51
|
Chandrachud U, Gal S. Three assays show differences in binding of wild-type and mutant p53 to unique gene sequences. Technol Cancer Res Treat 2010; 8:445-53. [PMID: 19925028 DOI: 10.1177/153303460900800606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer-associated mutations in the p53 gene often change amino acids in the protein's DNA binding domain. We used three different binding assays specifically gel shift, DNA binding scintillation proximity assay and a streptavidin magnetic bead assay to analyze the DNA binding of the tumor suppressor p53 from 4 human cell lines with different DNA sequences from the mdm2, p21 and cyclin G genes and a mutant form of the cyclin G sequence. Treatment of MCF-7 cells having wild-type p53 with hydrogen peroxide increased the binding of p53 to DNA as detected using all three assays, but to different extents. The p53 proteins from the thyroid cancer cell lines with different p53 mutations (ARO, WRO and NPA) have comparable binding reactions in the three assays, but show different specificities for the sequences. Here we show that multiple different binding assays allow us to generate a more complete picture of the function of DNA transcription factors in diseases such as cancer.
Collapse
Affiliation(s)
- Uma Chandrachud
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| | | |
Collapse
|
52
|
Luo Y, Yi Y, Yao Z. Growth Arrest in Ovarian Cancer Cells by hTERT Inhibition Short-Hairpin RNA Targeting Human Telomerase Reverse Transcriptase Induces Immediate Growth Inhibition but not Necessarily Induces Apoptosis in Ovarian Cancer Cells. Cancer Invest 2009; 27:960-70. [DOI: 10.3109/07357900802491451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
53
|
Ahn J, Poyurovsky MV, Baptiste N, Beckerman R, Cain C, Mattia M, McKinney K, Zhou J, Zupnick A, Gottifredi V, Prives C. Dissection of the sequence-specific DNA binding and exonuclease activities reveals a superactive yet apoptotically impaired mutant p53 protein. Cell Cycle 2009; 8:1603-15. [PMID: 19462533 DOI: 10.4161/cc.8.10.8548] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both sequence-specific DNA binding and exonuclease activities have been mapped to the central conserved core domain of p53. To gain more information about these two activities a series of mutants were generated that changed core domain histidine residues. Of these mutants, only one, H115N p53, showed markedly reduced exonuclease activity (ca. 15% of wild-type). Surprisingly, purified H115N p53 protein was found to be significantly more potent than wild-type p53 in binding to DNA by several criteria including gel mobility shift assay, filter binding and DNase I footprinting. Interestingly as well, non-specific DNA binding by the core domain of H115N p53 is superior to that of wild-type p53. To study H115N p53 in vivo, clones of H1299 cells expressing tetracycline regulated wild-type or H115N p53 were generated. H115N was both more potent than wild-type p53 in inducing p53 target genes such as p21 and PIG3 and was also more effective in arresting cells in G1. Unexpectedly, in contrast to wild-type p53, H115N p53 was markedly impaired in causing apoptosis when cells were subjected to DNA damage. Our results indicate that the exonuclease activity and transcriptional activation functions of p53 can be separated. They also extend previous findings showing that cell cycle arrest and apoptosis are separable functions of p53. Finally, these experiments confirm that DNA binding and xonuclease activities are distinct features of the p53 core domain.
Collapse
Affiliation(s)
- Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Porté S, Valencia E, Yakovtseva EA, Borràs E, Shafqat N, Debreczeny JÉ, Pike ACW, Oppermann U, Farrés J, Fita I, Parés X. Three-dimensional structure and enzymatic function of proapoptotic human p53-inducible quinone oxidoreductase PIG3. J Biol Chem 2009; 284:17194-17205. [PMID: 19349281 PMCID: PMC2719357 DOI: 10.1074/jbc.m109.001800] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor p53 regulates the expression of p53-induced genes (PIG) that trigger apoptosis. PIG3 or TP53I3 is the only known member of the medium chain dehydrogenase/reductase superfamily induced by p53 and is used as a proapoptotic marker. Although the participation of PIG3 in the apoptotic pathway is proven, the protein and its mechanism of action were never characterized. We analyzed human PIG3 enzymatic function and found NADPH-dependent reductase activity with ortho-quinones, which is consistent with the classification of PIG3 in the quinone oxidoreductase family. However, the activity is much lower than that of zeta-crystallin, a better known quinone oxidoreductase. In addition, we report the crystallographic structure of PIG3, which allowed the identification of substrate- and cofactor-binding sites, with residues fully conserved from bacteria to human. Tyr-59 in zeta-crystallin (Tyr-51 in PIG3) was suggested to participate in the catalysis of quinone reduction. However, kinetics of Tyr/Phe and Tyr/Ala mutants of both enzymes demonstrated that the active site Tyr is not catalytic but may participate in substrate binding, consistent with a mechanism based on propinquity effects. It has been proposed that PIG3 contribution to apoptosis would be through oxidative stress generation. We found that in vitro activity and in vivo overexpression of PIG3 accumulate reactive oxygen species. Accordingly, an inactive PIG3 mutant (S151V) did not produce reactive oxygen species in cells, indicating that enzymatically active protein is necessary for this function. This supports that PIG3 action is through oxidative stress produced by its enzymatic activity and provides essential knowledge for eventual control of apoptosis.
Collapse
Affiliation(s)
- Sergio Porté
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Eva Valencia
- Institut de Biologia Molecular (IBMB-Consejo Superior de Investigaciones Científicas) and IRB Barcelona, Parc Científic de Barcelona, Josep-Samitier 1-5, 08028 Barcelona, Spain
| | - Evgenia A Yakovtseva
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Emma Borràs
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Naeem Shafqat
- Structural Genomics Consortium, Old Road Research Campus, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Judit É Debreczeny
- Structural Genomics Consortium, Old Road Research Campus, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ashley C W Pike
- Structural Genomics Consortium, Old Road Research Campus, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Udo Oppermann
- Structural Genomics Consortium, Old Road Research Campus, University of Oxford, Oxford OX3 7DQ, United Kingdom; Botnar Research Center, Oxford Biomedical Research Unit, Oxford OX3 7LD, United Kingdom
| | - Jaume Farrés
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ignacio Fita
- Institut de Biologia Molecular (IBMB-Consejo Superior de Investigaciones Científicas) and IRB Barcelona, Parc Científic de Barcelona, Josep-Samitier 1-5, 08028 Barcelona, Spain
| | - Xavier Parés
- From the Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
55
|
Keimling M, Wiesmüller L. DNA double-strand break repair activities in mammary epithelial cells--influence of endogenous p53 variants. Carcinogenesis 2009; 30:1260-8. [PMID: 19429664 DOI: 10.1093/carcin/bgp117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intriguingly, all 10 breast cancer susceptibility genes known today are directly or indirectly related to DNA double-strand break (DSB) repair suggesting a critical role of DSB repair dysfunction in the etiology of this tumor entity. We and others had previously provided evidence indicating that the breast cancer susceptibility gene product p53 controls DSB repair. Experiments with ectopically expressed proteins showed that oncogenic mutants of p53 deregulate homologous recombination (HR) and possibly also non-homologous end joining (NHEJ). Here, we systematically analyzed the role of different p53 variants endogenously expressed in a series of mammary epithelial cell lines. We provide evidence that endogenous wild-type p53 represses HR, particularly between short homologies that strengthens the idea of a quality control mechanism underlying HR regulation. To a lesser extent, p53 also downregulates microhomology-mediated NHEJ and single-strand annealing. Our data also suggest that repression of NHEJ regulation may require the extreme C-terminus, whereas the oligomerization and core domains are involved in HR regulation. We show that depending on the individual mutation, p53 mutants retain more or less partial DSB repair downregulatory activities when compared with loss of p53. All in all, relative effects on distinct DSB repair pathways and discrimination between HR substrates with perfectly versus imperfectly homologous sequences represent good markers for a p53 defect due to a specific mutation. Thus, advanced DSB repair analysis may serve as a novel assay for the functional classification of p53 mutations.
Collapse
Affiliation(s)
- Marlen Keimling
- Department of Obstetrics and Gynaecology, University of Ulm, Prittwitzstrasse 43, Ulm, Germany
| | | |
Collapse
|
56
|
Protein kinase C-dependent phosphorylation regulates the cell cycle-inhibitory function of the p73 carboxy terminus transactivation domain. Mol Cell Biol 2009; 29:1814-25. [PMID: 19158275 DOI: 10.1128/mcb.00585-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The transcription factor p73, a member of the p53 family of proteins, is involved in the regulation of cell cycle progression and apoptosis. However, the regulatory mechanisms controlling the distinct roles for p73 in these two processes have remained unclear. Here, we report that p73 is able to induce cell cycle arrest independently of its amino-terminal transactivation domain, whereas this domain is crucial for p73 proapoptotic functions. We also characterized a second transactivation domain in the carboxy terminus of p73 within amino acid residues 381 to 399. This carboxy terminus transactivation domain was found to preferentially regulate genes involved in cell cycle progression. Moreover, its activity is regulated throughout the cell cycle and modified by protein kinase C-dependent phosphorylation at serine residue 388. Our results suggest that this novel posttranslational modification within the p73 carboxy terminus transactivation domain is involved in the context-specific guidance of p73 toward the selective induction of cell cycle arrest.
Collapse
|
57
|
Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L, Kern W, Haferlach T, Haferlach C. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 2008; 23:117-24. [PMID: 18843282 DOI: 10.1038/leu.2008.274] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The poor prognosis of chronic lymphocytic leukemia (CLL) patients with del (17p) is well established. We analyzed whether mutation of TP53 on the remaining allele adds to the poor prognosis or whether even TP53 mutation alone may be an adverse prognostic factor. We analyzed TP53 mutations in 193 CLL patients by denaturing high performance liquid chromatography in combination with direct DNA sequencing and a TP53 resequencing research microarray. Mutations were correlated to chromosomal aberrations defined by interphase fluorescent in situ hybridization and chromosome banding analyses and to the clinical course of patients. TP53 mutations were detected in 13.5% (26 of 193) of samples, whereas the incidence of del (17p) was 9.3% (18 of 193). TP53 mutations were significantly associated with del (17p) (concordance 94%, P<0.001) and complex cytogenetic abnormalities (concordance 50%, P<0.001). Among 147 patients whose clinical data were available, patients with TP53 abnormalities (n=20) had a significantly decreased time to treatment compared to patients without TP53 aberration (P<0.001). Median time to treatment was short in patients with isolated TP53 mutation (n=6, 2.0 months) and in those with del (17p) (n=14, 21.3 months) as compared to patients without TP53 aberration (n=127, 64.9 months, P<0.001). In multivariate Cox regression analysis, VH status, TP53 mutations and also isolated TP53 mutations independently predicted rapid disease progression.
Collapse
Affiliation(s)
- F Dicker
- MLL Munich Leukemia Laboratory, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Fuhrken PG, Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET. Tumor suppressor protein p53 regulates megakaryocytic polyploidization and apoptosis. J Biol Chem 2008; 283:15589-600. [PMID: 18397889 DOI: 10.1074/jbc.m801923200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The molecular mechanisms underlying differentiation of hematopoietic stem cells into megakaryocytes are poorly understood. Tumor suppressor protein p53 can act as a transcription factor affecting both cell cycle control and apoptosis, and we have previously shown that p53 is activated during terminal megakaryocytic (Mk) differentiation of the CHRF-288-11 (CHRF) cell line. Here, we use RNA interference to reduce p53 expression in CHRF cells and show that reduced p53 activity leads to a greater fraction of polyploid cells, higher mean and maximum ploidy, accelerated DNA synthesis, and delayed apoptosis and cell death upon phorbol 12-myristate 13-acetate-induced Mk differentiation. In contrast, reduced p53 expression did not affect the ploidy or DNA synthesis of CHRF cells in the absence of phorbol 12-myristate 13-acetate stimulation. Furthermore, primary Mk cells from cultures initiated with p53-null mouse bone marrow mononuclear cells displayed higher ploidy compared with wild-type controls. Quantitative reverse transcription-PCR analysis of p53-knockdown CHRF cells, compared with the "scrambled" control CHRF cells, revealed that six known transcriptional targets of p53 (BBC3, BAX, TP53I3, TP53INP1, MDM2, and P21) were down-regulated, whereas BCL2 expression, which is known to be negatively affected by p53, was up-regulated. These studies show that the functional role of the intrinsic activation of p53 during Mk differentiation is to control polyploidization and the transition to endomitosis by impeding cell cycling and promoting apoptosis.
Collapse
Affiliation(s)
- Peter G Fuhrken
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
59
|
Monti P, Ciribilli Y, Jordan J, Menichini P, Umbach DM, Resnick MA, Luzzatto L, Inga A, Fronza G. Transcriptional functionality of germ line p53 mutants influences cancer phenotype. Clin Cancer Res 2007; 13:3789-95. [PMID: 17606709 PMCID: PMC2128783 DOI: 10.1158/1078-0432.ccr-06-2545] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The TP53 tumor suppressor gene encodes a sequence-specific transcription factor that is able to transactivate several sets of genes, the promoters of which include appropriate response elements. Although human cancers frequently contain mutated p53, the alleles as well as the clinical expression are often heterogeneous. Germ line mutations of TP53 result in cancer proneness syndromes known as Li-Fraumeni, Li-Fraumeni--like, and nonsyndromic predisposition with or without family history. p53 mutants can be classified as partial deficiency alleles or severe deficiency alleles depending on their ability to transactivate a set of human target sequences, as measured using a standardized yeast-based assay (see http://www.umd.be:2072/index.html). We have investigated the extent to which the functional features of p53 mutant alleles determine clinical features in patients who have inherited these alleles and have developed cancer. EXPERIMENTAL DESIGN We retrieved clinical data from the IARC database (see http://www.p53.iarc.fr/Germline.html) for all cancer patients with germ line p53 mutations and applied stringent statistical evaluations to compare the functional classification of p53 alleles with clinical phenotypes. RESULTS Our analyses reveal that partial deficiency alleles are associated with a milder family history (P = 0.007), a lower numbers of tumors (P = 0.007), and a delayed disease onset (median, 31 versus 15 years; P = 0.007) which could be related to distinct tumor spectra. CONCLUSIONS These findings establish for the first time significant correlations between the residual transactivation function of individual TP53 alleles and clinical variables in patients with inherited p53 mutations who develop cancer.
Collapse
Affiliation(s)
- Paola Monti
- Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute, Genoa, Italy
| | - Yari Ciribilli
- Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute, Genoa, Italy
| | - Jennifer Jordan
- Chromosome Stability Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Paola Menichini
- Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute, Genoa, Italy
| | - David M. Umbach
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Michael A. Resnick
- Chromosome Stability Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | | | - Alberto Inga
- Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute, Genoa, Italy
| | - Gilberto Fronza
- Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute, Genoa, Italy
| |
Collapse
|
60
|
Parallel analysis of tetramerization domain mutants of the human p53 protein using PCR colonies. Genomic Med 2007; 1:113-24. [PMID: 18923936 DOI: 10.1007/s11568-007-9011-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 08/01/2007] [Indexed: 01/21/2023] Open
Abstract
A highly-parallel yeast functional assay, capable of screening approximately 100-1,000 mutants in parallel and designed to screen the activity of transcription activator proteins, was utilized to functionally characterize tetramerization domain mutants of the human p53 transcription factor and tumor suppressor protein. A library containing each of the 19 possible single amino acid substitutions (57 mutants) at three positions in the tetramerization domain of the human p53 protein, was functionally screened in Saccharomyces cerevisiae. Amino acids Leu330 and Ile332, whose side chains form a portion of a hydrophobic pocket that stabilizes the active p53 tetramer, were found to tolerate most hydrophobic amino acid substitutions while hydrophilic substitutions resulted in the inactivation of the protein. Amino acid Gln331 tolerated essentially all mutations. Importantly, highly parallel mutagenesis and cloning techniques were utilized which, in conjunction with recently reported highly parallel DNA sequencing methods, would be capable of increasing throughput an additional 2-3 orders of magnitude.
Collapse
|
61
|
Grochova D, Vankova J, Damborsky J, Ravcukova B, Smarda J, Vojtesek B, Smardova J. Analysis of transactivation capability and conformation of p53 temperature-dependent mutants and their reactivation by amifostine in yeast. Oncogene 2007; 27:1243-52. [PMID: 17724467 DOI: 10.1038/sj.onc.1210748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p53 gene is often mutated during cancer development. Frequency and functional consequences of these mutations vary in different tumor types. We analysed conformation and temperature dependency of 23 partially inactivating temperature-dependent (td) p53 mutants derived from various human tumors in yeast. We found considerable differences in transactivation capabilities and discriminative character of various p53 mutants. No correlations in transactivation rates and conformations of the td p53 proteins were detected. Amifostine-induced p53 reactivation occurred only in 13 of 23 td mutants, and this effect was temperature dependent and responsive element specific. The most of the p53 mutations (10/13) reactivated by amifostine were located in the part of the p53 gene coding for hydrophobic beta-sandwich structure of the DNA-binding domain.
Collapse
Affiliation(s)
- D Grochova
- Department of Pathology, University Hospital, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
62
|
Fen CX, Coomber DW, Lane DP, Ghadessy FJ. Directed evolution of p53 variants with altered DNA-binding specificities by in vitro compartmentalization. J Mol Biol 2007; 371:1238-48. [PMID: 17610896 DOI: 10.1016/j.jmb.2007.05.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 11/16/2022]
Abstract
The p53 tumour suppressor governs cell fate by differential transactivation of a spectrum of target genes. To further understand how p53 discriminates between target promoters, we have for the first time used in vitro compartmentalization (IVC) to evolve variants with greater affinity for the distal p53 response element in the promoter of the p21 gene involved in cell-cycle arrest, and for the low affinity BS1 response element of the pro-apoptotic PUMA gene. These variants have mutations in the L1 loop of the p53 DNA binding domain and in the N-terminal proline-rich domain. The in vitro binding phenotype of these variants extends to both increased transactivation of promoters containing the response elements in reporter gene studies and increased up-regulation of endogenous p21 as compared to wild-type p53. One variant was co-selected for increased binding to both response elements yet displayed increased apoptotic function. This result supports the notion that prediction of phenotypic outcome based on transcriptional activation of individual genes is confounded by the networked complexity of the p53 response.
Collapse
Affiliation(s)
- Chen Xue Fen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673
| | | | | | | |
Collapse
|
63
|
Magrini R, Russo D, Fronza G, Inga A, Menichini P. The kinetics of p53-binding and histone acetylation at target promoters do not strictly correlate with gene expression after UV damage. J Cell Biochem 2007; 100:1276-87. [PMID: 17063487 DOI: 10.1002/jcb.21122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have addressed the correlation between sequence-specific DNA binding by the tumor suppressor p53 and transactivation of various target genes, in the context of UV irradiation responses. In A549 cells (p53WT), p53 occupancy at the p21, mdm2, and puma promoters increased significantly after UV irradiation. In contrast, p21 mRNA levels did not change, mdm2 mRNA decreased and both p21 and mdm2 proteins were downregulated shortly after UV. At later times, higher p53 occupancy correlated with enhanced expression of these two genes both at mRNA and protein levels. In the p53 mutant cell lines LX1 (R273H) and SKMes1 (R280K), no significant p53-binding was detected at the gene targets analyzed. Accordingly, p21 and mdm2 proteins were not upregulated after UV irradiation. The kinetics of histone acetylation did not strictly correlate with gene expression. In fact, high levels of acetylated H3 (AcH3) and, particularly, acetylated H4 (AcH4) histones were found shortly after UV irradiation on p21 and mdm2 promoters. At the later time point, when transactivation was detected, acetylation levels decreased significantly although remaining higher than basal levels. Our results indicate that p53 transcription-dependent and -independent responses are activated with different kinetics after UV, possibly relating to the repair of UV-induced DNA damage. Based on the histone acetylation pattern we hypothesize that the DNA repair function of p53, associated to global genome repair and foci of DNA damage, may be relevant for all p53-binding sites, including those where occupancy by p53 is also associated to transcriptional modulation.
Collapse
Affiliation(s)
- Roberta Magrini
- Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute (IST), Largo R. Benzi, 10, 16132 Genova, Italy
| | | | | | | | | |
Collapse
|
64
|
Abstract
Since the very early days of p53 research, the gain of oncogenic activities by some mutant p53 proteins had been suspected as an important factor contributing to cancer progression. Considerable progress towards understanding the biology of mutant p53 has been made during the last years, the quintessence being the realization that the impact of mutant p53 proteins on the transcriptome of a tumor cell is much more global than previously thought. The emerging role of mutant p53 proteins in coordinating oncogenic signaling and chromatin modifying activities reveals an until now unsuspected function of these proteins as important modifiers of the oncogenic transcriptional response. Notwithstanding the fact that the sequence-specific DNA binding activity of mutant p53 proteins is impaired, they are still able to associate with specific loci on DNA by utilizing different mechanisms. The ability to associate with DNA appears to be crucial for the master role of mutant p53 proteins in coordinating oncogenic transcriptional responses.
Collapse
Affiliation(s)
- E Kim
- Translational Neuro-Oncology Group, Department of Neurosurgery, Georg-August-University of Goettingen, Robert-Koch-Strasse 40, Goettingen, Germany.
| | | |
Collapse
|
65
|
Menendez D, Inga A, Jordan JJ, Resnick MA. Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson. Oncogene 2007; 26:2191-201. [PMID: 17401428 DOI: 10.1038/sj.onc.1210277] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The p53 master regulatory network provides for the stress-responsive direct control of a vast number of genes in humans that can be grouped into several biological categories including cell-cycle control, apoptosis and DNA repair. Similar to other sequence-specific master regulators, there is a matrix of key components, which provide for variation within the p53 master regulatory network that include p53 itself, target response element sequences (REs) that provide for p53 regulation of target genes, chromatin, accessory proteins and transcription machinery. Changes in any of these can impact the expression of individual genes, groups of genes and the eventual biological responses. The many REs represent the core of the master regulatory network. Since defects or altered expression of p53 are associated with over 50% of all cancers and greater than 90% of p53 mutations are in the sequence-specific DNA-binding domain, it is important to understand the relationship between wild-type or mutant p53 proteins and the target response elements. In the words of the legendary detective Sherlock Holmes, it is 'Elementary, my dear Mr. Watson'.
Collapse
Affiliation(s)
- D Menendez
- Laboratory of Molecular Genetics, Chromosome Stability Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
66
|
p53, BRCA1 and breast Cancer chemoresistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 608:70-86. [PMID: 17993233 DOI: 10.1007/978-0-387-74039-3_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor suppressor genes p53 and BRCA1 are involved in hereditary as well as sporadic breast cancer development and therapeutic responses. While p53 mutations contribute to resistance to chemo- and radiotherapy, BRCA1 dysfunction leads to enhanced sensitivity to DNA damaging therapeutic agents. The biochemical pathways used by p53 and BRCA1 for signaling tumor suppression involve some cross-talk including repression of BRCA1 transcription by p53 and altered selectivity of p53-dependent gene activation by BRCA1. In this chapter we review clinical and preclinical data implicating p53 and BRCA1 in breast cancer chemosensitivity. We discuss the known signaling pathways downstream of p53 or BRCA1 that contribute to their modulation of therapeutic responses, and we discuss the implications of p53 or BRCA1 mutation in therapeutic design.
Collapse
|
67
|
Lokshin M, Li Y, Gaiddon C, Prives C. p53 and p73 display common and distinct requirements for sequence specific binding to DNA. Nucleic Acids Res 2006; 35:340-52. [PMID: 17170001 PMCID: PMC1802567 DOI: 10.1093/nar/gkl1047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 12/11/2022] Open
Abstract
Although p53 and p73 share considerable homology in their DNA-binding domains, there have been few studies examining their relative interactions with DNA as purified proteins. Comparing p53 and p73beta proteins, our data show that zinc chelation by EDTA is significantly more detrimental to the ability of p73beta than of p53 to bind DNA, most likely due to the greater effect that the loss of zinc has on the conformation of the DNA-binding domain of p73. Furthermore, prebinding to DNA strongly protects p73beta but not p53 from chelation by EDTA suggesting that DNA renders the core domain of p73 less accessible to its environment. Further exploring these biochemical differences, a five-base sub-sequence was identified in the p53 consensus binding site that confers a greater DNA-binding stability on p73beta than on full-length p53 in vitro. Surprisingly, p53 lacking its C-terminal non-specific DNA-binding domain (p53Delta30) demonstrates the same sequence discrimination as does p73beta. In vivo, both p53 and p73beta exhibit higher transactivation of a reporter with a binding site containing this sub-sequence, suggesting that lower in vitro dissociation translates to higher in vivo transactivation of sub-sequence-containing sites.
Collapse
Affiliation(s)
- Maria Lokshin
- Department of Biological Sciences, Columbia UniversityNew York, NY 10027, USA
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Yingchun Li
- Department of Biological Sciences, Columbia UniversityNew York, NY 10027, USA
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Christian Gaiddon
- U692 INSERM-Universite Louis Pasteur, Signalisations Moleculaires et Neurodegenerescence11 rue Human, 67085 Strasbourg, France
| | - Carol Prives
- To whom correspondence should be addressed. Tel: +1 212 854 2557; Fax: +1 212 865 8246;
| |
Collapse
|
68
|
Shinmura K, Bennett RA, Tarapore P, Fukasawa K. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 2006; 26:2939-44. [PMID: 17072342 DOI: 10.1038/sj.onc.1210085] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abnormal amplification of centrosomes is the major cause of mitotic defects and chromosome instability in cancer cells. Centrosomes duplicate once in each cell cycle, and abrogation of the regulatory mechanism underlying centrosome duplication leads to centrosome amplification. p53 tumor suppressor protein is involved in the regulation of centrosome duplication: loss of p53 as well as expression of certain p53 mutants result in deregulated centrosome duplication and centrosome amplification. p53 at least in part depends on its transactivation function to control centrosome duplication, primarily via upregulation of p21 cyclin-dependent kinase (CDK) inhibitor, which prevents untimely activation of CDK2/cyclin E, a key initiator of centrosome duplication. However, numerous studies have shown the presence of p53 at centrosomes, yet the role of the centrosomally localized p53 in the regulation of centrosome duplication had been enigmatic. Here, we comparatively examined wild-type p53 and p53 mutants that are transactivation(+)/centrosome-binding(-), transactivation(-)/centrosome-binding(+) and transactivation(-)/centrosome-binding(-) for their abilities to control centrosome duplication. We found that the transactivation(+)/centrosome-binding(-) and transactivation(-)/centrosome-binding(+) mutants suppress centrosome duplication only partially compared with wild-type p53. Moreover, the transactivation(-)/centrosome-binding(-) mutant almost completely lost the ability to suppress centrosome duplication. These observations provide direct evidence for the centrosomally localized p53 to participate in the regulation of centrosome duplication in a manner independent of its transactivation function in addition to its transactivation-dependent regulation of centrosome duplication.
Collapse
Affiliation(s)
- K Shinmura
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
69
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53 – ein natürlicher Krebskiller: Einsichten in die Struktur und Therapiekonzepte. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
70
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53—A Natural Cancer Killer: Structural Insights and Therapeutic Concepts. Angew Chem Int Ed Engl 2006; 45:6440-60. [PMID: 16983711 DOI: 10.1002/anie.200600611] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Every single day, the DNA of each cell in the human body is mutated thousands of times, even in absence of oncogenes or extreme radiation. Many of these mutations could lead to cancer and, finally, death. To fight this, multicellular organisms have evolved an efficient control system with the tumor-suppressor protein p53 as the central element. An intact p53 network ensures that DNA damage is detected early on. The importance of p53 for preventing cancer is highlighted by the fact that p53 is inactivated in more than 50 % of all human tumors. Thus, for good reason, p53 is one of the most intensively studied proteins. Despite the great effort that has been made to characterize this protein, the complex function and the structural properties of p53 are still only partially known. This review highlights basic concepts and recent progress in understanding the structure and regulation of p53, focusing on emerging new mechanistic and therapeutic concepts.
Collapse
Affiliation(s)
- Lin Römer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
71
|
Ang HC, Joerger AC, Mayer S, Fersht AR. Effects of Common Cancer Mutations on Stability and DNA Binding of Full-length p53 Compared with Isolated Core Domains. J Biol Chem 2006; 281:21934-21941. [PMID: 16754663 DOI: 10.1074/jbc.m604209200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Common cancer mutations of p53 tend either to lower the stability or distort the core domain of the protein or weaken its DNA binding affinity. We have previously analyzed in vitro the effects of mutations on the core domain of p53. Here, we extend those measurements to full-length p53, using either the wild-type protein or a biologically active superstable construct that is more amenable to accurate biophysical measurements to assess the possibilities of rescuing different types of mutations by anticancer drugs. The tetrameric full-length proteins had similar apparent melting temperatures to those of the individual domains, and the structural mutations lowered the melting temperature by similar amounts. The thermodynamic stability of tetrameric p53 is thus dictated by its core domain. We determined that the common contact mutation R273H weakened binding to the gadd45 recognition sequence by approximately 700-1000 times. Many mutants that have lowered melting temperatures should be good drug targets, although the common R273H mutant binds response elements too weakly for simple rescue.
Collapse
Affiliation(s)
- Hwee Ching Ang
- Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Andreas C Joerger
- Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Sebastian Mayer
- Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Alan R Fersht
- Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom.
| |
Collapse
|
72
|
Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW, Yi SY, Brachmann RK. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 2006; 28:289-98. [PMID: 16861262 DOI: 10.1093/carcin/bgl132] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over 1000 different mutants of the tumor suppressor protein p53 with one amino acid change in the core domain have been reported in human cancers. In mouse knock-in models, two frequent mutants displayed loss of wild-type (wt) p53 function, inhibition of wt p53 and wt p53-independent gain of function. The remaining mutants have been systematically characterized for loss of wt p53 function, but not other phenotypes. We report the concomitant assessment of loss of function and interference with wt p53 using URA3-based p53 yeast and confirmatory mammalian assays. We studied 76 mutants representing 54% of over 15 000 reported missense core domain mutations. The majority showed the expected complete loss of wt p53 function and dominant p53 inhibition. A few infrequent p53 mutants had wt p53-like activity. Remarkably, one-third showed no interference with wt p53 despite loss of wt p53 function at 37 degrees C. Half of this group consisted of temperature-sensitive p53 mutants, but the other half was surprisingly made up of mutants with complete loss of wt p53 function. Our findings illustrate the diverse behavior of p53 mutants and mechanisms of malignant transformation by p53 mutants. The identification of full-length p53 mutants without dominant inhibition of wt p53 highlights the importance of determining the status of the wt p53 allele in human cancers, in particular in the context of clinical studies. In the case of p53 mutants with no or weak dominant p53 inhibition, presence of the wt allele may indicate a good prognosis cancer, whereas loss of heterozygosity may spell an aggressive, therapy-resistant cancer.
Collapse
Affiliation(s)
- Lawrence R Dearth
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Gonin-Laurent N, Gibaud A, Huygue M, Lefèvre SH, Le Bras M, Chauveinc L, Sastre-Garau X, Doz F, Lumbroso L, Chevillard S, Malfoy B. Specific TP53 mutation pattern in radiation-induced sarcomas. Carcinogenesis 2006; 27:1266-72. [PMID: 16492679 DOI: 10.1093/carcin/bgi356] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mutagenic properties of ionizing radiation are well known, but the presence of specific mutations in human radiation-induced tumours is not established. We have studied a series of 36 secondary sarcomas arising in the irradiation field of a primary tumour following radiotherapy. The allelic status and the presence of mutations of the TP53 gene were investigated. The mutation pattern was compared with data from sporadic sarcomas recorded in the IARC TP53 somatic mutations database. A high proportion (58%) of the radiation-induced sarcomas exhibited a somatic inactivating mutation for one allele of TP53, systematically associated with a loss of the other allele. The high frequency (52%) of short deletions observed in the mutation pattern of radiation-induced sarcomas may be related to the induction of DNA breaks by ionizing radiation. The lack of hyper-reactivity of CpG dinucleotides and the presence of recurrent sites of mutation at codons 135 and 237 seem also to be specific for radiation tumorigenesis.
Collapse
|
74
|
Dekairelle AF, Tombal B, Cosyns JP, Gala JL. Assessment of the transcriptional activity of p53 improves the prediction of recurrence in superficial transitional cell carcinoma of the bladder. Clin Cancer Res 2005; 11:4724-32. [PMID: 16000567 DOI: 10.1158/1078-0432.ccr-05-0140] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the value of p53 functional analysis of separated alleles in yeast (FASAY) as a witness of p53/p21 pathway alteration and as a predictor of recurrence in superficial transitional cell carcinomas. EXPERIMENTAL DESIGN p53 transcriptional activity was prospectively analyzed in 52 newly diagnosed transitional cell carcinoma using FASAY competent for the transactivation of p21 and bax promoters. TP53 and p21 gene expression was quantified by real-time PCR, and expression of corresponding proteins was assessed by immunohistochemistry. In addition to tumor stage and grade, the predictive value of FASAY, real-time PCR, and immunohistochemistry for tumor recurrence was assessed by Cox survival analysis. RESULTS A total (p21 and bax) or partial (bax only) loss of transcriptional activity was observed in 15 of 52 (29%) and 4 of 52 (7.7%) cases, respectively, a partial loss being consistently associated with R283H mutation. p53 nuclear overexpression grossly overestimated (approximately 40%) or underestimated (approximately 10%) the true incidence of p53 transcriptional abnormalities, especially in Ta-T1 grade 1 to 2 tumors. Loss of p21 transactivation significantly correlated with decreased p21 gene expression and lack of expression of p21 (P = 0.001). FASAY had a better predictive value for recurrence than p53 immunohistochemistry (Cox hazard ratio, 6.57 versus 3.95; P = 0.0002 versus 0.019, respectively), whereas neither p21 immunohistochemistry (hazard ratio, 1.9; P = 0.29) nor TP53 or p21 gene expression were significant predictors of recurrence. The prognostic difference between FASAY and p53 immunohistochemistry was maintained in the subgroup of Ta-T1 grade 3 tumors. CONCLUSIONS FASAY is a valuable surrogate marker for assessing p53/p21 pathway alteration and predicts transitional cell carcinoma recurrence better than p53 immunohistochemistry.
Collapse
Affiliation(s)
- Anne-France Dekairelle
- Laboratory of Applied Molecular Technologies, Center for Human Genetics, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
75
|
Abstract
The p53 tumor suppressor protein is a transcription factor that mediates the cell's response to various kinds of stress by preventing cell division and/or inducing apoptosis. p53 gene mutations have been detected in nearly 50% of human cancers. These gene aberrations are mostly missense point mutations located predominantly in the central DNA-binding domain. In addition to the classical inactivating mutations, there are also dominant-negative, gain-of-function, temperature-sensitive, and cold-sensitive, discriminating, superactive p53 mutations, and some mutations that do not inactivate p53 activity. Several approaches have been developed for detection and analyses of p53 mutations: first, immunochemical methods have been developed to detect p53 protein levels; second, molecular analyses targeting changes in DNA structure are utilized; and third, functional assays are used to explore the biological properties of the p53 protein. Functional analysis of separated alleles in yeast targets the transactivation capability of the p53 protein expressed in yeast cells. This method uses p53 mRNA isolated from cells and tissues to produce a p53 product by RT-PCR. This method has undergone continuous improvement and now serves as a powerful tool for distinguishing various functional types of p53 mutations. Understanding the exact impact of p53 mutation on its function is an important prerequisite for establishment of efficient anti-cancer therapies.
Collapse
Affiliation(s)
- Jana Smardová
- Department of Pathology and Anatomy, University Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic.
| | | | | |
Collapse
|
76
|
Weinberg RL, Veprintsev DB, Bycroft M, Fersht AR. Comparative binding of p53 to its promoter and DNA recognition elements. J Mol Biol 2005; 348:589-96. [PMID: 15826656 DOI: 10.1016/j.jmb.2005.03.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 12/24/2022]
Abstract
Tumor suppressor p53 is a transcription factor that transactivates a wide range of genes, including those in DNA repair, cell cycle arrest, apoptosis and its own degradation. To estimate the role of selectivity in binding to its promoters, we measured the binding affinities of a tetrameric p53 construct (p53CT) in vitro with 20 of its recognition elements from a variety of representative genes. The binding of full length p53 to four representative sequences exactly paralleled the affinities to p53CT. The binding of p53 to different recognition elements was co-operative and the affinities varied by up to 50-fold. p53 bound with high affinity to the recognition elements of all the genes involved in cell cycle arrest and some of the genes in apoptosis. All of the lower affinity-binding sites were in genes involved in apoptosis. Our quantitative-binding data were in agreement with published cell-based assays. The regulation of p53 activity is in part determined through the specificity of its DNA-binding interactions.
Collapse
Affiliation(s)
- Richard L Weinberg
- Cambridge University Chemical Laboratory and MRC Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
77
|
Le Calvez F, Mukeria A, Hunt JD, Kelm O, Hung RJ, Tanière P, Brennan P, Boffetta P, Zaridze DG, Hainaut P. TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res 2005; 65:5076-83. [PMID: 15958551 DOI: 10.1158/0008-5472.can-05-0551] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TP53 mutations are common in lung cancers of smokers, with high prevalence of G:C-to-T:A transversions generally interpreted as mutagen fingerprints of tobacco smoke. In this study, TP53 (exons 5-9) and KRAS (codon 12) were analyzed in primary lung tumors of never (n = 40), former (n = 27), and current smokers (n = 64; mainly heavy smokers). Expression of p53, cyclooxygenase-2 (Cox-2), and nitrotyrosine (N-Tyr), a marker of protein damage by nitric oxide, were analyzed by immunohistochemistry. TP53 mutations were detected in 47.5% never, 55.6% former, and 77.4% current smokers. The relative risk for mutation increased with tobacco consumption (P(linear trend) < 0.0001). G:C-to-T:A transversions (P = 0.06, current versus never smokers) and A:T-to-G:C transitions (P = 0.03, former versus never smokers) were consistently associated with smoking. In contrast, G:C-to-A:T transitions were associated with never smoking (P = 0.02). About half of mutations in current smokers fell within a particular domain of p53 protein, suggesting a common structural effect. KRAS mutations, detected in 20 of 131 (15.3%) cases, were rare in squamous cell carcinoma compared with adenocarcinoma [relative risk (RR), 0.2; 95% confidence interval (95% CI), 0.07-1] and were more frequent in former smokers than in other categories. No significant differences in Cox-2 expression were found between ever and never smokers. However, high levels of N-Tyr were more common in never than ever smokers (RR, 10; 95% CI, 1.6-50). These results support the notion that lung tumorigenesis proceeds through different molecular mechanisms according to smoking status. In never smokers, accumulation of N-Tyr suggests an etiology involving severe inflammation.
Collapse
|
78
|
O'Farrell TJ, Ghosh P, Dobashi N, Sasaki CY, Longo DL. Comparison of the effect of mutant and wild-type p53 on global gene expression. Cancer Res 2005; 64:8199-207. [PMID: 15548685 DOI: 10.1158/0008-5472.can-03-3639] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms for "gain-of-function" phenotypes produced by mutant p53s such as enhanced proliferation, resistance to transforming growth factor-beta-mediated growth suppression, and increased tumorigenesis are not known. One theory is that these phenotypes are caused by novel transcriptional regulatory events acquired by mutant p53s. Another explanation is that these effects are a result of an imbalance of functions caused by the retention of some of the wild-type transcriptional regulatory events in the context of a loss of other counterbalancing activities. An analysis of the ability of DNA-binding domain mutants A138P and R175H, and wild-type p53 to regulate the expression levels of 6.9 x 10(3) genes revealed that the mutants retained only <5% of the regulatory activities of the wild-type protein. A138P p53 exhibited mostly retained wild-type regulatory activities and few acquired novel events. However, R175H p53 possessed an approximately equal number of wild-type regulatory events and novel activities. This is the first report that, after examination of the regulation of a large unfocused set of genes, provides data indicating that remaining wild-type transcriptional regulatory functions existing in the absence of counterbalancing activities as well as acquired novel events both contribute to the gain-of-function phenotypes produced by mutant p53s. However, mutant p53s are likely to be distinct in terms of the extent to which each mechanism contributes to their gain-of-function phenotypes.
Collapse
Affiliation(s)
- Thomas J O'Farrell
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
79
|
Falke D, Fisher MH, Juliano RL. Selective transcription of p53 target genes by zinc finger-p53 DNA binding domain chimeras. ACTA ACUST UNITED AC 2005; 1681:15-27. [PMID: 15566940 DOI: 10.1016/j.bbaexp.2004.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 09/21/2004] [Accepted: 09/22/2004] [Indexed: 11/26/2022]
Abstract
Active p53 stimulates the transcription of a number of key genes, including the pro-apoptotic gene bax, as well as p21, a cell cycle regulator. In this study we constructed novel chimeric zinc finger-p53 DNA binding domain (DBD) transcription factors designed to bind to the promoters of specific p53 regulated genes. In order to selectively increase the expression of Bax, we coupled a pre-selected three-zinc finger (Zif) peptide targeted to a sequence in the bax promoter to a minimal p53 DBD. This chimeric protein could increase reporter gene transcription from a minimal bax promoter (up to 10-fold) but not from a minimal p21 promoter in p53-deficient Saos-2 cells. However, fusion proteins carrying longer p53 DBDs displayed entirely different selectivity and potency. Thus, Zif-p53 DBD chimeras containing N- and C-terminal extensions of the minimal DBD could increase transcription driven by a minimal p21 promoter up to 800-fold. These chimeras preferred the minimal p21 promoter up to 500-fold over the minimal bax promoter. Additionally, endogenous p21 message and protein levels were increased in cells expressing the p21 selective Zif-p53 DBD chimera and expression of the chimeric proteins resulted in partial cell cycle arrest. Cell fractionation experiments indicated that the Zifs enhanced nuclear localization of the Zif-p53 DBD chimera. These studies suggest that it is possible to create chimeric transcription factors able to strongly and selectively activate genes downstream of p53.
Collapse
Affiliation(s)
- D Falke
- Department of Pharmacology, CB# 7365, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, 27599-7365, USA
| | | | | |
Collapse
|
80
|
Gomez-Lazaro M, Fernandez-Gomez FJ, Jordán J. p53: Twenty five years understanding the mechanism of genome protection. J Physiol Biochem 2004; 60:287-307. [PMID: 15957248 DOI: 10.1007/bf03167075] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This year the p53 protein, also known as "guardian of the genome", turns twenty five years old. During this period the p53 knowledge have changed from an initial pro-oncogene activity to the tumorsupressor p53 function. p53 is activated upon stress signals, such as gamma irradiation, UV, hypoxia, virus infection, and DNA damage, leading to protection of cells by inducing target genes. The molecules activated by p53 induce cell cycle arrest, DNA repair to conserve the genome and apoptosis. The regulation of p53 functions is tightly controlled through several mechanisms including p53 transcription and translation, protein stability, post-translational modifications, and subcellular localization. In fact, mutations in p53 are the most frequent molecular alterations detected in human tumours. Furthermore, in some degenerative processes, fragmentation and oxidative damage in DNA take place, and in these situations p53 is involved. So, p53 is considered a pharmacological target, p53 overexpression induces apoptosis in cancer and its expression blockage protects cells against lethal insults.
Collapse
Affiliation(s)
- M Gomez-Lazaro
- Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Avda. Almansa, 02006 Albacete, Spain
| | | | | |
Collapse
|
81
|
Toyama T, Sasaki Y, Horimoto M, Iyoda K, Yakushijin T, Ohkawa K, Takehara T, Kasahara A, Araki T, Hori M, Hayashi N. Ninjurin1 increases p21 expression and induces cellular senescence in human hepatoma cells. J Hepatol 2004; 41:637-43. [PMID: 15464245 DOI: 10.1016/j.jhep.2004.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 06/09/2004] [Accepted: 06/25/2004] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Ninjurin1 is a novel adhesion molecule that has a role in promoting nerve regeneration. Although ninjurin1 is ubiquitously expressed in various human tissues, including the liver, the biologic functions of ninjurin1 in tissues other than the nervous system remain unknown. The aim of this study was to investigate the function of ninjurin1 in hepatocytes. METHODS The effect of ninjurin1 overexpression was examined in Huh-7 hepatoma cells. Ninjurin1 expression was examined by Western blot in human hepatocellular carcinoma tissues as well as their adjacent liver tissues. RESULTS Ninjurin1-overexpressing clones exhibited strong growth inhibition due to G1 cell cycle arrest, which is associated with a posttranscriptional increase in p21WAF1/Cip1, a decrease of cyclin-dependent kinase 2 activity and the hypophosphorylation of Rb. The ninjurin1-overexpressing clones had increased senescence-associated beta-galactosidase activity and autofluorescent pigment, characteristic features of cellular senescence. The levels of ninjurin1 expression were higher in hepatocellular carcinoma tissues than those in adjacent liver tissues. CONCLUSIONS The present study provides the first evidence that ninjurin1 is able to induce the senescence program. Ninjurin1 may be involved in the regulation of cellular senescence in the liver during carcinogenesis.
Collapse
Affiliation(s)
- Takashi Toyama
- Department of Internal Medicine and Therapeutics, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Cachot J, Couteau J, Frébourg T, Leboulenger F, Flaman JM. Functional analysis of chemically-induced mutations at the flounder TP53 locus, the FACIM assay. Mutat Res 2004; 552:51-60. [PMID: 15288541 DOI: 10.1016/j.mrfmmm.2004.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Revised: 04/27/2004] [Accepted: 04/29/2004] [Indexed: 11/23/2022]
Abstract
A functional assay was developed in yeast to identify mutations induced by DNA-damaging agents at the flounder TP53 locus. This assay named FACIM for functional analysis of chemically-induced p53 mutations, is based on the assumption that most genotoxin-induced mutations inactivate transcriptional activity of the TP53 protein. The functional status of the protein expressed in yeast was measured using a p53-responsive reporter gene. The FACIM assay was used to evaluate the mutagenesis of the flounder TP53 exposed in vitro to benzo[a]pyrene diol epoxide (BPDE). A dose-dependent increase of p53 mutation rate was observed with increasing concentrations of BPDE and extension of exposure time. Flounder TP53 gene appeared highly sensitive to point mutations since most of those identified targeted different nucleotides. Mutated base-pairs corresponded predominantly to guanines located on the non-transcribed strand of the DNA. The general distribution of mutations along the flounder TP53 protein was different from that identified in the human homologue suggesting species-differences in mutagenesis of the TP53 gene. Most of flounder TP53 mutants were defective for transactivation and cell growth regulation but some maintained a partial wild-type phenotype. This functional assay in yeast could be used for both evaluation of the genotoxic potency of chemicals or environmental samples and screening of p53 mutations in fish tumours.
Collapse
Affiliation(s)
- J Cachot
- Laboratory of Ecotoxicology, UPRES-EA 3222, IFRMP 23, University of Le Havre, 25 rue P. Lebon, BP 540, 76058 Le Havre Cedex, France.
| | | | | | | | | |
Collapse
|
83
|
Giampieri S, García-Escudero R, Green J, Storey A. Human papillomavirus type 77 E6 protein selectively inhibits p53-dependent transcription of proapoptotic genes following UV-B irradiation. Oncogene 2004; 23:5864-70. [PMID: 15077176 DOI: 10.1038/sj.onc.1207711] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA damage, such as that elicited by UV-B, can induce either a cell cycle arrest or apoptosis that can be signalled by the p53 protein through the activation of a number of downstream cellular target genes. In contrast to oncogenic anogenital human papillomaviruses (HPVs), which mediate proteolytic degradation of p53, the E6 protein of cutaneous HPVs, such as HPV 77, do not promote p53 degradation. We have previously shown, however, that expression of HPV 77 E6 can effectively block UV-induced apoptosis in cells that have UV-activated p53. Here, we report that expression of the E6 protein from the cutaneous HPV 77 attenuates the UV-induced transactivation of p53-regulated proapoptotic genes Fas, PUMAbeta, Apaf-1, PIG3. This inhibition of p53-activation of proapoptotic genes by HPV77 E6 is exerted selectively, as the increased expression of p53 target genes involved in cell cycle arrest or regulatory functions regulation, such as p21 and Hdm2, is unaffected. Our data suggest that HPV 77 E6 may play an important role in specifically deregulating p53-dependent transactivation of proapoptotic genes upon UV-B irradiation.
Collapse
Affiliation(s)
- Silvia Giampieri
- Cancer Research UK, Skin Tumour Laboratory, 2 Newark Street, London E1 2AT, UK
| | | | | | | |
Collapse
|
84
|
Caldeira S, Filotico R, Accardi R, Zehbe I, Franceschi S, Tommasino M. p53 mutations are common in human papillomavirus type 38-positive non-melanoma skin cancers. Cancer Lett 2004; 209:119-24. [PMID: 15145527 DOI: 10.1016/j.canlet.2003.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 12/04/2003] [Accepted: 12/05/2003] [Indexed: 01/27/2023]
Abstract
In cervical cells, the E6 protein of the oncogenic human papillomavirus (HPV) types inactivates p53, promoting its degradation. Consequently, mutations of the p53 gene are rarely seen in these cancers. Our recent data indicate that the cutaneous HPV38 is involved in skin carcinogenesis. In this study, we have determined the presence of HPV38 and the status of p53 gene in 32 non-melanoma skin cancers. We found that p53 gene is frequently mutated in HPV38-positive skin cancers and that HPV38 E6 does not promote p53 degradation. Thus, different mechanisms appear to be involved in the development of HPV-positive cervical and skin cancers.
Collapse
Affiliation(s)
- Sandra Caldeira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
85
|
Sugiyama H, Arita M, Min Z, Zhong X, Iwasaki I, Hirano K, Shimatake H, Hemmi H. A novel dysfunctional p53 mutation in the human neuroblastoma cell line TGW. TOHOKU J EXP MED 2004; 201:229-37. [PMID: 14690015 DOI: 10.1620/tjem.201.229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mutations of p53 are rare in primary and advanced neuroblastomas. The p53 gene was studied in a TGW cell line established from a TNB1 xenograft, derived from metastasized neuroblastoma. The p53 protein level in TGW was elevated at baseline. Treatment with doxorubicin to induce genotoxic stress neither altered the p53 protein level nor induced p21 protein within 24 hours. DNA sequencing analysis revealed a novel triplet deletion mutation at codon 282 (R282del) of the p53 gene, a mutation also found in TNB1, indicating that the mutation occurred in the relapsed tumor. The mutant was incapable of transactivation and had no effect on the transactivational activity of the wild-type p53 gene product in reporter assays using a plasmid possessing a p53 responsive element of p21, bax or mdm2. These results suggest that the mutant p53R282del found in TGW is a non-functional mutant and has no dominant negative nature.
Collapse
Affiliation(s)
- Hisahiko Sugiyama
- Department of Molecular Biology, Toho University Faculty of Medicine, Tokyo 143-8540, Japan
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Nicholls CD, Shields MA, Lee PWK, Robbins SM, Beattie TL. UV-dependent Alternative Splicing Uncouples p53 Activity and PIG3 Gene Function through Rapid Proteolytic Degradation. J Biol Chem 2004; 279:24171-8. [PMID: 15067011 DOI: 10.1074/jbc.m401049200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53-inducible gene 3 (PIG3) is a transcriptional target of the tumor suppressor protein p53 and is thought to play a role in apoptosis. In this report, we identify a novel alternatively spliced product from the PIG3 gene that we call PIG3AS (PIG3 alternative splice). PIG3AS results from alternative pre-mRNA splicing that skips exon 4 of the five exons included in the PIG3 transcript. The resulting protein product shares its first 206 amino acids with PIG3 but has a unique 42-amino acid C terminus. In unstressed cells and after most DNA damage conditions that induce transcription from the PIG3 gene, production of the PIG3 transcript dominates. However, in response to UV light, pre-mRNA splicing shifts dramatically in favor of PIG3AS. Unlike the PIG3 protein, the PIG3AS protein is rapidly degraded with a short half-life and is stabilized by proteasome inhibition. Our results illustrate the first example of an endogenous, UV-inducible, alternative splicing event and that control of the splicing machinery is involved in the cellular DNA damage response. They also suggest that rapid proteolytic degradation represents a cellular mechanism for uncoupling p53 activity from PIG3 gene activation that is independent of promoter selectivity.
Collapse
Affiliation(s)
- Chris D Nicholls
- Cancer Biology Research Group, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
87
|
Pospı́šilová S, Siligan C, Ban J, Jug G, Kovar H. Constitutive and DNA Damage Inducible Activation of pig3 and MDM2 Genes by Tumor-Derived p53 Mutant C277Y. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.296.2.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The p53 gene is compromised in most human cancers by point mutation. Evidence is accumulating that these alterations frequently do not result in a complete loss of the sequence-specific transcriptional regulatory function of p53. Here, we describe the transcriptional activity of the p53 mutant C277Y isolated from a Ewing's sarcoma with high constitutive pig3 expression. Transient transfection of this mutant into a p53 null cell line resulted in activation not only of the pig3 but also of the MDM2 gene compatible with the presence of constitutively expressed MDM2 transcripts initiated from the P2 promoter in the p53-C277Y hemizygous Ewing's sarcoma cell line. Expression of endogenous pig3 and MDM2 genes was further enhanced on irradiation of this cell line. Here, suppression of p53-C277Y by RNAi reduced pig3 promoter activity, RNA, and protein expression. Reporter gene assays revealed that the potential of p53-C277Y to up-regulate MDM2 expression was similar to wild-type p53, whereas activation of the pig3 promoter was at least 5-fold increased over wild-type p53. The pentanucleotide microsatellite sequence present in exon 1 of the pig3 gene was found to be responsible for p53-C277Y-mediated activation. In concordance with a role of PIG3 protein for cell death, we showed residual apoptotic activity of p53-C277Y to which the described Ewing's sarcoma cell line was found to be resistant. p53-C277Y has previously been reported to bind to DNA with altered sequence specificity and to be unable to activate generic p53 target genes in yeast-based functional assays. Our results, therefore, show that a p53 mutant may behave differently when tested in its authentic cellular context.
Collapse
Affiliation(s)
| | - Christine Siligan
- Children's Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | - Jozet Ban
- Children's Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | - Gunhild Jug
- Children's Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | - Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| |
Collapse
|
88
|
Soussi T, Kato S, Levy PP, Ishioka C. Reassessment of theTP53 mutation database in human disease by data mining with a library ofTP53 missense mutations. Hum Mutat 2004; 25:6-17. [PMID: 15580553 DOI: 10.1002/humu.20114] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TP53 alteration is the most frequent genetic alteration found in human cancers. To date, more than 15,000 tumors with TP53 mutations have been published, leading to the description of more than 1,500 different TP53 mutants (http://p53.curie.fr). The frequency of these mutants is highly heterogeneous, with 11 hotspot mutants found more than 100 times, whereas 306 mutants have been reported only once. So far, little is known concerning the biological significance of these rare mutants, as the majority of biological studies have focused on classic hotspot mutants. In order to gain a deeper knowledge about the significance of all of these mutants, we have cross-checked each mutant of the TP53 mutation database for its activity, derived from a library of 2,314 TP53 mutants representing all possible amino acid substitutions caused by a point mutation. The transactivation activity of all of these mutant was analyzed with respect to eight transcription promoters [Kato S, et al., Proc Natl Acad Sci USA (2003)100:8424-8429]. Although the most frequent TP53 mutants sustain a clear loss of transactivation activity, more than 50% of the rare TP53 mutants display significant activity. Analysis in specific types of cancer or in normal skin patches demonstrates a similar distribution of TP53 loss of activity, with the exception of melanoma, in which the majority of TP53 mutants display significant activity. Our data indicate that TP53 mutants represent a highly heterogeneous population with a large diversity in terms of loss of transactivation activity that could account for the heterogeneous tumor phenotypes and the difficulty of clinical studies.
Collapse
Affiliation(s)
- Thierry Soussi
- Laboratoire de génotoxicologie des tumeurs, Département de Pneumologie, Hôpital Tenon, Paris, France.
| | | | | | | |
Collapse
|
89
|
Shiraishi K, Kato S, Han SY, Liu W, Otsuka K, Sakayori M, Ishida T, Takeda M, Kanamaru R, Ohuchi N, Ishioka C. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J Biol Chem 2003; 279:348-55. [PMID: 14559903 DOI: 10.1074/jbc.m310815200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Temperature-sensitive (ts) mutations have been used as a genetic and molecular tool to study the functions of many gene products. Each ts mutant protein may contain a temperature-dependent intramolecular mechanism such as ts conformational change. To identify key ts structural elements controlling the protein function, we screened ts p53 mutants from a comprehensive mutation library consisting of 2,314 p53 missense mutations for their sequence-specific transactivity through p53-binding sequences in Saccharomyces cerevisiae. We isolated 142 ts p53 mutants, including 131 unreported ts mutants. These mutants clustered in beta-strands in the DNA-binding domain, particularly in one of the two beta-sheets of the protein, and 15 residues (Thr155, Arg158, Met160, Ala161, Val172, His214, Ser215, Pro223, Thr231, Thr253, Ile254, Thr256, Ser269, Glu271, and Glu285) were ts hot spots. Among the 142 mutants, 54 were examined further in human osteosarcoma Saos-2 cells, and it was confirmed that 89% of the mutants were also ts in mammalian cells. The ts mutants represented distinct ts transactivities for the p53 binding sequences and a distinct epitope expression pattern for conformation-specific anti-p53 antibodies. These results indicated that the intramolecular beta-sheet in the core DNA-binding domain of p53 was a key structural element controlling the protein function and provided a clue for finding a molecular mechanism that enables the rescue of the mutant p53 function.
Collapse
Affiliation(s)
- Kazuko Shiraishi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ruiz-Ruiz C, Robledo G, Cano E, Redondo JM, Lopez-Rivas A. Characterization of p53-mediated up-regulation of CD95 gene expression upon genotoxic treatment in human breast tumor cells. J Biol Chem 2003; 278:31667-75. [PMID: 12788915 DOI: 10.1074/jbc.m304397200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Death receptor CD95 gene expression is frequently low in human breast tumors and is up-regulated by genotoxic treatments in a p53-dependent manner. We have evaluated the relative contribution of promoter and intronic p53 consensus sites to the regulation of the human CD95 gene in breast tumor cells following doxorubicin treatment. Deletion constructs of the promoter region and site-directed mutagenesis of p53 consensus sites in a fragment spanning 1448 bp of the 5'-promoter demonstrate that these sites are not involved in the observed up-regulation of the CD95 gene upon doxorubicin treatment. In contrast, a p53 consensus site located within the first intron of CD95 gene is absolutely required for the inducible expression of CD95 upon genotoxic treatment in breast tumor cells. Analysis of the transcriptional activity of the two most common p53 mutants found in human breast tumors that are associated with resistance to doxorubicin reveals that these mutations completely eliminate the ability of p53 protein to transactivate CD95 gene expression. On the other hand, Bcl-2 overexpression albeit preventing doxorubicin-induced apoptosis, has no effect on p53-mediated CD95 up-regulation in breast tumor cells. Altogether, these results indicate the lack of involvement of p53 consensus sites of the CD95 promoter region and the pivotal role of intronic p53-responsive element in the regulation of human CD95 gene expression in breast tumor cells. Our results also suggest that in breast cancer patients with certain mutations in the p53 gene, expression of death receptor CD95 in response to genotoxic treatments could be severely compromised.
Collapse
Affiliation(s)
- Carmen Ruiz-Ruiz
- Instituto de Parasitología y Biomedicina, CSIC, and the Universidad de Granada, Spain
| | | | | | | | | |
Collapse
|
91
|
Resnick MA, Inga A. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci U S A 2003; 100:9934-9. [PMID: 12909720 PMCID: PMC187891 DOI: 10.1073/pnas.1633803100] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Indexed: 12/17/2022] Open
Abstract
There are many sources of genetic diversity, ranging from programmed mutagenesis in antibody genes to random mutagenesis during species evolution or development of cancer. We propose that mutations in DNA sequence-specific transcription factors that target response elements (REs) in many genes can also provide for rapid and broad phenotypic diversity, if the mutations lead to altered binding affinities at individual REs. To test this concept, we examined the in vivo transactivation capacity of wild-type human and murine p53 and 25 partial function mutants. The p53s were expressed in yeast from a rheostatable promoter, and the transactivation capacities toward >15 promoter REs upstream of a reporter gene were measured. Surprisingly, there was wide variation in transactivation by the mutant p53s toward the various REs. This is the first study to address directly the impact of mutations in a sequence-specific transcription factor on transactivation from a wide array of REs. We propose a master gene hypothesis for phenotypic diversity where the master gene is a single transcriptional activator (or repressor) that regulates many genes through different REs. Mutations of the master gene can lead to a variety of simultaneous changes in both the selection of targets and the extent of transcriptional modulation at the individual targets, resulting in a vast number of potential phenotypes that can be created with minimal mutational changes without altering existing protein-protein interactions.
Collapse
Affiliation(s)
- Michael A Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
92
|
Monti P, Campomenosi P, Ciribilli Y, Iannone R, Aprile A, Inga A, Tada M, Menichini P, Abbondandolo A, Fronza G. Characterization of the p53 mutants ability to inhibit p73 beta transactivation using a yeast-based functional assay. Oncogene 2003; 22:5252-60. [PMID: 12917626 DOI: 10.1038/sj.onc.1206511] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
p53 is the most frequently altered tumor suppressor gene in a wide spectrum of human tumors. The large majority of p53 mutations observed in tumors are missense mutations. The p73 gene, encoding a protein with significant sequence similarity to p53, expresses multiple transcription-competent spliced variants, or transcription-incompetent forms (i.e. DeltaNp73). It was clearly shown that p73 transactivation from a p53-responsive promoter is inhibited by some tumor-derived p53 mutants in eucaryotic cells. In this study, we adapted a yeast-based p53 functional assay for the analysis of the influences of different p53 mutants on the activity of one of the p73 isoforms, namely p73beta. We determined the ability of a panel of 61 p53 mutants to inhibit p73beta activity following the net transcription of the ADE2 color (red/white) reporter gene driven by a p53-responsive promoter. By analysing a large number of mutants, we could conclude that interference: (a) is a quite frequent phenomenon (more than 70% of p53 mutants analysed are interfering); (b) is not confined to p53 mutations located in particular topological regions of the DNA binding domain; (c) does not appear to be dependent on the kind of side chains introduced at a specific position; (d) appears to significantly correlate with evolutionary conservation of the mutated p53 codon, frequency of occurrence of the mutation in tumors. The influence of a common R/P polymorphism at codon 72 on the ability of p53 mutants to interfere with p73beta was also studied. Two sets of polymorphic variants (R and P) for 14 mutants were constructed and analysed. In all cases, the R/P 72 polymorphism was phenotypically irrelevant. In conclusion, our results suggest that the interpretation of the biological effects of p53 mutants should take into consideration the possibility that p53 mutants show loss or gain of function also through the interference with p53 family members.
Collapse
Affiliation(s)
- Paola Monti
- Mutagenesis Laboratory, National Cancer Research Institute (IST), Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Boehden GS, Akyüz N, Roemer K, Wiesmüller L. p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 2003; 22:4111-7. [PMID: 12821945 DOI: 10.1038/sj.onc.1206632] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor p53 transcriptionally transactivates cellular target genes that are implicated in growth control, apoptosis, and DNA repair. However, several studies involving p53 core domain mutants suggested that regulatory functions in recombinative repair do not require transcriptional transactivation and are separable from growth-regulation and apoptosis. Leu22 and Trp23 within the transactivation domain of human p53 play a critical role in binding basal components of the transcription machinery and, therefore, in the transactivation activity of p53. To further delineate whether p53 target genes are involved in recombination regulation, we ectopically expressed p53(22Q,23S) in p53-negative cell lines, which carry reporter systems for different homology-directed double-strand break (DSB) repair events. Like wild-type p53, p53(22Q,23S) efficiently downregulated homologous recombination on two chromosomally integrated substrates without affecting exchange on a substrate for the compound pathway of gene conversion and nonhomologous end joining. Only upon lowering the p53 protein to DNA substrate ratio by several orders of magnitude, we noticed a weak defect of a p53 transactivation domain mutant in DSB repair assays. In conclusion, molecular interactions of p53 within the N-terminal domain are not required to restrain DNA recombination, but might contribute to this genome stabilizing function.
Collapse
Affiliation(s)
- Gisa S Boehden
- Gynaecological Oncology, Universitätsfrauenklinik, D-89075 Ulm, Germany
| | | | | | | |
Collapse
|
94
|
Abstract
Mutation in p53 (TP53) remains one of the most commonly described genetic events in human neoplasia. The occurrence of mutations is somewhat less common in sporadic breast carcinomas than in other cancers, with an overall frequency of about 20%. There is, however, evidence that p53 is mutated at a significantly higher frequency in breast carcinomas arising in carriers of germ-line BRCA1 and BRCA2 mutations. Some of the p53 mutants identified in BRCA1 and BRCA2 mutation carriers are either previously undescribed or infrequently reported in sporadic human cancers. Functional characterization of such mutants in various systems has revealed that they frequently possess properties not commonly associated with those occurring in sporadic cases: they retain apoptosis-inducing, transactivating, and growth-inhibitory activities similar to the wild-type protein, yet are compromised for transformation suppression and also possess an independent transforming phenotype. The occurrence of such mutants in familial breast cancer implies the operation of distinct selective pressures during tumorigenesis in BRCA-associated breast cancers.
Collapse
Affiliation(s)
- Milena Gasco
- Department of Medical Oncology, Azienda Ospedaliera San Croce e Carle, Cuneo, Italy
| | | | | |
Collapse
|
95
|
Inga A, Storici F, Darden TA, Resnick MA. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol Cell Biol 2002; 22:8612-25. [PMID: 12446780 PMCID: PMC139870 DOI: 10.1128/mcb.22.24.8612-8625.2002] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the mechanisms that regulate differential transactivation by p53. We developed a system in the yeast Saccharomyces cerevisiae that addresses p53 transactivation capacity from 26 different p53 response elements (REs) under conditions where all other factors, such as chromatin, are kept constant. The system relies on a tightly regulated promoter (rheostatable) that can provide for a broad range of p53 expression. The p53 transactivation capacity toward each 20- to 22-bp-long RE could be ranked by using a simple phenotypic assay. Surprisingly, there was as much as a 1,000-fold difference in transactivation. There was no correlation between the functional rank and statistical predictions of binding energy of the REs. Instead we found that the central sequence element in an RE greatly affects p53 transactivation capacity, possibly because of DNA structural properties. Our results suggest that intrinsic DNA binding affinity and p53 protein levels are important contributors to p53-induced differential transactivation. These results are also relevant to understanding the regulation by other families of transcription factors that recognize several sequence-related response elements and/or have tightly regulated expression. We found that p53 had weak activity towards half the apoptotic REs. In addition, p53 alleles associated with familial breast cancer, previously classified as wild type, showed subtle differences in transactivation capacity towards several REs.
Collapse
Affiliation(s)
- Alberto Inga
- Laboratory of Molecular Genetics, Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Francesca Storici
- Laboratory of Molecular Genetics, Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Thomas A. Darden
- Laboratory of Molecular Genetics, Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
- Corresponding author. Mailing address: National Institute of Environmental Health Sciences (NIEHS), Mail drop D3-01, TW Alexander Dr., P.O. Box 12233, Research Triangle Park, NC 27709. Phone: (919) 541-4480. Fax: (919) 541-7593. E-mail:
| |
Collapse
|
96
|
Qian H, Wang T, Naumovski L, Lopez CD, Brachmann RK. Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene 2002; 21:7901-11. [PMID: 12420228 DOI: 10.1038/sj.onc.1205974] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Revised: 08/12/2002] [Accepted: 08/13/2002] [Indexed: 11/09/2022]
Abstract
The tumor suppressor protein p53, once activated, can cause either cell cycle arrest or apoptosis through transactivation of target genes with p53 DNA binding sites (DBS). To investigate the role of p53 DBS in the regulation of this profound, yet poorly understood decision of life versus death, we systematically studied all known and potential p53 DBS. We analysed the DBS separated from surrounding promoter regions in yeast and mammalian assays with and without DNA damage. p53 efficiently utilized the DBS of MDM2 and of genes connected to cell cycle arrest, DNA repair and the death receptor pathway of apoptosis. However, p53 was unable to utilize two-thirds of the isolated DBS, a subset that included almost all DBS of apoptosis-related genes. Neither ASPP2, a p53-interacting protein reported to specifically stimulate p53 transcriptional activity on apoptosis-related promoters, nor DNA damage resulted in p53 utilization of isolated DBS of apoptosis-related genes. Thus, a major regulation of p53 activity occurs at the level of p53 DBS themselves by posing additional requirements for the successful utilization of apoptosis-related DBS.
Collapse
Affiliation(s)
- Hua Qian
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Box 8069, St Louis, Missouri, MO 63110, USA
| | | | | | | | | |
Collapse
|
97
|
Mulhall JP, Anderson MS, Lubrano T, Shankey TV. Peyronie's disease cell culture models: phenotypic, genotypic and functional analyses. Int J Impot Res 2002; 14:397-405. [PMID: 12454692 DOI: 10.1038/sj.ijir.3900874] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peyronie's disease is a fibromatosis of the tunica albuginea. While trauma is believed to be the inciting event, the exact pathophysiology of this condition is unknown. In vitro analysis of cell biology can shed light on the pathogenesis of medical conditions and has been used for many decades as a research tool. We have established a cell culture model, which we have used to study the pathobiology of cells derived from Peyronie's disease plaque tissue. In 10 separate cell cultures derived from different individuals, these cells have demonstrated consistent phenotypic, genotypic and functional alterations. In neither of the control cell cultures, neonatal foreskin fibroblasts and normal tunica-derived fibroblasts have any of the above aberrations been demonstrated. The cells studied have been shown to be fibroblasts in nature with a sub-population of myofibroblasts present in culture. The Peyronie's disease plaque tissue-derived fibroblasts have demonstrated (i) consistent morphologic transformation (ii) increased S-phase on flow cytometry (iii) decreased dependence on culture medium (iv) cytogenic instability (v) excess production of fibrogenic cytokines and (vi) stabilization and dysfunctionalization of p53. Further refinement of this model and future analyses may permit an increased understanding of the pathogenesis of this condition and allow the development of therapeutic strategies.
Collapse
Affiliation(s)
- J P Mulhall
- Andrology Research Laboratory, Hines VA, Hines, Illinois, USA
| | | | | | | |
Collapse
|
98
|
Sakuragi N, Salah-eldin AE, Watari H, Itoh T, Inoue S, Moriuchi T, Fujimoto S. Bax, Bcl-2, and p53 expression in endometrial cancer. Gynecol Oncol 2002; 86:288-96. [PMID: 12217750 DOI: 10.1006/gyno.2002.6742] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND It has not been fully clarified whether alteration of Bax and other apoptosis-relating proteins of Bcl-2 and p53 is involved in endometrial carcinogenesis. METHODS A total of 56 frozen tissues, which included 14 normal endometria, 13 endometrial hyperplasias (10 without atypia and 3 with atypia), and 29 endometrial carcinomas, were examined for the expression of Bax, Bcl-2, and p53 using immunohistochemistry. For Bax-negative cases, PCR-direct sequencing was performed for the bax gene. For cases with p53 overexpression, mutational analysis was performed for the p53 gene using a yeast functional assay and sequencing. RESULTS Both Bax and Bcl-2 were distinctly expressed in the normal proliferative phase endometrium. A decreased Bcl-2/Bax ratio in the secretory phase endometrial gland cells due to suppressed Bcl-2 expression was observed. Bax expression was positive in all 13 endometrial hyperplasias, while it was absent in 6 of 29 endometrial carcinomas (20.7%). Negative Bax expression in endometrial carcinoma was not related to tumor stage, histologic subtype, or other histopathologic prognostic factors. Bax expression showed no relationship to either p53 overexpression or Bcl-2 expression. In the DNA of 6 Bax-negative cases, we found a frameshift insertion mutation at codon 58 (AAG to CAAG) in the BH3 domain despite the absence of mutation in the (G)8 tract, suggesting that this codon may be another preferred target for bax mutation other than the (G)8 tract. Mutational analysis was available for 7 of 10 cases with p53 overexpression, in which 5 cases were found to have a missense mutation and 2 cases had no mutation of the p53 gene. At least 10 of 29 (34.5%) cases of endometrial carcinoma were associated with sequence-verified mutation in the bax gene and/or p53 gene. CONCLUSIONS The bax gene frameshift mutation appears to cause a loss of Bax expression in endometrial carcinoma. Codon 58 may be a preferred target of bax gene mutation in endometrial carcinomas. The bax gene mutation seems to occur in the early stage of the genesis of a subset of endometrial carcinomas.
Collapse
Affiliation(s)
- Noriaki Sakuragi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
99
|
Inga A, Nahari D, Velasco-Miguel S, Friedberg EC, Resnick MA. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions. Oncogene 2002; 21:5704-15. [PMID: 12173040 DOI: 10.1038/sj.onc.1205779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2002] [Revised: 06/12/2002] [Accepted: 06/18/2002] [Indexed: 11/09/2022]
Abstract
A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.
Collapse
Affiliation(s)
- Alberto Inga
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, PO Box 12233, Research Triangle Park, North Carolina, NC 27709, USA
| | | | | | | | | |
Collapse
|
100
|
Chen B, Athanasiou M, Gu Q, Blair DG. Drm/Gremlin transcriptionally activates p21(Cip1) via a novel mechanism and inhibits neoplastic transformation. Biochem Biophys Res Commun 2002; 295:1135-41. [PMID: 12135612 DOI: 10.1016/s0006-291x(02)00828-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Drm/Gremlin, a member of the Dan family of BMP antagonists, is known to function in early embryonic development, but is also expressed in a tissue-specific fashion in adults and is significantly downregulated in transformed cells. In this report, we demonstrate that overexpression of Drm in the tumor-derived cell lines Daoy (primitive neuroectodermal) and Saos-2 (osteoblastic), either under ecdysone-inducible or constitutive promoters, significantly inhibits tumorigenesis. Furthermore, Drm overexpression in these cells increases the level of p21(Cip1) protein and reduces the level of phosphorylated p42/44 MAP kinase. Finally, our data indicate that Drm can induce p21(Cip1) transcriptionally via a novel pathway that is independent of p53 and the p38 and p42/44 MAP kinases. These results provide evidence that Drm can function as a novel transformation suppressor and suggest that this may occur through its affect on the levels of p21(Cip1) and phosphorylated p42/44 MAPK.
Collapse
Affiliation(s)
- Bo Chen
- Basic Research Laboratory, National Cancer Institute at Frederick, Bldg. 469, Rm. 102, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|