51
|
Pérez-Cabezas B, Cecílio P, Gaspar TB, Gärtner F, Vasconcellos R, Cordeiro-da-Silva A. Understanding Resistance vs. Susceptibility in Visceral Leishmaniasis Using Mouse Models of Leishmania infantum Infection. Front Cell Infect Microbiol 2019; 9:30. [PMID: 30881923 PMCID: PMC6407322 DOI: 10.3389/fcimb.2019.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 01/28/2023] Open
Abstract
Every year, up to 90,000 new cases of Visceral Leishmaniasis and 30,000 resultant deaths are estimated to occur worldwide. Such numbers give relevance to the continuous study of this complex form of the disease: a zoonosis and an anthroponosis; two known etiological agents (Leishmania infantum and L. donovani, respectively); with an estimated average ratio of 1 symptomatic per 10 asymptomatic individuals; and sometimes associated with atypical clinical presentations. This complexity, which results from a long co-evolutionary process involving vector-host, host-pathogen, and pathogen-vector interactions, is still not completely understood. The determinants of visceralization are not fully defined and the dichotomy resistance vs. susceptibility remains unsolved, translating into obstacles that delay the progress of global disease control. Inbred mouse models, with different susceptibility patterns to Leishmania infection, have been very useful in exploring this dichotomy. BALB/c and C57BL/6 mice were described as susceptible strains to L. donovani visceral infection, while SV/129 was considered resistant. Here, we used these three mouse models, but in the context of L. infantum infection, the other Leishmania species that cause visceral disease in humans, and dynamically compared their local and systemic infection-induced immune responses in order to establish a parallel and to ultimately better understand susceptibility vs. resistance in visceral leishmaniasis. Overall, our results suggest that C57BL/6 mice develop an intermediate “infection-phenotype” in comparison to BALB/c and SV/129 mouse strains, considering both the splenic parasite burden and the determined target organs weights. However, the immune mechanisms associated with the control of infection seem to be different in each mouse strain. We observed that both BALB/c and SV/129, but not C57BL/6 mice, show an infection-induced increase of splenic T follicular helper cells. On the other hand, differences detected in terms of CD21 expression by B cells early after infection, together with the quantified anti-Leishmania specific antibodies, suggest that SV/129 are faster than BALB/c and C57BL/6 mice in the assembly of an efficient B-cell response. Additionally, we observed an infection-induced increase in polyfunctional CD4+ T cells in the resistant SV/129 model, opposing an infection-induced increase in CD4+IL-10+ cells in susceptible BALB/c mice. Our data aligns with the observations reported for L. donovani infection and suggest that not only a single mechanism, but an interaction of several could be necessary for the control of this parasitic disease.
Collapse
Affiliation(s)
- Begoña Pérez-Cabezas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro Cecílio
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology of University of Porto, Universidade do Porto, Porto, Portugal
| | - Rita Vasconcellos
- Immunobiology Department, Biology Institute, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
52
|
Dog hepatocytes are key effector cells in the liver innate immune response to Leishmania infantum. Parasitology 2018; 146:753-764. [PMID: 30561285 DOI: 10.1017/s0031182018002068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatocytes constitute the majority of hepatic cells, and play a key role in controlling systemic innate immunity, via pattern-recognition receptors (PRRs) and by synthesizing complement and acute phase proteins. Leishmania infantum, a protozoan parasite that causes human and canine leishmaniasis, infects liver by establishing inside the Kupffer cells. The current study proposes the elucidation of the immune response generated by dog hepatocytes when exposed to L. infantum. Additionally, the impact of adding leishmanicidal compound, meglumine antimoniate (MgA), to parasite-exposed hepatocytes was also addressed. L. infantum presents a high tropism to hepatocytes, establishing strong membrane interactions. The possibility of L. infantum internalization by hepatocytes was raised, but not confirmed. Hepatocytes were able to recognize parasite presence, inducing PRRs [nucleotide oligomerization domain (NOD)1, NOD2 and Toll-like receptor (TLR)2] gene expression and generating a mix pro- and anti-inflammatory cytokine response. Reduction of cytochrome P 450s enzyme activity was also observed concomitant with the inflammatory response. Addition of MgA increased NOD2, TLR4 and interleukin 10 gene expression, indicating an immunomodulatory role for MgA. Hepatocytes seem to have a major role in coordinating liver's innate immune response against L. infantum infection, activating inflammatory mechanisms, but always balancing the inflammatory response in order to avoid cell damage.
Collapse
|
53
|
Bunn PT, Montes de Oca M, de Labastida Rivera F, Kumar R, Ng SS, Edwards CL, Faleiro RJ, Sheel M, Amante FH, Frame TCM, Muller W, Haque A, Uzonna JE, Hill GR, Engwerda CR. Distinct Roles for CD4+ Foxp3+ Regulatory T Cells and IL-10–Mediated Immunoregulatory Mechanisms during Experimental Visceral Leishmaniasis Caused by Leishmania donovani. THE JOURNAL OF IMMUNOLOGY 2018; 201:3362-3372. [DOI: 10.4049/jimmunol.1701582] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
|
54
|
Lipase Precursor-Like Protein Promotes Miltefosine Tolerance in Leishmania donovani by Enhancing Parasite Infectivity and Eliciting Anti-inflammatory Responses in Host Macrophages. Antimicrob Agents Chemother 2018; 62:AAC.00666-18. [PMID: 30297367 DOI: 10.1128/aac.00666-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
The oral drug miltefosine (MIL) was introduced in the Indian subcontinent in the year 2002 for the treatment of visceral leishmaniasis (VL). However, recent reports on its declining efficacy and increasing relapse rates pose a serious concern. An understanding of the factors contributing to MIL tolerance in Leishmania parasites is critical. In the present study, we assessed the role of the lipase precursor-like protein (Lip) in conferring tolerance to miltefosine by episomally overexpressing Lip in Leishmania donovani (LdLip++). We observed a significant increase (∼3-fold) in the MIL 50% inhibitory concentration (IC50) at both the promastigote (3.90 ± 0.68 µM; P < 0.05) and intracellular amastigote (9.10 ± 0.60 µM; P < 0.05) stages compared to the wild-type counterpart (LdNeo) (MIL IC50s of 1.49 ± 0.20 µM at the promastigote stage and 3.95 ± 0.45 µM at the amastigote stage). LdLip++ parasites exhibited significantly (P < 0.05) increased infectivity to host macrophages and increased metacyclogenesis and tolerance to MIL-induced oxidative stress. The susceptibility of LdLip++ to other antileishmanial drugs (sodium antimony gluconate and amphotericin B) remained unchanged. In comparison to LdNeo, the LdLip++ parasites elicited high host interleukin-10 (IL-10) cytokine expression levels (1.6-fold; P < 0.05) with reduced expression of the cytokine tumor necrosis factor alpha (TNF-α) (1.5-fold; P < 0.05), leading to a significantly (P < 0.01) increased ratio of IL-10/TNF-α. The above-described findings suggest a role of lipase precursor-like protein in conferring tolerance to the oral antileishmanial drug MIL in L. donovani parasites.
Collapse
|
55
|
Agallou M, Pantazi E, Tsiftsaki E, Toubanaki DK, Gaitanaki C, Smirlis D, Karagouni E. Induction of protective cellular immune responses against experimental visceral leishmaniasis mediated by dendritic cells pulsed with the N-terminal domain of Leishmania infantum elongation factor-2 and CpG oligodeoxynucleotides. Mol Immunol 2018; 103:7-20. [PMID: 30173073 DOI: 10.1016/j.molimm.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/26/2022]
Abstract
Leishmania elongation factor 2 (EF-2) has been previously identified as a TH1-stimulatory protein. In this study, we assayed the protective potential of the N-terminal domain of EF-2 (N-LiEF-2, 1-357 aa) that has been predicted to contain several overlapping MHC class I and II-restricted epitopes injected in the form of dendritic cell (DC)-based vaccine. Ex vivo pulsing of DCs with the recombinant N-LiEF-2 domain along with CpG oligodeoxynucleotides (ODNs) resulted in their functional differentiation. BALB/c vaccinated with CpG-triggered DCs pulsed with N-LiEF-2 were found to be the most immune-reactive in terms of induction of DTH responses, increased T cell proliferation and IL-2 production. Moreover, vaccination induced antigen-specific TH1 type immune response as evidenced by increased IFN-γ and TNFα levels followed by a significant increase of nitrite (NO) and reactive oxygen species (ROS) in splenocyte cultures. Vaccinated mice showed a pronounced decrease in parasite load in spleen and liver when challenged with L. infantum, increased expression of Stat1 and Tbx21 mRNA transcripts versus reduced expression of Foxp3 transcripts and were able to produce significantly elevated levels of IL-2, IFN-γ and TNFα but not IL-10 compared to non-vaccinated mice. Both antigen and parasite-specific CD4+ T and CD8+ T cells contributed to the IFN-γ production indicating that both subtypes contribute to the resistance to infection and correlated with robust nitrite generation, critical in controlling Leishmania infection. Together, these findings demonstrated the immunogenic as well as protective potential of the N-terminal domain of Leishmania EF-2 when given with CpG-triggered DCs representing a basis for the development of rationalized vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Maria Agallou
- Laboratory of Parasite Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 115 21 Athens, Greece
| | - Eleni Pantazi
- Laboratory of Parasite Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 115 21 Athens, Greece; Department of Animal and Human Physiology, School of Biology, University of Athens, University Campus, 15784 Athens, Greece
| | - Elisavet Tsiftsaki
- Laboratory of Parasite Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 115 21 Athens, Greece; Department of Animal and Human Physiology, School of Biology, University of Athens, University Campus, 15784 Athens, Greece
| | - Dimitra K Toubanaki
- Laboratory of Parasite Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 115 21 Athens, Greece
| | - Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, University Campus, 15784 Athens, Greece
| | - Despina Smirlis
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 115 21 Athens, Greece
| | - Evdokia Karagouni
- Laboratory of Parasite Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 115 21 Athens, Greece.
| |
Collapse
|
56
|
Da Silva BJM, Pereira SWG, Rodrigues APD, Do Nascimento JLM, Silva EO. In vitro antileishmanial effects of Physalis angulata root extract on Leishmania infantum. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:404-410. [PMID: 30195443 DOI: 10.1016/j.joim.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE In the present study, we evaluated the effects of the aqueous extract of Physalis angulata root (AEPa) on Leishmania infantum proliferation, morphology, and the driving mechanism in leishmanicidal activity and modulatory action on macrophages. METHODS L. infantum promastigotes were treated with 50 and 100 µg/mL AEPa for 72 h and then antipromastigote assay was performed by counts in a Newbauer chamber, morphological changes were analyzed by transmission electron microscopy and the mechanism of the leishmanicidal activity was detected. In addition, macrophages were infected with L. infantum and were used to evaluate anti-amastigote activity of AEPa and effects of AEPa on cytokine secretion after 72-hour treatment. RESULTS Treatment with AEPa reduced the numbers of L. infantum promastigotes (50% inhibitory concentration (IC50) = 65.9 μg/mL; selectivity index (SI) = 22.1) and amastigotes (IC50 = 37.9 μg/mL; SI = 38.5) compared with the untreated control. Amphotericin B reduced 100% of the promastigote numbers after 72 h of treatment (IC50 = 0.2 μg/mL). AEPa induced several morphological changes and increased the production of reactive oxygen species and apoptotic death in promastigotes after treating for 72 h. AEPa (100 μg/mL) promoted tumor necrosis factor-α secretion in macrophages infected with L. infantum after 72 h of treatment, but did not induce an increase in this cytokine in noninfected macrophages. In addition, AEPa showed no cytotoxic effect on J774-A1 cells (50% cytotoxic concentration >1000 μg/mL). CONCLUSION AEPa presented antileishmanial activity against the promastigotes and amastigotes of L. infantum without macrophage cytotoxicity; these results show that natural products such as P. angulata have leishmanicidal potential and in the future may be an alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Bruno José Martins Da Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging (INCT-INBEB), Rio de Janeiro 21941-901, Brazil
| | - Sandro Wilson Gomes Pereira
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil
| | - Ana Paula Drummond Rodrigues
- Laboratory of Electron Microscopy, Department of Health Surveillance, Ministry of Health, Evandro Chagas Institute, Belém, Pará 66087-082, Brazil
| | - José Luiz Martins Do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-360, Brazil
| | - Edilene Oliveira Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging (INCT-INBEB), Rio de Janeiro 21941-901, Brazil.
| |
Collapse
|
57
|
Abstract
Visceral leishmaniasis (VL), a deadly parasitic disease, is a major public health concern globally. Countries affected by VL have signed the London Declaration on Neglected Tropical Diseases and committed to eliminate VL as a public health problem by 2020. To achieve and sustain VL elimination, it will become progressively important not to miss any remaining cases in the community who can maintain transmission. This requires accurate identification of symptomatic and asymptomatic carriers using highly sensitive diagnostic tools at the primary health service setting. The rK39 rapid diagnostic test (RDT) is the most widely used tool and with its good sensitivity and specificity is the first choice for decentralized diagnosis of VL in endemic areas. However, this test cannot discriminate between current, subclinical, or past infections and is useless for diagnosis of relapses and as a prognostic (cure) test. Importantly, as the goal of elimination of VL as a public health problem is approaching, the number of people susceptible to infection will increase. Therefore, correct diagnosis using a highly sensitive diagnostic test is crucial for applying appropriate treatment and management of cases. Recent advances in molecular techniques have improved Leishmania detection and quantification, and therefore this technology has become increasingly relevant due to its possible application in a variety of clinical sample types. Most importantly, given current problems in identifying asymptomatic individuals because of poor correlation between the main methods of detection, molecular tests are valuable for VL elimination programs, especially to monitor changes in burden of infection in specific communities. This review provides a comprehensive overview of the available VL diagnostics and discusses the usefulness of molecular methods in the diagnosis, quantification, and species differentiation as well as their clinical applications.
Collapse
Affiliation(s)
- Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India.
| |
Collapse
|
58
|
Suman SS, Amit A, Singh KP, Gupta P, Equbal A, Kumari A, Topno RK, Ravidas V, Pandey K, Bimal S, Das P, Ali V. Cytosolic tryparedoxin of Leishmania donovani modulates host immune response in visceral leishmaniasis. Cytokine 2018; 108:1-8. [DOI: 10.1016/j.cyto.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/28/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022]
|
59
|
Ontoria E, Hernández-Santana YE, González-García AC, López MC, Valladares B, Carmelo E. Transcriptional Profiling of Immune-Related Genes in Leishmania infantum-Infected Mice: Identification of Potential Biomarkers of Infection and Progression of Disease. Front Cell Infect Microbiol 2018; 8:197. [PMID: 30013952 PMCID: PMC6036295 DOI: 10.3389/fcimb.2018.00197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
Leishmania spp. is a protozoan parasite that affects millions of people around the world. At present, there is no effective vaccine to prevent leishmaniases in humans. A major limitation in vaccine development is the lack of precise understanding of the particular immunological mechanisms that allow parasite survival in the host. The parasite-host cell interaction induces dramatic changes in transcriptome patterns in both organisms, therefore, a detailed analysis of gene expression in infected tissues will contribute to the evaluation of drug and vaccine candidates, the identification of potential biomarkers, and the understanding of the immunological pathways that lead to protection or progression of disease. In this large-scale analysis, differential expression of 112 immune-related genes has been analyzed using high-throughput qPCR in spleens of infected and naïve Balb/c mice at four different time points. This analysis revealed that early response against Leishmania infection is characterized by the upregulation of Th1 markers and M1-macrophage activation molecules such as Ifng, Stat1, Cxcl9, Cxcl10, Ccr5, Cxcr3, Xcl1, and Ccl3. This activation doesn't protect spleen from infection, since parasitic burden rises along time. This marked difference in gene expression between infected and control mice disappears during intermediate stages of infection, probably related to the strong anti-inflammatory and immunosuppresory signals that are activated early upon infection (Ctla4) or remain activated throughout the experiment (Il18bp). The overexpression of these Th1/M1 markers is restored later in the chronic phase (8 wpi), suggesting the generation of a classical "protective response" against leishmaniasis. Nonetheless, the parasitic burden rockets at this timepoint. This apparent contradiction can be explained by the generation of a regulatory immune response characterized by overexpression of Ifng, Tnfa, Il10, and downregulation Il4 that counteracts the Th1/M1 response. This large pool of data was also used to identify potential biomarkers of infection and parasitic burden in spleen, on the bases of two different regression models. Given the results, gene expression signature analysis appears as a useful tool to identify mechanisms involved in disease outcome and to establish a rational approach for the identification of potential biomarkers useful for monitoring disease progression, new therapies or vaccine development.
Collapse
Affiliation(s)
- Eduardo Ontoria
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Yasmina E. Hernández-Santana
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Ana C. González-García
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Manuel C. López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Emma Carmelo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
60
|
Emami T, Rezayat SM, Khamesipour A, Madani R, Habibi G, Hojatizade M, Jaafari MR. The role of MPL and imiquimod adjuvants in enhancement of immune response and protection in BALB/c mice immunized with soluble Leishmania antigen (SLA) encapsulated in nanoliposome. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:324-333. [PMID: 29607698 DOI: 10.1080/21691401.2018.1457042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adjuvants play an essential role in the induction of immunity against leishmaniasis. In this study, monophosphoryl lipid A (MPL) and imiquimod (IMQ) were used as TLR ligands adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Nanoliposomes containing soluble Leishmania antigens (SLA) and adjuvants were consisted of DSPC, DSPG and Chol prepared by using lipid film method followed by bath sonication. The size of nanoliposomes was around 95 nm and their zeta potential was negative. BALB/c mice were immunized by liposomal formulations of lip/SLA, lip/MPL/SLA, lip/IMQ/SLA, lip/MPL/IMQ/SLA, lip/SLA + lip/IMQ, lip/SLA + lip/MPL, lip/SLA + lip/MPL/IMQ and five controls of SLA, lip/MPL, lip/IMQ, lip/MPL/IMQ and buffer by subcutaneously (SC) injections, three times in 2 weeks intervals. The synergic effect of two adjuvants when they are used in one formulation showed significantly (p < .001) smaller footpad swelling and the lowest parasite burden in lymph node and foot after the challenge. IgG2a in these groups showed the higher titre compared to control groups, which is compatible with the high IFN-γ production and lowest IL-4. Taken together the results indicated that co-delivery of MPL and IMQ adjuvants and antigen in nanoliposome carrier could be an appropriate delivery system to induce cellular immunity pathway against leishmaniasis.
Collapse
Affiliation(s)
- Tara Emami
- a Department of Medical Nanotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Proteomics and Biochemistry , Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization(AREEO) , Karaj , Iran
| | - Seyed Mahdi Rezayat
- a Department of Medical Nanotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Ali Khamesipour
- c Center for Research and Training in Skin Diseases and Leprosy , Tehran University of Medical Sciences , Tehran , Iran
| | - Rasool Madani
- b Department of Proteomics and Biochemistry , Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization(AREEO) , Karaj , Iran
| | - Gholamreza Habibi
- d Department of Parasite Vaccine Research and Production , Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization(AREEO) , Karaj , Iran
| | - Mansure Hojatizade
- e Department of Basic Medical Sciences , Neyshabur University of Medical Sciences , Neyshabur , Iran
| | - Mahmoud Reza Jaafari
- f Nanotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran.,g Department of Pharmaceutical Nanotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
61
|
Achievement amastigotes of Leishmania infantum and investigation of pathological changes in the tissues of infected golden hamsters. J Parasit Dis 2018; 42:187-195. [PMID: 29844622 DOI: 10.1007/s12639-018-0981-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/20/2018] [Indexed: 10/17/2022] Open
Abstract
Leishmania infantum is an agent of visceral leishmaniasis (VL). Amastigote form is a more appropriate target for investigations on vaccines, treatment, and diagnosis. This study aimed to achieve the amastigotes of L. infantum in the golden hamster and J774 macrophages and report the pathological changes that occur in the liver and spleen of the hamsters with VL. 4 male golden hamsters were infected with L. infantum promastigotes. After 5 months, the hamsters were euthanized and touch and pathology smears were prepared from the livers and spleens. Then, these tissues were homogenized and centrifuged at 100×g. Supernatants were collected and centrifuged at 2000×g and the pellets were collected. In the next part of our study, J774 macrophages were infected with L. infantum promastigotes. Then, the infected macrophages were ruptured. Centrifuge stages were done same the previous part. The amastigotes were observed in touch and pathology smears. A load of amastigotes in the livers was more than the spleens in both types of smears. Although the livers' structure had undergone pathological changes, the spleens were unchanged. Also, the macrophage infectivity ratio was up to 95%. Our results present a simple and accessible way of achieving a lot of pure and real amastigotes for different fields in Leishmania. Also, it seems that the pathological changes occurring in the spleen and the liver of animals with VL are different and probably can be attributed to the genetic and immune process of the infected animals.
Collapse
|
62
|
Vishwakarma P, Parmar N, Chandrakar P, Sharma T, Kathuria M, Agnihotri PK, Siddiqi MI, Mitra K, Kar S. Ammonium trichloro [1,2-ethanediolato-O,O']-tellurate cures experimental visceral leishmaniasis by redox modulation of Leishmania donovani trypanothione reductase and inhibiting host integrin linked PI3K/Akt pathway. Cell Mol Life Sci 2018; 75:563-588. [PMID: 28900667 PMCID: PMC11105478 DOI: 10.1007/s00018-017-2653-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
In an endeavor to search for affordable and safer therapeutics against debilitating visceral leishmaniasis, we examined antileishmanial potential of ammonium trichloro [1,2-ethanediolato-O,O']-tellurate (AS101); a tellurium based non toxic immunomodulator. AS101 showed significant in vitro efficacy against both Leishmania donovani promastigotes and amastigotes at sub-micromolar concentrations. AS101 could also completely eliminate organ parasite load from L. donovani infected Balb/c mice along with significant efficacy against infected hamsters (˃93% inhibition). Analyzing mechanistic details revealed that the double edged AS101 could directly induce apoptosis in promastigotes along with indirectly activating host by reversing T-cell anergy to protective Th1 mode, increased ROS generation and anti-leishmanial IgG production. AS101 could inhibit IL-10/STAT3 pathway in L. donovani infected macrophages via blocking α4β7 integrin dependent PI3K/Akt signaling and activate host MAPKs and NF-κB for Th1 response. In silico docking and biochemical assays revealed AS101's affinity to form thiol bond with cysteine residues of trypanothione reductase in Leishmania promastigotes leading to its inactivation and inducing ROS-mediated apoptosis of the parasite via increased Ca2+ level, loss of ATP and mitochondrial membrane potential along with metacaspase activation. Our findings provide the first evidence for the mechanism of action of AS101 with excellent safety profile and suggest its promising therapeutic potential against experimental visceral leishmaniasis.
Collapse
Affiliation(s)
- Preeti Vishwakarma
- Division of Parasitology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi, India
| | - Naveen Parmar
- Division of Parasitology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi, India
| | - Pragya Chandrakar
- Division of Parasitology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi, India
| | - Tanuj Sharma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manoj Kathuria
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pramod K Agnihotri
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi, India
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kalyan Mitra
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi, India
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Susanta Kar
- Division of Parasitology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India.
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi, India.
| |
Collapse
|
63
|
Salguero FJ, Garcia-Jimenez WL, Lima I, Seifert K. Histopathological and immunohistochemical characterisation of hepatic granulomas in Leishmania donovani-infected BALB/c mice: a time-course study. Parasit Vectors 2018; 11:73. [PMID: 29386047 PMCID: PMC5793367 DOI: 10.1186/s13071-018-2624-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a neglected tropical disease (NTD), caused by the intracellular protozoan parasites Leishmania donovani and Leishmania infantum. Symptomatic VL is considered fatal when left untreated. At present, there is no effective vaccine licensed for human use and available chemotherapies have limitations. Understanding the local immune mechanisms required for the control of infection is a key factor for developing effective vaccines and therapeutics. METHODS We have investigated the development of the typical granulomatous lesions in the liver in experimental VL over time, together with the local immune responses. BALB/c mice were infected intravenously with a dose of 2 × 107 L. donovani amastigotes (MHOM/ET/67/HU3) and sacrificed at 15, 35 and 63 days post-infection (dpi). Histopathology and immunohistochemical techniques were used for the detection of Leishmania antigen, selected cell types including B and T lymphocytes, macrophages and neutrophils (CD45R-B220+, CD3+, F4/80+ and Ly-6G+) and iNOS. RESULTS Granulomatous lesions were identified as early as 15 dpi in the livers of all infected animals. Three categories were used to classify liver granulomas (immature, mature and clear). Clear granulomas were exclusively detected from 35 dpi onwards. Kupffer cells (F4/80+) were predominant in immature granulomas, regardless of the dpi. Nonetheless, the highest expression was found 63 dpi. Positive staining for iNOS was mainly observed in the cytoplasm of fused Kupffer cells and the highest expression observed at 35 dpi. T cells (CD3+) and B cells (CD45R-B220+) were predominant in more advanced granuloma stages, probably related to the establishment of acquired immunity. Neutrophils (Ly-6G+) were predominantly observed in mature granulomas with the highest expression at 15 dpi. Neutrophils were lower in numbers compared to other cell types, particularly at later time points. CONCLUSIONS Our results reflect the role of macrophages during the early stage of infection and the establishment of a lymphocytic response to control the infection in more advanced stages.
Collapse
Affiliation(s)
- Francisco J Salguero
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Waldo L Garcia-Jimenez
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Isadora Lima
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.,Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Salvador, Bahia, Brazil
| | - Karin Seifert
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
64
|
Ferreira Alves VA, Abdalla E. Nonviral Infections of the Liver. PRACTICAL HEPATIC PATHOLOGY: A DIAGNOSTIC APPROACH 2018:265-286. [DOI: 10.1016/b978-0-323-42873-6.00018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
65
|
Dias DS, Ribeiro PA, Martins VT, Lage DP, Ramos FF, Dias AL, Rodrigues MR, Portela ÁS, Costa LE, Caligiorne RB, Steiner BT, Chávez-Fumagalli MA, Salles BC, Santos TT, Silveira JA, Magalhães-Soares DF, Roatt BM, Machado-de-Ávila RA, Duarte MC, Menezes-Souza D, Silva ES, Galdino AS, Coelho EA. Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cell Immunol 2018; 323:59-69. [DOI: 10.1016/j.cellimm.2017.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
66
|
Banerjee A, Bhattacharya P, Dagur PK, Karmakar S, Ismail N, Joshi AB, Akue AD, KuKuruga M, McCoy JP, Dey R, Nakhasi HL. Live Attenuated Leishmania donovani Centrin Gene-Deleted Parasites Induce IL-23-Dependent IL-17-Protective Immune Response against Visceral Leishmaniasis in a Murine Model. THE JOURNAL OF IMMUNOLOGY 2017; 200:163-176. [PMID: 29187586 DOI: 10.4049/jimmunol.1700674] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022]
Abstract
No vaccine exists against visceral leishmaniasis. To develop effective vaccines, we have previously reported protective role of live attenuated centrin gene-deleted Leishmania donovani (LdCen-/- ) parasites through induction of Th1 type immune response in mice, hamsters, and dogs. In this study, we specifically explored the role of Th17 cells in LdCen-/- -induced host protection in mice. Our results showed that compared with wild-type L. donovani infection, LdCen-/- parasites induce significantly higher expression of Th17 differentiation cytokines in splenic dendritic cells. There was also induction of IL-17 and its promoting cytokines in total splenocytes and in both CD4 and CD8 T cells following immunization with LdCen-/- Upon challenge with wild-type parasites, IL-17 and its differentiating cytokines were significantly higher in LdCen-/- -immunized mice compared with nonimmunized mice that resulted in parasite control. Alongside IL-17 induction, we observed induction of IFN-γ-producing Th1 cells as reported earlier. However, Th17 cells are generated before Th1 cells. Neutralization of either IL-17 or IFN-γ abrogated LdCen-/- -induced host protection further confirming the essential role of Th17 along with Th1 cytokines in host protection. Treatment with recombinant IL-23, which is required for stabilization and maintenance of IL-17, heightened Th17, and Tc17 responses in immunized mice splenocytes. In contrast, Th17 response was absent in immunized IL-23R-/- mice that failed to induce protection upon virulent Leishmania challenge suggesting that IL-23 plays an essential role in IL-17-mediated protection by LdCen-/- parasites. This study unveiled the role of IL-23-dependent IL-17 induction in LdCen-/- parasite-induced immunity and subsequent protection against visceral leishmaniasis.
Collapse
Affiliation(s)
- Antara Banerjee
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993.,Department of Zoology, Bangabasi College, Kolkata, 700016 West Bengal, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Amritanshu B Joshi
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Adovi D Akue
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Mark KuKuruga
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - John Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993;
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993;
| |
Collapse
|
67
|
Bagues NCT, Pinheiro CGMD, Bastos LA, Fraga DBM, Veras PST, Pontes-de-Carvalho LC, Dos-Santos WLC, Oliveira GGDS. Parasitic load and histological aspects in different regions of the spleen of dogs with visceral leishmaniasis. Comp Immunol Microbiol Infect Dis 2017; 56:14-19. [PMID: 29406277 DOI: 10.1016/j.cimid.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 01/19/2023]
Abstract
Leishmania infantum causes from subclinical infection to severe disease in humans and dogs. The spleen is one of the organs most affected by the infection. Although evidence exists that the parasitic load distribution and histological alterations may not be homogeneous in the affected organs of naturally infected individuals, it has not been formally demonstrated using the current techniques used for studying the disease. In six dogs naturally infected with Leishmania, parasitic load and histological changes were compared in samples collected from the lower, middle and upper third of the spleen. Parasitic load in the spleen of the group of dogs was variable, revealing a difference of 61 times between animals with the lowest and the highest parasitism. The set of parasitic load values of each dog showed a cluster trend, when compared to the other animals. Nevertheless, the parasitic load values of each dog showed a variation ranging from 3.2 to 34.7 times between lowest and highest value. Histological changes showed recognizable variation in frequency (granulomas) or intensity (perisplenitis) in the spleen of 2 out of the 6 dogs. The agreement of histological findings between samples collected from the different thirds of the spleen was good (kappa coeficient, 0.61-0.80) very good (0.81-0.99) or perfect (1.00), for most of the parameters analyzed. Variability of parasitic load and, to a lesser extent, histological changes in spleen of dogs with visceral leishmaniasis is observed. Such variability may be taken in account in the design of studies on pathogenesis, vaccine and therapeutic drug development.
Collapse
Affiliation(s)
| | | | - Leila Andrade Bastos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil.
| | - Deborah Bittencourt Mothé Fraga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Escola de Medicina Veterinária, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Brazil.
| | - Patrícia Sampaio Tavares Veras
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Brazil.
| | | | | | - Geraldo Gileno de Sá Oliveira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Brazil.
| |
Collapse
|
68
|
Bunn PT, Montes de Oca M, Rivera FDL, Kumar R, Edwards CL, Faleiro RJ, Ng SS, Sheel M, Wang Y, Amante FH, Haque A, Engwerda CR. Galectin-1 Impairs the Generation of Anti-Parasitic Th1 Cell Responses in the Liver during Experimental Visceral Leishmaniasis. Front Immunol 2017; 8:1307. [PMID: 29075269 PMCID: PMC5643427 DOI: 10.3389/fimmu.2017.01307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022] Open
Abstract
Many infectious diseases are characterized by the development of immunoregulatory pathways that contribute to pathogen persistence and associated disease symptoms. In diseases caused by intracellular parasites, such as visceral leishmaniasis (VL), various immune modulators have the capacity to negatively impact protective CD4+ T cell functions. Galectin-1 is widely expressed on immune cells and has previously been shown to suppress inflammatory responses and promote the development of CD4+ T cells with immunoregulatory characteristics. Here, we investigated the role of galectin-1 in experimental VL caused by infection of C57BL/6 mice with Leishmania donovani. Mice lacking galectin-1 expression exhibited enhanced tissue-specific control of parasite growth in the liver, associated with an augmented Th1 cell response. However, unlike reports in other experimental models, we found little role for galectin-1 in the generation of IL-10-producing Th1 (Tr1) cells, and instead report that galectin-1 suppressed hepatic Th1 cell development. Furthermore, we found relatively early effects of galectin-1 deficiency on parasite growth, suggesting involvement of innate immune cells. However, experiments investigating the impact of galectin-1 deficiency on dendritic cells indicated that they were not responsible for the phenotypes observed in galectin-1-deficient mice. Instead, studies examining galectin-1 expression by CD4+ T cells supported a T cell intrinsic role for galectin-1 in the suppression of hepatic Th1 cell development during experimental VL. Together, our findings provide new information on the roles of galectin-1 during parasitic infection and indicate an important role for this molecule in tissue-specific Th1 cell development, but not CD4+ T cell IL-10 production.
Collapse
Affiliation(s)
- Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Institute of Glycomics, Griffith University, Gold Coast, QLD, Australia
| | | | | | - Rajiv Kumar
- Department of Biochemistry, Banaras Hindu University, Varanasi, India
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Natural Sciences, Griffith University, Nathan, QLD, Australia
| | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | |
Collapse
|
69
|
Figueiredo WME, Viana SDM, Alves DT, Guerra PV, Coêlho ZCB, Barbosa HS, Teixeira MJ. Protection mediated by chemokine CXCL10 in BALB/c mice infected by Leishmania infantum. Mem Inst Oswaldo Cruz 2017; 112:561-568. [PMID: 28767981 PMCID: PMC5530548 DOI: 10.1590/0074-02760160529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/04/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) caused by Leishmania infantum is characterised by the loss of the ability of the host to generate an effective immune response. Chemokines have a direct involvement in the pathogenesis of leishmaniasis, causing a rapid change in the expression of these molecules during infection by Leishmania. OBJECTIVES Herein, it was investigated the role of CXCL10 in controlling infection by L. infantum. METHODS RAW 264.7 macrophages were infected with L. infantum in vitro and treated or not with CXCL10 (25, 50 and 100 ng/mL). Parasite load, as well as nitric oxide (NO), IL-4 and IL-10 production were assessed at 24 and 48 h after infection. In vivo, BALB/c mice were infected and treated or not with CXCL10 (5 μg/kg) at one, three and seven days of infection. Parasite load, IFN-g, IL-4, TGF-β and IL-10 were evaluated one, seven and 23 days post treatment. FINDINGS In vitro, CXCL10 reduced parasitic load, not dependent on NO, and inhibited IL-10 and IL-4 secretion. In vivo, CXCL10 was able to reduce the parasite load in both liver and spleen, four weeks after infection, representing a higher decrease in the number of parasites in these organs, also induced IFN-γ at day 23 after treatment, correlating with the decrease in parasite load, and reduced IL-10 and TGF-β. MAIN CONCLUSIONS This study suggests a partial protective role of CXCL10 against L. infantum, mediated by IFN-g, not dependent on NO, and with suppression of IL-10 and TGF-β. These data may provide information for the development of new approaches for future therapeutic interventions for VL.
Collapse
Affiliation(s)
| | - Sayonara de Melo Viana
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Fortaleza, CE, Brasil
| | - Dorotheia Teixeira Alves
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Fortaleza, CE, Brasil
| | - Priscila Valera Guerra
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Fortaleza, CE, Brasil
| | - Zirlane Castelo Branco Coêlho
- Universidade Federal do Ceará, Faculdade de Farmácia, Odontologia e Enfermagem, Departamento de Análise Clínica, Fortaleza, CE, Brasil
| | - Helene Santos Barbosa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Estrutural, Rio de Janeiro, RJ, Brasil
| | - Maria Jania Teixeira
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Fortaleza, CE, Brasil
| |
Collapse
|
70
|
Berger BA, Bartlett AH, Saravia NG, Galindo Sevilla N. Pathophysiology of Leishmania Infection during Pregnancy. Trends Parasitol 2017; 33:935-946. [PMID: 28988681 DOI: 10.1016/j.pt.2017.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
The pathological processes resulting from parasitic infection are known to have important impacts on the mother child dyad during pregnancy. The roles of parasite transmission and the maternal immune response have been described in diseases such as malaria, toxoplasmosis, and trypanosomiasis. However, the impact of parasites of the genus Leishmania, etiological agents of the neglected tropical diseases tegumentary leishmaniasis (TL) and visceral leishmaniasis (VL), is comparatively less well known, though it is an increasingly recognized concern for infected mothers and their fetuses. In this review, we first consider the pathophysiology of placental infection and transplacental transmission of this parasite, and then discuss the role and mechanisms of the maternal immune system in simultaneously mediating maternal-fetal infection and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Brandon A Berger
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA.
| | - Allison H Bartlett
- University of Chicago Comer Children's Hospital, Section of Infectious Disease, Chicago, IL, USA
| | - Nancy Gore Saravia
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia
| | - Norma Galindo Sevilla
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
71
|
Rodrigues A, Santos-Mateus D, Alexandre-Pires G, Valério-Bolas A, Rafael-Fernandes M, Pereira MA, Ligeiro D, de Jesus J, Alves-Azevedo R, Lopes-Ventura S, Santos M, Tomás AM, Pereira da Fonseca I, Santos-Gomes G. Leishmania infantum exerts immunomodulation in canine Kupffer cells reverted by meglumine antimoniate. Comp Immunol Microbiol Infect Dis 2017; 55:42-52. [PMID: 29127992 DOI: 10.1016/j.cimid.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023]
Abstract
Kupffer cells (KC) are the liver macrophage population that resides in the hepatic sinusoids and efficiently phagocyte pathogens by establishing an intimate contact with circulating blood. KC constitute the liver host cells in Leishmania infection, nevertheless little is described about their role, apart from their notable contribution in granulomatous inflammation. The present study aims to investigate how canine KC sense and react to the presence of Leishmania infantum promastigotes and amastigotes by evaluating the gene expression of specific innate immune cell receptors and cytokines, as well as the induction of nitric oxide and urea production. Complementarily, the impact of a leishmanicidal drug - meglumine antimoniate (MgA) - in infected KC was also explored. KC revealed to be susceptible to both parasite forms and no major differences were found in the immune response generated. L. infantum parasites seem to interact with KC innate immune receptors and induce an anergic state, promoting immune tolerance and parasite survival. The addition of MgA to infected KC breaks the parasite imposed silence and increased gene expression of Toll-like receptors (TLR) 2 and TLR4, possibly activating downstream pathways. Understanding how KC sense and react to parasite presence could bring new insights into the control or even elimination of canine leishmaniasis.
Collapse
Affiliation(s)
- A Rodrigues
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - D Santos-Mateus
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - G Alexandre-Pires
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - A Valério-Bolas
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - M Rafael-Fernandes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - M A Pereira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - D Ligeiro
- IPST-Instituto Português do Sangue e da Transplantação - Centro do sangue e da transplantação de Lisboa, Portugal
| | - J de Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Brazil
| | - R Alves-Azevedo
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - S Lopes-Ventura
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - M Santos
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - A M Tomás
- I3S, Instituto de Investigação e Inovação em Saúde, IBMC, Instituto de Biologia Molecular e Celular and ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - I Pereira da Fonseca
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - G Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| |
Collapse
|
72
|
|
73
|
Moura AP, Santos LCB, Brito CRN, Valencia E, Junqueira C, Filho AAP, Sant’Anna MRV, Gontijo NF, Bartholomeu DC, Fujiwara RT, Gazzinelli RT, McKay CS, Sanhueza CA, Finn MG, Marques AF. Virus-like Particle Display of the α-Gal Carbohydrate for Vaccination against Leishmania Infection. ACS CENTRAL SCIENCE 2017; 3:1026-1031. [PMID: 28979944 PMCID: PMC5620979 DOI: 10.1021/acscentsci.7b00311] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Secreted and surface-displayed carbohydrates are essential for virulence and viability of many parasites, including for immune system evasion. We have identified the α-Gal trisaccharide epitope on the surface of the protozoan parasites Leishmania infantum and Leishmania amazonensis, the etiological agents of visceral and cutaneous leishmaniasis, respectively, with the latter bearing larger amounts of α-Gal than the former. A polyvalent α-Gal conjugate on the immunogenic Qβ virus-like particle was tested as a vaccine against Leishmania infection in a C57BL/6 α-galactosyltransferase knockout mouse model, which mimics human hosts in producing high titers of anti-α-Gal antibodies. As expected, α-Gal-T knockout mice infected with promastigotes of both Leishmania species showed significantly lower parasite load in the liver and slightly decreased levels in the spleen, compared with wild-type mice. Vaccination with Qβ-α-Gal nanoparticles protected the knockout mice against Leishmania challenge, eliminating the infection and proliferation of parasites in the liver and spleen as probed by qPCR. The α-Gal epitope may therefore be considered as a vaccine candidate to block human cutaneous and visceral leishmaniasis.
Collapse
Affiliation(s)
- Anna Paula
V. Moura
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza C. B. Santos
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Ramon Nascimento Brito
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Edward Valencia
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline Junqueira
- Instituto
de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Adalberto A. P. Filho
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio R. V. Sant’Anna
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nelder F. Gontijo
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella C. Bartholomeu
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Fujiwara
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Gazzinelli
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Craig S. McKay
- School
of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carlos A. Sanhueza
- School
of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - M. G. Finn
- School
of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandre Ferreira Marques
- Instituto
de Ciencias Biologicas, Departamento de Parasitologia, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
74
|
de Almeida L, Passalacqua TG, Dutra LA, Fonseca JNVD, Nascimento RFQ, Imamura KB, de Andrade CR, Dos Santos JL, Graminha MAS. In vivo antileishmanial activity and histopathological evaluation in Leishmania infantum infected hamsters after treatment with a furoxan derivative. Biomed Pharmacother 2017; 95:536-547. [PMID: 28866421 DOI: 10.1016/j.biopha.2017.08.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022] Open
Abstract
N-oxide derivatives compounds such as furoxan and benzofuroxan are promising scaffolds for designing of new antileishmanial drugs. A series of furoxan (1,2,5-oxadiazole 2-N-oxide) (compounds 4a-b, and 14a-f) and benzofuroxan (benzo[c][1,2,5]oxadiazole1-N-oxide) (compounds 8a-c) derivatives were evaluated against in vitro cultured L. infantum promastigotes and amastigotes. The compounds exhibited activity against promastigote and intracellular amastigote forms with EC50 values ranging from 2.9 to 71.2μM and 2.1 to 18.2μM, respectively. The most promising compound, 14e, showed good antileishmanial activity (EC50=3.1μM) against intracellular amastigote forms of L. infantum with a selectivity index, based on murine macrophages (SI=66.4), almost 3-times superior to that presented by the standard drug amphotericin B (AmpB). The efficacy of 14e to eliminate the parasites in vivo was also demonstrated. Treatment of L. infantum-infected hamsters with compound 14e at 3.0mg/Kg/day led to a meaningful reduction of parasite load in spleen (49.9%) and liver (54.2%), respectively; these data were corroborated by histopathological analysis, which also revealed reduction in the number of inflammatory cells in the liver of the treated animals. Moreover, histological analysis of the spleen and kidney of treated animals did not reveal alterations suggestive of toxic effects. The parasite load reduction might be related to NO production, since this molecule is a NO-donor. We observed neither side effects nor elevation of hepatic/renal biomarker levels in the plasma. The data herein presented suggest that the compound should be considered in the development of new drugs for treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Letícia de Almeida
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | - Thaís Gaban Passalacqua
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | - Luiz Antonio Dutra
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | | | | | - Kely Braga Imamura
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | | | - Jean Leandro Dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | - Márcia A S Graminha
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil.
| |
Collapse
|
75
|
Soares RR, Antinarelli LMR, Abramo C, Macedo GC, Coimbra ES, Scopel KKG. What do we know about the role of regulatory B cells (Breg) during the course of infection of two major parasitic diseases, malaria and leishmaniasis? Pathog Glob Health 2017; 111:107-115. [PMID: 28353409 PMCID: PMC5445636 DOI: 10.1080/20477724.2017.1308902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parasitic diseases, such as malaria and leishmaniasis, are relevant public health problems worldwide. For both diseases, the alarming number of clinical cases and deaths reported annually has justified the incentives directed to better understanding of host's factors associated with susceptibility to infection or protection. In this context, over recent years, some studies have given special attention to B lymphocytes with a regulator phenotype, known as Breg cells. Essentially important in the maintenance of immunological tolerance, especially in autoimmune disease models such as rheumatoid arthritis and experimentally induced autoimmune encephalomyelitis, the function of these lymphocytes has so far been poorly explored during the course of diseases caused by parasites. As the activation of Breg cells has been proposed as a possible therapeutic or vaccine strategy against several diseases, here we reviewed studies focused on understanding the relation of parasite and Breg cells in malaria and leishmaniasis, and the possible implications of these strategies in the course of both infections.
Collapse
|
76
|
Jesus JA, Fragoso TN, Yamamoto ES, Laurenti MD, Silva MS, Ferreira AF, Lago JHG, Santos-Gomes G, Passero LFD. Therapeutic effect of ursolic acid in experimental visceral leishmaniasis. Int J Parasitol Drugs Drug Resist 2017; 7:1-11. [PMID: 27984757 PMCID: PMC5156607 DOI: 10.1016/j.ijpddr.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is an important neglected tropical disease, affecting more than 12 million people worldwide. The available treatments are not well tolerated and present diverse side effects in patients, justifying the search for new therapeutic compounds. In the present study, the therapeutic potential and toxicity of ursolic acid (UA), isolated from the leaves of Baccharis uncinella C. DC. (Asteraceae), were evaluated in experimental visceral leishmaniasis. To evaluate the therapeutic potential of UA, hamsters infected with L. (L.) infantum were treated daily during 15 days with 1.0 or 2.0 mg UA/kg body weight, or with 5.0 mg amphotericin B/kg body weight by intraperitoneal route. Fifteen days after the last dose, the parasitism of the spleen and liver was stimated and the main histopathological alterations were recorded. The proliferation of splenic mononuclear cells was evaluated and IFN-γ, IL-4, and IL-10 gene expressions were analyzed in spleen fragments. The toxicity of UA and amphotericin B were evaluated in healthy golden hamsters by histological analysis and biochemical parameters. Animals treated with UA had less parasites in the spleen and liver when compared with the infected control group, and they also showed preservation of white and red pulps, which correlate with a high rate of proliferation of splenic mononuclear cells, IFN-γ mRNA and iNOS production. Moreover, animals treated with UA did not present alterations in the levels of AST, ALT, creatinine and urea. Taken together, these findings indicate that UA is an interesting natural compound that should be considered for the development of prototype drugs against visceral leishmaniasis.
Collapse
Affiliation(s)
- Jéssica A Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil; Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Thais N Fragoso
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Marcelo S Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Aurea F Ferreira
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Gabriela Santos-Gomes
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Luiz Felipe D Passero
- São Paulo State University (Unesp), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil.
| |
Collapse
|
77
|
Sacramento LA, da Costa JL, de Lima MHF, Sampaio PA, Almeida RP, Cunha FQ, Silva JS, Carregaro V. Toll-Like Receptor 2 Is Required for Inflammatory Process Development during Leishmania infantum Infection. Front Microbiol 2017; 8:262. [PMID: 28280488 PMCID: PMC5322192 DOI: 10.3389/fmicb.2017.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Visceral leishmaniasis (VL) is a chronic and fatal disease caused by Leishmania infantum in Brazil. Leukocyte recruitment to infected tissue is a crucial event for the control of infections such as VL. Among inflammatory cells, neutrophils are recruited to the site of Leishmania infection, and these cells may control parasite replication through oxidative or non-oxidative mechanisms. The recruitment, activation and functions of the neutrophils are coordinated by pro-inflammatory cytokines and chemokines during recognition of the parasite by pattern recognition receptors (PRRs). Here, we demonstrated that the Toll-like receptor 2 (TLR2) signaling pathway contributes to the development of the innate immune response during L. infantum infection. The protective mechanism is related to the appropriate recruitment of neutrophils to the inflammatory site. Neutrophil migration is coordinated by DCs that produce CXCL1 and provide a prototypal Th1 and Th17 environment when activated via TLR2. Furthermore, infected TLR2−/− mice failed to induce nitric oxide synthase (iNOS) expression in neutrophils but not in macrophages. In vitro, infected TLR2−/− neutrophils presented deficient iNOS expression, nitric oxide (NO) and TNF-α production, decreased expression of CD11b and reduced L. infantum uptake capacity. The non-responsive state of neutrophils is associated with increased amounts of IL-10. Taken together, these data clarify new mechanisms by which TLR2 functions in promoting the development of the adaptive immune response and effector mechanisms of neutrophils during L. infantum infection.
Collapse
Affiliation(s)
- Laís A Sacramento
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Brazil
| | - Jéssica L da Costa
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Brazil
| | - Mikhael H F de Lima
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Brazil
| | - Pedro A Sampaio
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Brazil
| | - Roque P Almeida
- Center for Biology and Health Sciences, Federal University of Sergipe Aracaju, Brazil
| | - Fernando Q Cunha
- Department of Biochemistry and Immunology, University of São PauloRibeirão Preto, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
78
|
Singh N, Sundar S. Inflammatory chemokines and their receptors in human visceral leishmaniasis: Gene expression profile in peripheral blood, splenic cellular sources and their impact on trafficking of inflammatory cells. Mol Immunol 2017; 85:111-119. [PMID: 28222329 DOI: 10.1016/j.molimm.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/05/2017] [Accepted: 02/11/2017] [Indexed: 01/06/2023]
Abstract
Chemokines play an important role in determining cellular composition at inflammatory sites, and as such, influence disease outcome. In this study, we investigated the expression profile and splenic cellular source of various inflammatory chemokines and their receptors in human visceral leishmaniasis (VL). The expression of chemokines or their receptors was measured at the gene and protein level by employing real time qPCR and a cytometric bead array assay, respectively. In addition, the cellular source of chemokines and their receptors in the spleen was identified employing gene expression analyses in sequentially selected cell subsets. We identified elevated expression of CXCL10, CXCL9, CXCL8, and decreased CCL2 from VL patients. Further, we found reduced expression of the chemokine receptors CXCR1, CXCR2, CXCR3 and CCR2, but increased expression of CCR7 on VL PBMC, compared to endemic healthy controls. Additionally, splenic monocytes were found to be the major source of CXCL10, CXCL9 and CCR2, whereas T cells were the main source of CXCR3 and CCR7. We also report a strong association between plasma IFN-γ and CXCL-10, CXCL-9 levels. Enhanced parasite burden positively correlates with increased expression of CXCL10, CXCL9, IFN-γ and IL-10. Overall our result indicates that VL patients have an elevated inflammatory chemokine milieu which correlated with disease severity. However, expression of their chemokine receptors was significantly impaired, which may have contributed to reduced frequencies of blood monocytes and neutrophils in peripheral blood. In contrast, enhanced expression of CCR7 was associated with increased numbers of activated T cells in circulation. These findings highlight the importance of chemokines for recruitment of various cell populations in VL, and the knowledge gained may help in global understandings of the complex interaction between chemokines and pathological processes, and therefore will contribute towards the design of novel chemokine based immunological therapies against VL.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
79
|
B-1 cells contribute to susceptibility in experimental infection with Leishmania (Leishmania) chagasi. Parasitology 2016; 142:1506-15. [PMID: 26416198 DOI: 10.1017/s0031182015000943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The immune response to leishmaniasis is complex, and the result of infection depends on both the genetic composition of the Leishmania species and the immunity of the host. Clinical and experimental evidence suggest that the activation of B cells leads to exacerbation of visceral leishmaniasis. However, the role of B-1 cells (a subtype of B lymphocytes) in the pathogenesis of experimental visceral leishmaniasis has not yet been elucidated. In this study, we investigated the importance of B-1 cells in experimental infection with Leishmania. (L.) chagasi. Our results showed that BALB/XID mice (X-linked immunodeficient mice which are genetically deficient in B-1 cells) infected with L. (L.) chagasi for 45 days had a significant reduction in parasite load in the spleen when compared with control mice. Cytokine analysis showed that the BALB/XID mice had lower amounts of IL-10 in their sera compared with control group. In addition, the transfer of B-1 cells from wild type mice into IL-10KO animals led to an increase in susceptibility to L. (L.) chagasi infection in the IL-10KO mice, suggesting that the IL-10 produced by these cells is important in experimental infection. Our results suggest that B-1 cells may play an important role in susceptibility to L. (L.) chagasi.
Collapse
|
80
|
The Challenge of Stability in High-Throughput Gene Expression Analysis: Comprehensive Selection and Evaluation of Reference Genes for BALB/c Mice Spleen Samples in the Leishmania infantum Infection Model. PLoS One 2016; 11:e0163219. [PMID: 27668434 PMCID: PMC5036817 DOI: 10.1371/journal.pone.0163219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
The interaction of Leishmania with BALB/c mice induces dramatic changes in transcriptome patterns in the parasite, but also in the target organs (spleen, liver…) due to its response against infection. Real-time quantitative PCR (qPCR) is an interesting approach to analyze these changes and understand the immunological pathways that lead to protection or progression of disease. However, qPCR results need to be normalized against one or more reference genes (RG) to correct for non-specific experimental variation. The development of technical platforms for high-throughput qPCR analysis, and powerful software for analysis of qPCR data, have acknowledged the problem that some reference genes widely used due to their known or suspected “housekeeping” roles, should be avoided due to high expression variability across different tissues or experimental conditions. In this paper we evaluated the stability of 112 genes using three different algorithms: geNorm, NormFinder and RefFinder in spleen samples from BALB/c mice under different experimental conditions (control and Leishmania infantum-infected mice). Despite minor discrepancies in the stability ranking shown by the three methods, most genes show very similar performance as RG (either good or poor) across this massive data set. Our results show that some of the genes traditionally used as RG in this model (i.e. B2m, Polr2a and Tbp) are clearly outperformed by others. In particular, the combination of Il2rg + Itgb2 was identified among the best scoring candidate RG for every group of mice and every algorithm used in this experimental model. Finally, we have demonstrated that using “traditional” vs rationally-selected RG for normalization of gene expression data may lead to loss of statistical significance of gene expression changes when using large-scale platforms, and therefore misinterpretation of results. Taken together, our results highlight the need for a comprehensive, high-throughput search for the most stable reference genes in each particular experimental model.
Collapse
|
81
|
Rodrigues A, Claro M, Alexandre-Pires G, Santos-Mateus D, Martins C, Valério-Bolas A, Rafael-Fernandes M, Pereira MA, Pereira da Fonseca I, Tomás AM, Santos-Gomes G. Leishmania infantum antigens modulate memory cell subsets of liver resident T lymphocyte. Immunobiology 2016; 222:409-422. [PMID: 27615509 DOI: 10.1016/j.imbio.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/29/2016] [Indexed: 11/28/2022]
Abstract
In the recent years, the liver has been recognized as an important immune organ with major regulatory functions and immune memory, adding to the well-described vital metabolic functions. There are evidences from experimental infections performed with visceral Leishmania species that immune responses to parasite infection can be organ-specific. The liver is the compartment of acute resolving infection, with minimal tissue damage and resistance to reinfection, whereas the spleen is the compartment of parasite persistence. Control of hepatic infection in mice requires a coordinated immune response that involves the development of inflammatory granulomas. It is also described that the liver harbors populations of resident lymphocytes, which may exhibit memory characteristics. Therefore, the present study aims to address the role of the liver as an immune memory organ in the context of Leishmania infantum infection, by characterizing phenotypically resident liver T lymphocytes. The dynamics of memory T cells in L. infantum infected BALB/c mice and the effect of anti-leishmanial treatment in the differentiation of memory cell subsets were analyzed. The potential of recognition, differentiation and selection of memory lymphocytes by three L. infantum recombinant proteins were also explored. L. infantum infection generates effector and central memory T cells, but the cells did not expand when recalled, demonstrating a possible parasite silencing effect. The treatment with a leishmanicidal drug (antimoniate meglumine) increases the levels of memory and effector T cells, eliciting a more robust hepatic immune response. L. infantum parasites with a decreased sensitivity to the leishmanicidal drug favor the expansion of memory CD8+ T cell subset, but inhibit the proliferation of CD8+ T effector cells, possibly assuring their own survival. The recombinant proteins LirCyp1 and LirSOD are strongly recognized by memory cells of treated mice, indicating that these proteins might be used in a prophylactic or therapeutic vaccine formulation. Thus, L. infantum released antigens induce the development of immune memory subsets in the liver resident T cell population that specifically recognized parasite antigens, including recombinant proteins.
Collapse
Affiliation(s)
- A Rodrigues
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - M Claro
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - G Alexandre-Pires
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - D Santos-Mateus
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - C Martins
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires de Pátria, 1169-056 Lisboa, Portugal
| | - A Valério-Bolas
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - M Rafael-Fernandes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - M A Pereira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - I Pereira da Fonseca
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - A M Tomás
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - G Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| |
Collapse
|
82
|
Banerjee A, Bhattacharya P, Joshi AB, Ismail N, Dey R, Nakhasi HL. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines. Cell Immunol 2016; 309:37-41. [PMID: 27444130 DOI: 10.1016/j.cellimm.2016.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 02/01/2023]
Abstract
The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites.
Collapse
Affiliation(s)
- Antara Banerjee
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amritanshu B Joshi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
83
|
Tumor necrosis factor alpha neutralization has no direct effect on parasite burden, but causes impaired IFN-γ production by spleen cells from human visceral leishmaniasis patients. Cytokine 2016; 85:184-90. [PMID: 27372917 DOI: 10.1016/j.cyto.2016.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/25/2023]
Abstract
The pro-inflammatory cytokine tumor necrosis factor (TNF)-α has an important role in control of experimental Leishmania donovani infection. Less is known about the role of TNF-α in human visceral leishmaniasis (VL). Evidence for a protective role is primarily based on case reports of VL development in individuals treated with TNF-α neutralizing antibody. In this study, we have evaluated how TNF-α neutralization affects parasite replication and cytokine production in ex vivo splenic aspirates (SA) from active VL patients. The effect of TNF-α neutralization on cell mediated antigen specific responses were also evaluated using whole blood cultures. Neutralization of TNF-α did not affect parasite numbers in SA cultures. Interferon (IFN)-γ levels were significantly reduced, but interleukin (IL)-10 levels were unchanged in these cultures. Leishmania antigen stimulated SA produced significant TNF-α which suggests that TNF-α is actively produced in VL spleen. Further it stimulates IFN-γ production, but no direct effect on parasite replication.
Collapse
|
84
|
Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 2016; 9:277. [PMID: 27175732 PMCID: PMC4866332 DOI: 10.1186/s13071-016-1553-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Saumya Srivastava
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Prem Shankar
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jyotsna Mishra
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
85
|
Rodríguez-Cortés A, Carrillo E, Martorell S, Todolí F, Ojeda A, Martínez-Flórez A, Urniza A, Moreno J, Alberola J. Compartmentalized Immune Response in Leishmaniasis: Changing Patterns throughout the Disease. PLoS One 2016; 11:e0155224. [PMID: 27171409 PMCID: PMC4865036 DOI: 10.1371/journal.pone.0155224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 04/26/2016] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis (VL) is characterized by loss of T-cell responsiveness and absence of Leishmania-specific IFN-γ production by peripheral blood mononuclear cells. However, the expressions of IFN-γ and TNF-α are up-regulated in the tissues and plasma of VL patients. There is a paucity of information regarding the cytokine profile expressed by different target tissues in the same individual and the changes it undergoes throughout the course of infection. In this work we evaluated IFN-γ, TNF-α, IL-10, and TGF-β mRNA expression using real-time RT-PCR in 5 target tissues at 6 months and 16 months post-infection (PI) in a canine experimental model which mimics many aspects of human VL. The spleen and liver of Leishmania infantum experimentally-infected dogs elicited a pro- and anti- inflammatory response and high parasite density at 6 and 16 months PI. The popliteal lymph node, however, showed an up-regulation of IFN-γ cytokin at commencement of the study and was at the chronic phase when the IL-10 and TGF-β expression appeared. In spite of skin parasite invasion, local cytokine response was absent at 6 months PI. Parasite growth and onset of clinical disease both correlated with dermal up-regulation of all the studied cytokines. Our VL model suggests that central target organs, such as the spleen and liver, present a mixed cytokine immune response early on infection. In contrast, an anti-inflammatory/regulatory immune response in peripheral tissues is activated in the later chronic-patent stages of the disease.
Collapse
Affiliation(s)
- Alhelí Rodríguez-Cortés
- Departament de Farmacologia, de Toxicologia, i de Terapèutica, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Eugenia Carrillo
- Leishmaniasis and Chagas Disease Unit, WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologıía, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Felicitat Todolí
- Departament de Farmacologia, de Toxicologia, i de Terapèutica, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Ana Ojeda
- Departament de Farmacologia, de Toxicologia, i de Terapèutica, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Alba Martínez-Flórez
- Departament de Farmacologia, de Toxicologia, i de Terapèutica, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | - Javier Moreno
- Leishmaniasis and Chagas Disease Unit, WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologıía, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Alberola
- Departament de Farmacologia, de Toxicologia, i de Terapèutica, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
86
|
Kumar A, Samant M. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control. Parasite Immunol 2016; 38:273-81. [DOI: 10.1111/pim.12315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/21/2016] [Indexed: 01/23/2023]
Affiliation(s)
- A. Kumar
- Department of Biotechnology; National Institute of Technology; Raipur Chhattisgarh India
| | - M. Samant
- Cell and Molecular biology laboratory; Department of Zoology; Kumaun University SSJ Campus; Almora Uttarakhand India
| |
Collapse
|
87
|
de Freitas EO, Leoratti FMDS, Freire-de-Lima CG, Morrot A, Feijó DF. The Contribution of Immune Evasive Mechanisms to Parasite Persistence in Visceral Leishmaniasis. Front Immunol 2016; 7:153. [PMID: 27148272 PMCID: PMC4840207 DOI: 10.3389/fimmu.2016.00153] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 01/06/2023] Open
Abstract
Leishmania is a genus of protozoan parasites that give rise to a range of diseases called Leishmaniasis that affects annually an estimated 1.3 million people from 88 countries. Leishmania donovani and Leishmania (L.) infantum chagasi are responsible to cause the visceral leishmaniasis. The parasite can use assorted strategies to interfere with the host homeostasis to establish persistent infections that without treatment can be lethal. In this review, we highlight the mechanisms involved in the parasite subversion of the host protective immune response and how alterations of host tissue physiology and vascular remodeling during VL could affect the organ-specific immunity against Leishmania parasites.
Collapse
Affiliation(s)
| | | | | | - Alexandre Morrot
- Laboratorio de Biologia do Sistema Imune, Departmento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Daniel Ferreira Feijó
- Laboratório Integrado de Microbiologia e Imunoregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ) , Salvador , Brazil
| |
Collapse
|
88
|
Joshi S, Yadav NK, Rawat K, Tripathi CDP, Jaiswal AK, Khare P, Tandon R, Baharia RK, Das S, Gupta R, Kushawaha PK, Sundar S, Sahasrabuddhe AA, Dube A. Comparative Analysis of Cellular Immune Responses in Treated Leishmania Patients and Hamsters against Recombinant Th1 Stimulatory Proteins of Leishmania donovani. Front Microbiol 2016; 7:312. [PMID: 27047452 PMCID: PMC4801884 DOI: 10.3389/fmicb.2016.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022] Open
Abstract
Our prior studies demonstrated that cellular response of T helper 1 (Th1) type was generated by a soluble antigenic fraction (ranging from 89.9 to 97.1 kDa) of Leishmania donovani promastigote, in treated Leishmania patients as well as hamsters and showed significant prophylactic potential against experimental visceral leishmaniasis (VL). Eighteen Th1 stimulatory proteins were identified through proteomic analysis of this subfraction, out of which 15 were developed as recombinant proteins. In the present work, we have evaluated these 15 recombinant proteins simultaneously for their comparative cellular responses in treated Leishmania patients and hamsters. Six proteins viz. elongation factor-2, enolase, aldolase, triose phosphate isomerase, protein disulfide isomerase, and p45 emerged as most immunogenic as they produced a significant lymphoproliferative response, nitric oxide generation and Th1 cytokine response in PBMCs and lymphocytes of treated Leishmania patients and hamsters respectively. The results suggested that these proteins may be exploited for developing a successful poly-protein and/or poly-epitope vaccine against VL.
Collapse
Affiliation(s)
- Sumit Joshi
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Narendra K Yadav
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Keerti Rawat
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Chandra Dev P Tripathi
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Anil K Jaiswal
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Prashant Khare
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rati Tandon
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rajendra K Baharia
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Sanchita Das
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Reema Gupta
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Pramod K Kushawaha
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Anuradha Dube
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| |
Collapse
|
89
|
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Parasit Vectors 2016; 9:118. [PMID: 26932389 PMCID: PMC4774109 DOI: 10.1186/s13071-016-1412-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/20/2016] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.
Collapse
Affiliation(s)
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | | | - Ricardo Silvestre
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Jérôme Estaquier
- CNRS FR3636, Université Paris-Descartes, Paris, France. .,Centre de Recherche en Infectiologie, Université Laval, Québec, Canada.
| |
Collapse
|
90
|
Faleiro RJ, Kumar R, Bunn PT, Singh N, Chauhan SB, Sheel M, Amante FH, Montes de Oca M, Edwards CL, Ng SS, Best SE, Haque A, Beattie L, Hafner LM, Sacks D, Nylen S, Sundar S, Engwerda CR. Combined Immune Therapy for the Treatment of Visceral Leishmaniasis. PLoS Negl Trop Dis 2016; 10:e0004415. [PMID: 26872334 PMCID: PMC4752322 DOI: 10.1371/journal.pntd.0004415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/09/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic disease caused by infections, cancer or autoimmunity can result in profound immune suppression. Immunoregulatory networks are established to prevent tissue damage caused by inflammation. Although these immune checkpoints preserve tissue function, they allow pathogens and tumors to persist, and even expand. Immune checkpoint blockade has recently been successfully employed to treat cancer. This strategy modulates immunoregulatory mechanisms to allow host immune cells to kill or control tumors. However, the utility of this approach for controlling established infections has not been extensively investigated. Here, we examined the potential of modulating glucocorticoid-induced TNF receptor-related protein (GITR) on T cells to improve anti-parasitic immunity in blood and spleen tissue from visceral leishmaniasis (VL) patients infected with Leishmania donovani. We found little effect on parasite growth or parasite-specific IFNγ production. However, this treatment reversed the improved anti-parasitic immunity achieved by IL-10 signaling blockade. Further investigations using an experimental VL model caused by infection of C57BL/6 mice with L. donovani revealed that this negative effect was prominent in the liver, dependent on parasite burden and associated with an accumulation of Th1 cells expressing high levels of KLRG-1. Nevertheless, combined anti-IL-10 and anti-GITR mAb treatment could improve anti-parasitic immunity when used with sub-optimal doses of anti-parasitic drug. However, additional studies with VL patient samples indicated that targeting GITR had no overall benefit over IL-10 signaling blockade alone at improving anti-parasitic immune responses, even with drug treatment cover. These findings identify several important factors that influence the effectiveness of immune modulation, including parasite burden, target tissue and the use of anti-parasitic drug. Critically, these results also highlight potential negative effects of combining different immune modulation strategies.
Collapse
Affiliation(s)
- Rebecca J. Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Netaji Subhas Institute of Technology, New Delhi, India
- Banaras Hindu University Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
- * E-mail: (RK); (CRE)
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, Institute of Glycomics, Gold Coast, Australia
| | - Neetu Singh
- Banaras Hindu University Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | | | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Shannon E. Best
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louise M. Hafner
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - David Sacks
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Shyam Sundar
- Banaras Hindu University Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
91
|
Freitas EO, Nico D, Alves-Silva MV, Morrot A, Clinch K, Evans GB, Tyler PC, Schramm VL, Palatnik-de-Sousa CB. Immucillins ImmA and ImmH Are Effective and Non-toxic in the Treatment of Experimental Visceral Leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0004297. [PMID: 26701750 PMCID: PMC4689457 DOI: 10.1371/journal.pntd.0004297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/20/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Immucillins ImmA (IA), ImmH (IH) and SerMe-ImmH (SMIH) are synthetic deazapurine nucleoside analogues that inhibit Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro without macrophage toxicity. Immucillins are compared to the Glucantime standard drug in the chemotherapy of Leishmania (L.) infantum chagasi infection in mice and hamsters. These agents are tested for toxicity and immune system response. METHODOLOGY/PRINCIPAL FINDINGS BALB/c mice were infected with 107 amastigotes, treated with IA, IH, SMIH or Glucantime (2.5mg/kg/day) and monitored for clinical variables, parasite load, antibody levels and splenocyte IFN-γ, TNF-α, and IL-10 expression. Cytokines and CD4+, CD8+ and CD19+ lymphocyte frequencies were assessed in uninfected controls and in response to immucillins. Urea, creatinine, GOT and GPT levels were monitored in sera. Anti-Leishmania-specific IgG1 antibodies (anti-NH36) increased in untreated animals. IgG2a response, high levels of IFN-γ, TNF-α and lower levels of IL-10 were detected in mice treated with the immucillins and Glucantime. Immucillins permitted normal weight gain, prevented hepato-splenomegaly and cleared the parasite infection (85-89%) without renal and hepatic toxicity. Immucillins promoted 35% lower secretion of IFN-γ in uninfected controls than in infected mice. IA and IH increased the CD4+ T and CD19+ B cell frequencies. SMIH increased only the proportion of CD-19 B cells. IA and IH also cured infected hamsters with lower toxicity than Glucantime. CONCLUSIONS/SIGNIFICANCE Immucillins IA, IH and SMIH were effective in treating leishmaniasis in mice. In hamsters, IA and IH were also effective. The highest therapeutic efficacy was obtained with IA, possibly due to its induction of a TH1 immune response. Low immucillin doses were required and showed no toxicity. Our results disclose the potential use of IA and IH in the therapy of visceral leishmaniasis.
Collapse
Affiliation(s)
- Elisangela Oliveira Freitas
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, New York, New York, United States
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus Vinícius Alves-Silva
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Keith Clinch
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gary B. Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Peter C. Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, New York, New York, United States
| | - Clarisa B. Palatnik-de-Sousa
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
92
|
Sheel M, Beattie L, Frame TCM, de Labastida Rivera F, Faleiro RJ, Bunn PT, Montes de Oca M, Edwards CL, Ng SS, Kumar R, Amante FH, Best SE, McColl SR, Varelias A, Kuns RD, MacDonald KPA, Smyth MJ, Haque A, Hill GR, Engwerda CR. IL-17A-Producing γδ T Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. THE JOURNAL OF IMMUNOLOGY 2015; 195:5707-17. [PMID: 26538396 DOI: 10.4049/jimmunol.1501046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
Intracellular infections, such as those caused by the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL), require a potent host proinflammatory response for control. IL-17 has emerged as an important proinflammatory cytokine required for limiting growth of both extracellular and intracellular pathogens. However, there are conflicting reports on the exact roles for IL-17 during parasitic infections and limited knowledge about cellular sources and the immune pathways it modulates. We examined the role of IL-17 in an experimental model of VL caused by infection of C57BL/6 mice with L. donovani and identified an early suppressive role for IL-17 in the liver that limited control of parasite growth. IL-17-producing γδ T cells recruited to the liver in the first week of infection were the critical source of IL-17 in this model, and CCR2(+) inflammatory monocytes were an important target for the suppressive effects of IL-17. Improved parasite control was independent of NO generation, but associated with maintenance of superoxide dismutase mRNA expression in the absence of IL-17 in the liver. Thus, we have identified a novel inhibitory function for IL-17 in parasitic infection, and our results demonstrate important interactions among γδ T cells, monocytes, and infected macrophages in the liver that can determine the outcome of parasitic infection.
Collapse
Affiliation(s)
- Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Rebecca J Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Queensland 4059, Australia
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Institute of Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Netaji Subhas Institute of Technology, New Delhi 110078, India; and
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shannon E Best
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shaun R McColl
- Centre for Molecular Pathology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelli P A MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Geoff R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia;
| |
Collapse
|
93
|
Nascimento M, Albuquerque T, Nascimento A, Caldas I, Do-Valle-Matta M, Souto J, Talvani A, Bahia M, Galvão L, Câmara A, Guedes P. Impairment of Interleukin-17A Expression in Canine Visceral Leishmaniosis is Correlated with Reduced Interferon-γ and Inducible Nitric Oxide Synthase Expression. J Comp Pathol 2015; 153:197-205. [DOI: 10.1016/j.jcpa.2015.10.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022]
|
94
|
Murray HW, Mitchell-Flack M, Taylor GA, Ma X. IFN-γ-induced macrophage antileishmanial mechanisms in mice: A role for immunity-related GTPases, Irgm1 and Irgm3, in Leishmania donovani infection in the liver. Exp Parasitol 2015; 157:103-9. [PMID: 26208780 PMCID: PMC4640457 DOI: 10.1016/j.exppara.2015.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/14/2015] [Accepted: 07/19/2015] [Indexed: 12/14/2022]
Abstract
In C57BL/6 mice, Leishmania donovani infection in the liver provoked IFN-γ-induced expression of the immunity-related GTPases (IRG), Irgm1 and Irgm3. To gauge the antileishmanial effects of these macrophage factors in the liver, intracellular infection was analyzed in IRG-deficient mice. In early- (but not late-) stage infection, Irgm3(-/-) mice failed to properly control parasite replication, generated little tissue inflammation and were hyporesponsive to pentavalent antimony (Sb) chemotherapy. Observations limited to early-stage infection in Irgm1(-/-) mice demonstrated increased susceptibility and virtually no inflammatory cell recruitment to heavily-parasitized parenchymal foci but an intact response to chemotherapy. In L. donovani infection in the liver, the absence of either Irgm1 or Irgm3 impairs early inflammation and initial resistance; the absence of Irgm3, but not Irgm1, also appears to impair the intracellular efficacy of Sb chemotherapy.
Collapse
Affiliation(s)
- Henry W Murray
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | - Gregory A Taylor
- Departments of Medicine, Molecular Genetics and Microbiology and Immunology, Division of Geriatrics and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA; Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, NC, USA
| | - Xiaojing Ma
- Shanghai Jiaotong University, School of Life Science and Biotechnology, Shanghai, China; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
95
|
Shivahare R, Ali W, Vishwakarma P, Natu S, Puri SK, Gupta S. Leptin augments protective immune responses in murine macrophages and enhances potential of miltefosine against experimental visceral leishmaniasis. Acta Trop 2015; 150:35-41. [PMID: 26119043 DOI: 10.1016/j.actatropica.2015.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Adverse side effects and drug resistance issues are the two most important drawbacks which influence the widespread use of existing antileishmanial drugs. Use of immune stimulating agent with standard antileishmanial might be helpful to minimize the toxic effect of drug, shorten the dose regimen and delay the emergence of resistance. In the present study, we explored the in vitro immunomodulatory potential of an immunomodulator, leptin with lower concentration of standard drug, miltefosine. The level of Th1/Th2 cytokines, production of nitric oxide and reactive oxygen species and phagocytic activity was assessed by ELISA, Griess reaction and flow cytometric analysis, respectively. Leptin at a concentration of 15μg/mL showed heightened level of Th1 cytokines and nitric oxide generation from murine macrophages (J-774A.1 cells). Leptin (15μg/mL) also reduces the effective concentration of miltefosine by 2-folds from 7.5μM to 3.7μM. When given in conjunction with lower concentration of miltefosine (4μM), leptin (15μg/mL) significantly (***p<0.001) elevated the level of IL-12 (7.7 fold), TNF-α (8.1 fold) and nitric oxide (6.6 fold) along with markedly (***p<0.001) suppressed level of IL-10 and TGF-β when compared with untreated infected macrophages. Leptin plus miltefosine also induces the phagocytic ability (**p<0.01) of macrophages in comparison to leptin alone and miltefosine alone treated groups. These finding illustrate that leptin activates host macrophages to generate protective immune response for the successful elimination of Leishmania parasite at lower concentration of miltefosine and has potential for further exploration in experimental animal model of visceral leishmaniasis (VL).
Collapse
|
96
|
Foroughi-Parvar F, Hatam GR, Sarkari B, Kamali-Sarvestani E. Leishmania infantum FML pulsed-dendritic cells induce a protective immune response in murine visceral leishmaniasis. Immunotherapy 2015; 7:3-12. [PMID: 25572475 DOI: 10.2217/imt.14.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To investigate the efficacy of FML loaded dendritic cells (DCs) in protection against visceral leishmaniasis. MATERIALS & METHODS Mice were immunized with FML- or soluble Leishmania antigen-loaded DCs as well as FML or soluble Leishmania antigen in saponin and challenged with parasite. The levels of cytokines before and after challenge were detected by ELISA. Parasite burden (total Leishman-Donovan unit) was determined after parasite challenge. RESULTS FML-saponin induced the highest IFN-γ/IL-4 ratio among vaccinated groups, though this ratio was higher in FML-loaded DCs group subsequent to challenge with Leishmania infantum. Moreover, the greatest reduction in parasite number was detected in mice vaccinated with FML-loaded DCs compared with phosphate-buffered saline-treated mice (p = 0.002). CONCLUSION FML-loaded DCs are one of the promising tools for protection against murine visceral leishmaniasis.
Collapse
Affiliation(s)
- Faeze Foroughi-Parvar
- Departmant of Parasitology & Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | |
Collapse
|
97
|
Chowdhury BP, Das S, Majumder S, Halder K, Ghosh S, Biswas S, Bandyopadhyay S, Majumdar S. Immunomodulation of host-protective immune response by regulating Foxp3 expression and Treg function in Leishmania-infected BALB/c mice: critical role of IRF1. Pathog Dis 2015; 73:ftv063. [PMID: 26297915 DOI: 10.1093/femspd/ftv063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral leishmaniasis (VL), caused by a protozoan parasite Leishmania donovani, is still a threat to mankind due to treatment failure, drug resistance and coinfection with HIV. The limitations of first-line drugs have led to the development of new strategies to combat this dreaded disease. Recently, we have shown the immunomodulatory property of Ara-LAM, a TLR2 ligand, against leishmanial pathogenesis. In this study, we have extended our study to the effect of Ara-LAM on regulatory T cells in a murine model of VL. We observed that Ara-LAM-treated infected BALB/c mice showed a strong host-protective Th1 immune response due to reduced IL-10 and TGF-β production, along with marked decrease in CD4(+) CD25(+) Foxp3(+) GITR(+) CTLA4(+) regulatory T cell (Treg) generation and activation. The reduction in Foxp3 expression was due to effective modulation of TGF-β-induced SMAD signaling in Treg cells by Ara-LAM. Moreover, we demonstrated that Ara-LAM-induced IRF1 expression in the Treg cells, which negatively regulated foxp3 gene transcription, resulting in the reduced immunosuppressive activity of Treg cells. Interestingly, irf1 gene knockdown completely abrogated the effect of Ara-LAM on Treg cells. Thus, these findings provide detailed mechanistic insight into Ara-LAM-mediated modulation of Treg cells, which might be helpful in combating VL.
Collapse
Affiliation(s)
- Bidisha Paul Chowdhury
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Shibali Das
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Kuntal Halder
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Sweta Ghosh
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Satabdi Biswas
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Syamdas Bandyopadhyay
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| |
Collapse
|
98
|
Chaurasia M, Pawar VK, Jaiswal AK, Dube A, Paliwal SK, Chourasia MK. Chondroitin nanocapsules enhanced doxorubicin induced apoptosis against leishmaniasis via Th1 immune response. Int J Biol Macromol 2015; 79:27-36. [DOI: 10.1016/j.ijbiomac.2015.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 01/30/2023]
|
99
|
Ramos-Martínez E, Gutierrez-Kobeh L, Villaseñor-Cardoso MI. The role of vitamin D in the control of Leishmania infection. Can J Physiol Pharmacol 2015; 93:369-76. [DOI: 10.1139/cjpp-2014-0372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin D has been described as an essential element for maintaining the homeostasis of mineral content in the body and bone architecture. However, our view of the physiological functions of this micronutrient has radically changed, owing to the vast number of properties, not calcium-related, mediated by its nuclear receptor. This receptor has been found in a variety of cells, including the immune cells, where many of the functions performed by vitamin D are related to inflammation. Although the effect of vitamin D has been widely studied in many diseases caused by viruses or bacteria, very little is known about its role in parasitic diseases, such as leishmaniasis, which is a vector-borne disease caused by different species of the intracellular parasite Leishmania spp. This disease occurs as a spectrum of different clinical syndromes, all of them characterized by a large amount of tissue damage, sometimes leading to necrosis. Owing to the involvement of vitamin D in inflammation and wound healing, its role in leishmaniasis must be relevant, and could be used as an adjuvant for the control of this parasitic disease, opening a possibility for a therapeutic application.
Collapse
Affiliation(s)
- Espiridión Ramos-Martínez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Colonia Doctores, Cuauhtemoc, México D.F. 06720, México
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Colonia Doctores, Cuauhtemoc, México D.F. 06720, México
| | - Laila Gutierrez-Kobeh
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Colonia Doctores, Cuauhtemoc, México D.F. 06720, México
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Colonia Doctores, Cuauhtemoc, México D.F. 06720, México
| | - Mónica Irais Villaseñor-Cardoso
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Colonia Doctores, Cuauhtemoc, México D.F. 06720, México
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Colonia Doctores, Cuauhtemoc, México D.F. 06720, México
| |
Collapse
|
100
|
Cavalcanti AS, Ribeiro-Alves M, Pereira LDOR, Mestre GL, Ferreira ABR, Morgado FN, Boité MC, Cupolillo E, Moraes MO, Porrozzi R. Parasite load induces progressive spleen architecture breakage and impairs cytokine mRNA expression in Leishmania infantum-naturally infected dogs. PLoS One 2015; 10:e0123009. [PMID: 25875101 PMCID: PMC4395300 DOI: 10.1371/journal.pone.0123009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
Canine Visceral Leishmaniasis (CVL) shares many aspects with the human disease and dogs are considered the main urban reservoir of L. infantum in zoonotic VL. Infected dogs develop progressive disease with a large clinical spectrum. A complex balance between the parasite and the genetic/immunological background of the host are decisive for infection evolution and clinical outcome. This study comprised 92 Leishmania infected mongrel dogs of various ages from Mato Grosso, Brazil. Spleen samples were collected for determining parasite load, humoral response, cytokine mRNA expression and histopathology alterations. By real-time PCR for the ssrRNA Leishmania gene, two groups were defined; a low (lowP, n = 46) and a high parasite load groups (highP, n = 42). When comparing these groups, results show variable individual humoral immune response with higher specific IgG production in infected animals but with a notable difference in CVL rapid test optical densities (DPP) between highP and lowP groups. Splenic architecture disruption was characterized by disorganization of white pulp, more evident in animals with high parasitism. All cytokine transcripts in spleen were less expressed in highP than lowP groups with a large heterogeneous variation in response. Individual correlation analysis between cytokine expression and parasite load revealed a negative correlation for both pro-inflammatory cytokines: IFNγ, IL-12, IL-6; and anti-inflammatory cytokines: IL-10 and TGFβ. TNF showed the best negative correlation (r2 = 0.231; p<0.001). Herein we describe impairment on mRNA cytokine expression in leishmania infected dogs with high parasite load associated with a structural modification in the splenic lymphoid micro-architecture. We also discuss the possible mechanism responsible for the uncontrolled parasite growth and clinical outcome.
Collapse
Affiliation(s)
- Amanda S. Cavalcanti
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz, Rio de Janeiro, Brasil
| | - Luiza de O. R. Pereira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | | | | | - Fernanda N. Morgado
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Mariana C. Boité
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Elisa Cupolillo
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Milton O. Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Renato Porrozzi
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| |
Collapse
|