) plays a central role in biology, regulating the activity of many enzymes and stabilizing the structure of key macromolecules. In bacteria, CorA is the primary source of Mg(2+) uptake and is self-regulated by intracellular Mg(2+). Using a gating mutant at the divalent ion binding site, we were able to characterize CorA selectivity and permeation properties to both monovalent and divalent cations under perfused two-electrode voltage clamp. The present data demonstrate that under physiological conditions, CorA is a multioccupancy Mg(2+)-selective channel, fully excluding monovalent cations, and Ca(2+), whereas in absence of Mg(2+), CorA is essentially nonselective, displaying only mild preference against other divalents (Ca(2+) > Mn(2+) > Co(2+) > Mg(2+) > Ni(2)(+)). Selectivity against monovalent cations takes place via Mg(2+) binding at a high-affinity site, formed by the Gly-Met-Asn signature sequence (Gly312 and Asn314) at the extracellular side of the pore. This mechanism is reminiscent of repulsion models proposed for Ca(2+) channel selectivity despite differences in sequence and overall structure.
Collapse
|
55
|
Assessment of the requirements for magnesium transporters in Bacillus subtilis. J Bacteriol 2014; 196:1206-14. [PMID: 24415722 DOI: 10.1128/jb.01238-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnesium is the most abundant divalent metal in cells and is required for many structural and enzymatic functions. For bacteria, at least three families of proteins function as magnesium transporters. In recent years, it has been shown that a subset of these transport proteins is regulated by magnesium-responsive genetic control elements. In this study, we investigated the cellular requirements for magnesium homeostasis in the model microorganism Bacillus subtilis. Putative magnesium transporter genes were mutationally disrupted, singly and in combination, in order to assess their general importance. Mutation of only one of these genes resulted in strong dependency on supplemental extracellular magnesium. Notably, this transporter gene, mgtE, is known to be under magnesium-responsive genetic regulatory control. This suggests that the identification of magnesium-responsive genetic mechanisms may generally denote primary transport proteins for bacteria. To investigate whether B. subtilis encodes yet additional classes of transport mechanisms, suppressor strains that permitted the growth of a transporter-defective mutant were identified. Several of these strains were sequenced to determine the genetic basis of the suppressor phenotypes. None of these mutations occurred in transport protein homologues; instead, they affected housekeeping functions, such as signal recognition particle components and ATP synthase machinery. From these aggregate data, we speculate that the mgtE protein provides the primary route of magnesium import in B. subtilis and that the other putative transport proteins are likely to be utilized for more-specialized growth conditions.
Collapse
|
56
|
Paparoditis P, Vastermark A, Le AJ, Fuerst JA, Saier MH. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:193-215. [PMID: 23969110 PMCID: PMC3905805 DOI: 10.1016/j.bbamem.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023]
Abstract
Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Ake Vastermark
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Andrew J. Le
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - John A. Fuerst
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
57
|
Sponder G, Svidová S, Khan MB, Kolisek M, Schweyen RJ, Carugo O, Djinović-Carugo K. The G-M-N motif determines ion selectivity in the yeast magnesium channel Mrs2p. Metallomics 2013; 5:745-52. [PMID: 23686104 DOI: 10.1039/c3mt20201a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The highly conserved G-M-N motif of the CorA-Mrs2-Alr1 family of Mg(2+) channels has been shown to be essential for Mg(2+) transport. We performed random mutagenesis of the G-M-N sequence of Saccharomyces cerevisiae Mrs2p in an unbiased genetic screen. A large number of mutants still capable of Mg(2+) influx, albeit below the wild-type level, were generated. Growth complementation assays, performed in media supplemented with Ca(2+) or Co(2+) or Mn(2+) or Zn(2+) at varying concentrations, lead to identification of mutants with reduced growth in the presence of Mn(2+) and Zn(2+). We hereby conclude that (1) at least two, but predominantly all three amino acids of the G-M-N motif must be replaced by certain combinations of other amino acids to remain functional, (2) replacement of any single amino acid within the G-M-N motif always impairs the function of Mrs2p, and (3) we show that the G-M-N motif determines ion selectivity, likely in concurrence with the negatively charged loop at the entrance of the channel thereby forming the Mrs2p selectivity filter.
Collapse
Affiliation(s)
- Gerhard Sponder
- Department of Microbiology, Immunobiology, Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
58
|
Dudev T, Lim C. Importance of Metal Hydration on the Selectivity of Mg2+ versus Ca2+ in Magnesium Ion Channels. J Am Chem Soc 2013; 135:17200-8. [DOI: 10.1021/ja4087769] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Todor Dudev
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
59
|
Saito T, Kobayashi NI, Tanoi K, Iwata N, Suzuki H, Iwata R, Nakanishi TM. Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice. PLANT & CELL PHYSIOLOGY 2013; 54:1673-83. [PMID: 23926064 DOI: 10.1093/pcp/pct112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Maintenance of an appropriate magnesium ion (Mg(2+)) concentration is essential for plant growth. In Arabidopsis thaliana, the CorA-MRS2-ALR-type proteins, named MRS2/MGT family proteins, are reportedly localized in various membranes and they function in Mg transport. However, knowledge of this family in other plant species is extremely limited. Furthermore, differential diversification among dicot and monocot plants suggested by phylogenetic analysis indicates that the role of the Arabidopsis MRS2/MGT family proteins is not the same in monocot plants. For a further understanding of this family in higher plants, functional analysis and gene expression profiling of rice MRS2/MGT family members were performed. A phylogenetic tree based on the isolated mRNA sequences of nine members of the OsMRS2 family confirmed that the MRS2/MGT family consists of five clades (A-E). A complementation assay in the yeast CM66 strain showed that four of the nine members possessed the Mg(2+) transport ability. Transient green fluorescent protein (GFP) expression in the isolated rice protoplast indicated that OsMRS2-5 and OsMRS2-6, belonging to clades D and A, respectively, localized in the chloroplast. Expression levels of these genes were low in the unexpanded yellow-green leaf, but increased considerably with leaf maturation. In addition, diurnal oscillation of expression was observed, particularly in OsMRS2-6 expression in the expanded leaf blade. We conclude that OsMRS2 family members function as Mg transporters and suggest that the genes belonging to clade A encode the chloroplast-localized Mg(2+) transporter in plants.
Collapse
Affiliation(s)
- Takayuki Saito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 2013; 47:625-46. [PMID: 24079267 DOI: 10.1146/annurev-genet-051313-051025] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organisms must maintain physiological levels of Mg(2+) because this divalent cation is critical for the stabilization of membranes and ribosomes, for the neutralization of nucleic acids, and as a cofactor in a variety of enzymatic reactions. In this review, we describe the mechanisms that bacteria utilize to sense the levels of Mg(2+) both outside and inside the cytoplasm. We examine how bacteria achieve Mg(2+) homeostasis by adjusting the expression and activity of Mg(2+) transporters and by changing the composition of their cell envelope. We discuss the connections that exist between Mg(2+) sensing, Mg(2+) transport, and bacterial virulence. Additionally, we explore the logic behind the fact that bacterial genomes encode multiple Mg(2+) transporters and distinct sensing systems for cytoplasmic and extracytoplasmic Mg(2+). These analyses may be applicable to the homeostatic control of other cations.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, Connecticut 06536; , , , , ,
| | | | | | | | | | | |
Collapse
|
61
|
Schmitz J, Tierbach A, Lenz H, Meschenmoser K, Knoop V. Membrane protein interactions between different Arabidopsis thaliana MRS2-type magnesium transporters are highly permissive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2032-40. [DOI: 10.1016/j.bbamem.2013.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 05/06/2013] [Accepted: 05/22/2013] [Indexed: 12/25/2022]
|
62
|
Khan MB, Sponder G, Sjöblom B, Svidová S, Schweyen RJ, Carugo O, Djinović-Carugo K. Structural and functional characterization of the N-terminal domain of the yeast Mg2+channel Mrs2. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1653-64. [DOI: 10.1107/s0907444913011712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/29/2013] [Indexed: 01/08/2023]
|
63
|
Payandeh J, Pfoh R, Pai EF. The structure and regulation of magnesium selective ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2778-92. [PMID: 23954807 DOI: 10.1016/j.bbamem.2013.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
64
|
Palombo I, Daley DO, Rapp M. Why Is the GMN Motif Conserved in the CorA/Mrs2/Alr1 Superfamily of Magnesium Transport Proteins? Biochemistry 2013; 52:4842-7. [DOI: 10.1021/bi4007397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isolde Palombo
- Center for Biomembrane
Research,
Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel O. Daley
- Center for Biomembrane
Research,
Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mikaela Rapp
- Division of Biophysics, Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
65
|
Lenz H, Dombinov V, Dreistein J, Reinhard MR, Gebert M, Knoop V. Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. PLANT & CELL PHYSIOLOGY 2013; 54:1118-31. [PMID: 23628997 DOI: 10.1093/pcp/pct062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant MRS2 membrane protein family members have been shown to play important roles in magnesium uptake and homeostasis. Single and double knockouts for two Arabidopsis thaliana genes, AtMRS2-1 and AtMRS2-5, have previously not shown significant phenotypes even under limiting Mg(2+) supply although both are strongly expressed already in early seedlings. Together with AtMRS2-10, these genes form clade B of the AtMRS2 gene family. We now succeeded in obtaining homozygous AtMRS2-1/10 double and AtMRS2-1/5/10 triple knockout lines after selection under increased magnesium supply. Although wilting early, both new mutant lines develop fully and are also fertile under standard magnesium supply, but show severe developmental retardation under limiting Mg(2+) concentrations. To investigate nutrient dependency of germination and seedling development under various conditions, including variable supplies of Mg(2+), Ca(2+), Zn(2+), Mn(2+), Co(2+), Cd(2+) and Cu(2+), in a reproducible and economical way, we employed a small-scale liquid culturing system in 24-well plate set-ups. This allowed the growth and monitoring of individual plantlets of different mutant lines under several nutritional conditions in parallel, and the scoring and statistical evaluation of developmental stages and biomass accumulation. Detrimental effects of higher concentrations of these elements were similar in mutants and the wild type. However, growth retardation phenotypes seen upon hydroponic cultivation under low Mg(2+) could be ameliorated when Ca(2+) concentrations were concomitantly lowered, supporting indications for an important interplay of these two most abundant divalent cations in the nutrient homeostasis of plants.
Collapse
Affiliation(s)
- Henning Lenz
- Abteilung Molekulare Evolution, IZMB-Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem J 2013; 451:365-74. [PMID: 23425532 PMCID: PMC3629940 DOI: 10.1042/bj20121745] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The CorA family of divalent cation transporters utilizes Mg2+ and Co2+ as
primary substrates. The molecular mechanism of its function, including ion selectivity and gating,
has not been fully characterized. Recently we reported a new structure of a CorA homologue from
Methanocaldococcus jannaschii, which provided novel structural details that offered
the conception of a unique gating mechanism involving conversion of an open hydrophilic gate into a
closed hydrophobic one. In the present study we report functional evidence for this novel gating
mechanism in the Thermotoga maritima CorA together with an improved crystal
structure of this CorA to 2.7 Å (1 Å=0.1 nm) resolution. The latter reveals the
organization of the selectivity filter to be similar to that of M. jannaschii CorA
and also the previously unknown organization of the second signature motif of the CorA family. The
proposed gating is achieved by a helical rotation upon the binding of a metal ion substrate to the
regulatory binding sites. Additionally, our data suggest that the preference of this CorA for
Co2+ over Mg2+ is controlled by the presence of threonine side chains in the
channel. Finally, the roles of the intracellular metal-binding sites have been assigned to increased
thermostability and regulation of the gating. These mechanisms most likely apply to the entire CorA
family as they are regulated by the highly conserved amino acids.
Collapse
|
67
|
Structural asymmetry in the magnesium channel CorA points to sequential allosteric regulation. Proc Natl Acad Sci U S A 2012; 109:18809-14. [PMID: 23112165 DOI: 10.1073/pnas.1209018109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Magnesium ions (Mg(2+)) are essential for life, but the mechanisms regulating their transport into and out of cells remain poorly understood. The CorA-Mrs2-Alr1 superfamily of Mg(2+) channels represents the most prevalent group of proteins enabling Mg(2+) ions to cross membranes. Thermotoga maritima CorA (TmCorA) is the only member of this protein family whose complete 3D fold is known. Here, we report the crystal structure of a mutant in the presence and absence of divalent ions and compare it with previous divalent ion-bound TmCorA structures. With Mg(2+) present, this structure shows binding of a hydrated Mg(2+) ion to the periplasmic Gly-Met-Asn (GMN) motif, revealing clues of ion selectivity in this unique channel family. In the absence of Mg(2+), TmCorA displays an unexpected asymmetric conformation caused by radial and lateral tilts of protomers that leads to bending of the central, pore-lining helix. Molecular dynamics simulations support these movements, including a bell-like deflection. Mass spectrometric analysis confirms that major proteolytic cleavage occurs within a region that is selectively exposed by such a bell-like bending motion. Our results point to a sequential allosteric model of regulation, where intracellular Mg(2+) binding locks TmCorA in a symmetric, transport-incompetent conformation and loss of intracellular Mg(2+) causes an asymmetric, potentially influx-competent conformation of the channel.
Collapse
|
68
|
Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA. Proc Natl Acad Sci U S A 2012; 109:18459-64. [PMID: 23091000 DOI: 10.1073/pnas.1210076109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the importance of Mg(2+) for numerous cellular activities, the mechanisms underlying its import and homeostasis are poorly understood. The CorA family is ubiquitous and is primarily responsible for Mg(2+) transport. However, the key questions-such as, the ion selectivity, the transport pathway, and the gating mechanism-have remained unanswered for this protein family. We present a 3.2 Å resolution structure of the archaeal CorA from Methanocaldococcus jannaschii, which is a unique complete structure of a CorA protein and reveals the organization of the selectivity filter, which is composed of the signature motif of this family. The structure reveals that polar residues facing the channel coordinate a partially hydrated Mg(2+) during the transport. Based on these findings, we propose a unique gating mechanism involving a helical turn upon the binding of Mg(2+) to the regulatory intracellular binding sites, and thus converting a polar ion passage into a narrow hydrophobic pore. Because the amino acids involved in the uptake, transport, and gating are all conserved within the entire CorA family, we believe this mechanism is general for the whole family including the eukaryotic homologs.
Collapse
|
69
|
Functional reconstitution and characterization of the Arabidopsis Mg2+ transporter AtMRS2-10 in proteoliposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2202-8. [DOI: 10.1016/j.bbamem.2012.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 04/05/2012] [Accepted: 04/19/2012] [Indexed: 11/24/2022]
|
70
|
Zhang T, Mu Y. Initial binding of ions to the interhelical loops of divalent ion transporter CorA: replica exchange molecular dynamics simulation study. PLoS One 2012; 7:e43872. [PMID: 22952795 PMCID: PMC3431404 DOI: 10.1371/journal.pone.0043872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/26/2012] [Indexed: 01/03/2023] Open
Abstract
Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg(2+) ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg(2+) ions with binding free energy -7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg(2+) ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation.
Collapse
Affiliation(s)
- Tong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
71
|
Palombo I, Daley DO, Rapp M. The periplasmic loop provides stability to the open state of the CorA magnesium channel. J Biol Chem 2012; 287:27547-55. [PMID: 22722933 DOI: 10.1074/jbc.m112.371484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Crystal structures of the CorA Mg(2+) channel have suggested that metal binding in the cytoplasmic domain stabilizes the pentamer in a closed conformation. The open "metal free" state of the channel is, however, still structurally uncharacterized. Here, we have attempted to map conformational states of CorA from Thermotoga maritima by determining which residues support the pentameric structure in the presence or absence of Mg(2+). We find that when Mg(2+) is present, the pentamer is stabilized by the putative gating sites (M1/M2) in the cytoplasmic domain. Strikingly however, we find that the conserved and functionally important periplasmic loop is vital for the integrity of the pentamer when Mg(2+) is absent from the M1/M2 sites. Thus, although the periplasmic loops were largely disordered in the x-ray structures of the closed channel, our data suggests a prominent role for the loops in stabilizing the open conformation of the CorA channels.
Collapse
Affiliation(s)
- Isolde Palombo
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | | | |
Collapse
|
72
|
Lim PH, Pisat NP, Gadhia N, Pandey A, Donovan FX, Stein L, Salt DE, Eide DJ, MacDiarmid CW. Regulation of Alr1 Mg transporter activity by intracellular magnesium. PLoS One 2011; 6:e20896. [PMID: 21738593 PMCID: PMC3125163 DOI: 10.1371/journal.pone.0020896] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/12/2011] [Indexed: 12/15/2022] Open
Abstract
Mg homeostasis is critical to eukaryotic cells, but the contribution of Mg transporter activity to homeostasis is not fully understood. In yeast, Mg uptake is primarily mediated by the Alr1 transporter, which also allows low affinity uptake of other divalent cations such as Ni(2+), Mn(2+), Zn(2+) and Co(2+). Using Ni(2+) uptake to assay Alr1 activity, we observed approximately nine-fold more activity under Mg-deficient conditions. The mnr2 mutation, which is thought to block release of vacuolar Mg stores, was associated with increased Alr1 activity, suggesting Alr1 was regulated by intracellular Mg supply. Consistent with a previous report of the regulation of Alr1 expression by Mg supply, Mg deficiency and the mnr2 mutation both increased the accumulation of a carboxy-terminal epitope-tagged version of the Alr1 protein (Alr1-HA). However, Mg supply had little effect on ALR1 promoter activity or mRNA levels. In addition, while Mg deficiency caused a seven-fold increase in Alr1-HA accumulation, the N-terminally tagged and untagged Alr1 proteins increased less than two-fold. These observations argue that the Mg-dependent accumulation of the C-terminal epitope-tagged protein was primarily an artifact of its modification. Plasma membrane localization of YFP-tagged Alr1 was also unaffected by Mg supply, indicating that a change in Alr1 location did not explain the increased activity we observed. We conclude that variation in Alr1 protein accumulation or location does not make a substantial contribution to its regulation by Mg supply, suggesting Alr1 activity is directly regulated via as yet unknown mechanisms.
Collapse
Affiliation(s)
- Phaik Har Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nilambari P. Pisat
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nidhi Gadhia
- Department of Pharmacology and Pharmacokinetics, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America
| | - Abhinav Pandey
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Frank X. Donovan
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lauren Stein
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - David E. Salt
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - David J. Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Colin W. MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
73
|
Wan Q, Ahmad MF, Fairman J, Gorzelle B, de la Fuente M, Dealwis C, Maguire ME. X-ray crystallography and isothermal titration calorimetry studies of the Salmonella zinc transporter ZntB. Structure 2011; 19:700-10. [PMID: 21565704 PMCID: PMC3094545 DOI: 10.1016/j.str.2011.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 11/17/2022]
Abstract
The ZntB Zn(2+) efflux system is important for maintenance of Zn(2+) homeostasis in Enterobacteria. We report crystal structures of ZntB cytoplasmic domains from Salmonella enterica serovar Typhimurium (StZntB) in dimeric and physiologically relevant homopentameric forms at 2.3 Å and 3.1 Å resolutions, respectively. The funnel-like structure is similar to that of the homologous Thermotoga maritima CorA Mg(2+) channel and a Vibrio parahaemolyticus ZntB (VpZntB) soluble domain structure. However, the central α7 helix forming the inner wall of the StZntB funnel is oriented perpendicular to the membrane instead of the marked angle seen in CorA or VpZntB. Consequently, the StZntB funnel pore is cylindrical, not tapered, which may represent an "open" form of the ZntB soluble domain. Our crystal structures and isothermal titration calorimetry data indicate that there are three Zn(2+) binding sites in the full-length ZntB, two of which could be involved in Zn(2+) transport.
Collapse
Affiliation(s)
- Qun Wan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Md Faiz Ahmad
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - James Fairman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Bonnie Gorzelle
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - María de la Fuente
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Chris Dealwis
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Michael E. Maguire
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| |
Collapse
|
74
|
Xia Y, Lundbäck AK, Sahaf N, Nordlund G, Brzezinski P, Eshaghi S. Co2+ selectivity of Thermotoga maritima CorA and its inability to regulate Mg2+ homeostasis present a new class of CorA proteins. J Biol Chem 2011; 286:16525-32. [PMID: 21454699 PMCID: PMC3091257 DOI: 10.1074/jbc.m111.222166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/19/2011] [Indexed: 01/12/2023] Open
Abstract
CorA is a family of divalent cation transporters ubiquitously present in bacteria and archaea. Although CorA can transport both Mg(2+) and Co(2+) almost equally well, its main role has been suggested to be that of primary Mg(2+) transporter of prokaryotes and hence the regulator of Mg(2+) homeostasis. The reason is that the affinity of CorA for Co(2+) is relatively low and thus considered non-physiological. Here, we show that Thermotoga maritima CorA (TmCorA) is incapable of regulating the Mg(2+) homeostasis and therefore cannot be the primary Mg(2+) transporter of T. maritima. Further, our in vivo experiments confirm that TmCorA is a highly selective Co(2+) transporter, as it selects Co(2+) over Mg(2+) at >100 times lower concentrations. In addition, we present data that show TmCorA to be extremely thermostable in the presence of Co(2+). Mg(2+) could not stabilize the protein to the same extent, even at high concentrations. We also show that addition of Co(2+), but not Mg(2+), specifically induces structural changes to the protein. Altogether, these data show that TmCorA has the role of being the transporter of Co(2+) but not Mg(2+). The physiological relevance and requirements of Co(2+) in T. maritima is discussed and highlighted. We suggest that CorA may have different roles in different organisms. Such functional diversity is presumably a reflection of minor, but important structural differences within the CorA family that regulate the gating, substrate selection, and transport.
Collapse
Affiliation(s)
- Yu Xia
- From the Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore and
| | - Anna-Karin Lundbäck
- From the Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore and
| | - Newsha Sahaf
- From the Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore and
| | - Gustav Nordlund
- the Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Peter Brzezinski
- the Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Said Eshaghi
- From the Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore and
| |
Collapse
|
75
|
Conn SJ, Conn V, Tyerman SD, Kaiser BN, Leigh RA, Gilliham M. Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. THE NEW PHYTOLOGIST 2011; 190:583-94. [PMID: 21261624 DOI: 10.1111/j.1469-8137.2010.03619.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• Magnesium accumulates at high concentrations in dicotyledonous leaves but it is not known in which leaf cell types it accumulates, by what mechanism this occurs and the role it plays when stored in the vacuoles of these cell types. • Cell-specific vacuolar elemental profiles from Arabidopsis thaliana (Arabidopsis) leaves were analysed by X-ray microanalysis under standard and serpentine hydroponic growth conditions and correlated with the cell-specific complement of magnesium transporters identified through microarray analysis and quantitative polymerase chain reaction (qPCR). • Mesophyll cells accumulate the highest vacuolar concentration of magnesium in Arabidopsis leaves and are enriched for members of the MGT/MRS2 family of magnesium transporters. Specifically, AtMGT2/AtMRS2-1 and AtMGT3/AtMRS2-5 were shown to be targeted to the tonoplast and corresponding T-DNA insertion lines had perturbed mesophyll-specific vacuolar magnesium accumulation under serpentine conditions. Furthermore, transcript abundance of these genes was correlated with the accumulation of magnesium under serpentine conditions, in a low calcium-accumulating mutant and across 23 Arabidopsis ecotypes varying in their leaf magnesium concentrations. • We implicate magnesium as a key osmoticum required to maintain growth in low calcium concentrations in Arabidopsis. Furthermore, two tonoplast-targeted members of the MGT/MRS2 family are shown to contribute to this mechanism under serpentine conditions.
Collapse
Affiliation(s)
- Simon J Conn
- School of Agriculture, Food, & Wine and The Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
76
|
Song WY, Hörtensteiner S, Tomioka R, Lee Y, Martinoia E. Common functions or only phylogenetically related? The large family of PLAC8 motif-containing/PCR genes. Mol Cells 2011; 31:1-7. [PMID: 21347707 PMCID: PMC3906873 DOI: 10.1007/s10059-011-0024-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 11/27/2022] Open
Abstract
PLAC8 motif-containing proteins form a large family and members can be found in fungi, algae, higher plants and animals. They include the PCR proteins of plants. The name giving PLAC8 domain was originally found in a protein residing in the spongiotrophoblast layer of the placenta of mammals. A further motif found in a large number of these proteins including several PCR proteins is the CCXXXXCPC or CLXXXXCPC motif. Despite their wide distribution our knowledge about the function of these proteins is very limited. For most of them two membrane-spanning α-helices are predicted, indicating that they are membrane associated or membrane intrinsic proteins. In plants PLAC8 motif-containing proteins have been described to be implicated in two very different functions. On one hand, it has been shown that they are involved in the determination of fruit size and cell number. On the other hand, two members of this family, AtPCR1 and AtPCR2 play an important role in transport of heavy metals such as cadmium or zinc. Transport experiments and approaches to model the 3_D structure of these proteins indicate that they could act as transporters for these divalent cations by forming homomultimers. In this minireview we discuss the present knowledge about this protein family and try to give an outlook on how to integrate the different proposed functions into a common picture about the role of PLAC8 motif-containing proteins.
Collapse
Affiliation(s)
- Won-Yong Song
- Institute of Plant Biology, University Zurich, Zurich, Switzerland
- POSTECH-UZH Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | - Rie Tomioka
- Institute of Plant Biology, University Zurich, Zurich, Switzerland
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Youngsook Lee
- POSTECH-UZH Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Enrico Martinoia
- Institute of Plant Biology, University Zurich, Zurich, Switzerland
- POSTECH-UZH Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
77
|
Functional analysis of the conserved hydrophobic gate region of the magnesium transporter CorA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1587-91. [PMID: 21074514 PMCID: PMC3082049 DOI: 10.1016/j.bbamem.2010.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 11/21/2022]
Abstract
The Leu294 residue in the cytoplasmic neck of Thermotoga maritima CorA is considered to be the main gate for Mg2+ transport. We created three site-directed mutants at this position: in the Leu294Asp and Leu294Gly mutants we observed a defect in closing of the pore, while in the Leu294Arg mutant not only gating, but also the regulation of Mg2+ uptake was affected. Our results confirmed the importance of the Leu294 for gating of Mg2+ transport and in addition revealed the influence of the charge and structural features of the amino acid residues on the gating mechanism.
Collapse
|
78
|
Shin YK. Mg2+ channel selectivity probed by EPR. Structure 2010; 18:759-60. [PMID: 20637411 DOI: 10.1016/j.str.2010.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functionally important extracellular loop is not resolved in the crystal structures of a putative bacterial Mg(2+) channel CorA. In this issue, Dalmas et al. use EPR to determine a structural model for this conserved loop, providing new insight into the ion selectivity.
Collapse
Affiliation(s)
- Yeon-Kyun Shin
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
79
|
Structural dynamics of the magnesium-bound conformation of CorA in a lipid bilayer. Structure 2010; 18:868-78. [PMID: 20637423 DOI: 10.1016/j.str.2010.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/03/2010] [Accepted: 04/07/2010] [Indexed: 12/18/2022]
Abstract
The transmembrane conformation of Thermotoga maritima CorA, a magnesium transport system, has been studied in its Mg(2+)-bound form by site-directed spin labeling and electron paramagnetic resonance spectroscopy. Probe mobility together with accessibility data were used to evaluate the overall dynamics and relative arrangement of individual transmembrane segments TM1 and TM2. TM1 extends toward the cytoplasmic side creating a water-filled cavity, while TM2 is located in the periphery of the oligomer, contacting the lipid bilayer. A structural model for the conserved extracellular loop was generated based on EPR data and MD simulations, in which residue E316 is located toward the five-fold symmetry axis in position to electrostatically influence divalent ion translocation. Electrostatic analysis of our model suggest that, in agreement with the crystal structure, Mg(2+) -bound CorA is in a closed conformation. The present results suggest that long-range structural rearrangements are necessary to allow Mg(2+) translocation.
Collapse
|
80
|
Moomaw AS, Maguire ME. Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation. Biochemistry 2010; 49:5998-6008. [PMID: 20568735 PMCID: PMC2912426 DOI: 10.1021/bi1005656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The CorA Mg(2+) channel is the primary uptake system in about half of all bacteria and archaea. However, the basis for its Mg(2+) selectivity is unknown. Previous data suggested that CorA binds a fully hydrated Mg(2+) ion, unlike other ion channels. The crystal structure of Thermotoga maritima CorA shows a homopentamer with two transmembrane segments per monomer connected by a short periplasmic loop. This highly conserved loop, (281)EFMPELKWS(289) in Salmonella enterica serovar Typhimurium CorA, is the only portion of the channel outside of the cell, suggesting a role in cation selectivity. Mutation of charged residues in the loop, E281 and K287, to any of several amino acids had little effect, demonstrating that despite conservation electrostatic interactions with these residues are not essential. While mutation of the universally conserved E285 gave a minimally functional channel, E285A and E285K mutants were the most functional, again indicating that the negative charge at this position is not a determining factor. Several mutations at K287 and W288 behaved anomalously in a transport assay. Analysis indicated that mutation of K287 and W288 disrupts cooperative interactions between distinct Mg(2+) binding sites. Overall, these results are not compatible with electrostatic interaction of the Mg(2+) ion with the periplasmic loop. Instead, the loop appears to form an initial binding site for hydrated Mg(2+), not for the dehydrated cation. The loop residues may function to accelerate dehydration of the before entry of Mg(2+) into the pore of the channel.
Collapse
Affiliation(s)
- Andrea S Moomaw
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | |
Collapse
|
81
|
Sponder G, Svidova S, Schindl R, Wieser S, Schweyen RJ, Romanin C, Froschauer EM, Weghuber J. Lpe10p modulates the activity of the Mrs2p-based yeast mitochondrial Mg2+channel. FEBS J 2010; 277:3514-25. [DOI: 10.1111/j.1742-4658.2010.07761.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
An iris-like mechanism of pore dilation in the CorA magnesium transport system. Biophys J 2010; 98:784-92. [PMID: 20197031 DOI: 10.1016/j.bpj.2009.11.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/06/2009] [Accepted: 11/06/2009] [Indexed: 12/22/2022] Open
Abstract
Magnesium translocation across cell membranes is essential for numerous physiological processes. Three recently reported crystal structures of the CorA magnesium transport system revealed a surprising architecture, with a bundle of giant alpha-helices forming a 60-A-long pore that extends beyond the membrane before widening into a funnel-shaped cytosolic domain. The presence of divalent cations in putative intracellular regulation sites suggests that these structures correspond to the closed conformation of CorA. To examine the nature of the conduction pathway, we performed 110-ns molecular-dynamics simulations of two of these structures in a lipid bilayer with and without regulatory ions. The results show that a 15-A-long hydrophobic constriction straddling the membrane-cytosol interface constitutes a steric bottleneck whose location coincides with an electrostatic barrier opposing cation translocation. In one of the simulations, structural relaxation after the removal of regulatory ions led to concerted changes in the tilt of the pore helices, resulting in iris-like dilation and spontaneous hydration of the hydrophobic neck. This simple and robust mechanism is consistent with the regulation of pore opening by intracellular magnesium concentration, and explains the unusual architecture of CorA.
Collapse
|
83
|
Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, Howard RJ, Hou Z, Simmons CR. Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. THE PLANT CELL 2010; 22:1057-73. [PMID: 20400678 PMCID: PMC2879740 DOI: 10.1105/tpc.109.073676] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/12/2010] [Accepted: 04/02/2010] [Indexed: 05/19/2023]
Abstract
Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number-influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants.
Collapse
Affiliation(s)
- Mei Guo
- Pioneer Hi-Bred, a DuPont Business, Johnston, IA 50131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Quamme GA. Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol 2010; 298:C407-29. [DOI: 10.1152/ajpcell.00124.2009] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A large number of mammalian Mg2+ transporters have been hypothesized on the basis of physiological data, but few have been investigated at the molecular level. The recent identification of a number of novel proteins that mediate Mg2+ transport has enhanced our understanding of how Mg2+ is translocated across mammalian membranes. Some of these transporters have some similarity to those found in prokaryocytes and yeast cells. Human Mrs2, a mitochondrial Mg2+ channel, shares many of the properties of the bacterial CorA and yeast Alr1 proteins. The SLC41 family of mammalian Mg2+ transporters has a similarity with some regions of the bacterial MgtE transporters. The mammalian ancient conserved domain protein (ACDP) Mg2+ transporters are found in prokaryotes, suggesting an ancient origin. However, other newly identified mammalian transporters, including TRPM6/7, MagT, NIPA, MMgT, and HIP14 families, are not represented in prokaryotic genomes, suggesting more recent development. MagT, NIPA, MMgT, and HIP14 transporters were identified by differential gene expression using microarray analysis. These proteins, which are found in many different tissues and subcellular organelles, demonstrate a diversity of structural properties and biophysical functions. The mammalian Mg2+ transporters have no obvious amino acid similarities, indicating that there are many ways to transport Mg2+ across membranes. Most of these proteins transport a number of divalent cations across membranes. Only MagT1 and NIPA2 are selective for Mg2+. Many of the identified mammalian Mg2+ transporters are associated with a number of congenital disorders encompassing a wide range of tissues, including intestine, kidney, brain, nervous system, and skin. It is anticipated that future research will identify other novel Mg2+ transporters and reveal other diseases.
Collapse
Affiliation(s)
- Gary A. Quamme
- Vancouver Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
85
|
Senisterra GA, Ghanei H, Khutoreskaya G, Dobrovetsky E, Edwards AM, Privé GG, Vedadi M. Assessing the stability of membrane proteins to detect ligand binding using differential static light scattering. ACTA ACUST UNITED AC 2010; 15:314-20. [PMID: 20150591 DOI: 10.1177/1087057109357117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein stabilization upon ligand binding has frequently been used to identify ligands for soluble proteins. Methods such as differential scanning fluorimetry (DSF) and differential static light scattering (DSLS) have been employed in the 384-well format and have been useful in identifying ligands that promote crystallization and 3D structure determination of proteins. However, finding a generic method that is applicable to membrane proteins has been a challenge as the high hydrophobicity of membrane proteins and the presence of detergents essential for their solubilization interfere with fluorescence-based detections. Here the authors used MsbA (an adenosine triphosphate binding cassette transporter), CorA (a Mg(++) channel), and CpxA (a histidine kinase) as model proteins and show that DSLS is not sensitive to the presence of detergents or protein hydrophobicity and can be used to monitor thermodenaturation of membrane proteins, assess their stability, and detect ligand binding in a 384-well format.
Collapse
|
86
|
Abstract
In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class.
Collapse
|
87
|
Tan K, Sather A, Robertson JL, Moy S, Roux B, Joachimiak A. Structure and electrostatic property of cytoplasmic domain of ZntB transporter. Protein Sci 2009; 18:2043-52. [PMID: 19653298 DOI: 10.1002/pro.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ZntB is the distant homolog of CorA Mg(2+) transporter within the metal ion transporter superfamily. It was early reported that the ZntB from Salmonella typhimurium facilitated efflux of Zn(2+) and Cd(2+), but not Mg(2+). Here, we report the 1.90 A crystal structure of the intracellular domain of ZntB from Vibrio parahemolyticus. The domain forms a funnel-shaped homopentamer that is similar to the full-length CorA from Thermatoga maritima, but differs from two previously reported dimeric structures of truncated CorA intracellular domains. However, no Zn(2+) or Cd(2+) binding sites were identified in the high-resolution structure. Instead, 25 well-defined Cl(-) ions were observed and some of these binding sites are highly conserved within the ZntB family. Continuum electrostatics calculations suggest that the central pore of the funnel is highly attractive for cations, especially divalents. The presence of the bound Cl(-) ions increases the stability of cations along the pore suggesting they could be important in enhancing cation transport.
Collapse
Affiliation(s)
- Kemin Tan
- Midwest Center for Structural Genomics and Structural Biology Center, Argonne, Illinois 60439, USA
| | | | | | | | | | | |
Collapse
|
88
|
Gebert M, Meschenmoser K, Svidová S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V. A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. THE PLANT CELL 2009; 21:4018-30. [PMID: 19966073 PMCID: PMC2814501 DOI: 10.1105/tpc.109.070557] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/28/2009] [Accepted: 11/17/2009] [Indexed: 05/19/2023]
Abstract
The MRS2/MGT gene family in Arabidopsis thaliana belongs to the superfamily of CorA-MRS2-ALR-type membrane proteins. Proteins of this type are characterized by a GMN tripeptide motif (Gly-Met-Asn) at the end of the first of two C-terminal transmembrane domains and have been characterized as magnesium transporters. Using the recently established mag-fura-2 system allowing direct measurement of Mg(2+) uptake into mitochondria of Saccharomyces cerevisiae, we find that all members of the Arabidopsis family complement the corresponding yeast mrs2 mutant. Highly different patterns of tissue-specific expression were observed for the MRS2/MGT family members in planta. Six of them are expressed in root tissues, indicating a possible involvement in plant magnesium supply and distribution after uptake from the soil substrate. Homozygous T-DNA insertion knockout lines were obtained for four members of the MRS2/MGT gene family. A strong, magnesium-dependent phenotype of growth retardation was found for mrs2-7 when Mg(2+) concentrations were lowered to 50 microM in hydroponic cultures. Ectopic overexpression of MRS2-7 from the cauliflower mosaic virus 35S promoter results in complementation and increased biomass accumulation. Green fluorescent protein reporter gene fusions indicate a location of MRS2-7 in the endomembrane system. Hence, contrary to what is frequently found in analyses of plant gene families, a single gene family member knockout results in a strong, environmentally dependent phenotype.
Collapse
Affiliation(s)
- Michael Gebert
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Karoline Meschenmoser
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Soňa Svidová
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Julian Weghuber
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Rudolf Schweyen
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Karolin Eifler
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Henning Lenz
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Katrin Weyand
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Volker Knoop
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| |
Collapse
|
89
|
Chen J, Li LG, Liu ZH, Yuan YJ, Guo LL, Mao DD, Tian LF, Chen LB, Luan S, Li DP. Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res 2009; 19:887-98. [PMID: 19436262 DOI: 10.1038/cr.2009.58] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Magnesium (Mg(2+)) is abundant in plant cells and plays a critical role in many physiological processes. A 10-member gene family AtMGT (also known as AtMRS2) was identified in Arabidopsis, which belongs to a eukaryote subset of the CorA superfamily, functioning as Mg(2+) transporters. Some family members (AtMGT1 and AtMGT10) function as high-affinity Mg(2+) transporter and could complement bacterial mutant or yeast mutant lacking Mg(2+) transport capability. Here we report an AtMGT family member, AtMGT9, that functions as a low-affinity Mg(2+) transporter, and is essential for pollen development. The functional complementation assay in Salmonella mutant strain MM281 showed that AtMGT9 is capable of mediating Mg(2+) uptake in the sub-millimolar range of Mg(2+). The AtMGT9 gene was expressed most strongly in mature anthers and was also detectable in vascular tissues of the leaves, and in young roots. Disruption of AtMGT9 gene expression resulted in abortion of half of the mature pollen grains in heterozygous mutant +/mgt9, and no homozygous mutant plant was obtained in the progeny of selfed +/mgt9 plants. Transgenic plants expressing AtMGT9 in these heterozygous plants can recover the pollen phenotype to the wild type. In addition, AtMGT9 RNAi transgenic plants also showed similar abortive pollen phenotype to mutant +/mgt9. Together, our results demonstrate that AtMGT9 functions as a low-affinity Mg(2+) transporter that plays a crucial role in male gametophyte development and male fertility.
Collapse
Affiliation(s)
- Jian Chen
- College of Life Science, Hunan Normal University, Changsha, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hattori M, Iwase N, Furuya N, Tanaka Y, Tsukazaki T, Ishitani R, Maguire ME, Ito K, Maturana A, Nureki O. Mg(2+)-dependent gating of bacterial MgtE channel underlies Mg(2+) homeostasis. EMBO J 2009; 28:3602-12. [PMID: 19798051 DOI: 10.1038/emboj.2009.288] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 09/04/2009] [Indexed: 11/09/2022] Open
Abstract
The MgtE family of Mg(2+) transporters is ubiquitously distributed in all phylogenetic domains. Recent crystal structures of the full-length MgtE and of its cytosolic domain in the presence and absence of Mg(2+) suggested a Mg(2+)-homeostasis mechanism, in which the MgtE cytosolic domain acts as a 'Mg(2+) sensor' to regulate the gating of the ion-conducting pore in response to the intracellular Mg(2+) concentration. However, complementary functional analyses to confirm the proposed model have been lacking. Moreover, the limited resolution of the full-length structure precluded an unambiguous characterization of these regulatory divalent-cation-binding sites. Here, we showed that MgtE is a highly Mg(2+)-selective channel gated by Mg(2+) and elucidated the Mg(2+)-dependent gating mechanism of MgtE, using X-ray crystallographic, genetic, biochemical, and electrophysiological analyses. These structural and functional results have clarified the control of Mg(2+) homeostasis through cooperative Mg(2+) binding to the MgtE cytosolic domain.
Collapse
Affiliation(s)
- Motoyuki Hattori
- Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Lu M, Chai J, Fu D. Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 2009; 16:1063-7. [PMID: 19749753 PMCID: PMC2758918 DOI: 10.1038/nsmb.1662] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 07/30/2009] [Indexed: 01/28/2023]
Abstract
Zinc transporters play critical roles in cellular zinc homeostatic control. The 2.9-Å resolution structure of the zinc transporter YiiP from Escherichia coli reveals a richly charged dimer-interface stabilized by zinc binding. Site-directed fluorescent resonance energy transfer (FRET) measurements and mutation-activity analysis suggest that zinc binding triggers hinge movements of two electrically repulsive cytoplasmic domains pivoting around four salt-bridges situated at the juncture of the cytoplasmic and transmembrane domains. These highly conserved salt-bridges interlock transmembrane helices at the dimer-interface, well positioned to transmit zinc-induced inter-domain movements to reorient transmembrane helices, thereby modulating coordination geometry of the active-site for zinc transport. The cytoplasmic domain of YiiP is a structural mimic of metal trafficking proteins and the metal-binding domains of metal-transporting P-type ATPases. The use of this common structural module to regulate metal coordination chemistry may enable a tunable transport activity in response to cytoplasmic metal fluctuations.
Collapse
Affiliation(s)
- Min Lu
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | | | | |
Collapse
|
92
|
Abstract
Magnesium (Mg) is an essential enzyme cofactor and a key structural component of biological molecules, but relatively little is known about the molecular components required for Mg homeostasis in eukaryotic cells. The yeast genome encodes four characterized members of the CorA Mg transporter superfamily located in the plasma membrane (Alr1 and Alr2) or the mitochondrial inner membrane (Mrs2 and Lpe10). We describe a fifth yeast CorA homolog (Mnr2) required for Mg homeostasis. MNR2 gene inactivation was associated with an increase in both the Mg requirement and the Mg content of yeast cells. In Mg-replete conditions, wild-type cells accumulated an intracellular store of Mg that supported growth under deficient conditions. An mnr2 mutant was unable to access this store, suggesting that Mg was trapped in an intracellular compartment. Mnr2 was localized to the vacuole membrane, implicating this organelle in Mg storage. The mnr2 mutant growth and Mg-content phenotypes were dependent on vacuolar proton-ATPase activity, but were unaffected by the loss of mitochondrial Mg uptake, indicating a specific dependence on vacuole function. Overexpression of Mnr2 suppressed the growth defect of an alr1 alr2 mutant, indicating that Mnr2 could function independently of the ALR genes. Together, our results implicate a novel eukaryotic CorA homolog in the regulation of intracellular Mg storage.
Collapse
|
93
|
Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci U S A 2009; 106:15750-5. [PMID: 19717468 DOI: 10.1073/pnas.0908332106] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Magnesium (Mg(2+)) is the second most abundant cation in cells, yet relatively few mechanisms have been identified that regulate cellular levels of this ion. The most clearly identified Mg(2+) transporters are in bacteria and yeast. Here, we use a yeast complementary screen to identify two mammalian genes, MagT1 and TUSC3, as major mechanisms of Mg(2+) influx. MagT1 is universally expressed in all human tissues and its expression level is up-regulated in low extracellular Mg(2+). Knockdown of either MagT1 or TUSC3 protein significantly lowers the total and free intracellular Mg(2+) concentrations in mammalian cell lines. Morpholino knockdown of MagT1 and TUSC3 protein expression in zebrafish embryos results in early developmental arrest; excess Mg(2+) or supplementation with mammalian mRNAs can rescue the effects. We conclude that MagT1 and TUSC3 are indispensable members of the vertebrate plasma membrane Mg(2+) transport system.
Collapse
|
94
|
Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor. BMC STRUCTURAL BIOLOGY 2009; 9:40. [PMID: 19515238 PMCID: PMC2714318 DOI: 10.1186/1472-6807-9-40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/10/2009] [Indexed: 11/22/2022]
Abstract
Background The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known. Results Here we report the first characterization of one of the 5 actinobacteria-specific proteins, ASP1 (Gene ID: SCO1997) from Streptomyces coelicolor. The X-ray crystal structure of ASP1 was determined at 2.2 Ǻ. The overall structure of ASP1 retains a similar fold to the large NP-1 family of nucleoside phosphorylase enzymes; however, the function is not related. Further comparative analysis revealed two regions expected to be important for protein function: a central, divalent metal ion binding pore, and a highly conserved elbow shaped helical region at the C-terminus. Sequence analyses revealed that ASP1 is paralogous to another actinobacteria-specific protein ASP2 (SCO1662 from S. coelicolor) and that both proteins likely carry out similar function. Conclusion Our structural data in combination with sequence analysis supports the idea that two of the 5 actinobacteria-specific proteins, ASP1 and ASP2, mediate similar function. This function is predicted to be novel since the structures of these proteins do not match any known protein with or without known function. Our results suggest that this function could involve divalent metal ion binding/transport.
Collapse
|
95
|
Kean J, Cleverley RM, O'Ryan L, Ford RC, Prince SM, Derrick JP. Characterization of a CorA Mg2+ transport channel from Methanococcus jannaschii using a Thermofluor-based stability assay. Mol Membr Biol 2009; 25:653-63. [PMID: 19039701 DOI: 10.1080/09687680802541169] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Thermofluor assay has been a valuable asset in structural genomics, providing a high-throughput method for assessing the crystallizability of proteins. The technique has been well characterized for soluble proteins but has been less extensively described for membrane proteins. Here we show the successful application of a Thermofluor-based stability assay to an ion channel, CorA from Methanococcus jannaschii. Optimization of the concentration of free detergent within the assay was important, as excessive concentrations mask the fluorescence change associated with thermal unfolding of the protein. CorA was shown to be stabilized by low pH, but relatively insensitive to salt concentration. Divalent metal cations were also capable of stabilizing the protein, in the order Co2+>Ni2+>Mn2+>Mg2+>Ca2+. Finally, removal of the oligohistidine tag was also shown to improve the thermal stability of CorA. Conclusions are drawn from this detailed study about the general applicability of this technique to other membrane proteins.
Collapse
Affiliation(s)
- James Kean
- University of Manchester, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
96
|
Hu J, Sharma M, Qin H, Gao FP, Cross TA. Ligand binding in the conserved interhelical loop of CorA, a magnesium transporter from Mycobacterium tuberculosis. J Biol Chem 2009; 284:15619-28. [PMID: 19346249 DOI: 10.1074/jbc.m901581200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CorA is a constitutively expressed magnesium transporter in many bacteria. The crystal structures of Thermotoga maritima CorA provide an excellent structural framework for continuing studies. Here, the ligand binding properties of the conserved interhelical loop, the only portion of the protein exposed to the periplasmic space, are characterized by solution nuclear magnetic resonance spectroscopy. Through titration experiments performed on the isolated transmembrane domain of Mycobacterium tuberculosis CorA, it was found that two CorA substrates (Mg2+ and Co2+) and the CorA-specific inhibitor (Co(III) hexamine chloride) bind in the loop at the same binding site. This site includes the glutamic acid residue from the conserved "MPEL" motif. The relatively large dissociation constants indicate that such interactions are weak but not atypical for channels. The present data support the hypothesis that the negatively charged loop could act as an electrostatic ring, increasing local substrate concentrations before transport across the membrane.
Collapse
Affiliation(s)
- Jian Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | |
Collapse
|
97
|
Veesler D, Blangy S, Siponen M, Vincentelli R, Cambillau C, Sciara G. Production and biophysical characterization of the CorA transporter from Methanosarcina mazei. Anal Biochem 2009; 388:115-21. [PMID: 19233118 DOI: 10.1016/j.ab.2009.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
We report here a general strategy to overproduce and characterize membrane transporters. To illustrate our approach, we selected one member of the CorA transporter family among four tested that belonged to different species. This approach is transposable to other membrane proteins and involves the following steps: (i) cloning by homologous recombination, (ii) high-throughput expression screening, (iii) fermenter-based large-scale production, (iv) high-throughput detergent solubilization screening, (v) protein purification, (vi) multiangle static light scattering/refractometry characterization of purified proteins, (vii) circular dichroism spectroscopy, and (viii) detergent concentration measurements by Fourier transform infrared (FT-IR) spectroscopy. Methanosarcina mazei CorA was expressed in milligram quantities and purified (> 95% pure). n-Dodecyl-beta-D-maltopyranoside (DDM) retained the pentameric native structure of this transporter; thus, we selected it as working detergent. Furthermore, we measured the detergent concentration in our purified and concentrated protein sample by FT-IR to maintain it as low as possible. Our strategy can be adapted to many structural biology approaches as well as for study of single membrane proteins in a variety of conditions.
Collapse
Affiliation(s)
- David Veesler
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I and II, UMR 6098, 13288 Marseille Cedex 9, France
| | | | | | | | | | | |
Collapse
|
98
|
Zhu Y, Davis A, Smith BJ, Curtis J, Handman E. Leishmania major CorA-like magnesium transporters play a critical role in parasite development and virulence. Int J Parasitol 2008; 39:713-23. [PMID: 19136005 DOI: 10.1016/j.ijpara.2008.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/15/2022]
Abstract
Establishment of infection by Leishmania depends on the transformation of the invading metacyclic promastigotes into the obligatory intracellular amastigotes, and their subsequent survival in the macrophage phagolysosome, which is low in magnesium. We show that two Leishmania major proteins designated MGT1 and MGT2, which play a critical role in these processes, belong to the two-transmembrane domain (2-TM-GxN) cation transporter family and share homology with the major bacterial magnesium transporter CorA. Although both are present in the endoplasmic reticulum throughout the life cycle of the parasite, MGT1 is more highly expressed in the infectious metacyclic parasites, while MGT2 is enriched in the immature procyclic stages. The two proteins, although predicted to be structurally similar, have features that suggest different regulatory or gating mechanisms. The two proteins may also be functionally distinct, since only MGT1 complements an Escherichia coli DeltaCorA mutant. In addition, deletion of one mgt1 allele from L. major led to increased virulence, while deletion of one allele of mgt2 resulted in slower growth and total loss of virulence in vitro and in vivo. This loss of virulence may be due to an impaired transformation of the parasites into amastigotes. Deletion of both mgt1 alleles in the hemizygous MGT2 knockdown parasites reversed the growth defect and partially restored virulence. Our data indicate that the MGTs play a critical role in parasite growth, development and virulence.
Collapse
Affiliation(s)
- Ying Zhu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Vic., Australia.
| | | | | | | | | |
Collapse
|
99
|
Abstract
Considering the biological abundance and importance of Mg2+, there is a surprising lack of information regarding the proteins that transport Mg2+, the mechanisms by which they do so, and their physiological roles within the cell. The best characterized Mg2+ channel to date is the bacterial protein CorA, present in a wide range of bacterial species. The CorA homolog Mrs2 forms the mitochondrial Mg2+ channel in all eukaryotes. Physiologically, CorA is involved in bacterial pathogenesis, and the Mrs2 eukaryotic homolog is essential for cell survival. A second Mg2+ channel widespread in bacteria is MgtE. Its eukaryotic homologs are the SLC41 family of carriers. Physiological roles for MgtE and its homologs have not been established. Recently, the crystal structures for the bacterial CorA and MgtE Mg2+ channels were solved, the first structures of any divalent cation channel. As befits the unique biological chemistry of Mg2+, both structures are unique, unlike that of any other channel or transporter. Although structurally quite different, both CorA and MgtE appear to be gated in a similar manner through multiple Mg2+ binding sites in the cytosolic domain of the channels. These sites essentially serve as Mg2+ "sensors" of cytosolic Mg2+ concentration. Many questions about these channels remain, however, including the molecular basis of Mg2+ selectivity and the physiological role(s) of their eukaryotic homologs.
Collapse
Affiliation(s)
- Andrea S Moomaw
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | | |
Collapse
|
100
|
Mao DD, Tian LF, Li LG, Chen J, Deng PY, Li DP, Luan S. AtMGT7: An Arabidopsis gene encoding a low-affinity magnesium transporter. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1530-8. [PMID: 19093971 DOI: 10.1111/j.1744-7909.2008.00770.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magnesium (Mg(2+)) is one of the essential cations in all cells. Although the Mg(2+) transport mechanism has been well-documented in bacteria, less is known about Mg(2+) transporters in eukaryotes. The AtMGT gene family encoding putative magnesium transport proteins had been described previously. We report here that one of the Arabidopsis MGT family members, the AtMGT7 gene, encodes two mRNAs that have resulted from alternative splicing variants, designated AtMGT7a and AtMGT7b. Interestingly, the two mRNA variants were expressed with different patterns with AtMGT7a expressing in all organs, but AtMGT7b appearing only in root and flowers. The AtMGT7a variant functionally complemented a bacterial mutant lacking Mg(2+) transport capacity, whereas AtMGT7b did not. The (63)Ni(2+) tracer uptake analysis in the bacterial model showed that AtMGT7a mediated low-affinity transport of Mg(2+). Consistent with the complementation assay result, (63)Ni(2+) tracer uptake analysis revealed that AtMGT7b did not transport Mg(2+). This study therefore has identified from a higher plant the first low-affinity Mg(2+) transporter encoded by a gene with alternatively spliced transcripts that produce proteins with distinct functions.
Collapse
Affiliation(s)
- Dan-Dan Mao
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | |
Collapse
|