51
|
Tao Lan, Zhao X, Cao F, Zhang W. A Simple and Easy Evaluation Method for Urinary Extracellular Vesicles Quality. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
Weber B, Franz N, Marzi I, Henrich D, Leppik L. Extracellular vesicles as mediators and markers of acute organ injury: current concepts. Eur J Trauma Emerg Surg 2022; 48:1525-1544. [PMID: 33533957 PMCID: PMC7856451 DOI: 10.1007/s00068-021-01607-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Due to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.
Collapse
Affiliation(s)
- Birte Weber
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Niklas Franz
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
53
|
Li X, Yang L. Urinary exosomes: Emerging therapy delivery tools and biomarkers for urinary system diseases. Biomed Pharmacother 2022; 150:113055. [PMID: 35658226 DOI: 10.1016/j.biopha.2022.113055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary exosomes (UE) are small circular membranous vesicles with a lipid bilayer with a diameter of 40-160 nm secreted by epithelial cells of the kidney and genitourinary system, which can reflect the physiological and functional status of secretory cells. Protein and RNA in exosomes can be used as markers for diseases diagnosis. Urine specimens are available and non-invasive. The protein and RNA in UE are more stable than the soluble protein and RNA in urine, which have broad application prospects in the diagnosis of urinary system diseases. This article reviews the recent advances in the application of protein or RNA in UE as markers to the diagnosis of urinary system diseases.
Collapse
Affiliation(s)
- Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
54
|
Abstract
Extracellular vesicles are released by the majority of cell types and circulate in body fluids. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has established a central role of extracellular vesicles in kidney physiology and pathology. Urinary extracellular vesicles mediate crosstalk between glomerular and tubular cells and between different segments of the tubule, whereas circulating extracellular vesicles mediate organ crosstalk and are involved in the amplification of kidney damage and inflammation. The molecular profile of extracellular vesicles reflects the type and pathophysiological status of the originating cell so could potentially be exploited for diagnostic and prognostic purposes. In addition, robust preclinical data suggest that administration of exogenous extracellular vesicles could promote kidney regeneration and reduce inflammation and fibrosis in acute and chronic kidney diseases. Stem cells are thought to be the most promising source of extracellular vesicles with regenerative activity. Extracellular vesicles are also attractive candidates for drug delivery and various engineering strategies are being investigated to alter their cargo and increase their efficacy. However, rigorous standardization and scalable production strategies will be necessary to enable the clinical application of extracellular vesicles as potential therapeutics. In this Review, the authors discuss the roles of extracellular vesicles in kidney physiology and disease as well as the beneficial effects of stem cell-derived extracellular vesicles in preclinical models of acute kidney injury and chronic kidney disease. They also highlight current and future clinical applications of extracellular vesicles in kidney diseases. Urinary extracellular vesicles have roles in intra-glomerular, glomerulo-tubular and intra-tubular crosstalk, whereas circulating extracellular vesicles might mediate organ crosstalk; these mechanisms could amplify kidney damage and contribute to disease progression. Urinary extracellular vesicles could potentially be analysed using multiplex diagnostic platforms to identify pathological processes and the originating cell types; technological advances including single extracellular vesicle analysis might increase the specificity of bulk analysis of extracellular vesicle preparations. Robust standardization and validation in large patient cohorts are required to enable clinical application of extracellular vesicle-based biomarkers. Stem cell-derived extracellular vesicles have been shown to improve renal recovery, limit progression of injury and reduce fibrosis in animal models of acute kidney injury and chronic kidney disease. Various engineering approaches can be used to load extracellular vesicles with therapeutic molecules and increase their delivery to the kidney. A small clinical trial that tested the efficacy of mesenchymal stem cell extracellular vesicle administration in patients with chronic kidney disease reported promising results; however, therapeutic application of extracellular vesicles is limited by a lack of scalable manufacturing protocols and clear criteria for standardization.
Collapse
|
55
|
Janouskova O, Herma R, Semeradtova A, Poustka D, Liegertova M, Malinska HA, Maly J. Conventional and Nonconventional Sources of Exosomes-Isolation Methods and Influence on Their Downstream Biomedical Application. Front Mol Biosci 2022; 9:846650. [PMID: 35586196 PMCID: PMC9110031 DOI: 10.3389/fmolb.2022.846650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive study of extracellular vesicles (EVs), specifically exosomes (EXs) as biomarkers, important modulators of physiological or pathological processes, or therapeutic agents, relatively little is known about nonconventional sources of EXs, such as invertebrate or plant EXs, and their uses. Likewise, there is no clear information on the overview of storage conditions and currently used isolation methods, including new ones, such as microfluidics, which fundamentally affect the characterization of EXs and their other biomedical applications. The purpose of this review is to briefly summarize conventional and nonconventional sources of EXs, storage conditions and typical isolation methods, widely used kits and new "smart" technologies with emphasis on the influence of isolation techniques on EX content, protein detection, RNA, mRNA and others. At the same time, attention is paid to a brief overview of the direction of biomedical application of EXs, especially in diagnostics, therapy, senescence and aging and, with regard to the current situation, in issues related to Covid-19.
Collapse
Affiliation(s)
- Olga Janouskova
- Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista University in Ústí Nad Labem, Ústí Nad Labem, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
56
|
Chu L, Shu X, Huang Y, Chu T, Ge M, Lu Q. Sex Steroid Hormones in Urinary Exosomes as Biomarkers for the Prediction of Prostate Cancer. Clin Chim Acta 2022; 531:389-398. [PMID: 35487250 DOI: 10.1016/j.cca.2022.04.995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although they are involved in the progression of PCa, the use of sex steroid hormones in urinary exosomes as biomarkers for PCa remains obscure. Here, the potential use of sex steroid hormones in urinary exosomes as biomarkers was investigated for the prediction of early-stage PCa to assist in clinical diagnosis. METHODS Two hundred and eighty-six participants were randomly recruited, 231 patients with PCa and 55 healthy controls. According to their Gleason scores (GSs), the patients with PCa were divided into two groups, mild PCa (GS6) (n=116) and severe (≥ GS7) group (n=115),. The concentrations of 8 sex steroid hormones in urinary exosomes were quantitated using liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization (LC-APCI-MS/MS). RESULTS The results showed that the levels of 7 out of 8 sex steroids including dehydroepiandrosterone (DHEA), dehydroepiandrosteronesulfate (DHEAS), androstenedione (A4), testosterone (T), progesterone (P), dihydrotestosterone (DHT), and estrone (E1), but not estradiol (E2) in urinary exosomes, were not only distinguished the PCa patients from healthy controls, can also differentiate between patients with mild and severe PCa. Of the 8 selected urinary exosomal biomarkers, DHEA, DHEAS, T, and DHT were finally screened further to build the regression model, and the detection method of the 4 biomarkers-combined achieved an area under the ROC curve (AUC) of 0.854 and predictive accuracy of 78.2%. CONCLUSION Our data showed the use of exosomal sex steroids in urine could be as biomarkers for predicting PCa for the first time. This finding would supply a novel insight for PCa diagnosis.
Collapse
Affiliation(s)
- Liuxi Chu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Shu
- Department of Dermatology, the Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yao Huang
- Department of Stomatology, School of Medicine, Soochow University, Suzhou, 215123, China
| | - Tong Chu
- Department of prevention and health care, Changjiang Road community health service center, Shanghai, 200431, China
| | - Meina Ge
- Department of the Gloden Chamber, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Qin Lu
- Department of the Gloden Chamber, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
57
|
Tackling the effects of extracellular vesicles in fibrosis. Eur J Cell Biol 2022; 101:151221. [PMID: 35405464 DOI: 10.1016/j.ejcb.2022.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.
Collapse
|
58
|
Lee HK, Lee BR, Lee TJ, Lee CM, Li C, O'Connor PM, Dong Z, Kwon SH. Differential release of extracellular vesicle tRNA from oxidative stressed renal cells and ischemic kidneys. Sci Rep 2022; 12:1646. [PMID: 35102218 PMCID: PMC8803936 DOI: 10.1038/s41598-022-05648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
While urine-based liquid biopsy has expanded to the analyses of extracellular nucleic acids, the potential of transfer RNA (tRNA) encapsulated within extracellular vesicles has not been explored as a new class of urine biomarkers for kidney injury. Using rat kidney and mouse tubular cell injury models, we tested if extracellular vesicle-loaded tRNA and their m1A (N1-methyladenosine) modification reflect oxidative stress of kidney injury and determined the mechanism of tRNA packaging into extracellular vesicles. We determined a set of extracellular vesicle-loaded, isoaccepting tRNAs differentially released after ischemia-reperfusion injury and oxidative stress. Next, we found that m1A modification of extracellular vesicle tRNAs, despite an increase of the methylated tRNAs in intracellular vesicles, showed little or no change under oxidative stress. Mechanistically, oxidative stress decreases tRNA loading into intracellular vesicles while the tRNA-loaded vesicles are accumulated due to decreased release of the vesicles from the cell surface. Furthermore, Maf1-mediated transcriptional repression of the tRNAs decreases the cargo availability for extracellular vesicle release in response to oxidative stress. Taken together, our data support that release of extracellular vesicle tRNAs reflects oxidative stress of kidney tubules which might be useful to detect ischemic kidney injury and could lead to rebalance protein translation under oxidative stress.
Collapse
Affiliation(s)
- Hee Kyung Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Byung Rho Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chang Min Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chenglong Li
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
59
|
Rana R, Kant R, Kaul D, Sachdev A, Ganguly NK. Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers. Mol Cell Biochem 2022; 477:815-832. [PMID: 35059925 DOI: 10.1007/s11010-021-04326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Dengue viruses (DENVs) are the viruses responsible for dengue infection which affects lungs, liver, heart and also other organs of individuals. DENVs consist of the group of four serotypically diverse dengue viruses transmitted in tropical and sub-tropical countries of world. Aedes mosquito is the principal vector which spread the infection from infected person to healthy humans. DENVs can cause different syndromes depending on serotype of virus which range from undifferentiated mild fever to dengue hemorrhagic fever resulting in vascular leakage due to release of cytokine and Dengue shock syndrome with fluid loss and hypotensive shock, or other severe manifestations such as bleeding and organ failure. Increase in dengue cases in pediatric population is a major concern. Transmission of dengue depends on various factors like temperature, rainfall, and distribution of Aedes aegypti mosquitoes. The present review describes a comprehensive overview of dengue, pathophysiology, diagnosis, treatment with an emphasis on potential of exosomes as biomarkers for early prediction of dengue in pediatrics.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India.
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Dinesh Kaul
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Anil Sachdev
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | | |
Collapse
|
60
|
Blijdorp CJ, Hartjes TA, Wei K, van Heugten MH, Bovée DM, Budde RP, van de Wetering J, Hoenderop JG, van Royen ME, Zietse R, Severs D, Hoorn EJ. Nephron mass determines the excretion rate of urinary extracellular vesicles. J Extracell Vesicles 2022; 11:e12181. [PMID: 35064766 PMCID: PMC8783354 DOI: 10.1002/jev2.12181] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Urinary extracellular vesicles (uEVs) are emerging as non-invasive biomarkers for various kidney diseases, but it is unknown how differences in nephron mass impact uEV excretion. To address this, uEV excretion was measured before and after human kidney donor nephrectomy and rat nephrectomy. In male and female donors, uEVs were quantified in cell-free spot and 24-h urine samples using nanoparticle tracking analysis (NTA), EVQuant, and CD9-time-resolved fluorescence immunoassay. Female donors had significantly lower total kidney volume (TKV) and excreted 49% fewer uEVs than male donors. uEV excretion correlated positively with estimated glomerular filtration rate (eGFR), creatinine clearance, and TKV (R's between 0.6 and 0.7). uEV excretion rate could also be predicted from spot urines after multiplying spot uEV/creatinine by 24-h urine creatinine. Donor nephrectomy reduced eGFR by 36% ± 10%, but the excretion of uEVs by only 16% (CD9+ uEVs -37%, CD9- uEVs no decrease). Donor nephrectomy increased the podocyte marker WT-1 and the proximal tubule markers NHE3, NaPi-IIa, and cubilin in uEVs two- to four-fold when correcting for the nephrectomy. In rats, the changes in GFR and kidney weight correlated with the changes in uEV excretion rate (R = 0.46 and 0.60, P < 0.01). Furthermore, the estimated degree of hypertrophy matched the change in uEV excretion rate (1.4- to 1.5-fold after uninephrectomy and four-fold after 5/6th nephrectomy). Taken together, our data show that uEV excretion depends on nephron mass, and that nephrectomy reduces uEV excretion less than expected based on nephron loss due to compensatory hypertrophy. The major implication of our findings is that a measure for nephron mass or uEV excretion rate should be included when comparing uEV biomarkers between individuals.
Collapse
Affiliation(s)
- Charles J. Blijdorp
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Thomas A. Hartjes
- Department of PathologyErasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Kuang‐Yu Wei
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Martijn H. van Heugten
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Dominique M. Bovée
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Ricardo P.J. Budde
- Department of Radiology and Nuclear MedicineErasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Jacqueline van de Wetering
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Joost G.J. Hoenderop
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Martin E. van Royen
- Department of PathologyErasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - David Severs
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
61
|
Reithmair M, Lindemann A, Mussack V, Pfaffl MW. Isolation and Characterization of Urinary Extracellular Vesicles for MicroRNA Biomarker Signature Development with Reference to MISEV Compliance. Methods Mol Biol 2022; 2504:113-133. [PMID: 35467283 DOI: 10.1007/978-1-0716-2341-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Urine bears high potential for serving as biomarker repository for renal and urinary tract associated disorders. Besides various metabolites and salts, urine carries extracellular vesicles (EVs)-a heterogeneous group of cell-derived mediators comprising proteins, lipids, and nucleic acids such as microRNAs (miRNAs). Particularly, EV-derived miRNA biomarkers have already been identified for numerous disorders such as sepsis, various blood and solid cancer entities, respiratory and renal diseases. However, study results are often incomparable due to poorly reported EV separation and miRNA isolation protocols and emphasize the need for standardization and reproducibility. To ensure valid EV-derived miRNA biomarker findings from urine, a step-by-step protocol compliant with the "Minimal Information for Studies of Extracellular Vesicles" (MISEV) is outlined in the following paragraphs. Actually, an immunoaffinity-based EV separation method followed by EV characterization, quantification, and normalization, as well as consecutive miRNA isolation and miRNA profiling by small RNA sequencing, are described.
Collapse
Affiliation(s)
- Marlene Reithmair
- Institute of Human Genetics, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Anja Lindemann
- Institute of Human Genetics, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
62
|
Li J, Cai S, Zeng C, Chen L, Zhao C, Huang Y, Cai W. Urinary exosomal vitronectin predicts vesicoureteral reflux in patients with neurogenic bladders and spinal cord injuries. Exp Ther Med 2021; 23:65. [PMID: 34934436 PMCID: PMC8649849 DOI: 10.3892/etm.2021.10988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Neurogenic bladder (NGB) is an important complication of urinary tract dysfunction after spinal cord injury (SCI). However, using urodynamics and urography to guide therapy remains invasive and complicated. Therefore, the present study aimed to identify potential noninvasive biomarkers from urinary exosomes that can facilitate diagnosis and guide prognosis of patients with NGB subsequent to SCI. Urinary exosomes were isolated, and their proteome profile was analyzed by mass spectrometry. Transmission electron microscopy and Nanoparticle Tracking Analysis confirmed the size and morphological characteristics of urinary exosomes. In addition, bioinformatics analysis and parallel reaction monitoring (PRM) were used to screen candidate biomarkers. The selected biomarkers were validated using western blotting and ELISA. Mass spectrometry identified 134 upregulated proteins and 99 downregulated proteins between the vesicoureteral reflux (VUR) and non-VUR groups. A total of 18 candidate proteins were selected for PRM validation, but only vitronectin (VTN) and α-1 type I collagen (COL1A1) demonstrated significant differences. In the validation experiments using western blotting and ELISA, VTN was exclusively highly expressed in VUR patients compared with non-VUR patients. However, the ELISA results of COL1A1 revealed no significant difference when a larger sample size was used. Furthermore, a receiver operating characteristic curve of ELISA-based VTN demonstrated an area under the curve of 0.795 and 80% sensitivity at a threshold set to give 82.9% specificity. Collectively, these results suggested that VTN in urinary exosomes may be used as a biomarker to predict the progression and guide the prognosis of NGB.
Collapse
Affiliation(s)
- Jue Li
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China.,School of Nursing, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shiying Cai
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Chunxian Zeng
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ling Chen
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Chun Zhao
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ying Huang
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Wenzhi Cai
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China.,School of Nursing, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
63
|
Azevedo CAB, da Cunha RS, Junho CVC, da Silva JV, Moreno-Amaral AN, de Moraes TP, Carneiro-Ramos MS, Stinghen AEM. Extracellular Vesicles and Their Relationship with the Heart-Kidney Axis, Uremia and Peritoneal Dialysis. Toxins (Basel) 2021; 13:toxins13110778. [PMID: 34822562 PMCID: PMC8618757 DOI: 10.3390/toxins13110778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiorenal syndrome (CRS) is described as primary dysfunction in the heart culminating in renal injury or vice versa. CRS can be classified into five groups, and uremic toxin (UT) accumulation is observed in all types of CRS. Protein-bound uremic toxin (PBUT) accumulation is responsible for permanent damage to the renal tissue, and mainly occurs in CRS types 3 and 4, thus compromising renal function directly leading to a reduction in the glomerular filtration rate (GFR) and/or subsequent proteinuria. With this decrease in GFR, patients may need renal replacement therapy (RRT), such as peritoneal dialysis (PD). PD is a high-quality and home-based dialysis therapy for patients with end-stage renal disease (ESRD) and is based on the semi-permeable characteristics of the peritoneum. These patients are exposed to factors which may cause several modifications on the peritoneal membrane. The presence of UT may harm the peritoneum membrane, which in turn can lead to the formation of extracellular vesicles (EVs). EVs are released by almost all cell types and contain lipids, nucleic acids, metabolites, membrane proteins, and cytosolic components from their cell origin. Our research group previously demonstrated that the EVs can be related to endothelial dysfunction and are formed when UTs are in contact with the endothelial monolayer. In this scenario, this review explores the mechanisms of EV formation in CRS, uremia, the peritoneum, and as potential biomarkers in peritoneal dialysis.
Collapse
Affiliation(s)
- Carolina Amaral Bueno Azevedo
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
| | - Carolina Victoria Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Jessica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Andréa N. Moreno-Amaral
- Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (A.N.M.-A.); (T.P.d.M.)
| | - Thyago Proença de Moraes
- Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (A.N.M.-A.); (T.P.d.M.)
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
- Correspondence:
| |
Collapse
|
64
|
Soliman HM, Ghonaim GA, Gharib SM, Chopra H, Farag AK, Hassanin MH, Nagah A, Emad-Eldin M, Hashem NE, Yahya G, Emam SE, Hassan AEA, Attia MS. Exosomes in Alzheimer's Disease: From Being Pathological Players to Potential Diagnostics and Therapeutics. Int J Mol Sci 2021; 22:10794. [PMID: 34639135 PMCID: PMC8509246 DOI: 10.3390/ijms221910794] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes (EXOs) were given attention as an extracellular vesicle (EV) with a pivotal pathophysiological role in the development of certain neurodegenerative disorders (NDD), such as Parkinson's and Alzheimer's disease (AD). EXOs have shown the potential to carry pathological and therapeutic cargo; thus, researchers have harnessed EXOs in drug delivery applications. EXOs have shown low immunogenicity as natural drug delivery vehicles, thus ensuring efficient drug delivery without causing significant adverse reactions. Recently, EXOs provided potential drug delivery opportunities in AD and promising future clinical applications with the diagnosis of NDD and were studied for their usefulness in disease detection and prediction prior to the emergence of symptoms. In the future, the microfluidics technique will play an essential role in isolating and detecting EXOs to diagnose AD before the development of advanced symptoms. This review is not reiterative literature but will discuss why EXOs have strong potential in treating AD and how they can be used as a tool to predict and diagnose this disorder.
Collapse
Affiliation(s)
- Hagar M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Ghada A. Ghonaim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Shaza M. Gharib
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aya K. Farag
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Mohamed H. Hassanin
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Abdalrazeq Nagah
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Mahmoud Emad-Eldin
- Department of Clinical, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Nevertary E. Hashem
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Sherif E. Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Abdalla E. A. Hassan
- Applied Nucleic Acids Research Center & Chemistry, Faculty of Science, Zagazig 44519, Egypt;
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| |
Collapse
|
65
|
Zhang Q, Loghry HJ, Qian J, Kimber MJ, Dong L, Lu M. Towards nanovesicle-based disease diagnostics: a rapid single-step exosome assay within one hour through in situ immunomagnetic extraction and nanophotonic label-free detection. LAB ON A CHIP 2021; 21:3541-3549. [PMID: 34287445 DOI: 10.1039/d1lc00446h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exosomes have been considered as high-quality biomarkers for disease diagnosis, as they are secreted by cells into extracellular environments as nanovesicles with rich and unique molecular information, and can be isolated and enriched from clinical samples. However, most existing exosome assays, to date, require time-consuming isolation and purification procedures; the detection specificity and sensitivity are also in need of improvement for the realization of exosome-based disease diagnostics. This paper reports a unique exosome assay technology that enables completing both magnetic nanoparticle (MNP)-based exosome extraction and high-sensitivity photonic crystal (PC)-based label-free exosome detection in a single miniature vessel within one hour, while providing an improved sensitivity and selectivity. High specificity of the assay to membrane antigens is realized by functionalizing both the MNPs and the PC with specific antibodies. A low limit of detection on the order of 107 exosome particles per milliliter (volume) is achieved because the conjugated MNP-exosome nanocomplexes offer a larger index change on the PC surface, compared to the exosomes alone without using MNPs. Briefly, the single-step exosome assay involves (i) forming specific MNP-exosome nanocomplexes to enrich exosomes from complex samples directly on the PC surface at the bottom of the vessel, with a >500 enrichment factor, and (ii) subsequently, performing in situ quantification of the nanocomplexes using the PC biosensor. The present exosome assay method is validated in analyzing multiple membrane proteins of exosomes derived from murine macrophage cells with high selectivity and sensitivity, while requiring only about one hour. This assay technology will provide great potential for exosome-based disease diagnostics.
Collapse
Affiliation(s)
- Qinming Zhang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Hannah J Loghry
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA.
| | - Jingjing Qian
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Michael J Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA.
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
- Microelectronics Research Centre, Iowa State University, Ames, Iowa 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
- Microelectronics Research Centre, Iowa State University, Ames, Iowa 50011, USA
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
66
|
Han C, Liu F, Zhang Y, Chen W, Luo W, Ding F, Lu L, Wu C, Li Y. Human Umbilical Cord Mesenchymal Stem Cell Derived Exosomes Delivered Using Silk Fibroin and Sericin Composite Hydrogel Promote Wound Healing. Front Cardiovasc Med 2021; 8:713021. [PMID: 34490375 PMCID: PMC8416918 DOI: 10.3389/fcvm.2021.713021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies have shown that the hydrogels formed by composite biomaterials are better choice than hydrogels formed by single biomaterial for tissue repair. We explored the feasibility of the composite hydrogel formed by silk fibroin (SF) and silk sericin (SS) in tissue repair for the excellent mechanical properties of SF, and cell adhesion and biocompatible properties of SS. In our study, the SF SS hydrogel was formed by SF and SS protein with separate extraction method (LiBr dissolution for SF and hot alkaline water dissolution for SS), while SF-SS hydrogel was formed by SF and SS protein using simultaneous extraction method (LiBr dissolution for SF and SS protein). The effects of the two composite hydrogels on the release of inflammatory cytokines from macrophages and the wound were analyzed. Moreover, two hydrogels were used to encapsulate and deliver human umbilical cord mesenchymal stem cell derived exosomes (UMSC-Exo). Both SF SS and SF-SS hydrogels promoted wound healing, angiogenesis, and reduced inflammation and TNF-α secretion by macrophages. These beneficial effects were more significant in the experimental group treated by UMSC-Exo encapsulated in SF-SS hydrogel. Our study found that SF-SS hydrogel could be used as an excellent alternative to deliver exosomes for tissue repair.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| | - Feng Liu
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| | - Yu Zhang
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| | - Wenjie Chen
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| | - Wei Luo
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| | - Fengzhi Ding
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| | - Lin Lu
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| | - Chengjie Wu
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| | - Yangxin Li
- Department of Cardiovascular Surgery, Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, First Affiliated Hospital and Medical College of Soochow University, Suzhou, China
| |
Collapse
|
67
|
Oh S, Kwon SH. Extracellular Vesicles in Acute Kidney Injury and Clinical Applications. Int J Mol Sci 2021; 22:8913. [PMID: 34445618 PMCID: PMC8396174 DOI: 10.3390/ijms22168913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI)--the sudden loss of kidney function due to tissue damage and subsequent progression to chronic kidney disease--has high morbidity and mortality rates and is a serious worldwide clinical problem. Current AKI diagnosis, which relies on measuring serum creatinine levels and urine output, cannot sensitively and promptly report on the state of damage. To address the shortcomings of these traditional diagnosis tools, several molecular biomarkers have been developed to facilitate the identification and ensuing monitoring of AKI. Nanosized membrane-bound extracellular vesicles (EVs) in body fluids have emerged as excellent sources for discovering such biomarkers. Besides this diagnostic purpose, EVs are also being extensively exploited to deliver therapeutic macromolecules to damaged kidney cells to ameliorate AKI. Consequently, many successful AKI biomarker findings and therapeutic applications based on EVs have been made. Here, we review our understanding of how EVs can help with the early identification and accurate monitoring of AKI and be used therapeutically. We will further discuss where current EV-based AKI diagnosis and therapeutic applications fall short and where future innovations could lead us.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
68
|
Ge G, Zheng Q, Sun Z, Wang H, Wang H, Ren K, Wu H, Zhu S, Li G. Proteomic Signature of Urosepsis: From Discovery in a Rabbit Model to Validation in Humans. J Proteome Res 2021; 20:3889-3899. [PMID: 34191523 DOI: 10.1021/acs.jproteome.1c00189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urosepsis after upper urinary tract endoscopic lithotripsy (UUTEL) may cause uroseptic shock with high mortality, which can be prevented if early diagnosis and timely intervention are implemented with help of a diagnostic protein panel. The plasma of five rabbits of uroseptic shock and five controls was subjected to exploratory proteomics to search biomarker candidates from proteomic profiles related to uroseptic shock. Then, plasma from 21 nonsepsis and 20 urosepsis patients according to European diagnostic criteria of sepsis was enrolled in the validation study via targeted proteomics. Changes in a massive number of plasma proteins, mainly enriched in immune regulation, coagulation, structural repair, and transport activity, were observed in the rabbit model of septic shock. Fifteen proteins were identified as differential expression proteins between sepsis and nonsepsis patients. A diagnostic model composed of three proteins lipopolysaccharide-binding protein (LBP), clusterin (CLU), and vascular cell adhesion protein 1 (VCAM1) was developed for the early detection (2 hours postoperatively) of urosepsis after UUTEL, with a high area under the receiver operating characteristic (ROC) curve of 0.921. In conclusion, changes in the proteomic profile may reflect the underlying biological mechanisms during the development of urosepsis and produce diagnostic biomarkers for the early detection of urosepsis after UUTEL.
Collapse
Affiliation(s)
- Guangju Ge
- Departments of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Qiming Zheng
- Departments of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huan Wang
- Departments of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Huailan Wang
- Departments of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Haiyang Wu
- Departments of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Shibin Zhu
- Departments of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Gonghui Li
- Departments of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
69
|
Blijdorp CJ, Tutakhel OAZ, Hartjes TA, van den Bosch TPP, van Heugten MH, Rigalli JP, Willemsen R, Musterd-Bhaggoe UM, Barros ER, Carles-Fontana R, Carvajal CA, Arntz OJ, van de Loo FAJ, Jenster G, Clahsen-van Groningen MC, Cuevas CA, Severs D, Fenton RA, van Royen ME, Hoenderop JGJ, Bindels RJM, Hoorn EJ. Comparing Approaches to Normalize, Quantify, and Characterize Urinary Extracellular Vesicles. J Am Soc Nephrol 2021; 32:1210-1226. [PMID: 33782168 PMCID: PMC8259679 DOI: 10.1681/asn.2020081142] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/15/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Urinary extracellular vesicles (uEVs) are a promising source for biomarker discovery, but optimal approaches for normalization, quantification, and characterization in spot urines are unclear. METHODS Urine samples were analyzed in a water-loading study, from healthy subjects and patients with kidney disease. Urine particles were quantified in whole urine using nanoparticle tracking analysis (NTA), time-resolved fluorescence immunoassay (TR-FIA), and EVQuant, a novel method quantifying particles via gel immobilization. RESULTS Urine particle and creatinine concentrations were highly correlated in the water-loading study (R2 0.96) and in random spot urines from healthy subjects (R2 0.47-0.95) and patients (R2 0.41-0.81). Water loading reduced aquaporin-2 but increased Tamm-Horsfall protein (THP) and particle detection by NTA. This finding was attributed to hypotonicity increasing uEV size (more EVs reach the NTA size detection limit) and reducing THP polymerization. Adding THP to urine also significantly increased particle count by NTA. In both fluorescence NTA and EVQuant, adding 0.01% SDS maintained uEV integrity and increased aquaporin-2 detection. Comparison of intracellular- and extracellular-epitope antibodies suggested the presence of reverse topology uEVs. The exosome markers CD9 and CD63 colocalized and immunoprecipitated selectively with distal nephron markers. Conclusions uEV concentration is highly correlated with urine creatinine, potentially replacing the need for uEV quantification to normalize spot urines. Additional findings relevant for future uEV studies in whole urine include the interference of THP with NTA, excretion of larger uEVs in dilute urine, the ability to use detergent to increase intracellular-epitope recognition in uEVs, and CD9 or CD63 capture of nephron segment-specific EVs.
Collapse
Affiliation(s)
- Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Omar A. Z. Tutakhel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas A. Hartjes
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn H. van Heugten
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Juan Pablo Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Usha M. Musterd-Bhaggoe
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eric R. Barros
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roger Carles-Fontana
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,Institute of Hepatology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Cristian A. Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Onno J. Arntz
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fons A. J. van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Cathy A. Cuevas
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David Severs
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert A. Fenton
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Martin E. van Royen
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
70
|
Du J, Li Y, Sun Q, Wang Z, Wang F, Chen F, Wang H, Liu Y, Zhou H, Shang G, Chen X, Ding S, Li C, Wu D, Zhang W, Zhong M. Urinary exosomal CD26 is associated with recovery from acute kidney injury in intensive care units: a prospective cohort study. Clin Chem Lab Med 2021; 59:1535-1546. [PMID: 33882205 DOI: 10.1515/cclm-2021-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Currently there is no validated method to predict renal reversal and recovery after acute kidney injury (AKI). As exosomes have the potential for AKI prognosis and CD26 is involved in the mechanisms in AKI, this study aims to investigate whether urinary exosomal CD26 is associated with renal-related outcomes and explore its prospect as a novel prognosis biomarker. METHODS This was a single-center, prospective cohort study. A total of 133 AKI patients and 68 non-AKI patients admitted to ICU in Qilu Hospital Shandong University from January 2017 to January 2018. Urine samples were collected at enrollment and the relative expression of CD26 (CD26 percentage) in urinary exosomes was examined, that was then categorized into a low-CD26 level and a high-CD26 level. RESULTS CD26 percentage was significantly lower in the AKI cohort than in the control cohort. Within the AKI cohort, a high-CD26 level was associated with lower incidence of major adverse kidney events within 90 days, but higher incidence of reversal within 28 days. In AKI survivors, a high-CD26 level had a 4.67-, 3.50- and 4.66-fold higher odds than a low-CD26 level for early reversal, recovery and reversal, respectively, after adjustment for clinical factors. Prediction performance was moderate for AKI survivors but improved for non-septic AKI survivors. CONCLUSIONS Urinary exosomal CD26 is associated with renal reversal and recovery from AKI and is thus a promising prognosis biomarker.
Collapse
Affiliation(s)
- Juan Du
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yihui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Qiang Sun
- Department of Vascular Surgery, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zhihao Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, Shandong, P.R. China
| | - Feng Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Fangfang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yirui Liu
- People's Hospital of Lingcheng District, Dezhou, Shandong, P.R. China
| | - Huimin Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Guokai Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaomei Chen
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Shifang Ding
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Chen Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, P.R. China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
71
|
Lee SA, Choi C, Yoo TH. Extracellular vesicles in kidneys and their clinical potential in renal diseases. Kidney Res Clin Pract 2021; 40:194-207. [PMID: 33866768 PMCID: PMC8237124 DOI: 10.23876/j.krcp.20.209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are cell-derived lipid bilayer membrane particles, which deliver information from host cells to recipient cells. EVs are involved in various biological processes including the modulation of the immune response, cell-to-cell communications, thrombosis, and tissue regeneration. Different types of kidney cells are known to release EVs under physiologic as well as pathologic conditions, and recent studies have found that EVs have a pathophysiologic role in different renal diseases. Given the recent advancement in EV isolation and analysis techniques, many studies have shown the diagnostic and therapeutic potential of EVs in various renal diseases, such as acute kidney injury, polycystic kidney disease, chronic kidney disease, kidney transplantation, and renal cell carcinoma. This review updates recent clinical and experimental findings on the role of EVs in renal diseases and highlights the potential clinical applicability of EVs as novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sul A Lee
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
72
|
Cimmino I, Bravaccini S, Cerchione C. Urinary Biomarkers in Tumors: An Overview. Methods Mol Biol 2021; 2292:3-15. [PMID: 33651347 DOI: 10.1007/978-1-0716-1354-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Recent reports suggest that urine is a useful noninvasive tool for the identification of urogenital tumors, including bladder, prostate, kidney, and other nonurological cancers. As a liquid biopsy, urine represents an important source for the improvement of new promising biomarkers, a suitable tool to identify indolent cancer and avoid overtreatment. Urine is enriched with DNAs, RNAs, proteins, circulating tumor cells, exosomes, and other small molecules which can be detected with several diagnostic methodologies.We provide an overview of the ongoing state of urinary biomarkers underlying both their potential utilities to improve cancer prognosis, diagnosis, and therapeutic strategy and their limitations.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
73
|
Barberis E, Vanella VV, Falasca M, Caneapero V, Cappellano G, Raineri D, Ghirimoldi M, De Giorgis V, Puricelli C, Vaschetto R, Sainaghi PP, Bruno S, Sica A, Dianzani U, Rolla R, Chiocchetti A, Cantaluppi V, Baldanzi G, Marengo E, Manfredi M. Circulating Exosomes Are Strongly Involved in SARS-CoV-2 Infection. Front Mol Biosci 2021; 8:632290. [PMID: 33693030 PMCID: PMC7937875 DOI: 10.3389/fmolb.2021.632290] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the host response to the novel coronavirus SARS-CoV-2 remains limited, hindering the understanding of COVID-19 pathogenesis and the development of therapeutic strategies. During the course of a viral infection, host cells release exosomes and other extracellular vesicles carrying viral and host components that can modulate the immune response. The present study used a shotgun proteomic approach to map the host circulating exosomes’ response to SARS-CoV-2 infection. We investigated how SARS-CoV-2 infection modulates exosome content, exosomes’ involvement in disease progression, and the potential use of plasma exosomes as biomarkers of disease severity. A proteomic analysis of patient-derived exosomes identified several molecules involved in the immune response, inflammation, and activation of the coagulation and complement pathways, which are the main mechanisms of COVID-19–associated tissue damage and multiple organ dysfunctions. In addition, several potential biomarkers—such as fibrinogen, fibronectin, complement C1r subcomponent and serum amyloid P-component—were shown to have a diagnostic feature presenting an area under the curve (AUC) of almost 1. Proteins correlating with disease severity were also detected. Moreover, for the first time, we identified the presence of SARS-CoV-2 RNA in the exosomal cargo, which suggests that the virus might use the endocytosis route to spread infection. Our findings indicate circulating exosomes’ significant contribution to several processes—such as inflammation, coagulation, and immunomodulation—during SARS-CoV-2 infection. The study’s data are available via ProteomeXchange with the identifier PXD021144.
Collapse
Affiliation(s)
- Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy.,ISALIT, Novara, Italy
| | - Virginia V Vanella
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Valeria Caneapero
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Davide Raineri
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Marco Ghirimoldi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Chiara Puricelli
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Rosanna Vaschetto
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Pier Paolo Sainaghi
- Internal and Emergency Medicine Departments, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Azienda Ospedaliero-Universitaria "Maggiore della Carità", Novara, Italy
| | - Stefania Bruno
- Città della Salute e della Scienza and Molecular Biotechnology Center, Torino, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Umberto Dianzani
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy.,Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy.,ISALIT, Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy.,ISALIT, Novara, Italy
| |
Collapse
|
74
|
Ochiai-Homma F, Kuribayashi-Okuma E, Tsurutani Y, Ishizawa K, Fujii W, Odajima K, Kawagoe M, Tomomitsu Y, Murakawa M, Asakawa S, Hirohama D, Nagura M, Arai S, Yamazaki O, Tamura Y, Fujigaki Y, Nishikawa T, Shibata S. Characterization of pendrin in urinary extracellular vesicles in a rat model of aldosterone excess and in human primary aldosteronism. Hypertens Res 2021; 44:1557-1567. [PMID: 34326480 PMCID: PMC8645477 DOI: 10.1038/s41440-021-00710-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Pendrin is a Cl-/HCO3- exchanger selectively present in the intercalated cells of the kidney. Although experimental studies have demonstrated that pendrin regulates blood pressure downstream of the renin-angiotensin-aldosterone system, its role in human hypertension remains unclear. Here, we analyzed the quantitative changes in pendrin in urinary extracellular vesicles (uEVs) isolated from a total of 30 patients with primary aldosteronism (PA) and from a rat model of aldosterone excess. Western blot analysis revealed that pendrin is present in dimeric and monomeric forms in uEVs in humans and rats. In a rodent model that received continuous infusion of aldosterone with or without concomitant administration of the selective mineralocorticoid receptor (MR) antagonist esaxerenone, pendrin levels in uEVs, as well as those of epithelial Na+ channel (ENaC) and Na-Cl-cotransporter (NCC), were highly correlated with renal abundance. In patients with PA, pendrin levels in uEVs were reduced by 49% from baseline by adrenalectomy or pharmacological MR blockade. Correlation analysis revealed that the magnitude of pendrin reduction after treatment significantly correlated with the baseline aldosterone-renin ratio (ARR). Finally, a cross-sectional analysis of patients with PA confirmed a significant correlation between the ARR and pendrin levels in uEVs. These data are consistent with experimental studies showing the role of pendrin in aldosterone excess and suggest that pendrin abundance is attenuated by therapeutic interventions in human PA. Our study also indicates that pendrin analysis in uEVs, along with other proteins, can be useful to understand the pathophysiology of hypertensive disorders.
Collapse
Affiliation(s)
- Fumika Ochiai-Homma
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Emiko Kuribayashi-Okuma
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuya Tsurutani
- grid.410819.50000 0004 0621 5838Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Kenichi Ishizawa
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Wataru Fujii
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kohei Odajima
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Mika Kawagoe
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihiro Tomomitsu
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Masataka Murakawa
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shinichiro Asakawa
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Daigoro Hirohama
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michito Nagura
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeyuki Arai
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Osamu Yamazaki
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshifuru Tamura
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihide Fujigaki
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tetsuo Nishikawa
- grid.410819.50000 0004 0621 5838Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Shigeru Shibata
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
75
|
Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coord Chem Rev 2021; 426:213529. [DOI: 10.1016/j.ccr.2020.213529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
76
|
Exosomes: Their Role in Pathogenesis, Diagnosis and Treatment of Diseases. Cancers (Basel) 2020; 13:cancers13010084. [PMID: 33396739 PMCID: PMC7795854 DOI: 10.3390/cancers13010084] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to provide an overview of the current scientific evidence concerning the role played by exosomes in the pathogenesis, diagnosis and treatment of diseases. The potential use of exosomes as delivery vectors for small-molecule therapeutic agents will be discussed. In addition, a special emphasis will be placed on the involvement of exosomes in oncological diseases, as well as to their potential therapeutic application as liquid biopsy tools mainly in cancer diagnosis. A better understanding of exosome biology could improve the results of clinical interventions using exosomes as therapeutic agents. Abstract Exosomes are lipid bilayer particles released from cells into their surrounding environment. These vesicles are mediators of near and long-distance intercellular communication and affect various aspects of cell biology. In addition to their biological function, they play an increasingly important role both in diagnosis and as therapeutic agents. In this paper, we review recent literature related to the molecular composition of exosomes, paying special attention to their role in pathogenesis, along with their application as biomarkers and as therapeutic tools. In this context, we analyze the potential use of exosomes in biomedicine, as well as the limitations that preclude their wider application.
Collapse
|
77
|
Behrens F, Holle J, Kuebler WM, Simmons S. Extracellular vesicles as regulators of kidney function and disease. Intensive Care Med Exp 2020; 8:22. [PMID: 33336297 PMCID: PMC7746786 DOI: 10.1186/s40635-020-00306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are small, lipid bilayer-delimited particles of cellular origin that recently gained increasing attention for their potential use as diagnostic biomarkers, and beyond that for their role in intercellular communication and as regulators of homeostatic and disease processes. In acute kidney injury (AKI) and chronic kidney disease (CKD), the potential use of EVs as diagnostic and prognostic markers has been evaluated in a series of clinical studies and contributions to pathophysiologic pathways have been investigated in experimental models. While EV concentrations in biofluids could not distinguish renal patients from healthy subjects or determine disease progression, specific EV subpopulations have been identified that may provide useful diagnostic and prognostic tools in AKI. Specific EV subpopulations are also associated with clinical complications in sepsis-induced AKI and in CKD. Beyond their role as biomarkers, pathophysiologic involvement of EVs has been shown in hemolytic uremic syndrome- and sepsis-induced AKI as well as in cardiovascular complications of CKD. On the other hand, some endogenously formed or therapeutically applied EVs demonstrate protective effects pointing toward their usefulness as emerging treatment strategy in kidney disease.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117, Berlin, Germany. .,The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, Canada. .,Departments of Surgery and Physiology, University of Toronto, Toronto, Canada.
| | - Szandor Simmons
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117, Berlin, Germany
| |
Collapse
|
78
|
Xing Y, Cheng Z, Wang R, Lv C, James TD, Yu F. Analysis of extracellular vesicles as emerging theranostic nanoplatforms. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
79
|
Song Z, Xu Y, Zhang L, Zhou L, Zhang Y, Han Y, Li X, Yu P, Qu Y, Zhao W, Qin C. Comprehensive Proteomic Profiling of Urinary Exosomes and Identification of Potential Non-invasive Early Biomarkers of Alzheimer's Disease in 5XFAD Mouse Model. Front Genet 2020; 11:565479. [PMID: 33250918 PMCID: PMC7674956 DOI: 10.3389/fgene.2020.565479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by irreversible progressive cognitive deficits. Identification of candidate biomarkers, before amyloid-β-plaque deposition occurs, is therefore of great importance for early intervention of AD. Objective To investigate the potential non-invasive early biomarkers of AD in 5XFAD mouse model, we investigate the proteome of urinary exosomes present in 1-month-old (before amyloid-β accumulation) 5XFAD mouse models and their littermate controls. Another two groups of 2 and 6 months-old urinary samples were collected for monitoring the dynamic change of target proteins during AD progression. Methods Proteomic, bioinformatics analysis, multiple reaction monitoring (MRM), western blotting (WB) or ELISA were performed for analyzing these urinary exosomes. Results A total of 316 proteins including 44 brain cell markers were identified using liquid chromatography tandem mass spectrometry. Importantly, 18 proteins were unique to the 5XFAD group. Eighty-eight proteins including 11 brain cell markers were differentially expressed. Twenty-two proteins were selected to be verified by WB. Furthermore, based on an independent set of 12 urinary exosomes samples, five in these proteins were further confirmed significant difference. Notably, Annexin 2 and Clusterin displayed significant decreased in AD model during the course detected by ELISA. AOAH, Clusterin, and Ly86 are also brain cell markers that were first reported differential expression in urinary exosomes of AD model. Conclusion Our data demonstrated that some urinary exosome proteins, especially Annexin 2 and Clusterin, as nanometer-sized particles, enable detection of differences before amyloid-β-plaque deposition in 5XFAD mouse model, which may present an ideal non-invasive source of biomarkers for prevention of AD.
Collapse
Affiliation(s)
- Zhiqi Song
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yanfeng Xu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Li Zhou
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yu Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunlin Han
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xianglei Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Pin Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yajin Qu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wenjie Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
80
|
Zhao C, Zhang G, Liu J, Zhang C, Yao Y, Liao W. Exosomal cargoes in OSCC: current findings and potential functions. PeerJ 2020; 8:e10062. [PMID: 33194377 PMCID: PMC7646305 DOI: 10.7717/peerj.10062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in head and neck cancer, with high recurrence and mortality. Early diagnosis and efficient therapeutic strategies are vital for the treatment of OSCC patients. Exosomes can be isolated from a broad range of different cell types, implicating them as important factors in the regulation of human physiological and pathological processes. Due to their abundant cargo including proteins, lipids, and nucleic acids, exosomes have played a valuable diagnostic and therapeutic role across multiple diseases, including cancer. In this review, we summarize recent findings concerning the content within and participation of exosomes relating to OSCC and their roles in tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. We conclude this review by looking ahead to their potential utility in providing new methods for treating OSCC to inspire further research in this field.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenghao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
81
|
Sun IO, Kwon SH. Extracellular vesicles: a novel window into kidney function and disease. Curr Opin Nephrol Hypertens 2020; 29:613-619. [PMID: 32889979 DOI: 10.1097/mnh.0000000000000641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW There has been an increasing interest in extracellular vesicles as potential diagnostic, prognostic or therapeutic biomarkers for various kidney diseases, as extracellular vesicles mediate cell-cell or intercellular communication. This review explores the current state of knowledge regarding extracellular vesicles as a tool for examining kidney physiology and disease. RECENT FINDINGS Urinary extracellular vesicles may be useful as biomarkers to detect abnormal function in renal endothelial and tubular cells as well as podocytes. Recent studies suggest that urinary extracellular vesicles may facilitate early diagnosis and/or monitoring in acute kidney injury, glomerular disease, autosomal dominanat polycyst kidney disease and urinary tract malignancies. Circulating extracellular vesicles may serve as biomarkers to assess cardiovascular disease. SUMMARY Urinary and circulating extracellular vesicles have gained significant interest as potential biomarkers of renal diseases. Analysis of extracellular vesicles may serve as a logical diagnostic approach for nephrologists as well as provide information about disease pathophysiology.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju
| | - Soon Hyo Kwon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
82
|
Masaoutis C, Al Besher S, Koutroulis I, Theocharis S. Exosomes in Nephropathies: A Rich Source of Novel Biomarkers. DISEASE MARKERS 2020; 2020:8897833. [PMID: 32849923 PMCID: PMC7441435 DOI: 10.1155/2020/8897833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The biomarkers commonly utilized in diagnostic evaluations of kidney disease suffer from low sensitivity, especially in the early stages of renal damage. On the other hand, obtaining a renal biopsy to augment clinical decision making can lead to potentially serious complications. In order to overcome the shortcomings of currently available diagnostic tools, recent studies suggest that exosomes, cell-secreted extracellular vesicles containing a large array of active molecules to facilitate cell-to-cell communication, may represent a rich source of novel disease biomarkers. Because of their endocytic origin, exosomes carry markers typical for their parent cells, which could permit the localization of biochemical cellular alterations in specific kidney compartments. Different types of exosomes can be isolated from noninvasively obtained biofluids; however, in the context of kidney disease, evidence has emerged on the role of urinary exosomes in the diagnostic and predictive modeling of renal pathology. The current review summarizes the potential application of exosomes in the detection of acute and chronic inflammatory, metabolic, degenerative, and genetic renal diseases.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| | - Samer Al Besher
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| | - Ioannis Koutroulis
- Children's National Hospital, Division of Emergency Medicine and Center for Genetic Medicine, George Washington University School of Medicine and Health Sciences, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
83
|
Chen SM, Chen TH, Chang HT, Lin TY, Lin CY, Tsai PY, Imai K, Chen CM, Lee JA. Methylglyoxal and D-lactate in cisplatin-induced acute kidney injury: Investigation of the potential mechanism via fluorogenic derivatization liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS) proteomic analysis. PLoS One 2020; 15:e0235849. [PMID: 32649695 PMCID: PMC7351171 DOI: 10.1371/journal.pone.0235849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Nephrotoxicity severely limits the chemotherapeutic efficacy of cisplatin (CDDP). Oxidative stress is associated with CDDP-induced acute kidney injury (AKI). Methylglyoxal (MG) forms advanced glycation end products that elevate oxidative stress. We aimed to explore the role of MG and its metabolite D-lactate and identify the proteins involved in CDDP-induced AKI. Six-week-old female BALB/c mice were intraperitoneally administered CDDP (5 mg/kg/day) for 3 or 5 days. Blood urea nitrogen (42.6 ± 7.4 vs. 18.3 ± 2.5; p < 0.05) and urinary N-acetyl-β-D-glucosaminide (NAG; 4.89 ± 0.61 vs. 2.43 ± 0.31 U/L; p < 0.05) were significantly elevated in the CDDP 5-day group compared to control mice. Histological analysis confirmed AKI was successfully induced. Confocal microscopy revealed TNF-α was significantly increased in the CDDP 5-day group. Fluorogenic derivatized liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS) showed the kidney MG (36.25 ± 1.68 vs. 18.95 ± 2.24 mg/g protein, p < 0.05) and D-lactate (1.78 ± 0.29 vs. 1.12 ± 0.06 mol/g protein, p < 0.05) contents were significantly higher in the CDDP 5-day group than control group. FD-LC-MS/MS proteomics identified 33 and nine altered peaks in the CDDP 3-day group and CDDP 5-day group (vs. control group); of the 35 proteins identified using the MOSCOT database, 11 were antioxidant-related. Western blotting confirmed that superoxide dismutase 1 (SOD-1) and parkinson disease protein 7 (DJ-1) are upregulated and may participate with MG in CDDP-induced AKI. This study demonstrates TNF-α, MG, SOD-1 and DJ-1 play crucial roles in CDDP-induced AKI.
Collapse
Affiliation(s)
- Shih-Ming Chen
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Hui Chen
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ting Chang
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Health, Taipei City Government, Taipei, Taiwan
| | - Tzu-Yao Lin
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Lin
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pei-Yun Tsai
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan-Fang Hospital, Taipei, Taiwan
| | - Kazuhiro Imai
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Chien-Ming Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Jen-Ai Lee
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
84
|
Im Y, Yoo H, Lee JY, Park J, Suh GY, Jeon K. Association of plasma exosomes with severity of organ failure and mortality in patients with sepsis. J Cell Mol Med 2020; 24:9439-9445. [PMID: 32639098 PMCID: PMC7417686 DOI: 10.1111/jcmm.15606] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022] Open
Abstract
Current sepsis biomarkers may be helpful in determining organ failure and evaluating patient clinical course; however, direct molecular biomarkers to predict subsequent organ failure have not yet been discovered. Exosomes, a small population of extracellular vesicles, play an important role in the inflammatory response, coagulation process and cardiac dysfunction in sepsis. Nonetheless, the association of plasma exosome with severity and mortality of sepsis is not well known. Therefore, the overall levels of plasma exosome in sepsis patients were assessed and whether exosome levels were associated with organ failure and mortality was evaluated in the present study. Plasma level of exosomes was measured by ELISA. Among 220 patients with sepsis, 145 (66%) patients were diagnosed with septic shock. A trend of increased exosome levels in control, sepsis and septic shock groups was observed (204 µg/mL vs 525 µg/mL vs 802 µg/mL, P < 0.001). A positive linear relationship was observed between overall exosome levels and Sequential Organ Failure Assessment (SOFA) score in the study cohorts (r value = 0.47). When patients were divided into two groups according to best cut‐off level, a statistical difference in 28‐ and 90‐day mortality between patients with high and low plasma exosomes was observed. Elevated levels of plasma exosomes were associated with severity of organ failure and predictive of mortality in critically ill patients with sepsis.
Collapse
Affiliation(s)
- Yunjoo Im
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hongseok Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Young Lee
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Junseon Park
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gee Young Suh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
85
|
Faruqu FN, Zhou S, Sami N, Gheidari F, Lu H, Al‐Jamal KT. Three-dimensional culture of dental pulp pluripotent-like stem cells (DPPSCs) enhances Nanog expression and provides a serum-free condition for exosome isolation. FASEB Bioadv 2020; 2:419-433. [PMID: 32676582 PMCID: PMC7354694 DOI: 10.1096/fba.2020-00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cell-derived exosomes have been identified as novel cell-free therapeutics for regenerative medicine. Three-dimensional (3D) culture of stem cells were reported to improve their "stemness" and therapeutic efficacy. This work focused on establishing serum-free 3D culture of dental pulp pluripotent-like stem cells (DPPSCs)-a newly characterized pluripotent-like stem cell for exosome production. DPPSCs were expanded in regular 2D culture in human serum-supplemented (HS)-medium and transferred to a micropatterned culture plate for 3D culture in HS-medium (default) and medium supplemented with KnockOut™ serum replacement (KO-medium). Bright-field microscopy observation throughout the culture period (24 days) revealed that DPPSCs in KO-medium formed spheroids of similar morphology and size to that in HS-medium. qRT-PCR analysis showed similar Oct4A gene expression in DPPSC spheroids in both HS-medium and KO-medium, but Nanog expression significantly increased in the latter. Vesicles isolated from DPPSC spheroids in KO-medium in the first 12 days of culture showed sizes that fall within the exosomal size range by nanoparticle tracking analysis (NTA) and express the canonical exosomal markers. It is concluded that 3D culture of DPPSCs in KO-medium provided an optimal serum-free condition for successful isolation of DPPSC-derived exosomes for subsequent applications in regenerative medicine.
Collapse
Affiliation(s)
- Farid N. Faruqu
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Shuai Zhou
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Noor Sami
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Fatemeh Gheidari
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Han Lu
- Genomics CentreKing’s College LondonLondonUK
| | | |
Collapse
|
86
|
Abstract
Exosomes are small membrane encapsulated vesicles released by cells during normal and stress (pathological) conditions that may play multiple biological roles. They contain typical cellular components, including phospholipids, cholesterol, proteins, glycoconjugates, nucleic acids and metabolites. A great deal of interest has risen about the possibility that they are an alternate form of intracellular communication. However, the increasing attraction has been centered on the prospect that exosomes could become disease biomarkers as part of the new concept of liquid biopsies. In this regard, attention has been directed at investigating the content of exosomes within urine, since this is an ideal body fluid because it could be collected in great quantities, recurrently, and with minimal intervention. Although urine exosomes are very abundant, their isolation has been challenging due to the contamination with many soluble factors within the fluid. Several methods have been developed with different degrees of success. In addition, a major effort has been directed at characterizing all components of urine exosomes.
Collapse
|
87
|
Urinary Extracellular Vesicles as Biomarkers of Kidney Disease: From Diagnostics to Therapeutics. Diagnostics (Basel) 2020; 10:diagnostics10050311. [PMID: 32429335 PMCID: PMC7277956 DOI: 10.3390/diagnostics10050311] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Cell-derived extracellular vesicles (EVs) can be isolated from various body fluids, including urine. Urinary EVs have gained important recognition as potential diagnostic biomarkers in renal disease since their cargo includes nucleic acids, proteins, and other cellular components, which likely mirror the physiological and possibly pathophysiological state of cells along the nephron. Accumulating evidence highlights the feasibility of using EVs as biomarkers for diagnostic, prognostic, and therapeutic purposes in several forms of renal disease, such as acute kidney injury, glomerulonephritis, and renal transplantation. Additionally, exogenous delivery of EVs released in vitro by cells in culture may have salutary benefits for renal diseases. In this review, we introduce recent studies that attempt to identify urinary EVs as candidate biomarkers for human kidney diseases and consider their potential implication as a therapeutic option in key kidney diseases.
Collapse
|
88
|
Georgatzakou HT, Pavlou EG, Papageorgiou EG, Papassideri IS, Kriebardis AG, Antonelou MH. The Multi-Faced Extracellular Vesicles in the Plasma of Chronic Kidney Disease Patients. Front Cell Dev Biol 2020; 8:227. [PMID: 32351956 PMCID: PMC7174738 DOI: 10.3389/fcell.2020.00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles released by most cells in body fluids and extracellular matrix. They function as signal transducers in intercellular communication, contributing to the maintenance of cell and tissue integrity. EVs biogenesis is deregulated in various pathologies, in structural and functional connection to the pathophysiology of donor cells. Consequently, EVs are considered diagnostic and monitoring factors in many diseases. Despite consensus as to their activity in promoting coagulation and inflammation, there is evidence suggesting protective roles for EVs in stress states. Chronic kidney disease (CKD) patients are at high risk of developing cardiovascular defects. The pathophysiology, comorbidities, and treatment of CKD may individually and in synergy affect extracellular vesiculation in the kidney, endothelium, and blood cells. Oxidative and mechanical stresses, chronic inflammation, and deregulation of calcium and phosphate homeostasis are established stressors of EV release. EVs may affect the clinical severity of CKD by transferring biological response modifiers between renal, vascular, blood, and inflammatory cells. In this Review, we focus on EVs circulating in the plasma of CKD patients. We highlight some recent advances in the understanding of their biogenesis, the effects of dialysis, and pharmacological treatments on them and their potential impact on thrombosis and vascular defects. The strong interest of the scientific community to this exciting field of research may reveal hidden pieces in the pathophysiology of CKD and thus, innovative ways to treat it. Overcoming gaps in EV biology and technical difficulties related to their size and heterogeneity will define the success of the project.
Collapse
Affiliation(s)
- Hara T Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Athens, Greece
| | - Efthimia G Pavlou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Athens, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
89
|
Russell JC, Postupna N, Golubeva A, Keene CD, Kaeberlein M. Purification and Analysis of Caenorhabditis elegans Extracellular Vesicles. J Vis Exp 2020:10.3791/60596. [PMID: 32310227 PMCID: PMC7476359 DOI: 10.3791/60596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The secretion of small membrane-bound vesicles into the external environment is a fundamental physiological process of all cells. These extracellular vesicles (EVs) function outside the cell to regulate global physiological processes by transferring proteins, nucleic acids, metabolites, and lipids between tissues. EVs reflect the physiological state of their cells of origin. EVs are implicated to have fundamental roles in virtually every aspect of human health. Thus, EV protein and genetic cargos are being increasingly analyzed for biomarkers of health and disease. However, the EV field still lacks a tractable invertebrate model system that permits the study of EV cargo composition. C. elegans is well suited for EV research because it actively secretes EVs outside of its body into its external environment, permitting facile isolation. This article provides all the necessary information for generating, purifying, and quantifying these environmentally secreted C. elegans EVs including how to work quantitatively with very large populations of age-synchronized worms, purifying EVs, and a flow cytometry protocol that directly measures the number of intact EVs in the purified sample. Thus, the large library of genetic reagents available for C. elegans research can be tapped into for investigating the impacts of genetic pathways and physiological processes on EV cargo composition.
Collapse
Affiliation(s)
| | | | | | - C Dirk Keene
- Department of Pathology, University of Washington
| | | |
Collapse
|
90
|
Thongboonkerd V. Roles for Exosome in Various Kidney Diseases and Disorders. Front Pharmacol 2020; 10:1655. [PMID: 32082158 PMCID: PMC7005210 DOI: 10.3389/fphar.2019.01655] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Exosome is a nanoscale vesicle with a size range of 30–100 nm. It is secreted from cell to extracellular space by exocytosis after fusion of multivesicular body (MVB) (formed by endocytic vesicles) with plasma membrane. Exosome plays several important roles in cellular homeostasis and intercellular communications. During the last two decades, exosome has acquired a wide attention to explore its additional roles in various aspects of cell biology and function in several organ systems. For the kidney, several lines of evidence have demonstrated 1that exosome is involved in the renal physiology and pathogenic mechanisms of various kidney diseases/disorders. This article summarizes roles of the exosome as the potential source of biomarkers, pathogenic molecules, and therapeutic biologics that have been extensively investigated in many kidney diseases/disorders, including lupus nephritis (LN), other glomerular diseases, acute kidney injury (AKI), diabetic nephropathy (DN), as well as in the process of renal fibrosis and chronic kidney disease (CKD) progression, in addition to polycystic kidney disease (PKD), kidney transplantation, and renal cell carcinoma (RCC). Moreover, the most recent evidence has shown its emerging role in kidney stone disease (or nephrolithiasis), involving inflammasome activation and inflammatory cascade frequently found in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
91
|
Abstract
Exosomes are membrane-bound cargo measuring 30–140 nm comprised of a lipid bilayer containing various proteins, RNAs, DNAs, and bioactive lipids that can be transferred between cells. They have been shown to be produced and released by many different types of healthy and diseased cells. Exosomes are secreted by all types of cells in culture, and are also found in various body fluids including blood, saliva, urine, and breast milk. Exosomes are essential for healthy physiological as well as pathological processes. In addition to their normal function, exosomes are involved in the development and progression of various diseases, potentiating cellular stress and damage. Pathogens take advantage of exosome release from infected host cells by manipulating host-derived exosomes to evade the immune system responses. Exosomes are involved in other pathological conditions such as neurodegenerative diseases, liver diseases, heart failure, cancer, diabetes, kidney diseases, osteoporosis and atherosclerotic cardiovascular disease. Hence, we can exploit exosomes as biomarkers and vaccines and modify them rationally for therapeutic interventions including tissue engineering. Further studies on exosomes will explore their potential and provide new methodology for effective clinical diagnostics and therapeutic strategies: such uses can be called exosome theragnostics. This chapter reviews the potential theragnostic (diagnostic and therapeutic) application of exosomes in major organ systems in clinical fields.
Collapse
|
92
|
Kamianowska M, Szczepański M, Wasilewska A. Tubular and Glomerular Biomarkers of Acute Kidney Injury in Newborns. Curr Drug Metab 2019; 20:332-349. [PMID: 30907310 DOI: 10.2174/1389200220666190321142417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute Kidney Injury (AKI) is a sudden decrease in kidney function. In the early period, the highest percentage of AKI occurs among newborns hospitalized in the neonatal intensive care units, especially premature neonates. The prognosis of AKI depends on the type and severity of the cause of an injury, the accuracy and the time of diagnosis and treatment. The concentration of serum creatinine is still the main diagnostic test, although it changes in the course of AKI later than glomerular filtration rate GFR. In addition, the reliability of the determination of creatinine level is limited because it depends on many factors. New studies have presented other, more useful laboratory markers of renal function that can be measured in serum and/or in urine. OBJECTIVE The aim of the work was to present the latest data about tubular and glomerular biomarkers of acute kidney injury in newborns. METHODS We undertook a structured search of bibliographic databases for peer-reviewed research literature by using focused review topics. According to the conceptual framework, the main idea of research literature has been summarized and presented in this study. RESULTS The concentrations of some novel biomarkers are higher in serum and/or urine of term and preterm newborns with AKI, especially in the course of perinatal asphyxia. CONCLUSION In this systematic review of the literature, we have highlighted the usefulness of biomarkers in predicting tubular and/or glomerular injury in newborns. However, novel biomarkers need to prove their clinical applicability, accuracy, and cost-effectiveness prior to their implementation in clinical practice.
Collapse
Affiliation(s)
- Monika Kamianowska
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, Białystok, Poland
| | - Marek Szczepański
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, Białystok, Poland
| | - Anna Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
93
|
Factors Affecting the Environmentally Induced, Chronic Kidney Disease of Unknown Aetiology in Dry Zonal Regions in Tropical Countries—Novel Findings. ENVIRONMENTS 2019. [DOI: 10.3390/environments7010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new form of chronic tubulointerstitial kidney disease (CKD) not related to diabetes or hypertension appeared during the past four decades in several peri-equatorial and predominantly agricultural countries. Commonalities include underground stagnation of drinking water with prolonged contact with rocks, harsh climatic conditions with protracted dry seasons, and rampant poverty and malnutrition. In general, the cause is unknown, and the disease is therefore named CKD of unknown aetiology (CKDu). Since it is likely caused by a combination of factors, a better term would be CKD of multifactorial origin (CKDmfo). Middle-aged malnourished men with more than 10 years of exposure to environmental hazards are the most vulnerable. Over 30 factors have been proposed as causative, including agrochemicals and heavy metals, but none has been properly tested nor proven as causative, and unlikely to be the cause of CKDmfo/CKDu. Conditions such as, having favourable climatic patterns, adequate hydration, and less poverty and malnutrition seem to prevent the disease. With the right in vivo conditions, chemical species such as calcium, phosphate, oxalate, and fluoride form intra-renal nanomineral particles initiating the CKDmfo. This article examines the key potential chemical components causing CKDmfo together with the risk factors and vulnerabilities predisposing individuals to this disease. Research findings suggest that in addition to drinking water from stagnant sources that contain high ionic components, more than 10 years of exposure to environmental nephrotoxins and micronutrient malnutrition are needed to contract this fatal disease.
Collapse
|
94
|
Bowers EC, Hassanin AAI, Ramos KS. In vitro models of exosome biology and toxicology: New frontiers in biomedical research. Toxicol In Vitro 2019; 64:104462. [PMID: 31628015 DOI: 10.1016/j.tiv.2019.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Exosomes are secreted membrane-bound vesicles containing a cargo of curated nucleic acids, proteins, and lipids that can alter gene expression in recipient cells. Toxic agents can alter exosome synthesis and bioactive cargo composition, thus allowing exosomes to serve as biomarkers of exposure and response. While human and animal studies have identified exosome biomarkers of organ toxicity, in vitro models are ideal to examine biological mechanisms of exosome function. Here, we discuss the importance of exosomes in toxicology research and describe applications of in vitro models in advancing our understanding of their role in exposure-associated disease. This discussion of new research frontiers is in commemoration of the invaluable contributions of Dr. Daniel Acosta to the field of in vitro biology and toxicology. Emerging studies have implicated exosomes as mediators of neurodegeneration by shuttling pollutant-induced pathogenic proteins and miRNAs from afflicted neurons to neighboring cells. Exosomes also provide a mechanistic link between inhalation exposures and airway inflammation, remodeling, and systemic effects. Exosomes provide the means for toxic agents to initiate oncogenic transformation and create favorable tumor microenvironments. Furthermore, exosome-mediated drug delivery can alter drug pharmacologic profiles. Expansion in this field using in vitro models is essential to unlock the potential applications of exosome biology in toxicology.
Collapse
Affiliation(s)
- Emma C Bowers
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA.
| | - Abeer A I Hassanin
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA; Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA; Division of Clinical Decision Support and Data Analytics, University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| |
Collapse
|
95
|
Arsenic trioxide and curcumin attenuate cisplatin-induced renal fibrosis in rats through targeting Hedgehog signaling. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:303-313. [PMID: 31612257 DOI: 10.1007/s00210-019-01734-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
Renal fibrosis is a progressive process resulting from a sustained injury that may ultimately cause renal failure. Cisplatin is an antitumor drug that induces renal injury and nephrotoxicity and is widely employed as a model for acute and chronic renal injury. Several signaling pathways are implicated in fibrogenic cell activation among which is Hedgehog (Hh) signaling. We here investigated the effects of arsenic trioxide (Ars) and curcumin in ameliorating cisplatin-induced kidney fibrosis via regulating Hh signaling. Cisplatin (4.5 mg/kg) was administered in Sprague-Dawley rats for two consecutive days and renal fibrosis was induced after 21 days. Once renal fibrosis was confirmed, Ars (3.5 mg/kg/day, orally) and curcumin (200 mg/kg/day, orally) were administered daily for another 21 days. Ars and curcumin corrected kidney function markers as creatinine clearance and urea nitrogen. Both agents ameliorated fibrosis as shown by lowered TGF-β1 mRNA levels, α-SMA protein levels, and hydroxylproline content. Cisplatin-activated Hh signaling which was blocked by both Ars and curcumin as demonstrated by decreased mRNA levels of Shh, Smo, and Ptch and suppressed renal Gli1 and Gli2 protein levels. Our results indicate new therapeutic roles for Ars and curcumin and suggest that blocking Hh signaling may be a promising approach for alleviating renal fibrosis. Symbols indicate α-SMA, alpha-smooth muscle actin; TGF-β, transforming growth factor-beta; Ptch, patched; Smo, smoothened; Shh, sonic hedgehog; Ihh, Indian hedgehog; Dhh, desert hedgehog; and SUFU, suppressor of fused.
Collapse
|
96
|
Biological surface properties in extracellular vesicles and their effect on cargo proteins. Sci Rep 2019; 9:13048. [PMID: 31506490 PMCID: PMC6736982 DOI: 10.1038/s41598-019-47598-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Ultracentrifugationon sucrose density gradientappears to be the best purification protocol for extracellular vesicle (EVs) purification. After this step, to reduce disulfide bridges linking exogenous proteins to the vesicles, the collected samples are routinely washed and treated with dithiothreitol (DTT). Such incubations are performed at temperatures ranging from room temperature up to 95 °C, with either Tris or PBS as buffers. We re-investigated these steps on both exosomes and microvesicles purified from blood (serum) and urine by electrophoretic separation, silver staining and western blots analysis. Data confirm that an extra centrifugation on a sucrose cushion can effectively eliminate contaminants. Tris buffer (50 Mm) and β-mercaptoethanol as a reducing agent at room temperature dramatically improved either sample cleaning. By contrast, especially for exosomes PBS buffer and DTT, above 37 °C, caused massive protein aggregations, yielding blurred SDS-PAGE gels in both samples. Immuno-blot analyses demonstrated that in PBS-DTT contamination with albumin (in serum) or with uromodulin (in urine) occurs. DTT, likely due to its two–SH groups, might form scrambled SS-bonds promoting EVs interaction with environmental macromolecules via disulphide bridges. Therefore, to obtain maximum vesicle purity for biomarker investigations and to maximize both presence of EVs proteins and their accessibility, use of DTT is not recommended.
Collapse
|
97
|
Yu H, Wang Z. Cardiomyocyte-Derived Exosomes: Biological Functions and Potential Therapeutic Implications. Front Physiol 2019; 10:1049. [PMID: 31481897 PMCID: PMC6710398 DOI: 10.3389/fphys.2019.01049] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Exosomes, which are membrane-enclosed nanovesicles released by almost all cell types, have been recognized to play important roles in mediating cell-cell communication. In recent years, the physiological and pathological effects of exosomes on cardiovascular disease have been extensively studied. Exosomes can transfer proteins, mRNAs, microRNAs, and other bioactive molecules to recipient cells to influence their biological properties. In recent years, accumulating evidence has suggested that cardiomyocyte-derived exosomes play an important role in the progression of cardiovascular disease. Here, we summarize the functional roles of cardiomyocyte-derived exosomes in cardiovascular physiology and pathology.
Collapse
Affiliation(s)
- Hui Yu
- The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
98
|
Abdik H, Avsar Abdik E, Hızlı Deniz AA, Taşlı PN, Şahin F. A Novel Virtue in Stem Cell Research: Exosomes and Their Role in Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:133-146. [PMID: 30729448 DOI: 10.1007/5584_2019_339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past decade a number of different stem cell types have entered the clinical applications increasingly as a therapeutic option, due to their tissue maintenance capacity at the site where they localize. Although it was initially thought that conferral of resilience to damaged tissue largely depends on the stem cells themselves through orchestration of signaling among the local epithelial and immune systems at the injury site, recent findings point out that the remarkable regenerative capacity of stem cells is rather due to their nanovesicular products that emerge as the new active players of tissue repair processes. Among these extracellular vesicles exosomes generated particularly by stem cells have been receiving a substantial interest both in the fields of stem cell biology and extracellular vesicles. In this chapter fundamental facts about stem cell biology, biogenesis of extracellular vesicles and exosomes, their structure, and function are summarized. Moreover, properties of both tumor-derived exosomes as well as those derived from stem cells are discussed relatively in-depth in terms of their influence on proximal and distal tissue physiology. Last but not the least, among countless studies in an exploding field, we summarize those that attempt to unravel the complex signaling networks through which stem cell-derived exosomes alter the fate of differentiating stem cells as well as the molecular make-up of exosomes released from differentiating stem cells by conducting thorough proteomic and genomic analyses with the ultimate goal of identifying effector gene products mediating exosomal cues in stem cell biology.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| | - Ezgi Avsar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
99
|
The Small RNA Repertoire of Small Extracellular Vesicles Isolated From Donor Kidney Preservation Fluid Provides a Source for Biomarker Discovery for Organ Quality and Posttransplantation Graft Function. Transplant Direct 2019; 5:e484. [PMID: 31579812 PMCID: PMC6739040 DOI: 10.1097/txd.0000000000000929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Supplemental Digital Content is available in the text. Delayed graft function (DGF) after kidney transplantation is negatively associated with long-term graft function and survival. Kidney function after transplantation depends on multiple factors, both donor- and recipient-associated. Prediction of posttransplantation graft function would allow timely intervention to optimize patient care and survival. Currently, graft-based predictions can be made based on histological and molecular analyses of 0-hour biopsy samples. However, such analyses are currently not implemented, as biopsy samples represent only a very small portion of the entire graft and are not routinely analyzed in all transplantation centers. Alternatives are thus required.
Collapse
|
100
|
Yang XX, Sun C, Wang L, Guo XL. New insight into isolation, identification techniques and medical applications of exosomes. J Control Release 2019; 308:119-129. [PMID: 31325471 DOI: 10.1016/j.jconrel.2019.07.021] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Exosomes, which are nano-vesicles produced by most cell types, play an irreplaceable role in cell-cell communication. They are extracellular small vesicles that can delivery various cargos of DNA, RNAs, proteins, and lipids. Because exosomes have different secretory components under physiological conditions and pathological conditions, it has been extensively studied in the field of diseases as a therapeutic target, as a drug/gene delivery vector and as a novel cancer marker. Despite the great development in recent decades, there are still many obstacles to be overcome, for example, the separation method is not standardized with low yield and poor stability, which limit its medical application. This review mainly summarizes the main progresses of isolation and identification techniques, diversity function and medical application of exosomes in recent years.
Collapse
Affiliation(s)
- Xiao-Xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lei Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), Drug Screening Unit Platform, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|