51
|
Kusakabe M, Suzukawa K, Nanmoku T, Obara N, Okoshi Y, Mukai HY, Hasegawa Y, Kojima H, Kawakami Y, Ninomiya H, Nagasawa T. Detection of the STAT5B–RARA fusion transcript in acute promyelocytic leukemia with the normal chromosome 17 on G-banding. Eur J Haematol 2008; 80:444-7. [DOI: 10.1111/j.1600-0609.2008.01042.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Abstract
Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia. Morphologically, it is identified as the M3 subtype of acute myeloid leukemia by the French-American-British classification and cytogenetically is characterized by a balanced reciprocal translocation between chromosomes 15 and 17, which results in the fusion between promyelocytic leukemia (PML) gene and retinoic acid receptor alpha (RARalpha). It seems that the disease is the most malignant form of acute leukemia with a severe bleeding tendency and a fatal course of only weeks. Chemotherapy (CT; daunorubicin, idarubicin and cytosine arabinoside) was the front-line treatment of APL with a complete remission (CR) rate of 75% to 80% in newly diagnosed patients. Despite all these progresses, the median duration of remission ranged from 11 to 25 months and only 35% to 45% of the patients could be cured by CT. Since the introduction of all-trans retinoic acid (ATRA) in the treatment and optimization of the ATRA-based regimens, the CR rate was raised up to 90% to 95% and 5-year disease free survival (DFS) to 74%. The use of arsenic trioxide (ATO) since early 1990s further improved the clinical outcome of refractory or relapsed as well as newly diagnosed APL. In this article, we review the history of introduction of ATRA and ATO into clinical use and the mechanistic studies in understanding this model of cancer targeted therapy.
Collapse
|
53
|
Li QF, Shi SL, Liu QR, Tang J, Song J, Liang Y. Anticancer effects of ginsenoside Rg1, cinnamic acid, and tanshinone IIA in osteosarcoma MG-63 cells: nuclear matrix downregulation and cytoplasmic trafficking of nucleophosmin. Int J Biochem Cell Biol 2008; 40:1918-29. [PMID: 18403247 DOI: 10.1016/j.biocel.2008.01.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 01/21/2023]
Abstract
Ginsenoside Rg1, cinnamic acid, and tanshinone IIA are effective anticancer and antioxidant constituents of traditional Chinese herbal medicines of Ginseng (Panax ginseng), Xuanshen (Radix scrophulariae), and Danshen (Salvia mitiorrhiza), respectively. There was insufficient study on molecular mechanisms of anticancer effects of those constituents and their targets were unknown. We chose nucleophosmin as a candidate molecular target because it is frequently mutated and upregulated in various cancer cells. Nucleophosmin is a major nucleolus phosphoprotein that involves in rRNA synthesis, maintaining genomic stability, and normal cell division and its haploinsufficiency makes cell more susceptible to oncogenic assault. Ginsenoside Rg1, cinnamic acid, and tanshinone IIA treatment of osteosarcoma MG-63 cells decreased nucleophosmin expression in nuclear matrix and induced nucleophosmin translocation from nucleolus to nucleoplasm and cytoplasm, a process of dedifferentiating transformed cells. Using immunogold electro-microscopy, we found at the first time that nucleophosmin was localized on nuclear matrix intermediate filaments that had undergone restorational changes after the treatments. Nucleophosmin also functions as a molecular chaperone that might interact with multiple oncogenes and tumor suppressor genes. We found that oncogenes c-myc, c-fos and tumor suppressor genes, P53, Rb were regulated by ginsenoside Rg1, cinnamic acid, and tanshinone IIA as well. In present study, we identified nucleophosmin as a molecular target of the effective anticancer constituents of t Ginseng, Xuanseng, and Danseng that down-regulated nucleophosmin in nuclear matrix, changed its trafficking from nucleolus to cytoplasm, and regulated several oncogenes and tumor suppressor genes. Therefore, we postulate that Ginsenoside Rg1, cinnamic acid, and tanshinone IIA could serve as protective agents in cancer prevention and treatment.
Collapse
Affiliation(s)
- Qi-Fu Li
- Key Laboratory of Ministry of Education for Cell Biology & Tumor cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, PR China.
| | | | | | | | | | | |
Collapse
|
54
|
Miranda MB, Redner RL, Johnson DE. Inhibition of Src family kinases enhances retinoic acid induced gene expression and myeloid differentiation. Mol Cancer Ther 2007; 6:3081-90. [DOI: 10.1158/1535-7163.mct-07-0514] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Catalano A, Dawson MA, Somana K, Opat S, Schwarer A, Campbell LJ, Iland H. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood 2007; 110:4073-6. [PMID: 17712046 DOI: 10.1182/blood-2007-06-095554] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We report the molecular and cytogenetic characterization of a novel variant of acute promyelocytic leukemia (APL). The bone marrow showed 88% hypergranular promyelocytes, and the karyotype was 47,XY,+22 [5]/46,XY[30]. Fluorescence in situ hybridization (FISH) indicated disruption and deletion of the 5′-end of the RARA gene. Treatment with all-trans retinoic acid, idarubicin, and arsenic trioxide induced cytogenetic complete remission without morphologic evidence of residual leukemia. The diagnostic marrow was negative for PML-RARA transcripts by reverse transcription–polymerase chain reaction (RT-PCR), but an atypical product was observed. Sequencing showed partial homology to the PRKAR1A gene, encoding the regulatory subunit type I-α of cyclic adenosine monophosphate–dependent protein kinase. RT-PCR using specific primers for PRKAR1A and RARA amplified 2 transcript splice variants of a PRKAR1A-RARA fusion gene, and PRKAR1A and RARA FISH probes confirmed the fusion. This novel PRKAR1A-RARA gene rearrangement is the fifth variant APL in which the RARA partner gene has been identified and the second known rearrangement of PRKAR1A in a malignant disease. This trial was registered at www.actr.org.au with the Australian Clinical Trials Registry as number 12605000070639.
Collapse
MESH Headings
- Aged
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Arsenic Trioxide
- Arsenicals/administration & dosage
- Australia
- Base Sequence/genetics
- Bone Marrow/pathology
- Chromosome Aberrations
- Clinical Trials as Topic
- Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics
- DNA Mutational Analysis
- Humans
- Idarubicin/administration & dosage
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Male
- Mutant Chimeric Proteins/genetics
- Neoplasm Proteins/genetics
- Oxides/administration & dosage
- RNA, Messenger/genetics
- Receptors, Retinoic Acid/genetics
- Registries
- Remission Induction
- Retinoic Acid Receptor alpha
- Sequence Deletion/genetics
- Tretinoin/administration & dosage
Collapse
Affiliation(s)
- Alberto Catalano
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
56
|
Johnson DE. Src family kinases and the MEK/ERK pathway in the regulation of myeloid differentiation and myeloid leukemogenesis. ACTA ACUST UNITED AC 2007; 48:98-112. [PMID: 18155170 DOI: 10.1016/j.advenzreg.2007.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Daniel E Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA.
| |
Collapse
|
57
|
Ohnishi K. PML-RARalpha inhibitors (ATRA, tamibaroten, arsenic troxide) for acute promyelocytic leukemia. Int J Clin Oncol 2007; 12:313-7. [PMID: 17929112 DOI: 10.1007/s10147-007-0694-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Indexed: 11/25/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by generation of the PML-RARalpha fusion gene. PML-RARalpha can homodimerize with another PML-RARalpha, and the hybrid binds the histone-deacetylase recruiting co-repressor complex with higher affinity than the wild-type RARalpha. However, the co-repressor complex is releasable by pharmacological doses of all-trans retinoic acid (ATRA). More than 90% of patients with APL achieve a complete remission (CR) with differentiation therapy consisting of ATRA combined with chemotherapy. A new synthetic retinoid, tamibaroten, showed therapeutic effectiveness in patients with ATRA-resistant APL with increased expression of cellular retinoic acid binding protein (CRABP), and about 60% of patients with relapsed APL achieved a CR. Arsenic trioxide triggers the rapid degradation of PML-RARalpha through the targeting of the PML moieties of the fusion protein and showed a high CR rate in relapsed APL. The combination of ATRA, chemotherapy, and/or new agents improved the long-term survival in patients with APL.
Collapse
Affiliation(s)
- Kazunori Ohnishi
- Oncology Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
58
|
Racanicchi L, Montanucci P, Basta GPP, Pensato A, Conti V, Calafiore R. Effect of all trans retinoic acid on lysosomal alpha-D-mannosidase activity in HL-60 cell: correlation with HL-60 cells differentiation. Mol Cell Biochem 2007; 308:17-24. [PMID: 17899319 DOI: 10.1007/s11010-007-9606-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/13/2007] [Indexed: 11/28/2022]
Abstract
Human promyelocytic leukemia HL-60 cells represent an in vitro model of acute promyelocytic leukemia (APL), and are inducible to terminally differentiate into morphologically mature granulocytes by incubation with all trans retinoic acid (ATRA). Lysosomal glycohydrolases are involved in the changes of the membrane surface proteins' glycosylation, linked to the metastatic progression potential of neoplastic cells. In particular, it has been demonstrated that the Asn-linked glucidic residues were directly responsible for the metastatic potential, and it is known that the glycohydrolase alpha-D-mannosidase specifically hydrolyze the Asn-linked oligosaccharides. In this report, we present an in vitro study on the ATRA effects on lysosomal glycohydrolases expression and the eventual relationship with the retinoic acid-induced differentiation of HL-60 cells. We have investigated two highly expressed lysosomal glycohydrolases, namely beta-D-hexosaminidase and alpha-D-mannosidase, and showed that they were differently affected by ATRA differentiating action. In particular, due to the specific action on Asn-linked oligosaccharides, we tested alpha-D: -mannosidase enzymatic activity and observed that it was dramatically decreased after ATRA incubation, indicating a relationship with the differentiation state of the cells. These observations may directly be linked with the loss of metastatic progession of differentiated HL-60.
Collapse
Affiliation(s)
- Leda Racanicchi
- Department of Internal Medicine (Di.M.I.), Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Via E. Dal Pozzo, Perugia 06126, Italy.
| | | | | | | | | | | |
Collapse
|
59
|
Liu X, Liu Z, Jang SW, Ma Z, Shinmura K, Kang S, Dong S, Chen J, Fukasawa K, Ye K. Sumoylation of nucleophosmin/B23 regulates its subcellular localization, mediating cell proliferation and survival. Proc Natl Acad Sci U S A 2007; 104:9679-84. [PMID: 17535915 PMCID: PMC1887583 DOI: 10.1073/pnas.0701806104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleophosmin/B23 is a major multifunctional nucleolar phosphoprotein that plays a critical role in ribosome biogenesis and cell proliferation. Arf tumor suppressor binds B23 and enhances its sumoylation. However, the biological effects of this event remain unknown. Here we show that B23 is sumoylated on both Lysine 230 and 263 residues, but the latter is the major one. Mutation of K263, but not K230, into R abolishes its centrosomal and nucleolar residency. Moreover, Rb binds to wild-type B23, but fails to interact with K263R. Sumoylation enhances B23 binding to Rb. Consequently, B23 potently stimulates E2F1-mediated transcriptional activity, which is abolished in B23 K263R. Further, K263R mutation makes B23 vulnerable to caspase-3 cleavage and sensitizes cells to apoptosis. Surprisingly, K230R mutant strongly binds to phosphatidylinositol-3,4,5-trisphosphate and suppresses DNA fragmentation. Thus, B23 sumoylation regulates its subcellular localization, cell proliferation, and survival activities.
Collapse
Affiliation(s)
- Xia Liu
- *Department of Pathology and Laboratory Medicine
| | - Zhixue Liu
- *Department of Pathology and Laboratory Medicine
| | | | - Zhiyong Ma
- Department of Cell Biology, University of Cincinnati College of Medicine, P.O. Box 670521, Cincinnati, OH 45267-0521
| | - Kazuya Shinmura
- Department of Cell Biology, University of Cincinnati College of Medicine, P.O. Box 670521, Cincinnati, OH 45267-0521
| | - Sumin Kang
- Winship Cancer Institute, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322; and
| | - Shaozhong Dong
- Winship Cancer Institute, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322; and
| | - Jing Chen
- Winship Cancer Institute, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322; and
| | - Kenji Fukasawa
- Department of Cell Biology, University of Cincinnati College of Medicine, P.O. Box 670521, Cincinnati, OH 45267-0521
| | - Keqiang Ye
- *Department of Pathology and Laboratory Medicine
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
60
|
Li J, Sejas DP, Burma S, Chen DJ, Pang Q. Nucleophosmin suppresses oncogene-induced apoptosis and senescence and enhances oncogenic cooperation in cells with genomic instability. Carcinogenesis 2007; 28:1163-70. [PMID: 17277230 PMCID: PMC2850567 DOI: 10.1093/carcin/bgm025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells from patients with genomic instability syndromes have high predisposition to cancer. However, little is known about whether these mutant cells have high susceptibility to oncogenic transformation. We have tested the hypothesis that a defect in maintaining genome integrity is necessary but not sufficient alone for oncogenic transformation and needs to collaborate with other signals in order to produce full oncogenic transformation. Using genetically matched primary cells deficient for the Fanconi complementation group C gene (Fancc) and the ataxia telangiectasia mutated gene (Atm), we found that certain forms of oncogenic activation and cooperation require a combination of genomic instability with increased expression of nucleophosmin (NPM) to prevent oncogenic stress-induced apoptosis or senescence. Intriguingly, co-expression of c-Myc and NPM leads to a synergistic increase in the proliferation rate in Fancc-/- or Atm-/- cells. Analysis of p53 stabilization and activation by c-Myc demonstrates that over-expression of NPM significantly reduces the accumulation of the activated p53 but not the stability of p53. Moreover, NPM is shown to enhance transforming activity of co-expressed Myc and Ras in wild-type and, to a greater degree, in Fancc-/- or Atm-/- cells, suggesting a role in oncogenic cooperation. Finally, a partial knockdown of NPM is sufficient to cause massive apoptosis in Fancc-/- or Atm-/- cells co-expressing c-Myc and Ras while sparing untransformed cells. Our study demonstrates a novel mechanism of NPM tumorigenesis by establishing NPM as a crucial inhibitor of oncogene-induced apoptosis and senescence.
Collapse
Affiliation(s)
- June Li
- Division of Experimental Hematology, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Daniel P. Sejas
- Division of Experimental Hematology, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sandeep Burma
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J. Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qishen Pang
- Division of Experimental Hematology, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- To whom correspondence should be addressed. Tel: +1 513 636 1152; Fax: +1 513 636 3768;
| |
Collapse
|
61
|
Subramaniyam S, Nandula SV, Nichols G, Weiner M, Satwani P, Alobeid B, Bhagat G, Murty VV. Do RARA/PML fusion gene deletions confer resistance to ATRA-based therapy in patients with acute promyelocytic leukemia? Leukemia 2006; 20:2193-5. [PMID: 17008891 DOI: 10.1038/sj.leu.2404406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
62
|
Bevington JM, Needham PG, Verrill KC, Collaco RF, Basrur V, Trempe JP. Adeno-associated virus interactions with B23/Nucleophosmin: identification of sub-nucleolar virion regions. Virology 2006; 357:102-13. [PMID: 16959286 PMCID: PMC1829415 DOI: 10.1016/j.virol.2006.07.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/18/2006] [Accepted: 07/24/2006] [Indexed: 11/28/2022]
Abstract
Adeno-associated virus (AAV) is a human parvovirus that normally requires a helper virus such as adenovirus (Ad) for replication. The four replication proteins (Rep78, 68, 52 and 40) encoded by AAV are pleiotropic effectors of virus integration, replication, transcription and virion assembly. Using Rep68 column chromatography and mass spectrometry, we have identified the nucleolar, B23/Nucleophosmin (NPM) protein as an Rep-interacting partner. Rep-NPM interactions were verified by co-immunofluorescence and chemical cross-linking studies. We have found that there is demonstrable, but limited co-localization between Rep and NPM in co-infected cells. In contrast, there was significant co-localization between NPM and AAV Cap proteins. In vitro experiments using purified MBPRep78 and NPM show that NPM stimulates MBPRep78 interactions with the AAV ITR as well as endonuclease activity. These studies suggest that NPM plays a role in AAV amplification affecting Rep function and virion assembly.
Collapse
Affiliation(s)
- Joyce M Bevington
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, 3035 Arlington Ave., Toledo, OH 43614-5804, USA
| | | | | | | | | | | |
Collapse
|
63
|
Melo RAM, de Vasconcellos JF, Melo FCBC, Machado CGF, Lacerda TMS, Souto FR. PML-RARalpha fusion gene transcripts and biological features in acute promyelocytic leukemia patients. ACTA ACUST UNITED AC 2006; 28:126-9. [PMID: 16630218 DOI: 10.1111/j.1365-2257.2006.00763.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by the presence of rearrangements involving the retinoic acid receptor alpha (RARalpha) gene and a variable incidence in different populations. The hybrid gene PML-RARalpha, present in 98% of cases, encodes a fusion protein essential to the pathogenesis of the disease. Depending of the PML's gene breakpoint in chromosome 15, the transcript subtypes bcr1, bcr2 and bcr3 may be formed. The correlation between these transcript subtypes and clinical parameters is still controversial. The objective of this study was to determine the frequencies of the PML-RARalpha transcripts and subtypes in a series of 32 APL patients from Northeast Brazil and to evaluate the association of these subtypes to different parameters. The method used was RT-PCR. The frequency of our APL cases is approximately 28% of the acute leukemias. The results showed the presence of PML-RARalpha isoform in all patients and a higher frequency of the bcr1/2 subtype. No significant statistical association was found between molecular subtypes and age, sex, French-American-British (FAB) classification, leukocyte and platelet count, hemoglobin level or coagulation tests. In conclusion, these data suggest similar molecular and biological features for our APL patients at diagnosis in comparison with those reported in current scientific literature.
Collapse
Affiliation(s)
- R A M Melo
- Hemope Foundation, Department of Laboratories, Recife-Pernambuco, Brazil.
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
NPM1 is a crucial gene to consider in the context of the genetics and biology of cancer. NPM1 is frequently overexpressed, mutated, rearranged and deleted in human cancer. Traditionally regarded as a tumour marker and a putative proto-oncogene, it has now also been attributed with tumour-suppressor functions. Therefore, NPM can contribute to oncogenesis through many mechanisms. The aim of this review is to analyse the role of NPM in cancer, and examine how deregulated NPM activity (either gain or loss of function) can contribute to tumorigenesis.
Collapse
Affiliation(s)
- Silvia Grisendi
- Cancer Biology & Genetics Program, Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
65
|
Cathelin S, Rébé C, Haddaoui L, Simioni N, Verdier F, Fontenay M, Launay S, Mayeux P, Solary E. Identification of proteins cleaved downstream of caspase activation in monocytes undergoing macrophage differentiation. J Biol Chem 2006; 281:17779-88. [PMID: 16636047 DOI: 10.1074/jbc.m600537200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have shown previously that caspases were specifically involved in the differentiation of peripheral blood monocytes into macrophages while not required for monocyte differentiation into dendritic cells. To identify caspase targets in monocytes undergoing macrophagic differentiation, we used the human monocytic leukemic cell line U937, whose macrophagic differentiation induced by exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) can be prevented by expression of the baculovirus caspase-inhibitory protein p35. A comparative two-dimensional gel proteomic analysis of empty vector- and p35-transfected cells after 12 h of exposure to 20 nm TPA, followed by mass spectrometry analysis, identified 38 differentially expressed proteins. Those overexpressed in p35-expressing cells (n = 16) were all full-length, whereas half of those overexpressed in control cells (n = 22) were N- or C-terminal cleavage fragments. The cleavage or degradation of seven of these proteins was confirmed in peripheral blood monocytes undergoing macrophage colony-stimulating factor-induced macrophagic differentiation. In U937 cells exposed to TPA, these proteolytic events can be inhibited by expression of a caspase-8 dominant negative mutant or the cowpox virus CrmA caspase inhibitor. These cleavages provide new insights to analyze the role of caspases in this specific differentiation program.
Collapse
Affiliation(s)
- Séverine Cathelin
- INSERM UMR 517, IFR 100, Faculty of Medicine, 7 Boulevard Jeanne d'Arc, F-21079 Dijon Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Li J, Sejas DP, Rani R, Koretsky T, Bagby GC, Pang Q. Nucleophosmin regulates cell cycle progression and stress response in hematopoietic stem/progenitor cells. J Biol Chem 2006; 281:16536-45. [PMID: 16608843 DOI: 10.1074/jbc.m601386200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM) is a multifunctional protein frequently overexpressed in actively proliferating cells. Strong evidence indicates that NPM is required for embryonic development and genomic stability. Here we report that NPM enhances the proliferative potential of hematopoietic stem cells (HSCs) and increases their survival upon stress challenge. Both short term liquid culture and clonogenic progenitor cell assays show a selective expansion of NPM-overexpressing HSCs. Interestingly, HSCs infected with NPM retrovirus show significantly reduced commitment to myeloid differentiation compared with vector-transduced cells, and majority of the NPM-overexpressing cells remains primitive during a 5-day culture. Bone marrow transplantation experiments demonstrate that NPM promotes the self-renewal of long term repopulating HSCs while attenuated their commitment to myeloid differentiation. NPM overexpression induces rapid entry of HSCs into the cell cycle and suppresses the expression of several negative cell cycle regulators that are associated with G(1)-to-S transition. NPM knockdown elevates expression of these negative regulators and exacerbates stress-induced cell cycle arrest. Finally, overexpression of NPM promotes the survival and recovery of HSCs and progenitors after exposure to DNA damage, oxidative stress, and hematopoietic injury both in vivo and in vitro. DNA repair kinetics study suggests that NPM has a role in reducing the susceptibility of chromosomal DNA to damage rather than promoting DNA damage repair. Together, these results indicate that NPM plays an important role in hematopoiesis via mechanisms involving modulation of HSC/progenitor cell cycle progression and stress response.
Collapse
Affiliation(s)
- June Li
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
67
|
Redner RL, Contis LC, Craig F, Evans C, Sherer ME, Shekhter-Levin S. A novel t(3;17)(p25;q21) variant translocation of acute promyelocytic leukemia with rearrangement of the RARA locus. Leukemia 2006; 20:376-9. [PMID: 16341036 DOI: 10.1038/sj.leu.2404062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
68
|
Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A, Galimi F, Le Beau MM, Evans RM, Kogan SC. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 2006; 9:81-94. [PMID: 16473276 DOI: 10.1016/j.ccr.2005.12.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 10/12/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
RARA becomes an acute promyelocytic leukemia (APL) oncogene by fusion with any of five translocation partners. Unlike RARalpha, the fusion proteins homodimerize, which may be central to oncogenic activation. This model was tested by replacing PML with dimerization domains from p50NFkappaB (p50-RARalpha) or the rapamycin-sensitive dimerizing peptide of FKBP12 (F3-RARalpha). The X-RARalpha fusions recapitulated in vitro activities of PML-RARalpha. For F3-RARalpha, these properties were rapamycin sensitive. Although in vivo the artificial fusions alone are poor initiators of leukemia, p50-RARalpha readily cooperates with an activated mutant CDw131 to induce APL-like disease. These results demonstrate that the dimerization interface of RARalpha fusion partners is a critical element in APL pathogenesis while pointing to other features of PML for enhancing penetrance and progression.
Collapse
MESH Headings
- Animals
- Bone Marrow/pathology
- Carcinogens/metabolism
- Cell Line
- DNA/metabolism
- DNA-Binding Proteins/metabolism
- Dimerization
- Down-Regulation/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutation/genetics
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/metabolism
- Protein Binding
- Protein Structure, Quaternary
- Receptors, Cytokine/metabolism
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retinoic Acid Receptor alpha
- Retinoid X Receptors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Thomas Sternsdorf
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Suzukawa K, Shimizu S, Nemoto N, Takei N, Taki T, Nagasawa T. Identification of a chromosomal breakpoint and detection of a novel form of an MLL-AF17 fusion transcript in acute monocytic leukemia with t(11;17)(q23;q21). Int J Hematol 2006; 82:38-41. [PMID: 16105757 DOI: 10.1532/ijh97.05025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
More than 40 genes have been reported as translocation partners of the mixed lineage leukemia gene (MLL) in hematologic malignancies. AF17 was identified earlier than most other MLL translocation partners. On the other hand, there is only 1 report of an MLL-AF17 fusion transcript in acute myeloid leukemia (AML). Here we describe a 40-year-old man with a diagnosis of AML involving t(11;17)(q23;q21). We identified a chromosomal breakpoint for t(11;17)(q23;q21) at MLL intron 6 and AF17 intron 8. Although the previously reported form of the MLL-AF17 fusion transcript was not detected by reverse transcriptase-polymerase chain reaction (PCR) analysis, a novel form of an MLL-AF17 fusion transcript joining MLL exon 6 to AF17 exon 9 was detected by complementary DNA panhandle PCR. The fact that 2 forms of MLL-AF17 retain the leucine zipper domain of AF17 suggests that the dimerization domain of AF17 is critical for leukemogenesis by the MLL-AF17 fusion gene.
Collapse
MESH Headings
- Adult
- Cell Transformation, Neoplastic/genetics
- Chromosome Breakage
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 17
- DNA-Binding Proteins/genetics
- Histone-Lysine N-Methyltransferase
- Humans
- Leucine Zippers
- Leukemia, Monocytic, Acute/genetics
- Male
- Myeloid-Lymphoid Leukemia Protein/genetics
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
Collapse
Affiliation(s)
- Kazumi Suzukawa
- Clinical and Experimental Hematology, Major of Advanced Biomedical Applications, Graduate School of Comprehensive, Human Sciences, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
70
|
Morgan MA, Reuter CWM. Molecularly targeted therapies in myelodysplastic syndromes and acute myeloid leukemias. Ann Hematol 2006; 85:139-63. [PMID: 16391911 DOI: 10.1007/s00277-005-0051-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 11/11/2005] [Indexed: 12/18/2022]
Abstract
Although there has been significant progress in acute myeloid leukemia (AML) treatment in younger adults during the last decade, standard induction therapy still fails to induce remission in up to 40% of AML patients. Additionally, relapses are common in 50-70% of patients who achieve a complete remission, and only 20-30% of patients enjoy long-term disease-free survival. The natural history of myelodysplastic syndrome (MDS) is variable, with about half of the patients dying from cytopenic complications, and an additional 20-30% transforming to AML. The advanced age of the majority of MDS patients limits the therapeutic strategies often to supportive care. To address these shortcomings, much effort has been directed toward the development of novel treatment strategies that target the evolution and proliferation of malignant clones. Presented here is an overview of molecularly targeted therapies currently being tested in AML and MDS patients, with a focus on FMS-like tyrosine kinase 3 inhibitors, farnesyltransferase inhibitors, antiangiogenesis agents, DNA hypomethylation agents, and histone deacetylase inhibitors.
Collapse
MESH Headings
- Age Factors
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- DNA Methylation/drug effects
- Disease-Free Survival
- Enzyme Inhibitors/metabolism
- Enzyme Inhibitors/therapeutic use
- Histone Acetyltransferases/antagonists & inhibitors
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/mortality
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Protein Processing, Post-Translational/drug effects
- Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Remission Induction/methods
Collapse
Affiliation(s)
- Michael A Morgan
- Department of Hematology, Hemostasis and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | | |
Collapse
|
71
|
Lo-Coco F, Ammatuna E. The Biology of Acute Promyelocytic Leukemia and Its Impact on Diagnosis and Treatment. Hematology 2006:156-61, 514. [PMID: 17124055 DOI: 10.1182/asheducation-2006.1.156] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Several genetic and phenotypic characteristics of acute promyelocytic leukemia (APL) blasts provide relevant targets and the rationale for tailored treatment. These include the PML/RARα fusion and the transcription co-repressor complex recruited at the promoter of target genes by the hybrid protein, the intense and homogeneous expression of the CD33 antigen, absence of multidrug resistance–related phenotype, and a frequently mutated and constitutively activated FLT3 receptor. Such genotypic and phenotypic features are targeted by agents currently in use in front-line therapy or at relapse (i.e., retinoids, arsenic trioxide, anthracyclines and anti-CD33 monoclonal antibodies), and by novel agents that may find a place in future treatments such as histone deacetylase and FLT3 inhibitors. The unique PML/RARα aberration serves as a molecular marker for rapid diagnosis and prediction of response to ATRA-and ATO-containing therapies. Methods for prompt and low-cost detection of this genetic abnormality, such as the analysis of PML nuclear staining, are extremely useful in clinical practice and could be adopted in countries with limited resources as a surrogate for rapid genetic diagnosis. Finally, PML/RARα monitoring through sensitive RT-PCR can be regarded as an integrating part of the overall treatment strategy in this disease, whereby the treatment type and intensity are modulated in patients at different risk of relapse according to RT-PCR status during follow-up. Because recent clinical studies suggest that most APL patients receiving intensive chemotherapy may be over-treated, longitudinal and stringent RT-PCR monitoring is becoming increasingly important to test the extent to which chemotherapy can be minimized in those presenting with low-risk disease.
Collapse
|
72
|
Fukai Y, Hirata M, Ueno M, Ichikawa N, Kobayashi H, Saitoh H, Sakurai T, Kinoshita K, Kaise T, Ohta S. Clinical Pharmacokinetic Study of Arsenic Trioxide in an Acute Promyelocytic Leukemia (APL) Patient: Speciation of Arsenic Metabolites in Serum and Urine. Biol Pharm Bull 2006; 29:1022-7. [PMID: 16651738 DOI: 10.1248/bpb.29.1022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pharmacokinetics of arsenic species in a Japanese patient with relapsed acute promyelocytic leukemia (APL) treated with arsenic trioxide at a daily dose of 0.08 mg/kg was investigated. After achieving complete remission on Day 35 during the induction therapy of arsenic trioxide, we collected the serum and urine samples on Days 4 and 5 during the consolidation therapy of arsenic trioxide. The concentrations of inorganic arsenic and the methylated metabolites in serum and urine were measured by HPLC/ICP-MS. The patient restricted taking the seafood for 3 d before the start of administration and during the sampling period in order to avoid the influence of arsenic derived from seafood. Arsenite (As(III)), methylarsonic acid (MMAs(V)), and dimethylarsinic acid (DMAs(V)) were detected in serum and urine. The total concentration of As(III), MMAs(V) and DMAs(V) in serum ranged from 18 to 41 microg/l (240-547 nM) during 24 h on Day 4. The amount of total arsenic (As(III)+MMAs(V)+DMAs(V)) in urine was 4464 microg/d on Day 4. These results suggest that not the micro-molar but the nano-molar order of arsenic in serum is sufficient to produce the therapeutic effect on APL cells.
Collapse
Affiliation(s)
- Yasuomi Fukai
- Department of Pharmacy, Nagano Red Cross Hospital, Nagano, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Li J, Zhang X, Sejas DP, Pang Q. Negative regulation of p53 by nucleophosmin antagonizes stress-induced apoptosis in human normal and malignant hematopoietic cells. Leuk Res 2005; 29:1415-23. [PMID: 15964625 DOI: 10.1016/j.leukres.2005.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/30/2005] [Accepted: 05/03/2005] [Indexed: 11/28/2022]
Abstract
Nucleophosmin (NPM) is a multifunctional protein frequently overexpressed in actively proliferating cells including tumor and stem cells. Here we show that NPM acts as a cellular p53 negative regulator to protect normal and malignant hematopoietic cells from stress-induced apoptosis. Overexpression of NPM suppresses stress-induced apoptosis in the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent myeloid cell line MO7e and the lymphoblast HSC536 cells derived from a Fanconi anemia (FA) patient. In addition, suppression of NPM expression by small interfering RNA targeting NPM in normal lymphoblasts and FA-associated acute myelogenous leukemia (AML) cells increases DNA damage-induced apoptosis. However, overexpression of the mutant NPMDeltaC, which lacks the p53-interacting domain, fails to confer cellular resistance to stress-induced apoptosis, suggesting that NPM protects cells from apoptotic cell death through a mechanism involving p53. Indeed, using the genetically matched p53 wild-type (WT) and null mouse bone marrow (BM) cells, we demonstrate that forced expression of NPM protects against ionizing irradiation (IR)-induced apoptosis of WT but not p53-null BM cells. Moreover, NPM inhibits IR-induced p53 transactivation, and interacts with p53 in hematopoietic cells. Thus, these results indicate an important role for NPM in regulation of p53-dependent apoptotic response and implicate a potential effect in cancer therapy.
Collapse
Affiliation(s)
- June Li
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
74
|
Tirado CA, Jahn JA, Scheerle J, Eid M, Meister RJ, Christie RJ, Croft CD, Wallingford S, Heritage DW, Mowrey PN, Meloni-Ehrig AM. Variant acute promyelocytic leukemia translocation (15;17) originating from two subsequent balanced translocations involving the same chromosomes 15 and 17 while preserving the PML/RARA fusion. ACTA ACUST UNITED AC 2005; 161:70-3. [PMID: 16080960 DOI: 10.1016/j.cancergencyto.2005.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/05/2005] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
Fluorescence in situ hybridization (FISH) analysis of the bone marrow of a 24-year-old man diagnosed with acute promyelocytic leukemia (APL) revealed a variant pattern with one fusion signal instead of the typical two fusions expected with the probe set used. The combined FISH and conventional chromosome analyses suggested that two subsequent translocations had occurred in this patient involving the same chromosomes 15 and 17. As the prognostic outcome in APL is strictly associated with the presence of a PML/RARA fusion, it is useful and necessary to perform both cytogenetic and FISH analyses of a variant t(15;17) to determine the status of the PML/RARA fusion.
Collapse
MESH Headings
- Adult
- Chromosome Aberrations
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 17/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Male
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Translocation, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Carlos A Tirado
- Laboratory of Cytogenetics, Quest Diagnostics Nichols Institute, 14225 Newbrook Drive, Chantilly, VA 20151, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Matsui W, Smith BD, Vala M, Beal N, Huff CA, Diehl LF, Jones RJ. Requirement for myeloid growth factors in the differentiation of acute promyelocytic leukaemia. Br J Haematol 2005; 128:853-62. [PMID: 15755292 DOI: 10.1111/j.1365-2141.2005.05395.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that the differentiation of acute promyelocytic leukaemia (APL) cells by all-trans-retinoic acid (ATRA) may be enhanced by myeloid growth factors, but the requirement for growth factors in this process is unclear. Our previous studies in multiple myeloma and non-APL acute myeloid leukaemia demonstrated that lineage-specific growth factors are required for the maximal activity of many pharmacologic differentiating agents in vitro. Thus, we studied whether the differentiation of APL is similarly dependent on growth factors. We found that the myeloid growth factors granulocyte colony-stimulating factor or granulocyte-macrophage colony-stimulating factor markedly increased the differentiation of NB4 cells or APL blasts from clinical samples treated with ATRA, arsenic trioxide (ATO), or bryostatin-1 as evidenced by the enhanced expression of myeloid surface antigens and the inhibition of clonogenic growth. Furthermore, myeloid growth factors were necessary for the differentiation of APL cells since the activity of each pharmacologic agent could be blocked by specific growth factor-neutralizing antibodies. Each differentiating agent was active only at concentrations that inhibited cell cycling, suggesting that this property is also required for differentiation. These data demonstrate that both pharmacologic differentiating agents and myeloid growth factors are required, but neither sufficient, for the differentiation of APL cells. The combined use of pharmacologic differentiating agents and growth factors may improve the clinical efficacy of differentiation therapy in APL.
Collapse
Affiliation(s)
- William Matsui
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | |
Collapse
|
76
|
Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW, Quelle DE. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 2005; 25:1258-71. [PMID: 15684379 PMCID: PMC548001 DOI: 10.1128/mcb.25.4.1258-1271.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/06/2004] [Accepted: 11/15/2004] [Indexed: 02/03/2023] Open
Abstract
The ARF tumor suppressor is a nucleolar protein that activates p53-dependent checkpoints by binding Mdm2, a p53 antagonist. Despite persuasive evidence that ARF can bind and inactivate Mdm2 in the nucleoplasm, the prevailing view is that ARF exerts its growth-inhibitory activities from within the nucleolus. We suggest ARF primarily functions outside the nucleolus and provide evidence that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM). Most cellular ARF is bound to NPM regardless of whether cells are proliferating or growth arrested, indicating that ARF-NPM association does not correlate with growth suppression. Notably, ARF binds NPM through the same domains that mediate nucleolar localization and Mdm2 binding, suggesting that NPM could control ARF localization and compete with Mdm2 for ARF association. Indeed, NPM knockdown markedly enhanced ARF-Mdm2 association and diminished ARF nucleolar localization. Those events correlated with greater ARF-mediated growth suppression and p53 activation. Conversely, NPM overexpression antagonized ARF function while increasing its nucleolar localization. These data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association.
Collapse
|
77
|
Nicci C, Ottaviani E, Luatti S, Grafone T, Tonelli M, Motta MR, Malagola M, Marzocchi G, Martinelli G, Baccarani M, Testoni N. Molecular and cytogenetic characterization of a new case of t(5;17)(q35;q21) variant acute promyelocytic leukemia. Leukemia 2005; 19:470-2. [PMID: 15674421 DOI: 10.1038/sj.leu.2403645] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
MESH Headings
- Adult
- Antineoplastic Agents/therapeutic use
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 5/genetics
- Cytogenetic Analysis
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oncogene Proteins/genetics
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Sarcoma, Myeloid/complications
- Translocation, Genetic
Collapse
|
78
|
Li J, Zhang X, Sejas DP, Bagby GC, Pang Q. Hypoxia-induced Nucleophosmin Protects Cell Death through Inhibition of p53. J Biol Chem 2004; 279:41275-9. [PMID: 15310764 DOI: 10.1074/jbc.c400297200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleophosmin (NPM) is a multifunctional protein that is overexpressed in actively proliferating cells and cancer cells. Here we report that this proliferation-promoting protein is strongly induced in response to hypoxia in human normal and cancer cells. Up-regulation of NPM is hypoxia-inducible factor-1 (HIF-1)-dependent. The NPM promoter encodes a functional HIF-1-responsive element that can be activated by hypoxia or forced expression of HIF-1alpha. Suppression of NPM expression by small interfering RNA targeting NPM increases hypoxia-induced apoptosis, whereas overexpression of NPM protects against hypoxic cell death of wild-type but not p53-null cells. Moreover, NPM inhibits hypoxia-induced p53 phosphorylation at Ser-15 and interacts with p53 in hypoxic cells. Thus, this study not only demonstrates hypoxia regulation of a proliferation-promoting protein but also suggests that hypoxia-driven cancer progression may require increased expression of NPM to suppress p53 activation and maintain cell survival.
Collapse
Affiliation(s)
- June Li
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
79
|
Mundle SD, Sokolova I. Clinical implications of advanced molecular cytogenetics in cancer. Expert Rev Mol Diagn 2004; 4:71-81. [PMID: 14711351 DOI: 10.1586/14737159.4.1.71] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The field of cytogenetics has already entered the molecular era and a rapid expansion of its contribution is seen in genomic disease management. Among the evolving advanced molecular techniques, with an impeccable balance of high specificity, sensitivity and assay rapidity, fluorescence in situ hybridization has made its home in routine clinical laboratory. Today, its clinical application is vivid in every phase of disease management of a number of malignancies. The rapid growth in the knowledge of specific associations between distinct chromosomal abnormalities and different types of cancers will necessitate simultaneous detection of multiple abnormalities using multicolor/multiplex fluorescence in situ hybridization tests more often in the near future. Also, as the human genome sequence is ascertained, genome-wide screening with microarray technology will gain eminence in the clinical scenario, yield better solutions and bring the concept of personalized medicine in cancer closer to reality than ever before.
Collapse
|
80
|
Puccetti E, Ruthardt M. Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell. Leukemia 2004; 18:1169-75. [PMID: 15103387 DOI: 10.1038/sj.leu.2403367] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) is distinguished from other acute myeloid leukemias (AMLs) by cytogenetic, clinical, as well as biological characteristics. The hallmark of APL is the t(15;17), which leads to the expression of the PML/RARalpha fusion protein. PML/RARalpha is the central leukemia-inducing lesion in APL and is directly targeted by all trans retinoic acid (t-RA) as well as by arsenic, both compounds able to induce complete remissions. This review focuses on potential stem cell involvement in APL outlining the knowledge about the APL-initiating stem cell and the influence of PML/RARalpha on the biology of the hematopoietic stem cell. Moreover, the importance of the blockage of t-RA signaling by the PML/RARalpha for the pathogenesis of APL is discussed, taking the relevance of the t-RA signaling pathway for the global hematopoiesis into account.
Collapse
Affiliation(s)
- E Puccetti
- Med. Klinik III/Abtl. Hämatologie, Labor für Experimentelle Hämatologie, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | | |
Collapse
|
81
|
Dong S, Stenoien DL, Qiu J, Mancini MA, Tweardy DJ. Reduced intranuclear mobility of APL fusion proteins accompanies their mislocalization and results in sequestration and decreased mobility of retinoid X receptor alpha. Mol Cell Biol 2004; 24:4465-75. [PMID: 15121864 PMCID: PMC400470 DOI: 10.1128/mcb.24.10.4465-4475.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute promyelocytic leukemia (APL) cells contain one of five chimeric retinoic acid alpha-receptor (RAR alpha) genes (X-RAR alpha) created by chromosomal translocations or deletion; each generates a fusion protein thought to transcriptionally repress RAR alpha target genes and block myeloid differentiation by an incompletely understood mechanism. To gain spatiotemporal insight into these oncogenic processes, we employed fluorescence microscopy and fluorescence recovery after photobleaching (FRAP). Fluorescence microscopy demonstrated that the intracellular localization of each of the X-RAR alpha proteins was distinct from that of RAR alpha and established which portion(s) of each X-RAR alpha protein-X, RAR, or both-contributed to its altered localization. Using FRAP, we demonstrated that the intranuclear mobility of each X-RAR alpha was reduced compared to that of RAR alpha. In addition, the mobility of each X-RAR alpha was reduced further by ligand addition, in contrast to RAR alpha, which showed no change in mobility when ligand was added. Both the reduced baseline mobility of X-RAR alpha and the ligand-induced slowing of X-RAR alpha could be attributed to the protein interaction domain contained within X. RXR alpha aberrantly colocalized within each X-RAR alpha; colocalization of RXR alpha with promyelocytic leukemia (PML)-RAR alpha resulted in reduced mobility of RXR alpha. Thus, X-RAR alpha may interfere with RAR alpha through its aberrant nuclear dynamics, resulting in spatial and temporal sequestration of RXR alpha and perhaps other nuclear receptor coregulators critical for myeloid differentiation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- COS Cells
- Fluorescence Recovery After Photobleaching
- Green Fluorescent Proteins
- HeLa Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Ligands
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Shuo Dong
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
82
|
Abstract
A fundamental issue in cancer biology is the identification of the target cell in which the causative molecular lesion arises. Acute myeloid leukemia (AML) is thought to reflect the transformation of a primitive stem cell compartment. The resultant 'cancer stem cells' comprise only a minor portion of the leukemic clone but give rise through differentiation to more committed progenitors as well as differentiated blasts that constitute the bulk of the tumor. The maintenance of the leukemic clone is dependent on the self-renewal capacity of the cancer stem cell compartment, which is revealed by its ability to re-initiate leukemia in a transplant setting. The cellular basis of acute promyelocytic leukemia (APL) is however less clear. APL has traditionally been considered to be the most differentiated form of AML and to arise from a committed myeloid progenitor. Here we review apparently conflicting evidence pertaining to the cellular origins of APL and propose that this leukemia may originate in more than one cellular compartment. This view could account for many apparent inconsistencies in the literature to date. An understanding of the nature of the target cell involved in transformation of APL has important implications for biological mechanism and for clinical treatment.
Collapse
Affiliation(s)
- D Grimwade
- Department of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK.
| | | |
Collapse
|
83
|
McConnell MJ, Chevallier N, Berkofsky-Fessler W, Giltnane JM, Malani RB, Staudt LM, Licht JD. Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol 2004; 23:9375-88. [PMID: 14645547 PMCID: PMC309637 DOI: 10.1128/mcb.23.24.9375-9388.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcriptional repressor PLZF was identified by its translocation with retinoic acid receptor alpha in t(11;17) acute promyelocytic leukemia (APL). Ectopic expression of PLZF leads to cell cycle arrest and growth suppression, while disruption of normal PLZF function is implicated in the development of APL. To clarify the function of PLZF in cell growth and survival, we used an inducible PLZF cell line in a microarray analysis to identify the target genes repressed by PLZF. One prominent gene identified was c-myc. The array analysis demonstrated that repression of c-myc by PLZF led to a reduction in c-myc-activated transcripts and an increase in c-myc-repressed transcripts. Regulation of c-myc by PLZF was shown to be both direct and reversible. An interaction between PLZF and the c-myc promoter could be detected both in vitro and in vivo. PLZF repressed the wild-type c-myc promoter in a reporter assay, dependent on the integrity of the binding site identified in vitro. PLZF binding in vivo was coincident with a decrease in RNA polymerase occupation of the c-myc promoter, indicating that repression occurred via a reduction in the initiation of transcription. Finally, expression of c-myc reversed the cell cycle arrest induced by PLZF. These data suggest that PLZF expression maintains a cell in a quiescent state by repressing c-myc expression and preventing cell cycle progression. Loss of this repression through the translocation that occurs in t(11;17) would have serious consequences for cell growth control.
Collapse
MESH Headings
- Apoptosis
- Base Sequence
- Binding Sites/genetics
- Cell Cycle
- Cell Division
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 17/genetics
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression
- Genes, myc
- Humans
- Kruppel-Like Transcription Factors
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Promoter Regions, Genetic
- Promyelocytic Leukemia Zinc Finger Protein
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Translocation, Genetic
- U937 Cells
Collapse
Affiliation(s)
- Melanie J McConnell
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Brockman SR, Paternoster SF, Ketterling RP, Dewald GW. New highly sensitive fluorescence in situ hybridization method to detect PML/RARA fusion in acute promyelocytic leukemia. CANCER GENETICS AND CYTOGENETICS 2003; 145:144-51. [PMID: 12935927 DOI: 10.1016/s0165-4608(03)00061-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated a new fluorescence in situ hybridization (FISH) method to detect PML/RARA fusion and/or anomalies of the RARA gene (alias RARalpha) in interphase nuclei from patients with acute promyelocytic leukemia (APL). This method uses a commercially available product with two different colored fluorescent probes to detect both PML/RARA gene fusion products (double fusion signal or dual-color fluorescence in situ hybridization [D-FISH]). A total of 82 bone marrow specimens were studied, including 30 from normal bone marrow transplant donors, 33 from patients with untreated APL, 14 from patients with treated APL, and 5 from APL patients with known translocation variants or alternate translocations. The signal patterns and percentage of abnormal nuclei were determined in a blinded study on 500 interphase nuclei for each specimen. Based on 25 normal specimens, the normal cutoff was >0.6% and >1.6% for t(15;17) and t(17;var), respectively. The clinical sensitivity for this series of patients was 98% and the clinical specificity was 100%. The results suggest that the new D-FISH probe set can detect all t(15;17)(q22;q21) and all variant forms of this translocation associated with PML and RARA. In addition, this FISH method can detect all alternate translocations involving RARA and not PML. This FISH method can be used both for the accurate diagnosis of APL and to monitor low levels of disease in treated patients.
Collapse
Affiliation(s)
- Stephanie R Brockman
- Division of Laboratory Genetics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
85
|
Melnick A. Spotlight on acute promyelocytic leukemia: controversies and challenges. Leukemia 2002; 16:1893-5. [PMID: 12357340 DOI: 10.1038/sj.leu.2402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Accepted: 08/06/2002] [Indexed: 11/08/2022]
Affiliation(s)
- A Melnick
- Department of Developmental and Molecular Biology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|