51
|
Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine. Ann Biomed Eng 2013; 42:1557-72. [PMID: 24170072 DOI: 10.1007/s10439-013-0932-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/21/2013] [Indexed: 12/19/2022]
Abstract
To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.
Collapse
|
52
|
Ye Z, Ye W, Deng Y, Wang J, Zhou G, Zhang X. HIF-1-modified BMSCs improve migration and reduce neuronal apoptosis after stroke in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5936-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
53
|
Wan H, Li F, Zhu L, Wang J, Yang Z, Pan Y. Update on therapeutic mechanism for bone marrow stromal cells in ischemic stroke. J Mol Neurosci 2013; 52:177-85. [PMID: 24048741 DOI: 10.1007/s12031-013-0119-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/09/2013] [Indexed: 02/08/2023]
Abstract
Cerebral ischemia is a major cause of morbidity and mortality in the aged population, as well as a tremendous burden on the healthcare system. Despite timely treatment with thrombolysis and percutaneous intravascular interventions, many patients are often left with irreversible neurological deficits. Bone marrow stromal cells (BMSCs), also referred to as mesenchymal stem cells (MSCs), are a type of nonhematopoietic stem cells which exists in bone marrow mesh, with the potential to self-renew. Unlike cells in the central nervous system, BMSCs differentiate not only into mesodermal cells, but also endodermal and ectodermal cells. Moreover, it has been reported that BMSCs develop into cells with neural and vascular markers and play a role in recovery from ischemic stroke. These findings have fuelled excitement in regenerative medicine for neurological diseases, especially for ischemic stroke. There is now preclinical evidence to suggest that BMSCs grafted into the brain of ischemic models abrogate neurological deficits. Based on the overwhelming evidence from animal studies as well as in clinical trials, BMSC transplantation is considered a promising strategy for treatment of ischemic stroke. The goal of this review is to present an integrated consideration of molecular mechanisms in a chronological fashion and discuss an optimal BMSC delivery route for ischemic stroke.
Collapse
Affiliation(s)
- Huan Wan
- Department of Neurology, First Hospital and Clinical College, Harbin Medical University, Room 501, Building 3, 23 Youzheng, Harbin, 150001, China
| | | | | | | | | | | |
Collapse
|
54
|
Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, Zhao W. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab 2013; 33:1322-34. [PMID: 23756689 PMCID: PMC3764389 DOI: 10.1038/jcbfm.2013.91] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/27/2022]
Abstract
Although ischemic stroke is a major cause of morbidity and mortality, current therapies benefit only a small proportion of patients. Transplantation of mesenchymal stromal cells (MSC, also known as mesenchymal stem cells or multipotent stromal cells) has attracted attention as a regenerative therapy for numerous diseases, including stroke. Mesenchymal stromal cells may aid in reducing the long-term impact of stroke via multiple mechanisms that include induction of angiogenesis, promotion of neurogenesis, prevention of apoptosis, and immunomodulation. In this review, we discuss the clinical rationale of MSC for stroke therapy in the context of their emerging utility in other diseases, and their recent clinical approval for treatment of graft-versus-host disease. An analysis of preclinical studies examining the effects of MSC therapy after ischemic stroke indicates near-universal agreement that MSC have significant favorable effect on stroke recovery, across a range of doses and treatment time windows. These results are interpreted in the context of completed and ongoing human clinical trials, which provide support for MSC as a safe and potentially efficacious therapy for stroke recovery in humans. Finally, we consider principles of brain repair and manufacturing considerations that will be useful for effective translation of MSC from the bench to the bedside for stroke recovery.
Collapse
Affiliation(s)
- Mark A Eckert
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Quynh Vu
- Department of Neurology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Kate Xie
- Department of Neurology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Jingxia Yu
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Wenbin Liao
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Steven C Cramer
- Departments of Neurology and Anatomy and Neurobiology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Weian Zhao
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
55
|
Su GH, Sun YF, Lu YX, Shuai XX, Liao YH, Liu QY, Han J, Luo P. Hepatocyte growth factor gene-modified bone marrow-derived mesenchymal stem cells transplantation promotes angiogenesis in a rat model of hindlimb ischemia. ACTA ACUST UNITED AC 2013; 33:511-519. [PMID: 23904370 DOI: 10.1007/s11596-013-1151-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 06/14/2013] [Indexed: 12/11/2022]
Abstract
Angiogenic gene therapy and cell-based therapy for peripheral arterial disease(PAD) have been studied intensively currently. This study aimed to investigate whether combining mesenchymal stem cells(MSCs) transplantation with ex vivo human hepatocyte growth factor(HGF) gene transfer was more therapeutically efficient than the MSCs therapy alone in a rat model of hindlimb ischemia. One week after establishing hindlimb ischemia models, Sprague-Dawley(SD) rats were randomized to receive HGF gene-modified MSCs transplantation(HGF-MSC group), untreated MSCs transplantation (MSC group), or PBS injection(PBS group), respectively. Three weeks after injection, angiogenesis was significantly induced by both MSCs and HGF-MSCs transplantation, and capillary density was the highest in the HGF-MSC group. The number of transplanted cell-derived endothelial cells was greater in HGF-MSC group than in MSC group after one week treatment. The expression of angiogenic cytokines such as HGF and VEGF in local ischemic muscles was more abundant in HGF-MSC group than in the other two groups. In vitro, the conditioned media obtained from HGF-MSCs cultures exerted proproliferative and promigratory effects on endothelial cells. It is concluded that HGF gene-modified MSCs transplantation therapy may induce more potent angiogenesis than the MSCs therapy alone. Engraftment of MSCs combined with angiogenic gene delivery may be a promising therapeutic strategy for the treatment of severe PAD.
Collapse
Affiliation(s)
- Guan-Hua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Fei Sun
- Department of Cardiology, Wuhan Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Yong-Xin Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin-Xin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Hua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Yun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Han
- Department of Cardiology, Wuhan Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Ping Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
56
|
Sumners C, Horiuchi M, Widdop RE, McCarthy C, Unger T, Steckelings UM. Protective arms of the renin-angiotensin-system in neurological disease. Clin Exp Pharmacol Physiol 2013; 40:580-8. [DOI: 10.1111/1440-1681.12137] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Colin Sumners
- Department of Physiology and Functional Genomics; University of Florida; Gainesville FL USA
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology; Ehime University; Ehime Japan
| | - Robert E Widdop
- Department of Pharmacology; Monash University; Melbourne Victoria Australia
| | - Claudia McCarthy
- Department of Pharmacology; Monash University; Melbourne Victoria Australia
| | - Thomas Unger
- Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; Maastricht The Netherlands
| | - Ulrike M Steckelings
- Institute of Molecular Medicine; Department of Cardiovascular and Renal Physiology; University of Southern Denmark; Odense Denmark
| |
Collapse
|
57
|
Paul G, Anisimov SV. The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie 2013; 95:2246-56. [PMID: 23871834 DOI: 10.1016/j.biochi.2013.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.
Collapse
Affiliation(s)
- Gesine Paul
- Translational Neurology Group, Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Neurology, Scania University Hospital, Lund, Sweden.
| | | |
Collapse
|
58
|
Chade AR, Stewart N. Angiogenic cytokines in renovascular disease: do they have potential for therapeutic use? JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2013; 7:180-90. [PMID: 23428409 PMCID: PMC3605220 DOI: 10.1016/j.jash.2013.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Experimental and clinical studies suggest that the damage of the renal microvascular function and architecture may participate in the early steps of renal injury in chronic renal disease, irrespective of the cause. This supporting evidence has provided the impetus to targeting the renal microvasculature as an attempt to interfere with the progressive nature of the disease process. Chronic renovascular disease is often associated with renal microvascular dysfunction, damage, loss, and defective renal angiogenesis associated with progressive renal dysfunction and damage. It is possible that damage of the renal microvasculature in renovascular disease constitutes an initiating event for renal injury and contributes towards progressive and later on irreversible renal injury. Recent studies have suggested that protection of the renal microcirculation can slow or halt the progression of renal injury in this disease. This brief review will focus on the therapeutic potential and feasibility of using angiogenic cytokines to protect the kidney microvasculature in chronic renovascular disease. There is limited but provocative evidence showing that stimulation of vascular proliferation and repair using vascular endothelial growth factor or hepatocyte growth factor can slow the progression of renal damage, stabilize renal function, and protect the renal parenchyma. Such interventions may potentially constitute a sole strategy to preserve renal function and/or a co-adjuvant tool to improve the success of current therapeutic approaches in renovascular disease.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
59
|
Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L, Shi Y. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci 2013; 3:5. [PMID: 23336752 PMCID: PMC3693909 DOI: 10.1186/2045-3701-3-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, 225 Changhai Road, Shanghai 200438, China.
| | | | | | | | | | | | | |
Collapse
|
60
|
Zhong Q, Zhou Y, Ye W, Cai T, Zhang X, Deng DYB. Hypoxia-inducible factor 1-α-AA-modified bone marrow stem cells protect PC12 cells from hypoxia-induced apoptosis, partially through VEGF/PI3K/Akt/FoxO1 pathway. Stem Cells Dev 2012; 21:2703-17. [PMID: 22468883 DOI: 10.1089/scd.2011.0604] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bone marrow stem cells (BMSCs) have been shown to improve neurological function recovery in cerebral ischemia. Hypoxia-inducible factor-1 (HIF-1) α-AA is a more stable mutant form of HIF-1α, which is a crucial oxygen-sensitive regulator. To investigate the protective effects of HIF-1α-AA-modified BMSCs on neuron survival in cerebral ischemia models, we co-cultured HIF-1α-AA-modified BMSCs with neuron-like cells (PC12 cells) and observed a significant increase in the release of vascular endothelial growth factor (VEGF) from BMSCs, the decreased PC12 cell apoptosis, and the upregulation of Survivin expression reduced by hypoxia in PC12 cells compared to enhanced green fluorescent protein (EGFP) BMSCs. In addition, to explore whether VEGF secreted by HIF-1α-AA-modified BMSCs plays an important role in preventing hypoxia-induced apoptosis and the possible mechanism involved, exogenous VEGF were applied and the similar protective effects on PC12 cells were observed in vitro. Furthermore, hypoxia reduced the expression of phosphorylated Akt and phosphorylated FoxO1, whereas the administration of VEGF reversed these changes. Transfection of FoxO1 H215R, a DNA-binding mutant, abrogated the inhibitory ability on Survivin promoter activity, whereas FoxO1 AAA, the active form of FoxO1, presented further repression on Survivin promoter, indicating that FoxO1 directly binds on Survivin promoter as a transcriptional repressor and that phosphorylation status of FoxO1 affects its inhibition on the Survivin promoter. Transplantation of HIF-1α-AA-modified BMSCs after cerebral ischemia in vivo sufficiently reduced neurons apoptosis, decreased cerebral infarction volume, and induced a significant improvement on the modified neurological severity score compared to the EGFP BMSCs group. In conclusion, HIF-1α-AA-modified MSCs showed an obvious protective effect on neuron-like cells or neuron after ischemia in vitro and in vivo, at least in part, through the VEGF/PI3K/Akt/FoxO1 pathway.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
61
|
Bang OY, Jin KS, Hwang MN, Kang HY, Kim BJ, Lee SJ, Kang S, Hwang YK, Ahn JS, Sung KW. The Effect of CXCR4 Overexpression on Mesenchymal Stem Cell Transplantation in Ischemic Stroke. CELL MEDICINE 2012; 4:65-76. [PMID: 26858855 DOI: 10.3727/215517912x647172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is no doubt that the therapeutic efficacy of mesenchymal stem cells (MSCs) needs improvement. SDF-1 (chemokine for MSC homing) and its receptor CXCR4 play a critical role in the migration of MSCs in ischemia. We investigated the effects of the therapeutic application of MSCs transfected to overexpress CXCR4 using an adenoviral construct in the rat stroke model. Both flow cytometry and Western blot analysis indicated that the level of CXCR4 expression was low in naive hMSCs but was consistently high in CXCR4-hMSCs. In vivo migration test using the transwell system showed that the degree of migration was increased in CXCR4-hMSCs compared with the naive hMSCs and was completely blocked by treatment with AMD3100, an antagonist of the CXCR4 receptor. Compared with rats that received naive MSCs, behavioral recovery was more pronounced in rats that received CXCR4-hMSCs (p = 0.023). An immunohistochemistry study using human nuclear antibody (NuMA) showed that the migration of hMSCs in the ischemic boundary zone was increased after 3 days of injection of CXCR4-hMSCs compared with after injection of naive hMSCs. In addition, polymerase chain reaction was performed to assess the biodistribution of human-specific DNA outside the brain after intravenous injection of hMSCs. The expression of human-specific DNA was increased in the lungs of rats receiving naive MSCs, whereas the human-specific DNA expression was increased in the brain of rats receiving CXCR4-hMSCs. Our results indicate that MSCs transfected with the CXCR4 gene expression cassette may be useful in the treatment of cerebral infarction and may represent a new strategy to enhance the efficacy of MSC therapy.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| | - Kyung Sil Jin
- † Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| | - Mi Na Hwang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| | - Ho Young Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| | - Sang Jin Lee
- ‡ Genitourinary Cancer Branch, National Cancer Center , Goyang , South Korea
| | - Sangmee Kang
- § Cancer Therapeutics Team II, Mogam Biotechnology Research Institute , Yongin , South Korea
| | - Yu Kyeong Hwang
- § Cancer Therapeutics Team II, Mogam Biotechnology Research Institute , Yongin , South Korea
| | - Jong Seong Ahn
- ¶ Cell Therapy Division, GCLabCell Corp. , Yongin , South Korea
| | - Ki Woong Sung
- † Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| |
Collapse
|
62
|
Scheibe F, Klein O, Klose J, Priller J. Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol 2012; 32:567-76. [PMID: 22290155 DOI: 10.1007/s10571-012-9798-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/06/2012] [Indexed: 01/01/2023]
Abstract
Cell therapy with mesenchymal stromal cells (MSCs) was found to protect neurons from damage after experimental stroke and is currently under investigation in clinical stroke trials. In order to elucidate the mechanisms of MSC-induced neuroprotection, we used the in vitro oxygen–glucose deprivation (OGD) model of cerebral ischemia. Co-culture of primary cortical neurons with MSCs in a transwell co-culture system for 48 h prior to OGD-reduced neuronal cell death by 30-35%. Similar protection from apoptosis was observed with MSC-conditioned media when added 48 h or 30 min prior to OGD, or even after OGD. Western blot analysis revealed increased phosphorylation of STAT3 and Akt in neuronal cultures after treatment with MSC-conditioned media. Inhibition of the PI3K/Akt pathway completely abolished the neuroprotective potential of MSC-conditioned media, suggesting that MSCs can improve neuronal survival by an Akt-dependent anti-apoptotic signaling cascade. Using mass spectrometry, we identified plasminogen activator inhibitor-1 as an active compound in MSC-conditioned media. Thus, paracrine factors secreted by MSCs protect neurons from apoptotic cell death in the OGD model of cerebral ischemia.
Collapse
Affiliation(s)
- Franziska Scheibe
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
63
|
Yu X, Chen D, Zhang Y, Wu X, Huang Z, Zhou H, Zhang Y, Zhang Z. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J Neurol Sci 2012; 316:141-9. [PMID: 22280945 DOI: 10.1016/j.jns.2012.01.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Stromal cell-derived factor-1 (SDF-1) and its cognate receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), are involved in the migration of stem cells. AIM To test the hypothesis that mesenchymal stem cells (MSCs) with genetically modified CXCR4 can promote their own recruitment around the ischemic core. METHODS Lentiviral vectors were used to overexpress the CXCR4-eGFP fusion protein (CXCR4/eGFP) or eGFP only (eGFP) or to introduce siRNA targeting endogenous CXCR4 (siRNA/eGFP) in rat mesenchymal stem cells (rMSCs). Rats were injected with either the transduced rMSCs or PBS as a control via the femoral vein following a left middle cerebral artery occlusion (MCAO). RESULTS One week after MCAO, immunofluorescence staining revealed a significant increase in the number of eGFP-positive cells surrounding the infarct areas in the CXCR4-rMSC-treated group compared to the rMSC-treated control group. Conversely, there was a significant reduction in the number of eGFP-positive cells in the siRNA-rMSC-treated group. Moreover, there was an increase in the capillary vascular volume of the peri-infarct area, a reduction in the volume of the cerebral infarction and improved neurological function in the CXCR4-rMSC-treated group compared to those in the rMSC-, siRNA-rMSC- or PBS-treated groups. CONCLUSION CXCR4 overexpression in the rMSCs promoted their mobilization and enhanced neuroprotection in a rat cerebral ischemia model. This strategy may be a useful therapeutic approach for treating ischemic stroke.
Collapse
Affiliation(s)
- Xiaolan Yu
- Department of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 2012; 233:312-22. [DOI: 10.1016/j.expneurol.2011.10.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022]
|
65
|
Repair-Based Therapies After Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
66
|
Horiuchi M, Mogi M. Role of angiotensin II receptor subtype activation in cognitive function and ischaemic brain damage. Br J Pharmacol 2011; 163:1122-30. [PMID: 21175580 DOI: 10.1111/j.1476-5381.2010.01167.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent clinical studies have demonstrated that angiotensin II type 1 (AT(1) ) receptor blockers (ARBs) reduce the onset of stroke, stroke severity and the incidence and progression of Alzheimer's disease and dementia. We can expect that ARBs exert these effects by both AT(1) receptor blockade and angiotensin II type 2 (AT(2) ) receptor stimulation. Moreover, recent experimental results support the notion that AT(2) receptor stimulation with AT(1) receptor blockade could contribute to protection against ischaemic brain damage at least partly due to an increase in cerebral blood flow and decrease in oxidative stress, and prevent cognitive decline. Cellular therapy has been focused on as a new therapeutic approach to restore injured neurons. In this context, it has been reported that AT(2) receptor stimulation enhances neurite outgrowth and decreases neural damage, thereby enhancing neurogenesis. Moreover, additional beneficial effects of ARBs with an AT(1) receptor blocking action with a partial peroxisome proliferator-activated receptor (PPAR)-γ agonistic effect have been reported, and interaction of AT(2) receptor activation and PPAR-γ might be involved in these ARBs' effects. This article reviews the effects of regulation of activation of angiotensin II receptor subtypes on ischaemic brain damage and cognitive function, focusing on the effects of AT(2) receptor stimulation.
Collapse
Affiliation(s)
- Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan.
| | | |
Collapse
|
67
|
Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 2011; 95:213-28. [PMID: 21903148 PMCID: PMC3185169 DOI: 10.1016/j.pneurobio.2011.08.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 02/08/2023]
Abstract
Accumulating laboratory studies have implicated the mobilization of bone marrow (BM)-derived stem cells in brain plasticity and stroke therapy. This mobilization of bone cells to the brain is an essential concept in regenerative medicine. Over the past ten years, mounting data have shown the ability of bone marrow-derived stem cells to mobilize from BM to the peripheral blood (PB) and eventually enter the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Various BM-derived cells, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and very small embryonic-like cells (VSELs) have been demonstrated to exert therapeutic benefits in stroke. Here, we discuss the current status of these BM-derived stem cells in stroke therapy, with emphasis on possible cellular and molecular mechanisms of action that mediate the cells' beneficial effects in the ischemic brain. When possible, we also discuss the relevance of this therapeutic regimen in other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
68
|
Du Rocher B, Mencalha AL, Gomes BE, Abdelhay E. Mesenchymal stromal cells impair the differentiation of CD14(++) CD16(-) CD64(+) classical monocytes into CD14(++) CD16(+) CD64(++) activate monocytes. Cytotherapy 2011; 14:12-25. [PMID: 21838603 DOI: 10.3109/14653249.2011.594792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) possess immunomodulatory activity both in vitro and in vivo. However, little information is available regarding their function during the initiation of immunologic responses through their interactions with monocytes. While many studies have shown that MSC impair the differentiation of monocytes into dendritic cells and macrophages, there are few articles showing the interaction between MSC and monocytes and none of them has addressed the question of monocyte subset modulation. METHODS To understand better the mechanism behind the benefit of MSC infusion for graft-versus-host treatment through monocyte involvement, we performed mixed leucocyte reactions (MLR) in the presence and absence of MSC. After 3 and 7 days, cultures were analyzed by flow cytometry using different approaches. RESULTS MSC induced changes in monocyte phenotype in an MLR. This alteration was accompanied by an increase in monocyte counting and CD14 expression. MSC induced monocyte alterations even without contact, although the parameters above were more pronounced with cell-cell contact. Moreover, the presence of MSC impaired major histocompatibility complex (MHC) I and II, CD11c and CCR5 expression and induced CD14 and CD64 expression on monocytes. These alterations were accompanied by a decrease in interleukin (IL)-1β and IL-6 production by these monocytes, but no change was observed taking into account the phagocytosis capacity of these monocytes. CONCLUSIONS Our results suggest that MSC impair the differentiation of CD14(++) CD16(-) CD64(+) classical monocytes into CD14(++) CD16(+) CD64(++) activated monocytes, having an even earlier role than the differentiation of monocytes into dendritic cells and macrophages.
Collapse
Affiliation(s)
- Bárbara Du Rocher
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Laboratório de Célula Tronco, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
69
|
Borlongan CV. Bone marrow stem cell mobilization in stroke: a 'bonehead' may be good after all! Leukemia 2011; 25:1674-86. [PMID: 21727900 DOI: 10.1038/leu.2011.167] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mobilizing bone cells to the head, astutely referred to as 'bonehead' therapeutic approach, represents a major discipline of regenerative medicine. The last decade has witnessed mounting evidence supporting the capacity of bone marrow (BM)-derived cells to mobilize from BM to peripheral blood (PB), eventually finding their way to the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Here, I review accumulating laboratory studies implicating the role of therapeutic mobilization of transplanted BM stem cells for brain plasticity and remodeling in stroke.
Collapse
Affiliation(s)
- C V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA.
| |
Collapse
|
70
|
Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int 2011; 59:347-56. [PMID: 21718735 DOI: 10.1016/j.neuint.2011.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are attractive candidates for use in regenerative medicine since they are easily accessible and can be readily expanded in vivo, and possess unique immunogenic properties. Moreover, these multipotent cells display intriguing environmental adaptability and secretory capacity. The ability of MSCs to migrate and engraft in a range of tissues has received significant attention. Evidence indicating that MSC transplantation results in functional improvement in animal models of neurological disorders has highlighted exciting potential for their use in neurological cell-based therapies. The manner in which MSCs elicit positive effects in the damaged nervous system remains unclear. Cell fusion and/or 'transdifferentiation' phenomena, by which MSCs have been proposed to adopt neural cell phenotypes, occur at very low frequency and are unlikely to fully account for observed neurological improvement. Alternatively, MSC-mediated neural recovery may result from the release of soluble molecules, with MSC-derived growth factors and extracellular matrix components influencing the activity of endogenous neural cells. This review discusses the potential of MSCs as candidates for use in therapies to treat neurological disorders and the molecular and cellular mechanisms by which they are understood to act.
Collapse
|
71
|
Esaki S, Kitoh J, Katsumi S, Goshima F, Kimura H, Safwat M, Yamano K, Watanabe N, Nonoguchi N, Nakamura T, Coffin RS, Miyatake SI, Nishiyama Y, Murakami S. Hepatocyte growth factor incorporated into herpes simplex virus vector accelerates facial nerve regeneration after crush injury. Gene Ther 2011; 18:1063-9. [PMID: 21562589 DOI: 10.1038/gt.2011.57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatocyte growth factor (HGF) promotes regeneration of the central nervous system, but its effects on the peripheral nervous system remain unclear. This study was conducted to elucidate the effect of HGF on regeneration of the murine facial nerve after crush injury. To do so, a replication-defective herpes simplex virus vector that incorporated HGF was prepared (HSV-HGF). The main trunk of the facial nerve was compressed by mosquito hemostats, and HSV-HGF, control vector or medium was then applied to the compressed nerve. We found that mice in the HGF group required significantly fewer days for complete recovery from nerve compression. Furthermore, the amplitude of the evoked buccinator muscle compound action potential increased following HSV-HGF application. HGF expression in and around the compressed nerve was demonstrated by enzyme-linked immunoassay and immunohistochemistry. In addition, HSV-HGF introduction around the damaged nerve significantly accelerated recovery of function of the facial nerve. These data suggest a possible role of HGF in promoting facial nerve regeneration after nerve damage. Furthermore, this viral delivery method may be applied clinically for many types of severe facial palsy during facial nerve decompression surgery.
Collapse
Affiliation(s)
- S Esaki
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Myers TJ, Granero-Molto F, Longobardi L, Li T, Yan Y, Spagnoli A. Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opin Biol Ther 2011; 10:1663-79. [PMID: 21058931 DOI: 10.1517/14712598.2010.531257] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE OF THE FIELD Mesenchymal stem cells have the ability to differentiate into osteoblasts, chondrocytes and adipocytes. Along with differentiation, MSCs can modulate inflammation, home to damaged tissues and secrete bioactive molecules. These properties can be enhanced through genetic-modification that would combine the best of both cell and gene therapy fields to treat monogenic and multigenic diseases. AREAS COVERED IN THIS REVIEW Findings demonstrating the immunomodulation, homing and paracrine activities of MSCs followed by a summary of the current research utilizing MSCs as a vector for gene therapy, focusing on skeletal disorders, but also cardiovascular disease, ischemic damage and cancer. WHAT THE READER WILL GAIN MSCs are a possible therapy for many diseases, especially those related to the musculoskeletal system, as a standalone treatment, or in combination with factors that enhance the abilities of these cells to migrate, survive or promote healing through anti-inflammatory and immunomodulatory effects, differentiation, angiogenesis or delivery of cytolytic or anabolic agents. TAKE HOME MESSAGE Genetically-modified MSCs are a promising area of research that would be improved by focusing on the biology of MSCs that could lead to identification of the natural and engrafting MSC-niche and a consensus on how to isolate and expand MSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Timothy J Myers
- University of North Carolina at Chapel Hill, Department of Pediatrics, Chapel Hill, NC 27599-7239, USA
| | | | | | | | | | | |
Collapse
|
73
|
Liu AM, Lu G, Tsang KS, Li G, Wu Y, Huang ZS, Ng HK, Kung HF, Poon WS. Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery 2011; 67:357-65; discussion 365-6. [PMID: 20644422 DOI: 10.1227/01.neu.0000371983.06278.b3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Spontaneous intracerebral hemorrhage (ICH) carries a high mortality rate, with survivors commonly left with permanent neurological deficits. Mesenchymal stem cell (MSC) transplantation promotes functional recovery in experimental ICH, and treatment with hepatocyte growth factor (HGF) is beneficial in ischemic stroke. OBJECTIVE We hypothesize that transplantation of MSCs with previous transduction of HGF has an additive effect in promoting neurological recovery through myelin and axonal regeneration. METHODS HGF transduction to human umbilical cord-derived MSCs using lentiviral plasmid pWPI-HGF-GFP was prepared. One week after a collagenase-induced ICH, 80 male Sprague-Dawley rats were divided into 3 groups for stereotactic injection of phosphate-buffered saline (group I), MSC transplant (group II), and HGF-transduced MSC transplant (group III), respectively, into the left ventricle. The animals were assessed weekly for 5 weeks using the Rotarod motor function test, at which time they were killed for Luxol fast blue myelin staining and appropriate immunohistochemistry and Western blotting. RESULTS Animals receiving transplanted HGF-transduced MSCs (group III) exhibited significantly better motor function recovery than animals treated with MSCs alone (group II), which in turn performed better than the phosphate-buffered saline controls at 2 weeks after transplantation. Luxol fast blue staining of myelin displayed significantly less demyelination and significantly higher reactivity in myelin basic protein and growth-associated protein-43 in immunohistochemistry and Western blotting and significantly reduced myelin-associated glycoprotein activity in group III animals. CONCLUSION Animals transplanted with HGF-transduced MSCs 1 week after experimental ICH were shown to achieve a better neurological recovery. This improved neurological recovery from ICH is attributed to nerve fiber remyelination and axonal regeneration.
Collapse
Affiliation(s)
- An Min Liu
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Jang KS, Lee KS, Yang SH, Jeun SS. In vivo Tracking of Transplanted Bone Marrow-Derived Mesenchymal Stem Cells in a Murine Model of Stroke by Bioluminescence Imaging. J Korean Neurosurg Soc 2010; 48:391-8. [PMID: 21286474 DOI: 10.3340/jkns.2010.48.5.391] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 06/26/2010] [Accepted: 11/25/2010] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE This study was designed to validate the cell trafficking efficiency of the in vivo bioluminescence image (BLI) study in the setting of transplantation of the luciferase expressing bone marrow-derived mesenchymal stem cells (BMSC), which were delivered at each different time after transient middle cerebral artery occlusion (MCAO) in a mouse model. METHODS Transplanting donor BMSC were prepared by primary cell culture from transgenic mouse expressing luciferase (LUC). Transient focal infarcts were induced in 4-6-week-old male nude mice. The experiment mice were divided into five groups by the time of MSC transplantation : 1) sham-operation group, 2) 2-h group, 3) 1-day group, 4) 3-day group, and 5) 1- week group. BLI for detection of spatial distribution of transplanted MSC was performed by detecting emitted photons. Migration of the transplanted cells to the infarcted area was confirmed by histological examinations. Differences between groups were evaluated by paired t-test. RESULTS A focal spot of bioluminescence was observed at the injection site on the next day after transplantation by signal intensity of bioluminescence. After 4 weeks, the mean signal intensities of 2-h, 1-day, 3-day, and 1-week group were 2.6×10(7) ± 7.4×10(6), 6.1×10(6) ± 1.2×10(6), 1.7×10(6) ± 4.4×10(5), and 8.9×10(6) ± 9.5×10(5), respectively. The 2-h group showed significantly higher signal intensity (p < 0.01). The engrafted BMSC showed around the infarct border zones on immunohistochemical examination. The counts of LUC-positive cells revealed the highest number in the 2-h group, in agreement with the results of BLI experiments (p < 0.01). CONCLUSION In this study, the results suggested that the transplanted BMSC migrated to the infarct border zone in BLI study and the higher signal intensity of LUC-positive cells seen in 2 hrs after MSC transplantation in MCAO mouse model. In addition, noninvasive imaging in real time is an ideal method for tracking stem cell transplantation. This method can be widely applied to various research fields of cell transplantation therapy.
Collapse
Affiliation(s)
- Kyung-Sool Jang
- Department of Neurosurgery, Institute of Catholic Integrative Medicine (ICIM) of Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | | | | | | |
Collapse
|
75
|
Shang J, Deguchi K, Yamashita T, Ohta Y, Zhang H, Morimoto N, Liu N, Zhang X, Tian F, Matsuura T, Funakoshi H, Nakamura T, Abe K. Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J Neurosci Res 2010; 88:2197-206. [PMID: 20175208 DOI: 10.1002/jnr.22373] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) are strong neurotrophic factors, which function as antiapoptotic factors. However, the neuroprotective effect of GDNF and HGF in ameliorating ischemic brain injury via an antiautophagic effect has not been examined. Therefore, we investigated GDNF and HGF for changes of infarct size and antiapoptotic and antiautophagic effects after transient middle cerebral artery occlusion (tMCAO) in rats. For the estimation of ischemic brain injury, the infarct size was calculated at 24 hr after tMCAO by HE staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) was performed for evaluating the antiapoptotic effect. Western blot analysis of microtubule-associated protein 1 light chain 3 (LC3) and immunofluorescence analysis of LC3 and phosphorylated mTOR/Ser(2448) (p-mTOR) were performed for evaluating the antiautophagic effect. GDNF and HGF significantly reduced infarct size after cerebral ischemia. The amounts of LC3-I plus LC3-II (relative to beta-tubulin) were significantly increased after tMCAO, and GDNF and HGF significantly decreased them. GDNF and HGF significantly increased p-mTOR-positive cells. GDNF and HGF significantly decreased the numbers of TUNEL-, LC3-, and LC3/TUNEL double-positive cells. LC3/TUNEL double-positive cells accounted for about 34.3% of LC3 plus TUNEL-positive cells. This study suggests that the protective effects of GDNF and HGF were greatly associated with not only the antiapoptotic but also the antiautophagic effects; maybe two types of cell death can occur in the same cell at the same time, and GDNF and HGF are capable of ameliorating these two pathways.
Collapse
Affiliation(s)
- Jingwei Shang
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Porada CD, Almeida-Porada G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 2010; 62:1156-66. [PMID: 20828588 DOI: 10.1016/j.addr.2010.08.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) possess a set of several fairly unique properties which make them ideally suited both for cellular therapies/regenerative medicine, and as vehicles for gene and drug delivery. These include: 1) relative ease of isolation; 2) the ability to differentiate into a wide variety of seemingly functional cell types of both mesenchymal and non-mesenchymal origin; 3) the ability to be extensively expanded in culture without a loss of differentiative capacity; 4) they are not only hypoimmunogenic, but they produce immunosuppression upon transplantation; 5) their pronounced anti-inflammatory properties; and 6) their ability to home to damaged tissues, tumors, and metastases following in vivo administration. In this review, we summarize the latest research in the use of mesenchymal stem cells in regenerative medicine, as immunomodulatory/anti-inflammatory agents, and as vehicles for transferring both therapeutic genes in genetic disease and genes designed to destroy malignant cells.
Collapse
|
77
|
Abstract
Neurodegenerative diseases are characterized by neurodegenerative changes or apoptosis of neurons involved in networks, leading to permanent paralysis and loss of sensation below the site of the injury. Cell replacement therapy has provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. In recent years, neurons and glial cells have successfully been generated from stem cells, and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. We review here notable previously published experimental and preclinical studies involving stem cell-based cell for neurodegenerative diseases and discuss the future prospects for stem cell therapy of neurological disorders in the clinical setting. Steady and solid progress in stem cell research in both basic and preclinical settings should support the hope for development of stem cell-based cell therapies for neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Ning Zhang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86 57186021763; Fax: +86 57187022776
| |
Collapse
|
78
|
Enhancing trophic support of mesenchymal stem cells by ex vivo treatment with trophic factors. J Neurol Sci 2010; 298:28-34. [PMID: 20864125 DOI: 10.1016/j.jns.2010.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 08/18/2010] [Accepted: 09/01/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND Several studies have examined the enhanced efficacy of mesenchymal stem cells (MSCs) using neurotrophic factor transfection in ischemic rat models. However, gene therapy, e.g., the application of MSCs transfected with neurotrophic factors, is not feasible in clinical practice for ethical reasons. Therefore, we evaluated cultivation with specific trophic factors in an attempt to enhance the efficacy of human MSCs (hMSCs) in ischemic stroke. METHODS Using quantitative sandwich enzyme-linked immunosorbent assay (ELISA), we analyzed the levels of trophic factors released from hMSCs after treatment with ischemic brain extract. Trophic factors were pretreated under ex vivo culture conditions. The concentrations of each trophic factor produced by the trophic factor-pretreated and non-pretreated hMSCs were then measured and compared. RESULTS hMSCs cultured with ischemic rat brain extract showed increased production of BDNF (brain-derived neurotrophic factor), VEGF (vascular endothelial growth factor) and HGF (hepatocyte growth factor). Ex vivo treatment with trophic factors led to a further increase in the production of the trophic factor by hMSC, suggesting autocrine regulation of hMSCs. The morphology and expression of surface markers of hMSCs were not changed, but the cell viability and cell proliferation ability increased after treatment with trophic factors. CONCLUSIONS Our data indicate that hMSCs provide trophic support to the ischemic brain, which can be enhanced by ex vivo treatment of trophic factors during cultivation of hMSCs.
Collapse
|
79
|
Cho GW, Koh SH, Kim MH, Yoo AR, Noh MY, Oh S, Kim SH. The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res 2010; 1353:1-13. [DOI: 10.1016/j.brainres.2010.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
80
|
Petrie Aronin CE, Tuan RS. Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. ACTA ACUST UNITED AC 2010; 90:67-74. [PMID: 20301222 DOI: 10.1002/bdrc.20174] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adult mesenchymal stem cells (MSCs) include a select population of resident cells within adult tissues, which retain the ability to differentiate along several tissue-specific lineages under defined media conditions and have finite expansion potential in vitro. These adult progenitor populations have been identified in various tissues, but it remains unclear exactly what role both transplanted and native MSCs play in processes of disease and regeneration. Interestingly, increasing evidence reveals a unique antiinflammatory immunomodulatory phenotype shared among this population, lending support to the idea that MSCs play a central role in early tissue remodeling responses where a controlled inflammatory response is required. However, additional evidence suggests that MSCs may not retain infinite immune privilege and that the context with which these cells are introduced in vivo may influence their immune phenotype. Therefore, understanding this dynamic microenvironment in which MSCs participate in complex feedback loops acting upon and being influenced by a plethora of secreted cytokines, extracellular matrix molecules, and fragments will be critical to elucidating the role of MSCs in the intertwined processes of immunomodulation and tissue repair.
Collapse
Affiliation(s)
- Caren E Petrie Aronin
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | |
Collapse
|
81
|
Smirkin A, Matsumoto H, Takahashi H, Inoue A, Tagawa M, Ohue S, Watanabe H, Yano H, Kumon Y, Ohnishi T, Tanaka J. Iba1(+)/NG2(+) macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain. J Cereb Blood Flow Metab 2010; 30:603-15. [PMID: 19861972 PMCID: PMC2949149 DOI: 10.1038/jcbfm.2009.233] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a transient 90-min middle cerebral artery occlusion (MCAO) model of rats, a large ischemic lesion is formed where macrophage-like cells massively accumulate, many of which express a macrophage marker, Iba1, and an oligodendrocyte progenitor cell marker, NG2 chondroitin sulfate proteoglycan (NG2); therefore, the cells were termed BINCs (Brain Iba1(+)/NG2(+) Cells). A bone marrow transplantation experiment using green-fluorescent protein-transgenic rats showed that BINCs were derived from bone marrow. 5-Fluorouracil (5FU) injection at 2 days post reperfusion (2 dpr) markedly reduced the number of BINCs at 7 dpr, causing enlargement of necrotic volumes and frequent death of the rats. When isolated BINCs were transplanted into 5FU-aggravated ischemic lesion, the volume of the lesion was much reduced. Quantitative real-time RT-PCR showed that BINCs expressed mRNAs encoding bFGF, BMP2, BMP4, BMP7, GDNF, HGF, IGF-1, PDGF-A, and VEGF. In particular, BINCs expressed IGF-1 mRNA at a very high level. Immunohistochemical staining showed that IGF-1-expressing BINCs were found not only in rat but also human ischemic brain lesions. These results suggest that bone marrow-derived BINCs play a beneficial role in ischemic brain lesions, at least in part, through secretion of neuroprotective factors.
Collapse
Affiliation(s)
- Anna Smirkin
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kranz A, Wagner DC, Kamprad M, Scholz M, Schmidt UR, Nitzsche F, Aberman Z, Emmrich F, Riegelsberger UM, Boltze J. Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res 2010; 1315:128-36. [PMID: 20004649 DOI: 10.1016/j.brainres.2009.12.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
Abstract
The beneficial effects of bone marrow-derived mesenchymal stromal cell (MSC) administration following experimental stroke have already been described. Despite several promising characteristics, placenta-derived MSC have not been used in models of focal ischemia. The aim of the current study is to investigate the impact of intravenously transplanted placenta-derived MSC on post-stroke recovery. Permanent occlusion of the middle cerebral artery was induced in spontaneously hypertensive rats. MSC were obtained from the human maternal or fetal placenta and intravenously administered after 24 h (single transplantation) or after 8 h and 24 h (dual transplantation). Sensorimotor deficits were quantified for 60 days using the beam walk test and the modified Neurological Severity Score system. Infarct volume was determined in vivo by means of magnetic resonance imaging on days 1, 8, 29 and 60. Astroglial reactivity was semiquantitatively ascertained within a small and a broad region adjacent to the lesion border. The double infusion of placental MSC was superior to single transplantation in the functional tests. However, a significant difference to the control group in all outcome parameters was observed only for maternally derived MSC. These findings suggest that placental tissue constitutes a promising source for experimental stroke therapies.
Collapse
Affiliation(s)
- Alexander Kranz
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Farin A, Liu CY, Langmoen IA, Apuzzo ML. BIOLOGICAL RESTORATION OF CENTRAL NERVOUS SYSTEM ARCHITECTURE AND FUNCTION. Neurosurgery 2009; 65:831-59; discussion 859. [DOI: 10.1227/01.neu.0000351721.81175.0b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
84
|
Horiuchi M, Mogi M, Iwai M. The angiotensin II type 2 receptor in the brain. J Renin Angiotensin Aldosterone Syst 2009; 11:1-6. [PMID: 19861353 DOI: 10.1177/1470320309347793] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent clinical studies indicate that blockade of the renin-angiotensin system is important to prevent stroke, and accumulating results of basic research also indicate the possible involvement of the central renin-angiotensin system in ischaemic brain damage and cognition. When the angiotensin II type 1 receptor is blocked by an angiotensin type 1 receptor blocker, unbound angiotensin II acts preferentially on the angiotensin II type 2 (AT(2)) receptor. These results suggest the pathophysiological importance of the AT(2) receptor in the clinical use of angiotensin type 1 receptor blockers, which are widely used in patients with hypertension with the expectation of a decrease in the onset of cardiovascular and cerebrovascular disease. We review here the possible roles of AT(2) receptor activation in the brain, focusing on ischaemic stroke, cognitive function and neurogenesis, and potential effects of specific AT(2) receptor agonists.
Collapse
Affiliation(s)
- Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295, Japan.
| | | | | |
Collapse
|
85
|
Li WY, Choi YJ, Lee PH, Huh K, Kang YM, Kim HS, Ahn YH, Lee G, Bang OY. Mesenchymal stem cells for ischemic stroke: changes in effects after ex vivo culturing. Cell Transplant 2009; 17:1045-59. [PMID: 19177841 DOI: 10.3727/096368908786991551] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although ex vivo culture expansion is necessary to use autologous mesenchymal stem cells (MSCs) in treating stroke patients, and several researchers have utilized culture-expanded cells in their studies, the effects of culture expansion on neurogenesis and trophic support are unknown. Thus, we evaluated the impact of the passage of MSCs on their effects in a rat stroke model. The i.v. application of ex vivo-cultured human MSCs, earlier (passage 2) or later passage (passage 6), was performed in a rat stroke model. Behavioral tests, immunohistochemical studies, and quantitative analysis using the CAST-grid system were performed to evaluate the degree of neurogenesis. We also evaluated the levels of trophic factors in both control and MSC-treated rat brain extract. Compared to rats that received later-passage human MSCs, behavioral recovery and neurogenesis as revealed by bromodeoxyuridine staining were more pronounced in rats that received earlier-passage human MSCs (p < 0.01 in both cases). Double staining showed that most of the endogenous neuronal progenitor cells, but few human MSCs, expressed neuronal and glial phenotypes. Tissue levels of trophic factors, including glial cell line-derived neurotrophic factor, nerve growth factor, vascular endothelial growth factor, and hepatocyte growth factor, were higher in earlier-passage MSC-treated brains than in control or later-passage MSC-treated brains (p < 0.01 in all cases). Our results indicate that ischemia-induced neurogenesis was enhanced by the i.v. administration of human MSCs. The effects were more pronounced with earlier-passage than with later-passage human MSCs, which may be related to the differential capacity in trophic support, depending on their passage.
Collapse
Affiliation(s)
- Wen Yu Li
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Hu C, Wu Y, Wan Y, Wang Q, Song J. Introduction of hIGF-1 gene into bone marrow stromal cells and its effects on the cell's biological behaviors. Cell Transplant 2009; 17:1067-81. [PMID: 19177843 DOI: 10.3727/096368908786991506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autologous and gene-modified bone marrow stromal cells (MSCs) have shown a bright future in clinical applications. However, does a gene-modified MSC still maintain its stem cell-like properties? To answer this question, human IGF-1 was introduced into rat MSCs using a recombinant retroviral vector and the effects of the gene manipulation on the cells' behaviors were investigated. The MSCs transfected with hIGF-1 could secrete 6.7-fold higher IGF-1 than the native cells. These MSCs had an elevated baseline activity of ERK signaling, an enhanced proliferation, increased accumulative numbers of cell doublings, and a reduced apoptosis; they showed upregulated expressions of OCT-4, CYP51, and SM22alpha, and a downregulated expression of nestin. This indicates that the overexpressed IGF-1 enhances the MSCs' self-renewal, endodermal and mesodermal differentiation, but weakens their neuronal potential. Although a puromycin selection after hIGF-1 gene transfection could produce a purer transfected MSC population with stronger ability to express functional hIGF-1, it induced premature senescence of the selected cells by activating oncogene Ras, leading to a shortened replicative life span and a weakened multipotency.
Collapse
Affiliation(s)
- Chengjun Hu
- Department of Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, PR China
| | | | | | | | | |
Collapse
|
87
|
Hokari M, Kuroda S, Chiba Y, Maruichi K, Iwasaki Y. Synergistic effects of granulocyte-colony stimulating factor on bone marrow stromal cell transplantation for mice cerebral infarct. Cytokine 2009; 46:260-6. [PMID: 19286390 DOI: 10.1016/j.cyto.2009.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 12/23/2008] [Accepted: 02/12/2009] [Indexed: 01/07/2023]
Abstract
This study was aimed to assess whether ex vivo treatment with granulocyte-colony stimulating factor (G-CSF) modifies biological properties of bone marrow stromal cells (BMSC) and enhances functional recovery by BMSC transplantation into infarct brain. Immunohistochemistry was conducted to characterize the cultured BMSC. The pharmacological effects of G-CSF on their proliferation, cell cycle, and growth factor production were precisely analyzed, using FACS and ELISA techniques. Non-treated or G-CSF treated BMSC were stereotactically transplanted into the mice brain subjected to cerebral infarct, and its effects on functional and histological aspects were evaluated. The BMSC expressed the receptor for G-CSF. Treatment with 0.1muM of G-CSF significantly enhanced the proliferation of BMSC by increasing their population in S phase, and increased their production of SDF-1alpha, HGF, and NGF. When transplanted into infarct brain, G-CSF treated BMSC significantly improved motor function as early as 2 weeks after transplantation, whereas non-treated BMSC did 4 weeks after transplantation. These findings strongly suggest that G-CSF may enhance the proliferation and growth factor production of the cultured BMSC and accelerate functional restoration by BMSC transplantation. Such pharmacological "activation" of the BMSC may contribute to successful clinical application of BMSC transplantation therapy for ischemic stroke.
Collapse
Affiliation(s)
- Masaaki Hokari
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | |
Collapse
|
88
|
van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ. Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. ACTA ACUST UNITED AC 2009; 61:1-13. [PMID: 19348860 DOI: 10.1016/j.brainresrev.2009.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/24/2009] [Accepted: 03/27/2009] [Indexed: 01/27/2023]
Abstract
After ischemic brain injury various cell types including neurons, glia and endothelial cells are damaged and lose their function. Effective regeneration of brain tissue requires that all these cell types have to be replenished and combined to form a new functional network. Recent advances in regenerative medicine show the ability of stem cells to differentiate into various cell lineages. Several types of stem cells have been used to treat ischemic brain injury in rodent models including neuronal stem cells, mesenchymal stem cells and hematopoietic stem cells. Although these studies show promising results, it remains to be determined whether the beneficial effect of cell-based therapies in ischemic brain injury results from direct replacement of damaged cells by the transplanted cells. On the basis of the current literature we propose that neuroprotection by activation of anti-apoptotic mechanisms as well as improvement of the trophic milieu necessary for endogenous repair processes may be more important mechanisms underlying the improved functional outcome after stem cell treatment. Transplantation of native unmodified stem cells as such may not be sufficient to boost repair mechanisms provided by the endogenous stem cell population. An important aim of this review is to discuss the literature on the possible enhancement of regenerative function by combining stem cell transplantation with gene transduction into stem cells to enhance their regenerative and neuroprotective therapeutic potential. Finally, we briefly discuss the possibility of translation of this therapy to the clinic.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Laboratory of Psychoneuroimmunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
89
|
Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 2009; 11:377-91. [PMID: 19568970 DOI: 10.1080/14653240903080367] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent cells that differentiate into osteoblasts, myocytes, chondrocytes and adipocytes as well as insulin-producing cells. The mechanism underlying their in vivo differentiation is not clear and is thought to be caused by spontaneous cell fusion or factors present in the microenvironment. However, their ease of isolation, high 'ex-vivo' expansion potential and ability to differentiate into multiple lineages make them attractive tools for potential use in cell therapy. MSC have been isolated from several tissues, including bone/bone marrow, fat, Wharton's jelly, umbilical cord blood, placenta and pancreas. The 'immunosuppressive' property of human MSC makes them an important candidate for cellular therapy in allogeneic settings. Use of allogeneic MSC for repair of large defects may be an alternative to autologous and allogeneic tissue-grafting procedures. An allogeneic approach would enable MSC to be isolated from any donor, expanded and cryopreserved, providing a readily available source of progenitors for cell replacement therapy. Their immunomodulatory properties have raised the possibility of establishing allogeneic MSC banks for tissue regeneration. These facts are strongly reflected in the current exponential growth in stem cell research in the pharmaceutical and biotechnology communities. Current knowledge regarding the immunobiology and clinical application of MSC needs to be strengthened further to establish MSC as a safe and effective therapeutic tool in regenerative medicine. This paper discusses human MSC with particular reference to the expression of their surface markers, their role as immunomodulators and their multilineage differentiation potential and possible use in tissue regeneration and repair.
Collapse
Affiliation(s)
- Jyoti A Kode
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
| | | | | | | |
Collapse
|
90
|
Dharmasaroja P. Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J Clin Neurosci 2008; 16:12-20. [PMID: 19017556 DOI: 10.1016/j.jocn.2008.05.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/12/2008] [Accepted: 05/17/2008] [Indexed: 02/01/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have great potential as therapeutic agents in stroke management, since they are easily accessible and can be rapidly expanded ex vivo for autologous transplantation. Increasing evidence suggests that bone marrow cells migrate throughout the brain and differentiate into neurons and glial cells. Both non-human and human MSCs have been used to treat stroke in murine models with satisfactory results. Several factors, such as transdifferentiation, induction of neurogenesis and angiogenesis, neuroprotection, and activation of endogenous neurorestorative processes, contribute to the benefits of MSCs in the ischemic brain. Many variables, including types of MSCs, cell dose, timing of treatment, route of cell delivery, and characteristics of stroke patients, influence the efficacy of MSC treatment of stroke. Although the first trials of autologous MSC therapy in stroke patients showed promising results, the optimal approach for different clinical settings has yet to be determined. The fundamental properties of MSCs and their potential short-term and long-term toxicities also need to be determined before moving forward to use of these cells in clinical practice.
Collapse
Affiliation(s)
- Permphan Dharmasaroja
- Department of Anatomy and Center for Neuroscience, Faculty of Science, Mahidol University, Rama VI Road, Rajthevi, Bangkok 10400, Thailand.
| |
Collapse
|
91
|
Abe K. [Neuroprotective therapy for ischemic stroke with free radical scavenger and gene-stem cell therapy]. Rinsho Shinkeigaku 2008; 48:896-898. [PMID: 19198109 DOI: 10.5692/clinicalneurol.48.896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A free radical scavenger Edaravone is the first clinical drug for neuroprotection in the world which has been used from 2001 in most ischemic stroke patients in Japan, and is especially useful in thrombolytic therapy with tissue plasminogen activator (tPA). Of great importance for regenerative therapy and gene therapy are the neural stem cells which are intrinsically activated or exogenously transplanted. Addition of NTFs greatly enhanced an intrinsic migration or invasion of stem cells into the scaffold, which could provide a future regenerative potential against ischemic brain damage at chronic stage.
Collapse
Affiliation(s)
- Koji Abe
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University
| |
Collapse
|
92
|
Iwanami J, Mogi M, Li JM, Tsukuda K, Min LJ, Sakata A, Fujita T, Iwai M, Horiuchi M. Deletion of Angiotensin II Type 2 Receptor Attenuates Protective Effects of Bone Marrow Stromal Cell Treatment on Ischemia–Reperfusion Brain Injury in Mice. Stroke 2008; 39:2554-9. [DOI: 10.1161/strokeaha.107.513275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jun Iwanami
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masaki Mogi
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Jian-Mei Li
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Kana Tsukuda
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Li-Juan Min
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Akiko Sakata
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Teppei Fujita
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masaru Iwai
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masatsugu Horiuchi
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| |
Collapse
|
93
|
Abstract
Spontaneous behavioral recovery is usually limited after stroke, making stroke a leading source of disability. A number of therapies in development aim to improve patient outcomes not by acutely salvaging threatened tissue, but instead by promoting repair and restoration of function in the subacute or chronic phase after stroke. Examples include small molecules, growth factors, cell-based therapies, electromagnetic stimulation, device-based strategies, and task-oriented and repetitive training-based interventions. Stage of development across therapies varies widely, from preclinical to late-phase clinical trials. The optimal methods to prescribe such therapies require further studies, for example, to best identify appropriate patients or to guide features of dosing. Likely, anatomic, functional, and behavioral measures of brain state, as well as measures of injury, will each be useful in this regard. Considerations for clinical trials of restorative therapies are provided, emphasizing both similarities and points of divergence with acute stroke clinical trial design.
Collapse
Affiliation(s)
- Steven C Cramer
- Department of Neurology, University of California, Irvine, CA 92868-4280, USA.
| |
Collapse
|
94
|
Yu D, Silva GA. Stem cell sources and therapeutic approaches for central nervous system and neural retinal disorders. Neurosurg Focus 2008; 24:E11. [PMID: 18341387 DOI: 10.3171/foc/2008/24/3-4/e10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decades, stem cell biology has made a profound impact on our views of mammalian development as well as opened new avenues in regenerative medicine. The potential of stem cells to differentiate into various cell types of the body is the principal reason they are being explored in treatments for diseases in which there may be dysfunctional cells and/or loss of healthy cells due to disease. In addition, other properties are unique to stem cells; their endogenous trophic support, ability to home to sites of pathological entities, and stability in culture, which allows genetic manipulation, are also being utilized to formulate stem cell-based therapy for central nervous system (CNS) disorders. In this review, the authors will review key characteristics of embryonic and somatic (adult) stem cells, consider therapeutic strategies employed in stem cell therapy, and discuss the recent advances made in stem cell-based therapy for a number of progressive neurodegenerative diseases in the CNS as well as neuronal degeneration secondary to other abnormalities and injuries. Although a great deal of progress has been made in our knowledge of stem cells and their utility in treating CNS disorders, much still needs to be elucidated regarding the biology of the stem cells and the pathogenesis of targeted CNS diseases to maximize therapeutic benefits. Nonetheless, stem cells present tremendous promise in the treatment of a variety of neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana Yu
- Department of Bioengineering, University of California, San Diego, USA
| | | |
Collapse
|
95
|
|
96
|
Kitamura K, Iwanami A, Nakamura M, Yamane J, Watanabe K, Suzuki Y, Miyazawa D, Shibata S, Funakoshi H, Miyatake S, Coffin RS, Nakamura T, Toyama Y, Okano H. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res 2007; 85:2332-42. [PMID: 17549731 DOI: 10.1002/jnr.21372] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many therapeutic interventions using neurotrophic factors or pharmacological agents have focused on secondary degeneration after spinal cord injury (SCI) to reduce damaged areas and promote axonal regeneration and functional recovery. Hepatocyte growth factor (HGF), which was identified as a potent mitogen for mature hepatocytes and a mediator of inflammatory responses to tissue injury, has recently been highlighted as a potent neurotrophic and angiogenic factor in the central nervous system (CNS). In the present study, we revealed that the extent of endogenous HGF up-regulation was less than that of c-Met, an HGF receptor, during the acute phase of SCI and administered exogenous HGF into injured spinal cord using a replication-incompetent herpes simplex virous-1 (HSV-1) vector to determine whether HGF exerts beneficial effects and promotes functional recovery after SCI. This treatment resulted in the significant promotion of neuron and oligodendrocyte survival, angiogenesis, axonal regrowth, and functional recovery after SCI. These results suggest that HGF gene delivery to the injured spinal cord exerts multiple beneficial effects and enhances endogenous repair after SCI. This is the first study to demonstrate the efficacy of HGF for SCI.
Collapse
Affiliation(s)
- Kazuya Kitamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Nasef A, Fouillard L, El-Taguri A, Lopez M. Human bone marrow-derived mesenchymal stem cells. Libyan J Med 2007; 2:190-201. [PMID: 21503244 PMCID: PMC3078252 DOI: 10.4176/070705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD). This review summarizes the knowledge and possible future clinical uses of MSCs.
Collapse
Affiliation(s)
- A Nasef
- EA 1638 -Hématologie, Faculté de Médicine Saint-Antoine, Université de Pierre et Marie Curie, Paris VI, 27 Rue de Chaligny, 75012 Paris, France
| | | | | | | |
Collapse
|
98
|
Miki Y, Nonoguchi N, Ikeda N, Coffin RS, Kuroiwa T, Miyatake SI. Vascular endothelial growth factor gene-transferred bone marrow stromal cells engineered with a herpes simplex virus type 1 vector can improve neurological deficits and reduce infarction volume in rat brain ischemia. Neurosurgery 2007; 61:586-94; discussion 594-5. [PMID: 17881973 DOI: 10.1227/01.neu.0000290907.30814.42] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Several reports recently suggested that vascular endothelial growth factor (VEGF) may have a therapeutic benefit against experimental cerebral infarction animal models. In addition, bone marrow stromal cells (BMSCs) are known to have therapeutic potency in improving neurological deficits after occlusive cerebrovascular diseases. In the present study, we evaluated the hypothesis that intracerebral transplantation of VEGF gene-transferred BMSCs could provide a greater therapeutic effect than intracerebral transplantation of native (non-gene-transformed) BMSCs by using a transient middle cerebral artery occlusion (MCAO) rat model. METHODS Adult Wistar rats (Japan SLC, Inc., Hamamatsu, Japan) were anesthetized. VEGF gene-transferred BMSCs engineered with a replication-deficient herpes simplex virus type 1 1764/4-/pR19-hVEGF165 vector, native BMSCs, or phosphate-buffered saline were administered intracerebrally 24 hours after transient MCAO. All animals underwent behavioral testing for 28 days, and the infarction volume was determined 14 days after MCAO. The brain water contents in the ipsilateral and contralateral hemispheres of the MCAO were measured 2 and 7 days after the MCAO. Fourteen days after MCAO, immunohistochemical staining for VEGF was performed. RESULTS The group receiving VEGF-modified BMSCs demonstrated significant functional recovery compared with those receiving native BMSCs. Fourteen days after the MCAO, there was a significantly lower infarct volume without aggravating cerebral edema in the group treated with VEGF gene-modified BMSCs compared with the control groups. The transplanted VEGF gene-modified BMSCs strongly expressed VEGF protein for at least 14 days. CONCLUSION Our data suggest that the intracerebral transplantation of VEGF gene-transferred BMSCs may provide a more potent autologous cell transplantation therapy for stroke than the transplantation of native BMSCs alone.
Collapse
Affiliation(s)
- Yoshihito Miki
- Department of Neurosurgery, Osaka Medical College, Takatsuki City, Japan
| | | | | | | | | | | |
Collapse
|
99
|
Zietlow R, Lane EL, Dunnett SB, Rosser AE. Human stem cells for CNS repair. Cell Tissue Res 2007; 331:301-22. [PMID: 17901985 DOI: 10.1007/s00441-007-0488-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 07/25/2007] [Indexed: 12/31/2022]
Abstract
Although most peripheral tissues have at least a limited ability for self-repair, the central nervous system (CNS) has long been known to be relatively resistant to regeneration. Small numbers of stem cells have been found in the adult brain but do not appear to be able to affect any significant recovery following disease or insult. In the last few decades, the idea of being able to repair the brain by introducing new cells to repair damaged areas has become an accepted potential treatment for neurodegenerative diseases. This review focuses on the suitability of various human stem cell sources for such treatments of both slowly progressing conditions, such as Parkinson's disease, Huntington's disease and multiple sclerosis, and acute insult, such as stroke and spinal cord injury. Despite stem cell transplantation having now moved a step closer to the clinic with the first trials of autologous mesenchymal stem cells, the effects shown are moderate and are not yet at the stage of development that can fulfil the hopes that have been placed on stem cells as a means to replace degenerating cells in the CNS. Success will depend on careful investigation in experimental models to enable us to understand not just the practicalities of stem cell use, but also the underlying biological principles.
Collapse
Affiliation(s)
- Rike Zietlow
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3US, UK.
| | | | | | | |
Collapse
|
100
|
Sung JH, Zhao H, Roy M, Sapolsky RM, Steinberg GK. Viral caspase inhibitor p35, but not crmA, is neuroprotective in the ischemic penumbra following experimental stroke. Neuroscience 2007; 149:804-12. [PMID: 17945431 DOI: 10.1016/j.neuroscience.2007.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/09/2007] [Accepted: 08/09/2007] [Indexed: 11/19/2022]
Abstract
Apoptosis, a predominant cause of neuronal death after stroke, can be executed in a caspase-dependent or apoptosis inducing factor (AIF)-dependent manner. Herpes simplex virus (HSV) vectors expressing caspase inhibitors p35 and crmA have been shown to be neuroprotective against various excitotoxic insults. Here we further evaluated the possible neuroprotective role of p35 and crmA in a rat stroke model. Overexpression of p35, but not crmA, significantly increased neuronal survival. Results of double immunofluorescence staining indicate that compared with neurons infected with crmA or control vectors, p35-infected neurons had less active caspase-3 expression, cytosolic cytochrome c and nuclear AIF translocation.
Collapse
Affiliation(s)
- J H Sung
- Department of Neurosurgery, Stanford University, School of Medicine, 300 Pasteur Drive R200, Stanford, CA 94305-5327, USA
| | | | | | | | | |
Collapse
|