51
|
Kim SL, Trang KTT, Kim SH, Kim IH, Lee SO, Lee ST, Kim DG, Kim SW. Parthenolide suppresses tumor growth in a xenograft model of colorectal cancer cells by inducing mitochondrial dysfunction and apoptosis. Int J Oncol 2012; 41:1547-53. [PMID: 22895542 DOI: 10.3892/ijo.2012.1587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/09/2012] [Indexed: 11/05/2022] Open
Abstract
Parthenolide (PT), a principal active component in medicinal plants, has been used conventionally to treat migraine and inflammation. This component has recently been reported to induce apoptosis in cancer cells, through mitochondrial dysfunction. In the present study, we investigated PT-mediated cell death signaling pathway by focusing on the involvement of Bcl-2 family members in human colorectal cancer cells. We also investigated the inhibitory effect of PT on tumor growth in xenografts. Using the human colorectal cancer cell lines HT-29, SW620 and LS174T, we demonstrated that treatment of these cancer cells with PT induces apoptosis using MTT, Annexin V assay and Hoechst 33258 staining. Apoptosis through the mitochondrial pathway was confirmed by detecting regulation of Bcl-2 family members, cytochrome c release and caspase activation. Moreover, intraperitoneal injection of PT showed significant inhibition of tumor growth, angiogenesis in the xenograft model. These results demonstrate that PT exhibits anti-cancer activity in human colorectal cancer in vitro and in vivo. These findings may also provide a novel approach for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Se-Lim Kim
- Department of Internal Medicine and Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University, Jeonju 561-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Li Y, Zhang Y, Fu M, Yao Q, Zhuo H, Lu Q, Niu X, Zhang P, Pei Y, Zhang K. Parthenolide induces apoptosis and lytic cytotoxicity in Epstein-Barr virus-positive Burkitt lymphoma. Mol Med Rep 2012; 6:477-82. [PMID: 22735892 PMCID: PMC3493062 DOI: 10.3892/mmr.2012.959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/12/2012] [Indexed: 12/20/2022] Open
Abstract
Burkitt lymphoma (BL) has been reported to be strongly associated with Epstein-Barr virus (EBV) infection. The fact that EBV is generally present in cancer cells but rarely found in healthy cells represents an opportunity for targeted cancer therapy. One approach is to activate the lytic replication cycle of the latent EBV. Nuclear factor (NF)-κB is thought to play an essential role in EBV lytic infection. Elevated NF-κB levels inhibit EBV lytic replication. Parthenolide (PN) is a sesquiterpene lactone found in medicinal plants, particularly in feverfew (Tanacetum parthenium). The aim of the present study was to analyze the effect of PN on the survival of Raji EBV-positive lymphoma cells. Raji cells were treated with 0, 4 or 6 µmol/l PN for 48 h. MTT assay and western blot analysis were performed to evaluate the findings. Results showd that PN suppressed the growth of the EBV-positive BL cell line, Raji, and activated the transcription of BZLF1 and BRLF1 by inhibiting NF-κB activity. Most notably, when PN was used in combination with ganciclovir (GCV), the cytotoxic effect of PN was amplified. These data suggest that the induction of lytic EBV infection with PN in combination with GCV may be a viral‑targeted therapy for EBV-associated BL.
Collapse
Affiliation(s)
- Yuan Li
- Department of Hematology, Zhongshan Hospital, Xiamen University, Xiamen 361004, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Downregulation of Mcl-1 by daunorubicin pretreatment reverses resistance of breast cancer cells to TNF-related apoptosis-inducing ligand. Biochem Biophys Res Commun 2012; 422:42-7. [DOI: 10.1016/j.bbrc.2012.04.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/17/2012] [Indexed: 01/26/2023]
|
54
|
Hwang MK, Ryu BJ, Kim SH. AW00179 potentiates TRAIL-mediated death of human lung cancer H1299 cells through ROS-JNK-c-Jun-mediated up-regulation of DR5 and down-regulation of anti-apoptotic molecules. Amino Acids 2012; 43:1679-87. [PMID: 22354145 DOI: 10.1007/s00726-012-1249-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells, but when used alone, it is not effective at treating TRAIL-resistant tumors. This resistance is challenging for TRAIL-based anti-cancer therapies. In this study, we found that 1-(4-trifluoromethoxy-phenyl)-3-[4-(5-trifluoromethyl-2,5-dihydro-pyrazol-1-yl)-phenyl]-urea (AW00179) sensitized human lung cancer H1299 cells to TRAIL-mediated apoptosis. Even in the absence of TRAIL, AW00179 strongly induced DR5 expression and decreased the expression of anti-apoptotic proteins, suggesting that the sensitizing effect of AW00179 on TRAIL-mediated apoptosis is due to increased levels of DR5 protein and decreased anti-apoptotic molecules. AW00179 also induced the activation of c-Jun and ERK; however, a pharmacologic inhibition study revealed that JNK-c-Jun signaling is involved in the induction of DR5 expression. In addition, reactive oxygen species (ROS) appear to be involved in AW00179 activity. In conclusion, AW00179 has the potential to sensitize H1299 cells to TRAIL-mediated apoptosis through two distinct mechanisms: ROS-JNK-c-Jun-mediated up-regulation of DR5, and down-regulation of anti-apoptotic molecules.
Collapse
Affiliation(s)
- Mi-Kyung Hwang
- Laboratory of Chemical Genomics, Pharmacology Research Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon, 305-600, Korea
| | | | | |
Collapse
|
55
|
Janecka A, Wyrębska A, Gach K, Fichna J, Janecki T. Natural and synthetic α-methylenelactones and α-methylenelactams with anticancer potential. Drug Discov Today 2012; 17:561-72. [PMID: 22309965 DOI: 10.1016/j.drudis.2012.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/12/2011] [Accepted: 01/18/2012] [Indexed: 01/31/2023]
Abstract
α-Methylene-γ- and δ-lactones, as well as α-methylene-γ- and δ-lactams, are plant-derived compounds often used in traditional medicine for the treatment of inflammatory diseases. In recent years, the anticancer properties of these compounds and the molecular mechanisms of their action have been studied extensively. In the search for modern anticancer drugs, various synthetic analogs of α-methylene-γ- and δ-lactones and lactams have been synthesized and tested for their cytotoxic activity. In this review, we give a brief description of the occurrence and biological activity of such compounds isolated from plants and their diverse synthetic analogs.
Collapse
Affiliation(s)
- Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Poland.
| | | | | | | | | |
Collapse
|
56
|
Parthenolide, an inhibitor of the nuclear factor-κB pathway, ameliorates dextran sulfate sodium-induced colitis in mice. Int Immunopharmacol 2011; 12:169-74. [PMID: 22155740 DOI: 10.1016/j.intimp.2011.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/10/2011] [Accepted: 11/22/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND Activation of nuclear factor-kappa B (NF-κB), which controls transcription of various pro-inflammatory cytokine genes, has been shown to play a critical role in the pathogenesis of ulcerative colitis (UC). Parthenolide, a sesquiterpene lactone compound isolated from extracts of the herb Feverfew (Tanacetum parthenium), has been demonstrated to be a potent inhibitor of NF-κB activation. This study was designed to investigate the effects of parthenolide on an experimental murine colitis model. MATERIALS AND METHODS Experimental colitis was induced by dextran sulfate sodium (DSS), and mice were divided into 3 groups: normal control, DSS+saline, and DSS+parthenolide. The disease activity index (DAI) and histological score were observed. The tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels were measured by enzyme-linked immunosorbent assay. Phospho-IκBα, IκBα and phospho-NF-κB p65 expression were assessed by western blot analysis. Myeloperoxidase (MPO) activity was determined by using MPO assay kit. RESULTS Administration of parthenolide significantly reduced the severity of DSS-induced colitis as assessed by DAI and histological score, and resulted in downregulation of MPO activity and phospho-NF-κB p65 expression by the blockade of phosphorylation and subsequent degradation of IκB protein, strikingly reduced the production of TNF-α and IL-1β. CONCLUSION Parthenolide exerts beneficial effects in experimental colitis and may therefore provide a useful therapeutic approach for the treatment of UC.
Collapse
|
57
|
El Fajoui Z, Toscano F, Jacquemin G, Abello J, Scoazec JY, Micheau O, Saurin JC. Oxaliplatin sensitizes human colon cancer cells to TRAIL through JNK-dependent phosphorylation of Bcl-xL. Gastroenterology 2011; 141:663-73. [PMID: 21683075 DOI: 10.1053/j.gastro.2011.04.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 04/03/2011] [Accepted: 04/22/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Oxaliplatin sensitizes drug-resistant colon cancer cell lines to tumor necrosis factor-related apoptosis inducing ligand (TRAIL), a death receptor ligand that is selective for cancer cells. We investigated the molecular mechanisms by which oxaliplatin sensitizes cancer cells to TRAIL-induced apoptosis. METHODS We incubated the colon cancer cell lines HT29 and V9P, which are resistant to TRAIL, with TRAIL or with oxaliplatin for 2 hours, followed by TRAIL. Annexin V staining was used to measure apoptosis; RNA silencing and immunoblot experiments were used to study the roles of apoptosis-related proteins. Site-directed mutagenesis experiments were used to determine requirements for phosphorylation of Bcl-xL; co-immunoprecipitation experiments were used to analyze the interactions among Bcl-xL, Bax, and Bak, and activation of Bax. RESULTS Oxaliplatin-induced sensitivity to TRAIL required activation of the mitochondrial apoptotic pathway; reduced expression of Bax, Bak, and caspase-9, and stable overexpression of Bcl-xL, reduced TRAIL-induced death of cells incubated with oxaliplatin. Mitochondrial priming was induced in cells that were sensitized by oxaliplatin and required signaling via c-Jun N-terminal kinase and phosphorylation of Bcl-xL. Mimicking constitutive phosphorylation of Bcl-xL by site-directed mutagenesis at serine 62 restored sensitivity of cells to TRAIL. Co-immunoprecipitation experiments showed that oxaliplatin-induced phosphorylation of Bcl-xL disrupted its ability to sequestrate Bax, allowing Bax to interact with Bak to induce TRAIL-mediated apoptosis. CONCLUSIONS Oxaliplatin facilitates TRAIL-induced apoptosis in colon cancer cells by activating c-Jun N-terminal kinase signaling and phosphorylation of Bcl-xL. Oxaliplatin-induced sensitivity to TRAIL might be developed as an approach to cancer therapy.
Collapse
Affiliation(s)
- Zineb El Fajoui
- INSERM U865, University of Lyon, Faculté Laënnec, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
58
|
Mathema VB, Koh YS, Thakuri BC, Sillanpää M. Parthenolide, a Sesquiterpene Lactone, Expresses Multiple Anti-cancer and Anti-inflammatory Activities. Inflammation 2011; 35:560-5. [DOI: 10.1007/s10753-011-9346-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
59
|
Carlisi D, D'Anneo A, Angileri L, Lauricella M, Emanuele S, Santulli A, Vento R, Tesoriere G. Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J Cell Physiol 2011; 226:1632-41. [PMID: 21413021 DOI: 10.1002/jcp.22494] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article shows that HepG2, Hep3B, and SK-Hep1 cells, three lines of human hepatocellular carcinoma (HCC) cells, are resistant to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Parthenolide, a sesquiterpene lactone found in European feverfew, has been shown to exert both anti-inflammatory and anti-cancer activities. This article demonstrates that co-treatment with parthenolide and TRAIL-induced apoptosis with synergistic interactions in the three lines of HCC cells. In order to explain these effects we ascertained that parthenolide increased either at protein or mRNA level the total content of death receptors TRAIL-R1 and -R2 as well as their surface expression. These effects were found in the three cell lines in the case of TRAIL-R2, while for TRAIL-R1 they were observed in HepG2 and SK-Hep1 cells, but not in Hep3B cells. We suggest that the effects of parthenolide on death receptors depend on the decrease in the level of phosphorylated and active forms of STAT proteins, an event which could be a consequence of the inhibitory effect exerted by parthenolide on the activation of JAK proteins. In agreement with this hypothesis treatment with STAT3 siRNA increased in HCC cells the effect of parthenolide on the expression of death receptors. Sensitization by parthenolide to TRAIL stimulated in the three cell lines the extrinsic mechanism of apoptosis with the activation of both caspases 8 and 3, whereas mitochondria were not involved in the process. Our results suggest that co-treatment with parthenolide and TRAIL could represent a new important therapeutic strategy for hepatic tumors.
Collapse
Affiliation(s)
- Daniela Carlisi
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Scienze Biochimiche, Università di Palermo, Policlinico, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Shanmugam R, Kusumanchi P, Appaiah H, Cheng L, Crooks P, Neelakantan S, Peat T, Klaunig J, Matthews W, Nakshatri H, Sweeney CJ. A water soluble parthenolide analog suppresses in vivo tumor growth of two tobacco-associated cancers, lung and bladder cancer, by targeting NF-κB and generating reactive oxygen species. Int J Cancer 2011; 128:2481-94. [PMID: 20669221 PMCID: PMC2982935 DOI: 10.1002/ijc.25587] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dimethylaminoparthenolide (DMAPT) is a water soluble parthenolide analog with preclinical activity in hematologic malignancies. Using non-small lung cancer (NSCLC) cell lines (A549 and H522) and an immortalized human bronchial epithelial cell line (BEAS2B) and TCC cell lines (UMUC-3, HT-1197 and HT-1376) and a bladder papilloma (RT-4), we aimed to characterize DMAPT's anticancer activity in tobacco-associated neoplasms. Flow cytometric, electrophoretic mobility gel shift assays (EMSA), and Western blot studies measured generation of reactive oxygen species (ROS), inhibition of NFκB DNA binding, and changes in cell cycle distribution and apoptotic proteins. DMAPT generated ROS with subsequent JNK activation and also decreased NFκB DNA binding and antiapoptotic proteins, TRAF-2 and XIAP. DMAPT-induced apoptotic cell death and altered cell cycle distribution with upregulation of p21 and p73 levels in a cell type-dependent manner. DMAPT suppressed cyclin D1 in BEAS2B. DMAPT retained NFκB and cell cycle inhibitory activity in the presence of the tobacco carcinogen nitrosamine ketone, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Using a BrdU accumulation assay, 5-20 μM of DMAPT was shown to inhibit cellular proliferation of all cell lines by more than 95%. Oral dosing of DMAPT suppressed in vivo A549 and UMUC-3 subcutaneous xenograft growth by 54% (p = 0.015) and 63% (p < 0.01), respectively, and A549 lung metastatic volume by 28% (p = 0.043). In total, this data demonstrates DMAPT's novel anticancer properties in both early and late stage tobacco-associated neoplasms as well as its significant in vivo activity. The data provides support for the conduct of clinical trials in TCC and NSCLC.
Collapse
Affiliation(s)
| | | | - Hitesh Appaiah
- Department of Surgery, Indiana University, Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| | - Peter Crooks
- College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Sundar Neelakantan
- College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Tyler Peat
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA
| | - James Klaunig
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA
| | | | - Harikrishna Nakshatri
- Department of Surgery, Indiana University, Indianapolis, IN, USA
- Walther Cancer Institute, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Christopher J Sweeney
- Department of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
61
|
Gunn EJ, Williams JT, Huynh DT, Iannotti MJ, Han C, Barrios FJ, Kendall S, Glackin CA, Colby DA, Kirshner J. The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma. Leuk Lymphoma 2011; 52:1085-97. [DOI: 10.3109/10428194.2011.555891] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
62
|
Park SJ, Shin HJ, Youn HS. Parthenolide inhibits TRIF-dependent signaling pathway of Toll-like receptors in RAW264.7 macrophages. Mol Cells 2011; 31:261-5. [PMID: 21347702 PMCID: PMC3932697 DOI: 10.1007/s10059-011-0032-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/05/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in induction of innate immune responses for host defense against invading microbial pathogens. Microbial component engagement of TLRs can trigger the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent downstream signaling pathways. Parthenolide, an active ingredient of feverfew (Tanacetum parthenium), has been used for centuries to treat many chronic diseases. Parthenolide inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-κB kinase. However, it is not known whether parthenolide inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of parthenolide, its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (poly [I:C]) was examined. Parthenolide inhibited nuclear factor-κB and interferon regulatory factor 3 activation induced by LPS or poly[I:C], and the LPS-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that parthenolide can modulate TRIF-dependent signaling pathways of TLRs, and may be the basis of effective therapeutics for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Se-Jeong Park
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan 336-745, Korea
| | - Hwa-Jeong Shin
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 336-745, Korea
| | - Hyung-Sun Youn
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan 336-745, Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 336-745, Korea
| |
Collapse
|
63
|
Ramachandran PV, Pratihar D, Nair HNG, Walters M, Smith S, Yip-Schneider MT, Wu H, Schmidt CM. Tailored α-methylene-γ-butyrolactones and their effects on growth suppression in pancreatic carcinoma cells. Bioorg Med Chem Lett 2010; 20:6620-3. [DOI: 10.1016/j.bmcl.2010.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
64
|
Czyz M, Lesiak-Mieczkowska K, Koprowska K, Szulawska-Mroczek A, Wozniak M. Cell context-dependent activities of parthenolide in primary and metastatic melanoma cells. Br J Pharmacol 2010; 160:1144-57. [PMID: 20590608 DOI: 10.1111/j.1476-5381.2010.00749.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Growing evidence implicates NF-kappaB as an important contributor to metastasis and increased chemoresistance of melanoma. Here, we report the effects of parthenolide on either untreated, cisplatin- or TNFalpha-treated melanoma cell lines A375, 1205Lu and WM793, exhibiting different levels of constitutive NF-kappaB activity. EXPERIMENTAL APPROACH Electrophoretic mobility shift assay was used to assess changes in NF-kappaB activity, and real-time PCR to evaluate expression of NF-kappaB-regulated genes. Cell cycle arrest and apoptosis were assessed by flow cytometry. Cell death was also visualized by fluorescence microscopy. Migration was determined by scratch assay and invasiveness by Matrigel assay. KEY RESULTS Parthenolide suppressed both constitutive and induced NF-kappaB activity in melanoma cells. This was accompanied by down-regulation of cancer-related genes, with NF-kappaB-binding sites in their promoters, including: Bcl-X(L), survivin, cyclin D1, interleukin 8 and matrix metalloproteinase 9. When the various effects of 6 microM parthenolide were compared, apoptosis associated with loss of mitochondrial membrane potential was most efficiently induced in 1205Lu cells, cell cycle arrest in G(0)/G(1) phase was observed in WM793 cells, and high metastatic potential was markedly reduced in A375 cells. These findings not only reflected differences between melanoma cell lines in basal expression of NF-kappaB-regulated genes, but also suggested other parthenolide targets involved in cell cycle progression, migration, invasiveness and survival. CONCLUSIONS Inhibition of constitutive and therapeutically induced NF-kappaB pathway by parthenolide might be useful in the treatment of melanoma, although the diversity of changes induced in melanoma cells with different genetic backgrounds indicate context-dependent poly-pharmacological properties of this compound.
Collapse
Affiliation(s)
- M Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | |
Collapse
|
65
|
Pentoxifylline augments TRAIL/Apo2L mediated apoptosis in cutaneous T cell lymphoma (HuT-78 and MyLa) by modulating the expression of antiapoptotic proteins and death receptors. Biochem Pharmacol 2010; 80:1650-61. [PMID: 20804743 DOI: 10.1016/j.bcp.2010.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising anticancer agent but cutaneous T lymphoma cells (CTCL) are less sensitive to TRAIL-induced apoptosis. Here, we report that pentoxifylline (PTX), a phosphodiesterase inhibitor, augments TRAIL-mediated apoptosis in HuT-78 and MyLa cells through modulating extrinsic death receptors and intrinsic mitochondria dependent pathways. Our results clearly show that PTX augments TRAIL-mediated activation of caspase-8 and induces cleavage of Bid, although PTX alone cannot activate caspase-8. This is followed by cytochrome c release and subsequent, activation of caspase-9 and caspase-3 and cleavage of poly (ADP ribose) polymerase (PARP). Combined treatment downregulates the expression of various antiapoptotic proteins including c-FLIP, Bcl-xl, cIAP-1, cIAP-2 and XIAP. PTX induces the expression of death receptors DR4 and DR5 on cell surface of both the cell types where c-Jun NH2-terminal kinase (JNK) pathway plays an important role. Moreover, combined silencing of DR4 and DR5 by small interfering RNA abrogates the ability of PTX to induce TRAIL-mediated apoptosis. Thus, this is the first demonstration that PTX can potentiate TRAIL-mediated apoptosis through downregulation of cell survival gene products and upregulation of death receptors.
Collapse
|
66
|
Kim YR, Eom JI, Kim SJ, Jeung HK, Cheong JW, Kim JS, Min YH. Myeloperoxidase Expression as a Potential Determinant of Parthenolide-Induced Apoptosis in Leukemia Bulk and Leukemia Stem Cells. J Pharmacol Exp Ther 2010; 335:389-400. [DOI: 10.1124/jpet.110.169367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
67
|
Liu JW, Cai MX, Xin Y, Wu QS, Ma J, Yang P, Xie HY, Huang DS. Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:108. [PMID: 20698986 PMCID: PMC2924280 DOI: 10.1186/1756-9966-29-108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/10/2010] [Indexed: 12/27/2022]
Abstract
Background To explore the anti-tumor effects of parthenolide in human pancreatic cancer. Methods BxPC-3 cell, a human pancreatic cancer, was treated with parthenolide at different concentrations. The MTT assay was used to analyze cell viability. Flow cytometry and DNA fragmentation analysis were applied to evaluate apoptosis after parthenolide treatment. The wound closure and cell invasion assay were also employed in the study. Western blotting was used to demonstrate Bad, Bcl-2, Bax, caspase-9 and pro-caspase-3 expression. Results The MTT assay indicated that the pancreatic cancer growth could be dose-dependently inhibited by parthenoolide. This phenomenon was confirmed by flow cytometry and DNA fragmentation analysis. The wound closure assay and cell invasion assay showed that BxPC-3 cell was significantly suppressed by parthenolide at 7.5 μM and 15 μM. Western Blotting demonstrated the Bcl-2 and pro-caspase-3 were down-regulated while the Bax and caspase-9 were up-regulated. No alteration in Bad expression was found after treatment. Conclusions The parthenolide can inhibit the cell growth, migration, and induce the apoptosis in human pancreatic cancer. These findings may provide a novel approach for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jun-Wei Liu
- Department of General Surgery, Sir Run Run Shaw Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Dai Y, Guzman ML, Chen S, Wang L, Yeung SK, Pei XY, Dent P, Jordan CT, Grant S. The NF (Nuclear factor)-κB inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1-dependent apoptosis in human acute myeloid leukaemia cells. Br J Haematol 2010; 151:70-83. [PMID: 20701602 DOI: 10.1111/j.1365-2141.2010.08319.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interactions between the nuclear factor (NF)-κB inhibitor parthenolide and the pan-histone deacetylase inhibitors (HDACIs) vorinostat and LBH589 were investigated in human acute myeloid leukaemia (AML) cells, including primary AML blasts. Co-administration of parthenolide blocked HDACI-mediated phosphorylation/activation of IKK and RelA/p65 in association with increased JNK1 activation in various AML cell types. These events were accompanied by an increase in apoptosis in multiple AML cell lines (e.g. U937, HL-60, NB4, MV-4-11, and MOLM-13). Significantly, parthenolide also increased HDACI-mediated cell death in haematopoietic cells transduced with the MLL-MLLT1 fusion gene, which exhibit certain leukaemia-initiating cell characteristics, as well as primary AML blasts. Exposure to parthenolide/HDACI regimens clearly inhibited the growth of AML-colony-forming units but was relatively sparing toward normal haematopoietic progenitors. Notably, blockade of c-Jun N-terminal kinase (JNK) signalling by either pharmacological inhibitors or genetic means (e.g. dominant-negative JNK1 or JNK1 shRNA) diminished parthenolide/HDACI-mediated lethality. Moreover, dominant-negative MKK7, but not dominant-negative MKK4/SEK1, blocked JNK1 activation and apoptosis induced by parthenolide/HDACI regimens. Together, these findings indicate that parthenolide potentiates HDACI lethality in human AML cells through a process involving NF-κB inhibition and subsequent MKK7-dependent activation of the SAPK/JNK pathway. They also raise the possibility that this strategy may target leukaemic progenitor cells.
Collapse
Affiliation(s)
- Yun Dai
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Engreitz JM, Daigle BJ, Marshall JJ, Altman RB. Independent component analysis: mining microarray data for fundamental human gene expression modules. J Biomed Inform 2010; 43:932-44. [PMID: 20619355 DOI: 10.1016/j.jbi.2010.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 11/28/2022]
Abstract
As public microarray repositories rapidly accumulate gene expression data, these resources contain increasingly valuable information about cellular processes in human biology. This presents a unique opportunity for intelligent data mining methods to extract information about the transcriptional modules underlying these biological processes. Modeling cellular gene expression as a combination of functional modules, we use independent component analysis (ICA) to derive 423 fundamental components of human biology from a 9395-array compendium of heterogeneous expression data. Annotation using the Gene Ontology (GO) suggests that while some of these components represent known biological modules, others may describe biology not well characterized by existing manually-curated ontologies. In order to understand the biological functions represented by these modules, we investigate the mechanism of the preclinical anti-cancer drug parthenolide (PTL) by analyzing the differential expression of our fundamental components. Our method correctly identifies known pathways and predicts that N-glycan biosynthesis and T-cell receptor signaling may contribute to PTL response. The fundamental gene modules we describe have the potential to provide pathway-level insight into new gene expression datasets.
Collapse
Affiliation(s)
- Jesse M Engreitz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
70
|
Shanmugam R, Kusumanchi P, Cheng L, Crooks P, Neelakantan S, Matthews W, Nakshatri H, Sweeney CJ. A water-soluble parthenolide analogue suppresses in vivo prostate cancer growth by targeting NFkappaB and generating reactive oxygen species. Prostate 2010; 70:1074-86. [PMID: 20209491 DOI: 10.1002/pros.21141] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND To characterize the molecular changes associated with DMAPT-induced prostate cancer cell death and its in vivo activity. METHODS CWR22Rv1 and PC-3 were subjected to flow cytometry, electrophoretic mobility shift assays, and Western blot studies to measure DMAPT's ability to generate reactive oxygen species (ROS), inhibit NFkappaB DNA binding, and cause changes in anti-apoptotic proteins. N-acetyl cysteine (NAC) and short hairpin RNA (shRNA) were used to determine the contribution of ROS and JNK2 activation, respectively. The BrdU incorporation assay was used to measure proliferation and trypan blue studies assessed cell viability after DMAPT treatment. The in vivo activity of DMAPT as a single agent and in combination with bicalutamide or docetaxel was assessed in a subcutaneous xenograft model with athymic nude female mice. RESULTS DMAPT generated ROS with subsequent JNK activation and inhibited NFkappaB DNA binding and expression of NFkappaB-regulated anti-apoptotic proteins. DMAPT increased necrotic and apoptotic cell death in a cell-type-dependent manner and both types of cell death were blocked by NAC. Additionally, shRNA JNK2 partially blocked the anti-proliferative activity of DMAPT. DMAPT inhibited CWR22Rv1 and PC-3 cellular proliferation by 100% with 10 and 20 microM respectively and in vivo, DMAPT was more effective at inhibiting growth than biclutamide (CWR22v1) and docetaxel (PC-3). CONCLUSIONS DMAPT promotes cell death by both generating ROS and inhibition of NFkappaB. Its in vivo activity supports the conduct of clinical trials in patients with castrate-resistant disease.
Collapse
|
71
|
Song YJ, Lee DY, Kim SN, Lee KR, Lee HW, Han JW, Kang DW, Lee HY, Kim YK. Apoptotic potential of sesquiterpene lactone ergolide through the inhibition of NF-κB signaling pathway. J Pharm Pharmacol 2010; 57:1591-7. [PMID: 16354403 DOI: 10.1211/jpp.57.12.0009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Treatment with ergolide, a sesquiterpene lactone from Inula britannica var chinensis, caused the induction of apoptosis in Jurkat T cells, which was confirmed by DNA fragmentation, caspase-3 activation and cleavage of poly(ADP-ribose) polymerase in response to ergolide. Furthermore, mitochondrial dysfunction appeared to be associated with ergolide-induced apoptosis, because Bax translocation and cytochrome c release were stimulated by ergolide. In parallel, the nuclear factor-κB (NF-κB) signaling pathway was significantly inhibited by ergolide, which was accompanied by down-regulation of cell survival molecules, such as X-chromosome-linked inhibitor of apoptosis and Bcl-2. In addition, the JNK signaling pathway was involved in ergolide-induced apoptosis. Collectively, our results identified a new mechanism for the anti-cancer property of ergolide, attributable to the induction of apoptosis through down-regulation of cell survival signal molecules resulting from inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yong Jin Song
- College of Medicine, Kwandong University, Gangneung 210-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Nehra R, Riggins RB, Shajahan AN, Zwart A, Crawford AC, Clarke R. BCL2 and CASP8 regulation by NF-kappaB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and -resistant breast cancer cells. FASEB J 2010; 24:2040-55. [PMID: 20154269 DOI: 10.1096/fj.09-138305] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Resistance to endocrine therapies remains a major problem in the management of estrogen receptor-alpha (ER)-positive breast cancer. We show that inhibition of NF-kappaB (p65/RELA), either by overexpression of a mutant IkappaB (IkappaBSR) or a small-molecule inhibitor of NF-kappaB (parthenolide; IC(50)=500 nM in tamoxifen-resistant cells), synergistically restores sensitivity to 4-hydroxytamoxifen (4HT) in resistant MCF7/RR and MCF7/LCC9 cells and further sensitizes MCF-7 and MCF7/LCC1 control cells to 4HT. These effects are independent of changes in either cell cycle distribution or in the level of autophagy measured by inhibition of p62/SQSTM1 expression and cleavage of LC3. NF-kappaB inhibition restores the ability of 4HT to decrease BCL2 expression, increase mitochondrial membrane permeability, and induce a caspase-dependent apoptotic cell death in resistant cells. Each of these effects is reversed by a caspase 8 (CASP8)-specific inhibitor that blocks enzyme-substrate binding. Thus, increased activation of NF-kappaB can alter sensitivity to tamoxifen by modulating CASP8 activity, with consequent effects on BCL2 expression, mitochondrial function, and apoptosis. These data provide significant new insights into how molecular signaling affects antiestrogen responsiveness and strongly suggest that a combination of parthenolide and tamoxifen may offer a novel therapeutic approach to the management of some ER-positive breast cancers.
Collapse
Affiliation(s)
- Ruchi Nehra
- Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
73
|
Wang J, Kuiatse I, Lee AV, Pan J, Giuliano A, Cui X. Sustained c-Jun-NH2-kinase activity promotes epithelial-mesenchymal transition, invasion, and survival of breast cancer cells by regulating extracellular signal-regulated kinase activation. Mol Cancer Res 2010; 8:266-77. [PMID: 20145041 DOI: 10.1158/1541-7786.mcr-09-0221] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The c-Jun NH(2)-terminus kinase (JNK) mediates stress-induced apoptosis and the cytotoxic effect of anticancer therapies. Paradoxically, recent clinical studies indicate that elevated JNK activity in human breast cancer is associated with poor prognosis. Here, we show that overexpression of a constitutively active JNK in human breast cancer cells did not cause apoptosis, but actually induced cell migration and invasion, a morphologic change associated with epithelial-mesenchymal transition (EMT), expression of mesenchymal-specific markers vimentin and fibronectin, and activity of activator protein transcription factors. Supporting this observation, mouse mammary tumor cells that have undergone EMT showed upregulated JNK activity, and the EMT was reversed by JNK inhibition. Sustained JNK activity enhanced insulin receptor substrate-2-mediated ERK activation, which in turn increased c-Fos expression and activator protein activity. In addition, hyperactive JNK attenuated the apoptosis of breast cancer cells treated by the chemotherapy drug paclitaxel, which is in contrast to the requirement for inducible JNK activity in response to cytotoxic chemotherapy. Blockade of extracellular signal-regulated kinase activity diminished hyperactive JNK-induced cell invasion and survival. Our data suggest that the role of JNK changes when its activity is elevated persistently above the basal levels associated with cell apoptosis, and that JNK activation may serve as a marker of breast cancer progression and resistance to cytotoxic drugs.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| | | | | | | | | | | |
Collapse
|
74
|
Parthenolide, a sesquiterpene lactone from the medical herb feverfew, shows anticancer activity against human melanoma cells in vitro. Melanoma Res 2010; 20:21-34. [DOI: 10.1097/cmr.0b013e328333bbe4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
75
|
Mellier G, Huang S, Shenoy K, Pervaiz S. TRAILing death in cancer. Mol Aspects Med 2009; 31:93-112. [PMID: 19995571 DOI: 10.1016/j.mam.2009.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/02/2009] [Indexed: 12/13/2022]
Abstract
The observation that certain types of cancer express death receptors on their cell surface has triggered heightened interest in exploring the potential of receptor ligation as a novel anti-cancer modality, and since the expression is somewhat restricted to cancer cells the therapeutic implications are very promising. One such death receptor ligand belonging to the tumor necrosis receptor (TNF) superfamily, TNF-related apoptosis-inducing ligand (TRAIL), has been in the limelight as a tumor selective molecule that transmits death signal via ligation to its receptors (TRAIL-R1 and TRAIL-R2 or death receptors 4 and 5; DR4 and DR5). Interestingly, TRAIL-induced apoptosis exhibits hallmarks of extrinsic as well as intrinsic death pathways, and, therefore, is subject to regulation both at the cell surface receptor level as well as more downstream at the post-mitochondrial level. Despite the remarkable selectivity of DR expression on cancer cell surface, development of resistance to TRAIL-induced apoptosis remains a major challenge. Therefore, unraveling the cellular and molecular mechanisms of TRAIL resistance as well as identifying strategies to overcome this problem for an effective therapeutic response remains the cornerstone of many research endeavors. This review aims at presenting an overview of the biology, function and translational relevance of TRAIL with a specific view to discussing the various regulatory mechanisms and the current trends in reverting TRAIL resistance of cancer cells with the obvious implication of an improved clinical outcome.
Collapse
Affiliation(s)
- Gregory Mellier
- Department of Physiology, Yong Loo Lin School of Medicine, Singapore
| | | | | | | |
Collapse
|
76
|
Skalska J, Brookes PS, Nadtochiy SM, Hilchey SP, Jordan CT, Guzman ML, Maggirwar SB, Briehl MM, Bernstein SH. Modulation of cell surface protein free thiols: a potential novel mechanism of action of the sesquiterpene lactone parthenolide. PLoS One 2009; 4:e8115. [PMID: 19956548 PMCID: PMC2780735 DOI: 10.1371/journal.pone.0008115] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 11/02/2009] [Indexed: 11/18/2022] Open
Abstract
Background There has been much interest in targeting intracellular redox pathways as a therapeutic approach for cancer. Given recent data to suggest that the redox status of extracellular protein thiol groups (i.e. exofacial thiols) effects cell behavior, we hypothesized that redox active anti-cancer agents would modulate exofacial protein thiols. Methodology/Principal Findings To test this hypothesis, we used the sesquiterpene lactone parthenolide, a known anti-cancer agent. Using flow cytometry, and western blotting to label free thiols with Alexa Fluor 633 C5 maleimide dye and N-(biotinoyl)-N-(iodoacetyl) ethylendiamine (BIAM), respectively, we show that parthenolide decreases the level of free exofacial thiols on Granta mantle lymphoma cells. In addition, we used immuno-precipitation techniques to identify the central redox regulator thioredoxin, as one of the surface protein thiol targets modified by parthenolide. To examine the functional role of parthenolide induced surface protein thiol modification, we pretreated Granta cells with cell impermeable glutathione (GSH), prior to exposure to parthenolide, and showed that GSH pretreatment; (a) inhibited the interaction of parthenolide with exofacial thiols; (b) inhibited parthenolide mediated activation of JNK and inhibition of NFκB, two well established mechanisms of parthenolide activity and; (c) blocked the cytotoxic activity of parthenolide. That GSH had no effect on the parthenolide induced generation of intracellular reactive oxygen species supports the fact that GSH had no effect on intracellular redox. Together these data support the likelihood that GSH inhibits the effect of parthenolide on JNK, NFκB and cell death through its direct inhibition of parthenolide's modulation of exofacial thiols. Conclusions/Significance Based on these data, we postulate that one component of parthenolide's anti-lymphoma activity derives from its ability to modify the redox state of critical exofacial thiols. Further, we propose that cancer cell exofacial thiols may be important and novel targets for therapy.
Collapse
Affiliation(s)
- Jolanta Skalska
- James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sergiy M. Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shannon P. Hilchey
- James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Craig T. Jordan
- James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Monica L. Guzman
- James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sanjay B. Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Margaret M. Briehl
- Department of Pathology, Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Steven H. Bernstein
- James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
77
|
Jin X, Qiu L, Zhang D, Zhang M, Wang Z, Guo Z, Deng C, Guo C. Chemosensitization in non-small cell lung cancer cells by IKK inhibitor occurs via NF-kappaB and mitochondrial cytochrome c cascade. J Cell Mol Med 2009; 13:4596-607. [PMID: 19067767 PMCID: PMC4515074 DOI: 10.1111/j.1582-4934.2008.00601.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 11/10/2008] [Indexed: 01/08/2023] Open
Abstract
In this study, we demonstrated with mechanistic evidence that parthenolide, a sesquiterpene lactone, could antagonize paclitaxel-mediated NF-kappaB nuclear translocation and activation by selectively targeting I-kappaB kinase (IKK) activity. We also found that parthenolide could target IKK activity and then inhibit NF-kappaB; this promoted cytochrome c release and activation of caspases 3 and 9. Inhibition of caspase activity blocked the activation of caspase cascade, implying that the observed synergy was related to caspases 3 and 9 activation of parthenolide. In contrast, paclitaxel individually induced apoptosis via a pathway independent of the mitochondrial cytochrome c cascade. Finally, exposure to parthenolide resulted in the inhibition of several NF-kappaB transcript anti-apoptotic proteins such as c-IAP1 and Bcl-xl. These data strengthen the rationale for using parthenolide to decrease the apoptotic threshold via caspase-dependent processes for treatment of non-small cell lung cancer with paclitaxel chemoresistance.
Collapse
Affiliation(s)
- Xianqing Jin
- Laboratory of Surgery, Children’s Hospital of Chongqing Medical UniversityChongqing, P.R. China
| | - Lin Qiu
- Laboratory of Surgery, Children’s Hospital of Chongqing Medical UniversityChongqing, P.R. China
| | - Dianliang Zhang
- Laboratory of Surgery, Children’s Hospital of Chongqing Medical UniversityChongqing, P.R. China
- Department of Surgery, Affiliated Hospital of Qingdao UniversityQingdao, P.R. China
| | - Mingman Zhang
- Laboratory of Surgery, Children’s Hospital of Chongqing Medical UniversityChongqing, P.R. China
| | - Ziming Wang
- Department of Orthopaedics, Daping Hospital, Third Military Medical UniversityChongqing, P.R. China
| | - Zhenhua Guo
- Laboratory of Surgery, Children’s Hospital of Chongqing Medical UniversityChongqing, P.R. China
| | - Chun Deng
- Laboratory of Surgery, Children’s Hospital of Chongqing Medical UniversityChongqing, P.R. China
| | - Chunbao Guo
- Laboratory of Surgery, Children’s Hospital of Chongqing Medical UniversityChongqing, P.R. China
| |
Collapse
|
78
|
Chen C, Liu Y, Zheng D. An agonistic monoclonal antibody against DR5 induces ROS production, sustained JNK activation and Endo G release in Jurkat leukemia cells. Cell Res 2009; 19:984-95. [PMID: 19468286 DOI: 10.1038/cr.2009.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have previously reported that AD5-10, a novel agonistic monoclonal antibody against DR5, possessed a strong cytotoxic activity in various tumor cells, via induction of caspase-dependent and -independent signaling pathways. The present study further demonstrates that reactive oxygen species (ROS) were generated in abundance in Jurkat leukemia cells upon AD5-10 stimulation and that ROS accumulation subsequently evoked sustained activation of c-Jun N-terminal kinase (JNK), loss of mitochondrial membrane potential, and release of endonuclease G (Endo G) from mitochondria into the cytosol. The reducing agent, N-acetylcysteine (NAC), effectively inhibited the sustained activation of JNK, release of Endo G, and cell death in Jurkat cells treated by AD5-10. Moreover, a dominant-negative form of JNK (but not of p38) enhanced NF-kappaB activation, suppressed caspase-8 recruitment in death-inducing signaling complexes (DISCs), and reduced adverse effects on mitochondria, thereby inhibiting AD5-10-induced cell death in Jurkat leukemia cells. These data provide novel information on the DR5-mediated cell death-signaling pathway and may shed new light on effective strategies for leukemia and solid tumor therapies.
Collapse
Affiliation(s)
- Caifeng Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | |
Collapse
|
79
|
Harada H, Misawa N. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli. Appl Microbiol Biotechnol 2009; 84:1021-31. [PMID: 19672590 DOI: 10.1007/s00253-009-2166-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/01/2009] [Accepted: 07/24/2009] [Indexed: 11/25/2022]
Abstract
Isoprenoids, also referred to as terpenes, are the most diverse class of natural products appearing in a variety of natural sources, specifically in higher plants, and have a wide range of biological functions. This review describes novel or recent approaches and achievements in pathway engineering of Escherichia coli towards efficient biosynthesis of functional isoprenoids, specifically carotenoids and sesquiterpene, following description of "regularity and simplicity" in the biosynthesis of isoprenoid basic structures. The introduction of heterologous mevalonate pathway-based genes into E. coli has been shown to improve the productivity of carotenoids or sesquiterpenes that are synthesized from farnesyl diphosphate. This achievement also enables relevant researchers to efficiently analyze an isolated gene candidate for a terpene synthase (terpene cyclase).
Collapse
Affiliation(s)
- Hisashi Harada
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd., i-BIRD, Suematsu, Nonoichi-machi, Ishikawa, Japan
| | | |
Collapse
|
80
|
Zhang D, Qiu L, Jin X, Guo Z, Guo C. Nuclear factor-kappaB inhibition by parthenolide potentiates the efficacy of Taxol in non-small cell lung cancer in vitro and in vivo. Mol Cancer Res 2009; 7:1139-49. [PMID: 19584264 DOI: 10.1158/1541-7786.mcr-08-0410] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we have examined the molecular events induced by parthenolide, a sesquiterpene lactone, and explored possible mechanisms of resistance and sensitization of tumor cells to Taxol. We showed that parthenolide could antagonize Taxol-mediated nuclear factor-kappaB (NF-kappaB) nuclear translocation and activation and Bcl-xl up-regulation by selectively targeting I-kappaB kinase activity. In A549 cells, inhibition of nuclear factor-kappaB by parthenolide resulted in activation of the mitochondrial death pathway to promote cytochrome c release and caspase 3 and 9 activation. In contrast, Taxol alone induced apoptosis via a pathway independent of mitochondria cytochrome c cascade. In addition, depletion of Bcl-xl rescued the apoptotic response to Taxol. Moreover, treatment with parthenolide increased the efficacy of the Taxol-induced inhibition of A549 tumor xenografts in mice. This study elucidated the cellular responses induced by parthenolide that decrease the threshold of mitochondria-dependent apoptosis in the treatment of non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Dianliang Zhang
- Laboratory of Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | | | | | | | | |
Collapse
|
81
|
Onozato T, Nakamura CV, Cortez DAG, Filho BPD, Ueda-Nakamura T. Tanacetum vulgare: antiherpes virus activity of crude extract and the purified compound parthenolide. Phytother Res 2009; 23:791-6. [DOI: 10.1002/ptr.2638] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
82
|
Shen HM, Tergaonkar V. NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 2009; 14:348-63. [PMID: 19212815 DOI: 10.1007/s10495-009-0315-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has become increasingly clear that deregulation of the NFkappaB signaling cascade is a common underlying feature of many human ailments including cancers. The past two decades of intensive research on NFkappaB has identified the basic mechanisms that govern the functioning of this pathway but uncovering the details of why this pathway works differently in different cellular contexts or how it interacts with other signaling pathways remains a challenge. A thorough understanding of these processes is needed to design better and more efficient therapeutic approaches to treat complex diseases like cancer. In this review, we summarize the literature documenting the involvement of NFkappaB in cancer, and then focus on the approaches that are being undertaken to develop NFkappaB inhibitors towards treatment of human cancers.
Collapse
Affiliation(s)
- Han-Ming Shen
- Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Republic of Singapore.
| | | |
Collapse
|
83
|
Gopal YNV, Chanchorn E, Van Dyke MW. Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol Cancer Ther 2009; 8:552-62. [PMID: 19276167 DOI: 10.1158/1535-7163.mct-08-0661] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MDM2 belongs to a class of ring-finger domain-containing ubiquitin ligases that mediate the proteasomal degradation of numerous proteins, including themselves. Arguably, the most important substrate of MDM2 is p53, which controls cell cycle progression and apoptosis. MDM2 and p53 are parts of a feedback regulatory loop whose perturbations are often present in cancer and are targets for anticancer drug development. We found that the natural product, small-molecule anti-inflammatory agent parthenolide (PN), which is actively being investigated as a potential therapeutic for many human cancers, induces ubiquitination of MDM2 in treated cells, resulting in the activation of p53 and other MDM2-regulated tumor-suppressor proteins. Using cells with functional gene deletions and small interfering RNA knockdown studies, we found that these effects required the DNA damage transducer ataxia telangiectasia mutated. The effects of PN on tumor suppressor activation were comparable with that of nutlin-3a, a recently developed small molecule that was designed to interfere with the interaction between MDM2 and p53 but does not promote MDM2 ubiquitination. Our study illustrates an alternative approach for controlling MDM2 and p53 activities and identifies an additional critically important cancer pathway affected by PN.
Collapse
Affiliation(s)
- Y N Vashisht Gopal
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Unit 079, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
84
|
Liu Z, Liu S, Xie Z, Pavlovicz RE, Wu J, Chen P, Aimiuwu J, Pang J, Bhasin D, Neviani P, Fuchs JR, Plass C, Li PK, Li C, Huang THM, Wu LC, Rush L, Wang H, Perrotti D, Marcucci G, Chan KK. Modulation of DNA methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther 2009; 329:505-14. [PMID: 19201992 DOI: 10.1124/jpet.108.147934] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypermethylation of 5'-cytosine-guanosine islands of tumor suppressor genes resulting in their silencing has been proposed to be a hallmark of various tumors. Modulation of DNA methylation with DNA methylation inhibitors has been shown to result in cancer cell differentiation or apoptosis and represents a novel strategy for chemotherapy. Currently, effective DNA methylation inhibitors are mainly limited to decitabine and 5-azacytidine, which still show unfavorable toxicity profiles in the clinical setting. Thus, discovery and development of novel hypomethylating agents, with a more favorable toxicity profile, is essential to broaden the spectrum of epigenetic therapy. Parthenolide, the principal bioactive sesquiterpene lactone of feverfew, has been shown to alkylate Cys(38) of p65 to inhibit nuclear factor-kappaB activation and exhibit anti-tumor activity in human malignancies. In this article, we report that parthenolide 1) inhibits DNA methyltransferase 1 (DNMT1) with an IC(50) of 3.5 microM, possibly through alkylation of the proximal thiolate of Cys(1226) of the catalytic domain by its gamma-methylene lactone, and 2) down-regulates DNMT1 expression possibly associated with its SubG(1) cell-cycle arrest or the interruption of transcriptional factor Sp1 binding to the promoter of DNMT1. These dual functions of parthenolide result in the observed in vitro and in vivo global DNA hypomethylation. Furthermore, parthenolide has been shown to reactivate tumor suppressor HIN-1 gene in vitro possibly associated with its promoter hypomethylation. Hence, our study established parthenolide as an effective DNA methylation inhibitor, representing a novel prototype for DNMT1 inhibitor discovery and development from natural structural-diversified sesquiterpene lactones.
Collapse
Affiliation(s)
- Zhongfa Liu
- Division of Pharmaceutics, Colleges of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Procházková J, Stixová L, Soucek K, Hofmanová J, Kozubík A. Monocytic differentiation of leukemic HL-60 cells induced by co-treatment with TNF-alpha and MK886 requires activation of pro-apoptotic machinery. Eur J Haematol 2009; 83:35-47. [PMID: 19220423 DOI: 10.1111/j.1600-0609.2009.01240.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The block of hematopoietic differentiation program in acute myeloid leukemia cells can be overcome by differentiating agent like retinoic acid, but it has several side effects. A study of other differentiation signaling pathways is therefore useful to predict potential targets of anti-leukemic therapy. We demonstrated previously that the co-treatment of HL-60 cells with Tumor necrosis factor-alpha (TNF-alpha) (1 ng/mL) and inhibitor of 5-lipoxygenase MK886 (5 microm) potentiated both monocytic differentiation and apoptosis. In this study, we detected enhanced activation of three main types of mitogen-activated protein kinases (MAPKs) (p38, c-Jun amino-terminal kinase [JNK], extracellular signal-regulated kinase [ERK]), so we assessed their role in differentiation using appropriate pharmacologic inhibitors. The inhibition of pro-apoptotic MAPKs (p38 and JNK) suppressed the effect of MK886 + TNF-alpha co-treatment. On the other hand, down-regulation of pro-survival ERK pathway led to increased differentiation. Those effects were accompanied by increased activation of caspases in cells treated by MK886 + TNF-alpha. Pan-caspase inhibitor ZVAD-fmk significantly decreased both number of apoptotic and differentiated cells. The same effect was observed after inhibition of caspase 9, but not caspase 3 and 8. To conclude, we evidenced that the activation of apoptotic processes and pathways supporting apoptosis (p38 and JNK MAPKs) is required for the monocytic differentiation of HL-60 cells.
Collapse
Affiliation(s)
- Jirina Procházková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of Czech Republic, vvi, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
86
|
Beurel E, Blivet-Van Eggelpoël MJ, Kornprobst M, Moritz S, Delelo R, Paye F, Housset C, Desbois-Mouthon C. Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem Pharmacol 2008; 77:54-65. [PMID: 18938143 DOI: 10.1016/j.bcp.2008.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) displays a striking resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Therefore, the characterization of pharmacological agents that overcome this resistance may provide new therapeutic modalities for HCC. Here, we examined whether glycogen synthase kinase-3 (GSK-3) inhibitors could restore TRAIL sensitivity in hepatoma cells. To this aim, the effects of two GSK-3 inhibitors, lithium and SB-415286, were analyzed on TRAIL apoptotic signaling in human hepatoma cell lines in comparison with normal hepatocytes. We observed that both inhibitors sensitized hepatoma cells, but not normal hepatocytes, to TRAIL-induced apoptosis by enhancing caspase-8 activity and the downstream recruitment of the mitochondrial machinery. GSK-3 inhibitors also stabilized p53 and the down-regulation of p53 by RNA interference abolished the sensitizing effect of lithium on caspase-3 activation. Concomitantly, GSK-3 inhibitors strongly activated c-Jun N-terminal kinases (JNKs). The pharmacological inhibition of JNKs with AS601245 or SP600125 resulted in an earlier and stronger induction of apoptosis indicating that activated JNKs transduced protective signals and provided an anti-apoptotic balance to the pro-apoptotic effects of GSK-3 inhibitors. These findings demonstrate that GSK-3 exerts a negative and complex constraint on TRAIL apoptotic signaling in hepatoma cells, which can be greatly alleviated by GSK-3 inhibitors. Therefore, GSK-3 inhibitors may open new perspectives to enhance the anti-tumor activity of TRAIL in HCC.
Collapse
Affiliation(s)
- Eléonore Beurel
- UPMC Univ Paris 06, UMR_S 893, F-75005, INSERM, UMR_S 893, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Parada-Turska J, Mitura A, Brzana W, Jabłoński M, Majdan M, Rzeski W. Parthenolide Inhibits Proliferation of Fibroblast-Like Synoviocytes In Vitro. Inflammation 2008; 31:281-5. [DOI: 10.1007/s10753-008-9076-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
88
|
Taylor PG, Dupuy Loo OA, Bonilla JA, Murillo R. Anticancer activities of two sesquiterpene lactones, millerenolide and thieleanin isolated from Viguiera sylvatica and Decachaeta thieleana. Fitoterapia 2008; 79:428-32. [PMID: 18534779 DOI: 10.1016/j.fitote.2007.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 07/26/2007] [Indexed: 02/06/2023]
Abstract
The present study was carried out in order to examine the anticancer properties of two sesquiterpene lactones, millerenolide and thieleanin, isolated from Viguiera sylvatica and Decachaeta thieleana, against cell lines in vitro, and on the growth B16/BL6 melanoma tumors in C57BL/6 mice. Millerenolide and thieleanin showed a similar pattern of cytotoxicity with the greatest effect on viability being evident with A549 human lung cancer cells (IC(50) - 40 and 32 microM respectively), and with the 3T3/HER2 cell line which are 3T3 mouse fibroblasts transfected with the HER2 oncogene (IC(50) - 16 and 28 microM respectively). The parent 3T3 cells and the B16/BL6 mouse melanoma cells were less sensitive to these compounds, with thieleanin showing an IC(50) with B16/BL6 greater than the highest dose tested (203 microM). Treatment with millerenolide (8 mg/kg, i.p. on days 0, 2 and 4 post-inoculation) significantly inhibited the growth of subcutaneous B16/BL6 tumors in C57BL/6 mice, (50% inhibition at day 25, P=0.015), as well as retarding the appearance of detectable tumor (millerenolide - day 15.2+/-0.4 vs control - day 12.8+/-0.5, mean+/-SEM, P=0.011). In contrast, treatment with thieleanin (8 mg/kg every other day up to the day of kill) neither retarded the appearance of the tumor nor its growth.
Collapse
Affiliation(s)
- Peter G Taylor
- Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela.
| | | | | | | |
Collapse
|
89
|
Suvannasankha A, Crean CD, Shanmugam R, Farag SS, Abonour R, Boswell HS, Nakshatri H. Antimyeloma effects of a sesquiterpene lactone parthenolide. Clin Cancer Res 2008; 14:1814-22. [PMID: 18347184 DOI: 10.1158/1078-0432.ccr-07-1359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Nuclear factor-kappaB (NF-kappaB), activated in multiple myeloma (MM) cells by microenvironmental cues, confers resistance to apoptosis. The sesquiterpene lactone parthenolide targets NF-kappaB. However, its therapeutic potential in MM is not known. EXPERIMENTAL DESIGNS We explored the effects of parthenolide on MM cells in the context of the bone marrow microenvironment. RESULTS Parthenolide inhibited growth of MM cells lines, including drug-resistant cell lines, and primary cells in a dose-dependent manner. Parthenolide overcame the proliferative effects of cytokines interleukin-6 and insulin-like growth factor I, whereas the adhesion of MM cells to bone marrow stromal cells partially protected MM cells against parthenolide effect. In addition, parthenolide blocked interleukin-6 secretion from bone marrow stromal cells triggered by the adhesion of MM cells. Parthenolide cytotoxicity is both caspase-dependent and caspase-independent. Parthenolide rapidly induced caspase activation and cleavage of PARP, MCL-1, X-linked inhibitor of apoptosis protein, and BID. Parthenolide rapidly down-regulated cellular FADD-like IL-1beta-converting enzyme inhibitory protein, and direct targeting of cellular FADD-like IL-1beta-converting enzyme inhibitory protein using small interfering RNA oligonucleotides inhibited MM cell growth and lowered the parthenolide concentration required for growth inhibition. An additive effect and synergy were observed when parthenolide was combined with dexamethasone and TNF-related apoptosis-inducing ligand, respectively. CONCLUSION Collectively, parthenolide has multifaceted antitumor effects toward both MM cells and the bone marrow microenvironment. Our data support the clinical development of parthenolide in MM therapy.
Collapse
Affiliation(s)
- Attaya Suvannasankha
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
90
|
Lorz C, Benito-Martín A, Boucherot A, Ucero AC, Rastaldi MP, Henger A, Armelloni S, Santamaría B, Berthier CC, Kretzler M, Egido J, Ortiz A. The death ligand TRAIL in diabetic nephropathy. J Am Soc Nephrol 2008. [PMID: 18287563 DOI: 10.1016/18287563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell death contributes to diabetic nephropathy (DN), but its role is not well understood. The tubulointerstitium from DN biopsy specimens was microdissected, and expression profiles of genes related to apoptosis were analyzed. A total of 112 (25%) of 455 cell death-related genes were found to be significantly differentially regulated. Among those that showed the greatest changes in regulation were two death receptors, OPG (the gene encoding osteoprotegerin) and Fas, and the death ligand TRAIL. Glomerular and proximal tubular TRAIL expression, assessed by immunohistochemistry, was higher in DN kidneys than controls and was associated with clinical and histologic severity of disease. In vitro, proinflammatory cytokines but not glucose alone regulated TRAIL expression in the human proximal tubular cell line HK-2. TRAIL induced tubular cell apoptosis in a dosage-dependant manner, an effect that was more marked in the presence of high levels of glucose and proinflammatory cytokines. TRAIL also activated NF-kappaB, and inhibition of NF-kappaB sensitized cells to TRAIL-induced apoptosis. It is proposed that TRAIL-induced cell death could play an important role in the progression of human DN.
Collapse
Affiliation(s)
- Corina Lorz
- Renal and Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Lorz C, Benito-Martín A, Boucherot A, Ucero AC, Rastaldi MP, Henger A, Armelloni S, Santamaría B, Berthier CC, Kretzler M, Egido J, Ortiz A. The death ligand TRAIL in diabetic nephropathy. J Am Soc Nephrol 2008; 19:904-14. [PMID: 18287563 DOI: 10.1681/asn.2007050581] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Apoptotic cell death contributes to diabetic nephropathy (DN), but its role is not well understood. The tubulointerstitium from DN biopsy specimens was microdissected, and expression profiles of genes related to apoptosis were analyzed. A total of 112 (25%) of 455 cell death-related genes were found to be significantly differentially regulated. Among those that showed the greatest changes in regulation were two death receptors, OPG (the gene encoding osteoprotegerin) and Fas, and the death ligand TRAIL. Glomerular and proximal tubular TRAIL expression, assessed by immunohistochemistry, was higher in DN kidneys than controls and was associated with clinical and histologic severity of disease. In vitro, proinflammatory cytokines but not glucose alone regulated TRAIL expression in the human proximal tubular cell line HK-2. TRAIL induced tubular cell apoptosis in a dosage-dependant manner, an effect that was more marked in the presence of high levels of glucose and proinflammatory cytokines. TRAIL also activated NF-kappaB, and inhibition of NF-kappaB sensitized cells to TRAIL-induced apoptosis. It is proposed that TRAIL-induced cell death could play an important role in the progression of human DN.
Collapse
Affiliation(s)
- Corina Lorz
- Renal and Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Mendonca MS, Chin-Sinex H, Gomez-Millan J, Datzman N, Hardacre M, Comerford K, Nakshatri H, Nye M, Benjamin L, Mehta S, Patino F, Sweeney C. Parthenolide sensitizes cells to X-ray-induced cell killing through inhibition of NF-kappaB and split-dose repair. Radiat Res 2008; 168:689-97. [PMID: 18088190 DOI: 10.1667/rr1128.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 08/24/2007] [Indexed: 11/03/2022]
Abstract
Human cancers have multiple alterations in cell signaling pathways that promote resistance to cytotoxic therapy such as X rays. Parthenolide is a sesquiterpene lactone that has been shown to inhibit several pro-survival cell signaling pathways, induce apoptosis, and enhance chemotherapy-induced cell killing. We investigated whether parthenolide would enhance X-ray-induced cell killing in radiation resistant, NF-kappaB-activated CGL1 cells. Treatment with 5 microM parthenolide for 48 to 72 h inhibited constitutive NF-kappaB binding and cell growth, reduced plating efficiency, and induced apoptosis through stabilization of p53 (TP53), induction of the pro-apoptosis protein BAX, and phosphorylation of BID. Parthenolide also enhanced radiation-induced cell killing, increasing the X-ray sensitivity of CGL1 cells by a dose modification factor of 1.6. Flow cytometry revealed that parthenolide reduced the percentage of X-ray-resistant S-phase cells due to induction of p21 waf1/cip1 (CDKN1A) and the onset of G1/S and G2/M blocks, but depletion of radioresistant S-phase cells does not explain the observed X-ray sensitization. Further studies demonstrated that the enhancement of X-ray-induced cell killing by parthenolide is due to inhibition of split-dose repair.
Collapse
Affiliation(s)
- Marc S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C, Han S, Liu J, Sun S, Han Z, Wu K, Fan D. Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci 2008; 99:121-8. [PMID: 17953712 PMCID: PMC11158535 DOI: 10.1111/j.1349-7006.2007.00643.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia induced drug resistance is a major obstacle in the development of effective cancer therapy. Our previous study revealed that hypoxia-inducible factor-1 (HIF-1), the major transcriptional factor significantly activated by hypoxia, was overexpressed in gastric vincristine-resistant cells SGC7901/vincristine (VCR) under normoxic conditions, which suggested that it was associated with drug resistance in gastric cancer cells. In the present study, a colony-forming assay revealed that hypoxia and forced HIF-1 alpha expression increased maximal -8.9-fold or -14.8-fold of IC(50) toward vincristine in gastric cancer cell lines SGC7901 and SGC7901/VCR, respectively (P < 0.01). Annexin-V/propidium iodide staining analysis revealed hypoxia or forced HIF-1 alpha expression reduced apoptosis by 24% or 18% in SGC7901 cells (P < 0.05). Flow cytometry analysis of intracellular adriamycin revealed that hypoxia and forced expression of HIF-1 alpha increased -1.79-fold or -2.36-fold of the adriamycin releasing index, respectively (P < 0.05). However, resistance acquisition subject to hypoxia in vitro and in vivo was suppressed by blocking HIF-1 alpha expression with siRNA. We further demonstrated that HIF-1 alpha overexpression showed a 1.85-fold increased expression of Bcl-2 and a 2.16-fold decreased expression of Bax, and also showed significantly induced expression of p-gp and MRP1, which indicated that HIF-1 alpha may confer hypoxia-induced drug resistance via inhibition of drug-induced apoptosis and decreases in intracellular drug accumulation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Apoptosis/drug effects
- Cell Hypoxia/physiology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/genetics
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- RNA, Small Interfering/genetics
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Transfection
- Vincristine/pharmacology
- bcl-2-Associated X Protein/antagonists & inhibitors
Collapse
Affiliation(s)
- Lili Liu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 15 Changle West Road, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Gopal YNV, Arora TS, Van Dyke MW. Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated. ACTA ACUST UNITED AC 2007; 14:813-23. [PMID: 17656318 DOI: 10.1016/j.chembiol.2007.06.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/11/2007] [Accepted: 06/15/2007] [Indexed: 11/24/2022]
Abstract
Histone deacetylases (HDACs), enzymes involved in chromatin remodeling, are promising targets for anticancer drug development. Several HDAC inhibitors (HDACi) are in clinical trials. One limitation of present HDACi is their nonspecificity, affecting many HDACs with similar effectiveness. We have identified a small molecule, the sesquiterpene lactone parthenolide (PN), which specifically depletes HDAC1 protein without affecting other class I/II HDACs. HDAC1 depletion occurred through proteasomal degradation and resulted in transcriptional consequences comparable to those observed with pan-HDACi. Surprisingly, HDAC1 depletion did not occur through the inflammation mediator IKK2, a known PN target and regulator of HDAC1. Rather, PN promoted HDAC1 depletion and cell death through the DNA-damage-transducer ataxia telangiectasia mutated. Our study suggests that modulating cellular HDAC protein levels with small molecules provides an alternative approach to specific HDAC inhibition and effective cancer treatment.
Collapse
Affiliation(s)
- Y N Vashisht Gopal
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
95
|
Sun Y, St Clair DK, Fang F, Warren GW, Rangnekar VM, Crooks PA, St Clair WH. The radiosensitization effect of parthenolide in prostate cancer cells is mediated by nuclear factor-kappaB inhibition and enhanced by the presence of PTEN. Mol Cancer Ther 2007; 6:2477-86. [PMID: 17876045 PMCID: PMC2627774 DOI: 10.1158/1535-7163.mct-07-0186] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parthenolide has been shown to have anti-inflammatory and antitumor properties. However, whether and how parthenolide enhances tumor sensitivity to radiation therapy are unknown. In this study, we show that inhibition of the nuclear factor-kappaB (NF-kappaB) pathway is a common mechanism for the radiosensitization effect of parthenolide in prostate cancer cells LNCaP, DU 145, and PC3. Parthenolide inhibits radiation-induced NF-kappaB DNA-binding activity and the expression of its downstream target sod2, the gene coding for an important antiapoptotic and antioxidant enzyme (manganese superoxide dismutase) in the three prostate cancer cells. Different susceptibilities to parthenolide's effect are observed in two radioresistant cancer cells, DU 145 and PC3, with DU 145 cells showing higher sensitivity. This differential susceptibility to parthenolide is due, in part, to the fact that in addition to NF-kappaB inhibition, parthenolide activates the phosphatidylinositol-3-kinase/Akt prosurvival pathway in both cell lines. However, the activated Akt in DU 145 cells is kept at a relatively low level compared with that in PC3 cells due to the presence of functional PTEN. Transfection of wild-type PTEN into PTEN-null cells, PC3, confers the enhanced radiosensitization effect of parthenolide in PTEN-expressing cells. When PTEN expression is knocked down in DU 145 cells, the cells become more resistant to parthenolide's effect. Taken together, these results suggest that parthenolide inhibits the NF-kappaB pathway and activates the phosphatidylinositol-3-kinase/Akt pathway in prostate cancer cells. The radiosensitization effect of parthenolide is due, in part, to the inhibition of the NF-kappaB pathway. The presence of PTEN enhances the radiosensitization effect of parthenolide, in part, by suppressing the absolute amount of activated p-Akt.
Collapse
Affiliation(s)
- Yulan Sun
- Graduate Center for Toxicology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Kurdi M, Booz GW. Evidence that IL-6-type cytokine signaling in cardiomyocytes is inhibited by oxidative stress: parthenolide targets JAK1 activation by generating ROS. J Cell Physiol 2007; 212:424-31. [PMID: 17385713 DOI: 10.1002/jcp.21033] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parthenolide, an anti-inflammatory compound, was reported to inhibit signal transducer and activator of transcription 3 (STAT3) activation by the interleukin (IL)-6-type cytokines by an undefined process, which was the focus of our study. Here we report that parthenolide reduced both basal and leukemia inhibitory factor (LIF)-induced STAT3 tyrosine 705 (Y705) phosphorylation in cardiomyocytes in a dose-dependent manner, but stimulated the MAP kinase signaling pathways. Activation of Janus kinase 1 (JAK1) tyrosine kinase was markedly reduced by parthenolide. Pretreatment with parthenolide inhibited JAK1-mediated phosphorylation of the LIF receptor subunits LIF receptor (LIFR) alpha and glycoprotein 130 (gp130), and reduced the LIF-induced increase in JAK1 association with both components. In addition, we documented that parthenolide, over the same concentration range, does not have a direct inhibitory effect on JAK1 autophosphorylation. However, we observed that parthenolide increased intracellular reactive oxygen species (ROS). Pretreatment with the antioxidant, N-acetyl-L-cysteine, completely suppressed the effect of parthenolide on JAK1 and STAT3. From these results, we conclude ROS generation in cardiomyocytes blocks STAT3 signaling of the IL-6-type cytokines by targeting JAK1. The finding that signaling by the IL-6-type cytokine may be redox-sensitive defines a novel mechanism of regulation that has implications for exploiting their therapeutic potential.
Collapse
Affiliation(s)
- Mazen Kurdi
- The Division of Molecular Cardiology, The Cardiovascular Research Institute, The Texas A&M University System Health Science Center, Scott & White, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | |
Collapse
|
97
|
Duechler M, Stańczyk M, Czyz M, Stepnik M. Potentiation of arsenic trioxide cytotoxicity by Parthenolide and buthionine sulfoximine in murine and human leukemic cells. Cancer Chemother Pharmacol 2007; 61:727-37. [PMID: 17594095 DOI: 10.1007/s00280-007-0527-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/11/2007] [Indexed: 01/08/2023]
Abstract
PURPOSE To possibly increase the in vitro cytotoxic activity of arsenic trioxide (ATO) by combining it with Parthenolide (PRT), a known NF-kappaB inhibitor and buthionine sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase. METHODS Several cell lines representing various hematological malignancies were treated in vitro with the study drugs alone or in combinations. Flow cytometry was used to assess cell death rates and reative oxygen species production. Glutathione and ATP levels were determinded using a photometric and a luminometric assay, respectively. Cell death was characterised by fluorescence microscopy and DNA fragmentation analysis. RESULTS PRT increased cytotoxicity of ATO in seven out of eight cell lines. Addition of buthionine sulfoximine (BSO) further potentiated cytotoxicity of the combined treatment. When combined with PRT and BSO, clinically achievable concentrations of ATO (2.5 microM) induced cytotoxicity rates of 80-98% after 24 h. Importantly, lymphocytes from healthy donors were largely unaffected by these treatment modalities, also after growth stimulation in cell culture. N-acetylcysteine inhibited the cytotoxic effects of the triple combination. Treatment of leukemic cells with ATO, PRT and BSO rapidly depleted cells from glutathione, induced oxidative stress and decreased intracellular ATP levels. Cell death showed characteristics of necrosis presumably as a result of ATP loss. CONCLUSION Based on the observed selectivity towards malignant cells this combination may offer a therapeutic option applicable to different kinds of leukemia.
Collapse
Affiliation(s)
- Markus Duechler
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Łódź, Poland.
| | | | | | | |
Collapse
|
98
|
Yip-Schneider MT, Wu H, Ralstin M, Yiannoutsos C, Crooks PA, Neelakantan S, Noble S, Nakshatri H, Sweeney CJ, Schmidt CM. Suppression of pancreatic tumor growth by combination chemotherapy with sulindac and LC-1 is associated with cyclin D1 inhibition in vivo. Mol Cancer Ther 2007; 6:1736-44. [PMID: 17541034 DOI: 10.1158/1535-7163.mct-06-0794] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The design of novel targeted or combination therapies may improve treatment options for pancreatic cancer. Two targets of recent interest are nuclear factor-kappaB (NF-kappaB) and cyclooxygenase (COX), known to be activated or overexpressed, respectively, in pancreatic cancer. We have previously shown that parthenolide, a proapoptotic drug associated with NF-kappaB inhibition, enhanced the growth suppression of pancreatic cancer cells by the COX inhibitor sulindac in vitro. In the present study, a bioavailable analogue of parthenolide, LC-1, and sulindac were evaluated in vivo using a xenograft model of human pancreatic cancer. Treatment groups included placebo, low-dose/high-dose LC-1 (20 and 40 mg/kg), low-dose/high-dose sulindac (20 and 60 mg/kg), and low-dose combination LC-1/sulindac (20 mg/kg each). In MiaPaCa-2 xenografts, tumor growth was inhibited by either high-dose sulindac or LC-1. In BxPC-3 xenografts, tumor size was significantly reduced by treatment with the low-dose LC-1/sulindac combination or high-dose sulindac alone (P < 0.05). Immunohistochemistry of BxPC-3 tumors revealed a significant decrease in Ki-67 and CD31 staining by high-dose sulindac, with no significant changes in COX-1/COX-2 levels or activity in any of the treatment groups. NF-kappaB DNA-binding activity was significantly decreased by high-dose LC-1. Cyclin D1 protein levels were reduced by the low-dose LC-1/sulindac combination or high-dose sulindac alone, correlating with BxPC-3 tumor suppression. These results suggest that LC-1 and sulindac may mediate their antitumor effects, in part, by altering cyclin D1 levels. Furthermore, this study provides preclinical evidence for the therapeutic efficacy of these agents.
Collapse
|
99
|
Kishida Y, Yoshikawa H, Myoui A. Parthenolide, a natural inhibitor of Nuclear Factor-kappaB, inhibits lung colonization of murine osteosarcoma cells. Clin Cancer Res 2007; 13:59-67. [PMID: 17200339 DOI: 10.1158/1078-0432.ccr-06-1559] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The transcription factor nuclear factor-kappaB (NF-kappaB) regulates the expression of several genes important for tumor metastasis and is constitutively active in the highly metastatic murine osteosarcoma cell line LM8. Parthenolide, a sesquiterpene lactone, was reported to inhibit the DNA binding of NF-kappaB. The purpose of this study is to investigate the usefulness of parthenolide as target for antimetastatic therapies. EXPERIMENTAL DESIGN We examined the effect of parthenolide on metastasis-associated phenotypes in vitro and in murine experimental lung metastasis models by s.c. and i.v. inoculation of LM8 cells. RESULTS We found that parthenolide strongly induced apoptosis and inhibited cell proliferation and the expression of vascular endothelial growth factor in vitro. In the in vivo metastasis models, parthenolide treatment suppressed lung metastasis when treatment was initiated concurrently with s.c. or i.v. inoculation of tumor cells, whereas lung metastasis was not reduced when parthenolide was given after the homing of tumor cells. The growth of s.c. tumors that developed at the inoculation site was not suppressed by parthenolide. We also found that the genetic inhibition of NF-kappaB activity by expressing mutant IkappaBalpha suppressed lung metastasis in vivo but not s.c. tumor growth. This supports our notion that the metastasis-preventing effect of parthenolide is mediated at least in part by inhibition of NF-kappaB activity. CONCLUSIONS These findings suggested that NF-kappaB is a potential molecular target for designing specific prophylactic interventions against distant metastasis and that parthenolide is a hopeful candidate for an antimetastatic drug.
Collapse
Affiliation(s)
- Yuki Kishida
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | |
Collapse
|
100
|
Morales JC, Ruiz-Magaña MJ, Ruiz-Ruiz C. Regulation of the resistance to TRAIL-induced apoptosis in human primary T lymphocytes: Role of NF-κB inhibition. Mol Immunol 2007; 44:2587-97. [PMID: 17257681 DOI: 10.1016/j.molimm.2006.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Several combined strategies have been recently proposed to overcome the resistance to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) showed by some tumor cells, thus improving the use of this death ligand in antitumor therapy. However, the molecular mechanisms of the tumor selective activity of TRAIL are not completely understood and hence the effects of the combined therapy on normal cells are unknown. Here, we have studied the resistance of primary T lymphocytes to TRAIL-mediated apoptosis. No significant differences were found in the expression of proteins involved in TRAIL-mediated apoptosis between resting and activated T cells. The low expression of death receptors TRAIL-R1/-R2 as well as the high levels of the antiapoptotic proteins TRAIL-R4 and cellular Fas-associated death domain-like IL-1beta-converting enzyme-inhibitory protein (c-FLIP) may explain the lack of caspase-8 activation observed upon TRAIL treatment in both cell types. We have also analyzed the effect of different sensitizing agents such as genotoxic drugs, phosphatidylinositol-3 kinase (PI3K) inhibitors, proteasome inhibitors, microtubule depolymerizing agents, histone deacetylase inhibitors (HDACi), and NF-kappaB inhibitors. Although some of them induced T cell death, only NF-kappaB inhibitors sensitized activated T cells to TRAIL-induced apoptosis, maybe through the regulation of the antiapoptotic proteins TRAIL-R4, c-FLIP(S) and members of the inhibitors of apoptosis proteins (IAP) family. These results question the safety of the combined treatments with TRAIL and NF-kappaB inhibitors against tumors.
Collapse
Affiliation(s)
- Jorge Carlos Morales
- Departamento de Bioquímica y Biología Molecular 3 e Inmunología, Facultad de Medicina, Universidad de Granada, Avda. de Madrid 11, 18012 Granada, Spain
| | | | | |
Collapse
|